JP2008504939A - 均一な静磁場を用いた磁気共鳴画像化方法および装置 - Google Patents

均一な静磁場を用いた磁気共鳴画像化方法および装置 Download PDF

Info

Publication number
JP2008504939A
JP2008504939A JP2007523231A JP2007523231A JP2008504939A JP 2008504939 A JP2008504939 A JP 2008504939A JP 2007523231 A JP2007523231 A JP 2007523231A JP 2007523231 A JP2007523231 A JP 2007523231A JP 2008504939 A JP2008504939 A JP 2008504939A
Authority
JP
Japan
Prior art keywords
signal
detector
probe
magnetic resonance
target portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007523231A
Other languages
English (en)
Inventor
ドロン クウィット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IL16250104A external-priority patent/IL162501A0/xx
Application filed by Individual filed Critical Individual
Publication of JP2008504939A publication Critical patent/JP2008504939A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

対象部分が均一な静磁場にあるときに、対象部分に対して送信されたRF信号に応答して対象部分において生成された磁気共鳴信号から、対象部分のMRI画像を生成するシステムである。このシステムは、(i) 対象部分の近辺にあるときに磁気共鳴信号を検出するプローブと、(ii) プローブからの出力信号を受信するように構成され、その出力信号を処理して画像データセットを生成する信号処理アセンブリとを含む。プローブは、複数のRF検出器を含み、それぞれが規定された位置とアドレスとを有している。
【選択図】図5

