JP2008502485A - Continuous butt welding method using plasma and laser, and metal pipe manufacturing method using the same - Google Patents

Continuous butt welding method using plasma and laser, and metal pipe manufacturing method using the same Download PDF

Info

Publication number
JP2008502485A
JP2008502485A JP2007516371A JP2007516371A JP2008502485A JP 2008502485 A JP2008502485 A JP 2008502485A JP 2007516371 A JP2007516371 A JP 2007516371A JP 2007516371 A JP2007516371 A JP 2007516371A JP 2008502485 A JP2008502485 A JP 2008502485A
Authority
JP
Japan
Prior art keywords
plasma
welding
laser
laser beam
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007516371A
Other languages
Japanese (ja)
Inventor
リ、サン−フン
ウォン、ヨン−ヒ
キム、テ−ソン
リ、テ−ジョン
ビョン、ゾン−フン
ナ、ソク−ジュ
ユン、ソク−ファン
ファン、ジェ−リョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Cable and Systems Ltd
Original Assignee
LS Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Cable Ltd filed Critical LS Cable Ltd
Publication of JP2008502485A publication Critical patent/JP2008502485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • B23K33/006Filling of continuous seams for cylindrical workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • B23K26/262Seam welding of rectilinear seams of longitudinal seams of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

プラズマとレーザーとを用いた連続的な突き合せ溶接方法及びこれを用いた金属管の製造方法が開示される。本発明の溶接方法は、突き合せ間隔が非常に狭い被溶接材に対してレーザー溶接とプラズマ溶接を共に施し、特にプラズマをレーザーに先行させてプラズマにより被溶接材を予熱した後、レーザービームにより母材を溶融させて主溶接を行う。また、金属板材を断面円形に曲げて両側部を互いに対向させ、この対向する両側部を上述した溶接方法によって溶接することで金属管を製造する。本発明の溶接方法及び金属管の製造方法によれば、溶接速度及び金属管の生産性が著しく向上する。  A continuous butt welding method using a plasma and a laser and a metal tube manufacturing method using the same are disclosed. In the welding method of the present invention, laser welding and plasma welding are performed on a workpiece to be welded with a very narrow butt interval, and in particular, after the plasma is preheated by plasma with the laser preceding the laser, the laser beam is used. Main welding is performed by melting the base material. Further, a metal tube is manufactured by bending a metal plate material into a circular cross section so that both sides are opposed to each other and welding the opposite sides by the above-described welding method. According to the welding method and the metal pipe manufacturing method of the present invention, the welding speed and the productivity of the metal pipe are remarkably improved.

Description

本発明は、金属材の突き合せ溶接方法(butt welding)及びこれを用いた金属管の製造方法に関し、より詳しくは、二つの熱源を同時に用いて溶接することによって溶接速度を向上させた溶接方法及び金属管の製造方法に関する。   The present invention relates to a butt welding method of a metal material and a manufacturing method of a metal tube using the same, and more particularly, a welding method in which welding speed is improved by welding using two heat sources simultaneously. And a method of manufacturing a metal tube.

レーザー溶接(Laser welding)及びアーク溶接(arc welding)は、二つの金属材を突き合せて互いに接合するのに広く用いられて来た。レーザー溶接は、熱源(レーザービーム)を非常に小さく集束でき、溶接時の熱影響部が小さく、精巧な部品の精密