Description

本発明は、対象部分の画像化を行うように設計された、磁気共鳴画像化(“MRI”)方法、システム、および検出器アレイに関する。
従来のMRI技術では、静磁場勾配を均一な静磁場に重畳することにより、空間解像度を得ている。様々な勾配の向きで一連の励磁を行って信号を受信することにより、原子核分布の完全な画像を得ることができる。なお、MRIシーケンスとして知られる励磁方法を変更して、適切な処理方法を用いることにより、生物学組織のような物質の化学的および物理的特性の空間分布を、多くの異なるやり方で強調して対比できることは、MRIの特有の特性である。
検出器アレイを用いてMR画像を生成することが提案されている。例えば、Kwiat他により、Med. Phys.、18(2)、251−265頁(1991年)において、この種類の提案がなされている。この記事には、磁気共鳴画像化の方法が記載されており、この記事によれば、対象が均一な磁場のもとに配置され、対象の周囲のコイル検出器アレイにおいて収集されたデータにインバース・ソース・プロシージャを行うことにより、画像が得られる。このアプローチは、Kwiat他により、Med. Eng. Phys.、第17巻、第4号、257−263頁(1995年)において、実験的に評価されている。また、この記事には、インバース・ソース・プロシージャおよびアレイ内の検出器間の相互結合を相殺するアルゴリズムについても記載されている。
米国特許第4,825,162号には、複数の密接に配置した表面コイルのそれぞれから異なるNMR応答信号を同時に受信する方法が記載されている。異なるNMR応答信号がサンプルの対応付けられた部分から受信されて各コイルから画像が生成され、画像が各点毎に合成される。
米国特許第6,600,319号には、NMR測定と周囲媒体内で画像化する装置および方法が記載されている。この方法では、主要な、基本的に非均一な、外部の磁場の少なくとも1つの領域内からの磁気共鳴信号の検出を利用している。
米国特許第6,680,610号には、磁気共鳴画像化において画像の取得と再生の時間を低減する装置および方法が記載されている。磁気共鳴データが、磁気共鳴画像化装置の本体コイルによって規定される画像化体積の周囲におおむね間隔を置いて配置された別々のRFレシーバコイルアレイによって、並列に取得される。この装置および方法は、アレイの各RFコイルの感度プロファイルの推定値を決定し、その後所望の画像の生成にこれらのプロファイルを用いることを基礎として動作する。
米国特許第4,825,162号明細書 米国特許第6,600,319号明細書 米国特許第6,680,610号明細書
本発明は、関心領域とも呼ばれる対象部分を磁気共鳴画像化(MRI)する方法、システム、および検出器アレイを提供する。画像化の対象部分は、検出器アレイによって規定される表面の近傍でなければならない。
本発明によるMRI方法は、均一な静磁場を利用するので、大抵の従来技術の方法で必要となる、勾配のある磁場を発生させる必要性を省略することができる。画像化に用いられる磁気共鳴信号は、一体となって関心領域を構成するボクセルを起源とする。これらの信号は、それぞれその近傍から発せられる信号に対して主に感度を有する検出器によって、関心領域の単一のボクセルを起源とする磁気共鳴信号が主に単一の対応する検出器によって検出され、次に、その検出器が当該単一のボクセルから到達される信号の検出に専念されるように、検出される。
各RF検出器において検出された信号は、特定の検出器の近くにあるボクセルのNMR特性を示す。静磁場を発生する磁気モジュールから離れるに従って、静磁場の大きさは小さくなるので、磁場を発生する磁気モジュールから所定の距離にある領域内のボクセルだけを励磁する適切な共振周波数に、励磁RF周波数を調節することが可能である。磁場を発生する磁石の構成と、RF励磁パルス(帯域幅および継続時間)の性質とにより、磁気的に励起される領域の深さと幅が決定される。一般に、これは薄い層である。
さらに遠くにある体積要素からの信号は、検出された信号がNMR信号源と検出器との間の距離の3乗に逆比例するため、より弱くなる。この事実により、より深いところにある層からの信号を収集する場合は、適切なキャリブレーションが必要となる。
コイル平面に対して垂直方向に距離rで、その対称軸に置かれた磁気双極子から、半径aの円形コイルアンテナに誘導される信号は、a2/(a2+r23/2に比例することが知られている。よって、コイル検出器(r〜a)の近傍では、信号強度は1/aに比例する。
それ故、マイクロコイルは、その近傍を起源とする信号には極めて敏感であり、離れたボクセルを起源とする信号に対してはほとんど鈍感である。
従って、その一側面によれば、本発明は、対象部分が均一な静磁場にある場合に、送信されたRF信号に応答して生成された磁気共鳴信号から、対象部分のMRI画像を生成するシステムであって、
i.対象部分の近辺にある場合に、磁気共鳴信号を検出するプローブであって、それぞれが規定された位置とアドレスとを有する複数のRF検出器を含む複数の検出装置を備えるプローブと、
ii.プローブから出力信号を受信して、当該出力信号を処理して画像データセットを生成するように構成された信号処理アセンブリと、を備えるシステムを提供する。
一実施の形態では、システムは、プローブの一部を構成してプローブの近傍に均一な静磁場を発生するのに有用な磁気モジュールを含む。
(この実施の形態または他の任意の実施の形態において、)磁気モジュールは、永久磁石、ソレノイド等を含んでも良い。また、これは、静磁場の方向性および強度を向上するために用いられるような強磁性物体(鉄のビーズ等)を含んでいても良い。
好適な実施の形態では、システムは、また、当該対象内に核磁気共鳴を発生させるRF信号を送信することが可能なRF送信機を含む。また、このRF送信機はプローブの一部を構成し、例えば、プローブの各RF検出器がRFエミッタを兼ねるように構成することもできる。
本発明の他の側面により、励磁RFパルスに応答して、均一な静磁場にある対象部分の磁気共鳴画像を生成する方法であって、
a.それぞれが規定された位置とアドレスとを有する複数のRF検出器を備えるプローブを対象部分の近辺に導入するステップと、
b.RF検出器により、当該対象部分から生成された複数の磁気共鳴信号を検出するステップと、
c.そのアドレスを示すコードを有する当該RF検出器のそれぞれの出力を符号化するステップと、
d.RF検出器の符号化された出力を処理して画像データセットを生成するステップと、を含む方法を提供する。
本発明の方法、システム、および検出器アレイにおいて利用される磁場は、プローブの近傍に位置する関心領域内においてのみ均一とすべきであるので、この磁場を、プローブ近傍に配置され、2つの磁石の北磁極が平行に同じ方向に向いている1対の磁石により生成させても良い。このような磁石対をプローブに取り付け、ともに移動可能としても良い。検出器の近くの所望の領域に均一な磁場の領域を生成する目的が達成される限り、他の磁石の構成を排除するものではない。
好ましくは、本発明のシステムのRF検出器を、クロストークを除去するために、互いに分離した検出器のアレイとして構成される。本発明のシステムでは、このような検出器アレイを2つ以上用いても良い。様々なアレイを連続して動作させることにより、アレイ間の分離が電子的に達成されても良い。
検出されたそれぞれの信号は、それを検出したRF検出器のアドレスを示すタグにより、マークされる。例えば、検出された信号は、同時に多重化され(すなわち、それぞれが一意の周波数シフトによりシフトされ、周波数シフトされた信号がキャリア信号に加算され)、1つの増幅器で増幅された、および/または、1つのアナログデジタル(A/D)コンバータでデジタル化された、多重化信号を生成する。多重化信号は、次に再び分離され、検出された信号を表す信号であって、それぞれの信号がそれを検出した検出器のアドレスを示すコードに対応付けられている信号を生成するようにしても良い。周波数符号化することにより、検出された信号を1つに加算し、遠隔処理のために無線で送信するようにしても良い。
A/Dコンバータは非常に高価なので、この構成により、このようなシステムの組み立てまたは購入にかかる費用を大幅に低減することができる。
多重化は、2次(または他の非線形)増幅器を用いて実行しても良い。このような増幅器は、加算で相殺されないノイズを生成するので、このような場合には、1つの信号の2次ノイズを他のノイズから少なくとも部分的に差し引くように、それが位相シフトの場合は信号を多重化することが好ましい。
その他の側面により、本発明は、当該対象部分に含まれるボクセルにおいて生成された磁気共鳴信号から対象部分のMRI画像を生成するシステムを提供する。ボクセルは、画像化された対象部分の全体を規定したり、その所定の部分を表したりする。本発明のシステムは、それぞれが規定された位置とアドレスとを有し、ボクセルの1つにおいて生成された磁気共鳴信号を検出する複数の検出装置を含む。各検出装置は、検出された磁気共鳴信号を符号化して符号化信号を生成し、複数の検出装置によって生成された複数の符号化信号が加算されて加算信号を生成し、次にそれがデジタル化されて分離され、それぞれが、1つの検出装置により検出され、当該検出装置のアドレスを代表するタグによって対応付けられた磁気共鳴信号を表すデジタル信号とすることが可能な符号化回路に接続されたRF検出器を含む。
信号を加算して再び分離する機能は、より少ない数のA/Dコンバータを用いることができてシステムコストを低減できることと、ノイズの低減に用いることができることの、2つの利点を有する。
符号化が、非線形増幅器によって、検出された磁気共鳴信号の周波数をシフトすることにより得られる場合は、ノイズの一部は自乗され、加算はS/N比の改善をもたらさない。これは、信号を位相シフトすることにより克服することもできる。例えば、信号の半分を180度位相シフトし、シフトしない信号をシフトした信号と加算することによりノイズを除去することができる。
シャープな画像を得るために、RF検出器を互いに分離することが好ましい。このことは、いくつかの方法で達成することができる。1つの方法は、コイルをRF検出器として用い、隣接するコイルが互いに部分的にオーバーラップするように配置する。このような構成により、公知技術としてよく知られているように、コイル間のクロストークを低減することができる。他の方法は、コイルをグループに分け、各グループのメンバーをその間の距離によって互いに分離する。この場合には、異なるグループは信号検出に順次用いられる。さらに他の方法は、コイル間の結合定数を評価し、分離された信号を保持するためにインバース・ソース・アルゴリズムを用いて、検出器を事前にキャリブレーションする。
本発明の一実施の形態によれば、例えば、脚または腕の部分といった、人体の外表面の部分を密接にカバーするために、複数のRF検出器が、様々な方向に曲がるフレキシブルキャリアに取り付けられている。このような場合には、MRI画像の生成に必要なRF信号は、RF検出器の近傍から送信されたり、検出器自体において送信されたりすることが好ましい。後者の場合は、RF検出器はRF送信機としても機能する。
本発明の一実施の形態によれば、システムは、ノイズを低減するために、RF検出器に取り付けられた電子回路を冷却する冷却装置を含む。好ましくは、冷却装置は電気的に絶縁する非常磁性の冷却剤を含む。
また、システムの他の構成部材と無関係に、本発明のシステムに用いるRF検出器アレイを置換したり、製造したり、販売したりすることもできる。従って、本発明は、互いに絶縁された少なくとも8つのRFコイルからなるアレイを提供し、コイルがRF波を受信または送信するように構成され、各コイルの高さが1mm未満、好ましくは0.3mm以下で、各コイルは2つのリード線を有し、コイルすべてのリード線が互いに平行となっていて、各コイルがその隣接するコイルともう少しで触れるか、触れているか、部分的に重複している。このようなアレイは、好ましくは、直径20μm〜2mmのコイルを有していても良い。直径0.2〜3mmのコイルは医療用に好ましく、直径20μm〜200μmのコイルはMRI顕微鏡用に好ましい。
本発明の方法およびシステムは、RF検出器が規定された表面に非常に近接した対象部分のMRI画像化に特に有用である。人体の医用画像化、顕微鏡、地質的応用、指紋識別、各種工業的応用等の、様々なアプリケーションに適用することもできる。従って、一実施の形態によれば、プローブまたは検出器アレイは、血管、腸、他の中空の管状臓器等の生体に挿入するように構成される。この目的のために、環状形または円筒形のプローブまたは検出器アレイを提供することは有益である。
本発明を良く理解し、実際にどのように用いることができるか理解するために、非限定的な実施例によって、好適な実施の形態について説明する。
図1は、本発明の一実施の形態による動作中のシステム2の概略説明図である。システム2は、プローブ4と、有線または無線の接続8によりプローブに接続された信号処理アセンブリ6とを有している。プローブ4は、対象10の近辺において磁気共鳴信号が発せられたときに、その信号を検出する。プローブ4は、それぞれ規定された位置とアドレスとを有する複数のRF検出器12を含む。各検出器12は、小型の、1つのループコイルである。プローブ4は、対象10の部分14から受信距離dに配置されている。受信距離dは、対象10のMR応答を生成するために用いられるRF信号を操作することにより、短くしたり、または長くしたりすることができる。一般的に、受信距離dは0.1〜10mmの範囲にあり、より一般的には1〜5mmの範囲にある。部分14の位置は、プローブ4を、例えば、対象10の表面10’に平行に、または垂直に移動することにより、移動させることができる。プローブ4が対象10の外側表面10’に接触するときは、部分14は対象の内部の最も深いところにある。
部分14は、ボクセル16を構成するものとみることができ、検出器12のそれぞれは、その最も近くにあるボクセル16の一つから発せられるMR信号に主として感度を有する。例えば、検出器12A、12B、および12Cは、それぞれボクセル16A、16B、および16Cから発せられる信号に主として感度を有する。従って、検出器12A、12B、および12Cは、それぞれボクセル16A、16B、および16Cに対応すると考えられる。検出器の出力12は、それぞれが対応するボクセルのMR応答を、それぞれが当該対応するボクセルの位置を示す検出器のアドレスとともに表すものであって、接続8を介して信号処理アセンブリ6に出力され、アセンブリ6で処理されて対象部分14のMR画像を生成する。信号処理アセンブリ6は、プローブ4上に配置されても良いし、プローブから離れて配置されても良く、または、プローブ上に配置された構成部材やそこから離れて配置された構成部材を有しても良い。
図2は、本発明の一実施の形態によるシステム20の概略説明図である。システム20は、複数の検出装置22を持つプローブ(図示せず)を有している。それぞれがアドレスA、B、またはCを有し、RF検出器24、エンコーダ26と、フェーズシフタ28とを含むこのような3つの検出装置が示されている。エンコーダ26は周波数シフタである。各検出装置22の周波数シフタ26により適用される周波数シフトは互いに異なっている。全ての検出装置22の出力は、1つのマルチプレクサ30に出力される。マルチプレクサ30の出力は、増幅器31に出力され、そこからA/Dコンバータであるデマルチプレクサ32に出力される。A/Dコンバータ32の出力は、プロセッサ36に入力される。それはデジタル信号を含んでおり、それぞれコード(言い換えれば、周波数シフト)に対応付けられている。各デジタル信号は、特定のアドレスA、B、またはCを有する検出装置22の1つにより検出されたMR信号に対応しており、各コードはこの特定のアドレスを示している。そのデジタル信号およびコードは、プロセッサ36により処理されてMR画像となる。
図3Aは、本発明の一実施の形態によるシステムのプローブ40の概略説明図である。プローブ40は、2つのグループのRF検出器42を有している。一方のグループの検出器は太線の円で示し(図3Bでは、サブシステム100の検出器として参照される)、他方のグループの検出器を細線の円で示す(図3Bでは、サブシステム200の検出器として示される)。2つのグループ間の距離が少なくともsであり、このような距離で十分に分離を確実にすることができるので、各グループの検出器は相互に分離している。しかしながら、一方のグループの検出器は、もう一方のグループの検出器とクロストークを生ずることがある。それ故、グループセレクタ(図示せず)は、このようなクロストークを除去するために、一方のグループの検出器を作動させ、他のグループの検出器を作動しないようにすることができる。
図3Bは、図3Aのプローブ40の後の電子装置の概略説明図である。図に示すように、検出器42は、それぞれ図2に示されたような2つのサブシステム100および200から構成されているとみることができる。サブシステム100および200の内部構成部材は、図2において表されたのと同じ符号に、それぞれ100および200だけ増やしたものが与えられている。デマルチプレクサ134および234の出力は、1つのプロセッサ46に入り、処理されてMR画像を生成する。
図4は、本発明の一実施の形態によるシステムに用いられるプローブ50の概略説明図である。プローブ50において、隣接するRF検出器52は、部分的なオーバーラップにより分離される。必要とされる正確なオーバーラップは、経験的に見つけても良く、その評価の理論的手引きは、例えば、Kwiat他、IEEE transaction on biomedical engineering、第39巻、第5号、(1992年)において与えられている。
このような構成により、図3Aに示す構成により可能な数字よりも高い密度で検出器を配置することができる。検出器52をグループに分割することはクロストークを除去するためには必要とされないが、やはり1つのマルチプレクサに接続する検出器の数を低減することは好ましい。プローブ50の周囲には、励磁パルスを送信するループアンテナ54が示されている。
図5は、本発明の一実施の形態によるシステムに用いられるプローブ60の概略説明図である。プローブ60は、コイルアレイ62と、その一部を構成する磁気モジュール64とを有している。磁気モジュール64は、ネオジウム・鉄・ボロン(NIB)合金からなり、その北磁極がすべて同じ方向に向いて配置されている複数の永久磁石66を含む。スペーサ68は、磁石66の間に配置され、全てのプローブ60が柔軟に曲がって、さまざまな曲率の表面と接触できるようになっている。
プローブ60において、アレイ62の各コイル69は、RF検出器とRF送信機とを兼ねており、励磁パルスを送信することができる。磁気モジュール64、RF送信機およびRF検出器が一体であるという事実は、磁場、送信されたRF信号、および検出器の間で適切な空間的関係を維持しながらプローブ60を動かすことを可能にする。例えば、磁気モジュール64により生成された磁場は、コイルアレイ62に平行な縦方向の成分を有することが保証される。
図6は、本発明の一実施の形態によるシステムに用いられるプローブ70を概略的に示す。プローブ70は、コイルアレイ72、磁気モジュール74、電子回路基板76、接続78、および冷却装置80を含む。コイルアレイ72は、図5のコイルアレイと同様に、RF信号を検出して送信するためのものである。電子回路基板76は、このようなMR信号を符号化して多重化する回路を含む。接続78は、プローブ70を画像処理アセンブリ(図示せず)と接続するためのものであり、冷却装置80は、電子回路基板76を冷却するためのものである。
図7Aおよび図7Bは、2つのプローブ300および400を記載しており、それぞれ人体に、特に動脈または腸のような中空の環状の臓器に挿入するのに適している。2つのプローブ300および400は、それぞれ、検出器アレイ302および402と、磁気モジュール304および404とを含む。プローブ300は円筒形をしており、円筒の各基底部に永久磁石306を有しているが、プローブ400は環状形をしており、環の各側面に複数の永久磁石406を有している。環状形のプローブ400は、その中に流体を流すこともできる。図7Aにおいては、2つの磁石は同じ方向にN磁極を有し(例えば、頭が上向きで)、図7Bにおいては、全ての磁石の全ての北磁極が同じ方向、例えば、環の内側に向いている。
本発明は、対象部分の磁気共鳴画像化(MRI)を行う方法、システム、および検出器アレイを提供する。画像化された対象部分は、システムのプローブの近傍にある。本発明のMRIは、均一な静磁場を用い、一体となって画像化された対象部分を構成するボクセルを起源とする磁気共鳴信号は、それぞれ、その近傍から送信された信号に対してだけ感度を有する検出器によって検出され、対象の単一のボクセルにおいて生成された磁気共鳴信号を、この単一のボクセルから到達される信号を検出する専用の検出器によって主に検出される。これらの磁気共鳴信号は、それを検出した検出器のアドレスを示すコードとともに処理され、対象部分のMR画像を生成する。このように、特定のボクセルにおいて発せられた信号と専用の検出器の間で、1:1マッピングが提供される。
本発明の一実施の形態による動作中のシステムの概略説明図である。 1つのA/Dコンバータを用いて同時に複数のMR信号を変換する本発明の他の実施の形態によるシステムの概略説明図である。 本発明の一実施の形態によるシステムに用いられるプローブの概略説明図である。プローブは、互いに分離された2つのグループのRF検出器を含む。 図3Aに示すプローブの他の概略説明図である。プローブの検出器は、それぞれが図2に示されているところの2つのシステムの部分を形成するものと見ることができる。 本発明の一実施の形態によるシステムに用いられるプローブの概略説明図である。隣接するRF検出器は部分的なオーバーラップにより分離されている。 本発明の一実施の形態によるシステムに用いられる磁気モジュールを含むプローブの概略説明図である。 本発明の一実施の形態によるシステムに用いられる冷却装置を有するプローブの概略説明図である。 本発明の一実施の形態による円筒形プローブの概略説明図である。 本発明の他の実施の形態による環状形プローブの概略説明図である。

Claims (43)

  1. 対象部分(14)が均一な静磁場にあるときに、送信されたRF信号に応答して生成された磁気共鳴信号から、前記対象部分のMRI画像を生成するシステム(2)であって、
    iii.それぞれ規定された位置とアドレスとを有する複数のRF検出器(24、42、52、69)を備え、前記対象部分の近辺にあるときに前記磁気共鳴信号を検出するプローブ(4、40、50、60、70、300、400)と、
    iv.前記プローブから出力信号を受信し、前記出力信号を処理して画像データセットを生成する信号処理アセンブリ(6)と、
    を備える、システム。
  2. 前記プローブの一部を構成し、前記RF検出器の近傍にある均一な静磁場を発生する磁気モジュール(64、74、304、404)を備える、請求項1に記載のシステム。
  3. 前記プローブが、RF信号を送信して前記対象内に核磁気共鳴を発生させることが可能なRF送信機(54)を有する、請求項1に記載のシステム。
  4. 前記RF検出器のそれぞれが、RF信号を送信して前記対象部分に核磁気共鳴を発生させることが可能なRF送信機を兼ねる、請求項1に記載のシステム。
  5. 前記RF検出器のそれぞれの出力を前記RF検出器のアドレスを示すコードで符号化する信号エンコーダ(26、126、226)を備える、請求項1に記載のシステム。
  6. 複数のエンコーダの出力を多重化して単一の多重化信号を生成するマルチプレクサ(30、130、230)を備える、請求項5に記載のシステム。
  7. 前記エンコーダが、周波数シフタである、請求項6に記載のシステム。
  8. 前記多重化信号を増幅する増幅器(31、131、231)を備える、請求項7に記載のシステム。
  9. 前記増幅された多重化信号を、それぞれが、1つのRF検出器により検出され、前記1つのRF検出器の前記アドレスを示すコードに対応付けられた磁気共鳴信号を表す複数の成分に多重分離するデマルチプレクサを備える、請求項7または8に記載のシステム。
  10. 前記プローブが、生体への挿入用に構成されている、請求項1に記載のシステム。
  11. 内視鏡の目的用に構成されている、請求項10に記載のシステム。
  12. 前記プローブが、血管への挿入用に構成されている、請求項10に記載のシステム。
  13. 前記プローブが、環状形または円筒形である、請求項1に記載のシステム。
  14. 前記プローブが、柔軟に湾曲できる、請求項1に記載のシステム。
  15. 前記複数のRF検出器が、少なくとも2つのグループからなり、それぞれ互いに分離されたRF検出器である、請求項1に記載のシステム。
  16. 前記少なくとも2つのグループの一つを起動し、少なくとも他の一つのグループを作動しないようにするグループセレクタを備える、請求項15に記載のシステム。
  17. 前記磁気モジュールが、永久磁石を含む、請求項2に記載のシステム。
  18. 前記永久磁石が、ネオジウム・鉄・ボロン(NIB)合金からなる、請求項17に記載のシステム。
  19. 前記磁気モジュールが、ソレノイドを含む、請求項2に記載のシステム。
  20. 前記周波数シフタが、非線形増幅器を含む、請求項7に記載のシステム。
  21. 前記符号化された信号を多重化することによってトータルノイズが低減されるように、前記符号化された信号のそれぞれの位相をシフトすることが可能なフェーズシフタを備える、請求項20に記載のシステム。
  22. 前記RF検出器が表面を規定し、前記均一な静磁場が前記表面に平行な縦方向の成分を有する、先行する請求項のいずれかに記載のシステム
  23. 冷却装置をさらに備える、先行する請求項のいずれかに記載のシステム。
  24. 前記冷却装置が、電気的に絶縁する非常磁性冷却剤を備える、請求項23に記載のシステム。
  25. 励磁RFパルスに応答して、均一な静磁場にある対象部分の磁気共鳴画像を生成する方法であって、
    a.それぞれが規定された位置とアドレスとを有する複数のRF検出器を備えるプローブを前記対象部分の近辺に導入するステップと、
    b.前記RF検出器により、前記対象部分において生成された複数の磁気共鳴信号を検出するステップと、
    c.前記アドレスを示すコードで前記RF検出器のそれぞれの出力を符号化するステップと、
    d.前記RF検出器の符号化された出力を処理して画像データセットを生成するステップと、
    を含む、方法。
  26. 前記処理ステップが、前記符号化された信号を多重化して多重化信号を生成するステップを含む、請求項25に記載の方法。
  27. 前記処理ステップが、前記多重化信号を多重分離し、それぞれが1つのRF検出器により検出された磁気共鳴信号に対応し、それぞれが前記1つのRF検出器の前記アドレスを示すコードに対応付けられた複数の最終信号を生成するステップをさらに含む、請求項26に記載の方法。
  28. 前記多重化信号が、多重分離される前に増幅される、請求項27に記載の方法。
  29. 前記コードが、周波数シフトである、請求項25に記載の方法。
  30. 前記多重化信号が前記符号化された信号のそれぞれよりも高いS/N比を有するように、前記符号化された信号の少なくとも一つが、多重化される前に位相シフトされる、請求項28に記載の方法。
  31. 前記信号の半分が、180度シフトされる、請求項30に記載の方法。
  32. 前記対象部分が、生体の部分である、請求項25に記載の方法。
  33. 前記対象部分が、中空の管状臓器の内部である、請求項32に記載の方法。
  34. 前記中空の管状臓器が、血管である、請求項33に記載の方法。
  35. 前記中空の管状臓器が、腸である、請求項33に記載の方法。
  36. 前記複数のRF検出器が、少なくとも2つのグループからなり、それぞれ互いに分離されたRF検出器であって、各グループは少なくとも他のグループが作動していないときに起動されてRF信号を検出する、請求項25に記載の方法。
  37. 前記プローブの少なくとも一部分を冷却するステップをさらに備える、先行する方法の請求項のいずれかに記載の方法。
  38. 前記冷却するステップが、電気的に絶縁する非常磁性冷却剤により行われる、請求項42に記載の方法。
  39. 少なくとも8つのRFコイルからなるアレイであって、それぞれ幅2mm以下で、互いに絶縁され、前記コイルがRF波を受信および/または送信するように構成され、各コイルが高さ1mm未満、好ましくは0.3mm以下で、各コイルは2つのリード線を有し、すべてのコイルのリード線が互いに平行で、各隣接する2つのコイル間の距離が、隣接するコイルがもう少しで互いに触れる距離よりも大きくない、アレイ。
  40. 前記距離が、互いに分離されるように、各隣接する2つのコイルが部分的にオーバーラップする距離である、請求項43に記載のアレイ。
  41. 各コイルが、幅20μm〜2mmである、請求項43または44に記載のアレイ。
  42. 各コイルが、幅0.3mm〜2mmである、請求項43または43に記載のアレイ。
  43. 各コイルが、幅20μm〜200μmである、請求項43または44に記載のアレイ。
JP2007523231A 2004-06-14 2005-06-14 均一な静磁場を用いた磁気共鳴画像化方法および装置 Pending JP2008504939A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL16250104A IL162501A0 (en) 2004-06-14 2004-06-14 A magnetic resonance imaging method and device using frequency modulated detector array
IL16705105 2005-02-22
PCT/IL2005/000626 WO2005122060A2 (en) 2004-06-14 2005-06-14 A magnetic resonance imaging method and device using a static and homogeneous magnetic field

Publications (1)

Publication Number Publication Date
JP2008504939A true JP2008504939A (ja) 2008-02-21

Family

ID=35503807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007523231A Pending JP2008504939A (ja) 2004-06-14 2005-06-14 均一な静磁場を用いた磁気共鳴画像化方法および装置

Country Status (4)

Country Link
EP (1) EP1774366A4 (ja)
JP (1) JP2008504939A (ja)
IL (1) IL180068A0 (ja)
WO (1) WO2005122060A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234715B1 (ko) * 2011-09-30 2013-02-19 주식회사 아이솔테크놀로지 분산형 디지털 스펙트로미터를 이용한 신호처리장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659719B2 (en) 2005-11-25 2010-02-09 Mr Instruments, Inc. Cavity resonator for magnetic resonance systems
US20080174314A1 (en) * 2006-11-24 2008-07-24 Holwell Joshua J Multi-channel coil for magnetic resonance imaging
US8264224B2 (en) * 2009-10-27 2012-09-11 University Of Seoul Industry Cooperation Foundation Detection of magnetic fields using nano-magnets
US8289022B2 (en) * 2010-01-29 2012-10-16 University Of Seoul Industry Cooperation Foundation Magnetic resonance compatible magnetic field detection, based on diffuse reflectance of nano-magnet sets
WO2014024114A1 (en) * 2012-08-06 2014-02-13 Insiava (Pty) Ltd. A data transfer circuit, method and system for an mri machine having a plurality of receiver surface coils
KR102554506B1 (ko) * 2015-07-07 2023-07-11 큐 바이오, 인코퍼레이티드 장-불변 정량적 자기 공명 시그너처
CN106932742B (zh) * 2015-12-29 2019-07-26 奥泰医疗系统有限责任公司 非固定式射频线圈的快速定位方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126674A (en) * 1990-08-29 1992-06-30 The United States Of America As Represented By The Secretary Of The Navy Planar imaging by nuclear magnetic resonance
EP0554584A1 (en) * 1991-11-29 1993-08-11 Koninklijke Philips Electronics N.V. Magnetic resonance device and signal combination device
US6335623B1 (en) * 1992-12-18 2002-01-01 Fonar Corporation MRI apparatus
GB2276945B (en) * 1993-04-08 1997-02-26 Oxford Magnet Tech Improvements in or relating to MRI magnets
JPH0924036A (ja) * 1995-07-11 1997-01-28 Hitachi Medical Corp 磁気共鳴イメージング装置
US5572132A (en) * 1995-08-15 1996-11-05 Pulyer; Yuly M. MRI probe for external imaging
US6104943A (en) * 1997-11-14 2000-08-15 The Mclean Hospital Corporation Phased array echoplanar imaging system for fMRI
US6489767B1 (en) * 2000-09-06 2002-12-03 Quantum Magnetics, Inc. Apparatus for and method of single-sided magnetic resonance imaging with palm-size probe
JP2002143122A (ja) * 2000-11-09 2002-05-21 Toshiba Corp 磁気共鳴イメージング装置及びmr信号の収集処理方法
US6771071B1 (en) * 2001-11-06 2004-08-03 The Texas A&M University System Magnetic resonance imaging using a reduced number of echo acquisitions
DE10216587B4 (de) * 2002-04-14 2004-08-05 Michael Dr. Bruder Unilaterale NMR-Sonde zur Materialanalyse und deren Verwendung als Sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234715B1 (ko) * 2011-09-30 2013-02-19 주식회사 아이솔테크놀로지 분산형 디지털 스펙트로미터를 이용한 신호처리장치

Also Published As

Publication number Publication date
EP1774366A4 (en) 2007-11-14
WO2005122060A2 (en) 2005-12-22
IL180068A0 (en) 2007-05-15
EP1774366A2 (en) 2007-04-18
WO2005122060A3 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
JP2008504939A (ja) 均一な静磁場を用いた磁気共鳴画像化方法および装置
US6975896B2 (en) Fiducial markers for MRI
JP3872431B2 (ja) 磁気共鳴イメージング装置
US6600319B2 (en) Magnetic resonance imaging device
CN101152085B (zh) 包含hf发射-接收系统以及pet检测器的检测单元
CN104395772B (zh) 具有在对中心和外周k空间区的采样期间的呼吸运动检测的磁共振图像重建方法
CN103207375B (zh) 识别第一物体相对另一物体的位置的位置确定装置和方法
US8587293B2 (en) Coil position detection
JP2005296112A5 (ja)
JPH0622938A (ja) 多重磁気共鳴検出を使用して器具の位置および方向を監視するための追跡システム
KR101453297B1 (ko) 복수 타입의 자기 공명 영상들을 동시에 생성하는 장치 및 방법
CN102342833A (zh) 用于建立磁共振图像的方法和相应的磁共振设备
JP2019141602A (ja) 磁気共鳴イメージング装置及びrfコイルの位置特定方法
JP4587282B2 (ja) フェーズドアレイ・コイル・アセンブリ、並びにこれを利用するための方法及びシステム
CN102866372B (zh) 对磁共振设备进行频率校准的方法及相应的磁共振设备
JP2001212108A5 (ja)
CN103239251A (zh) 用于计算正电子发射断层造影的吸收参数的值的方法
CN102713656B (zh) 具有能去除的导体的用于mri 的rf 天线
WO2003098232A3 (en) Chemical shift markers for improved wireless fiducial marker tracking
KR20140099774A (ko) Mri-pet시스템
JP4447104B2 (ja) 磁気共鳴装置
CN108431625A (zh) 具有对运动引起的扩散梯度不一致性的修正的dti
JP2006158762A (ja) Mri装置
US5879300A (en) Magnetic resonance methods and apparatus
CN103245925A (zh) 局部线圈系统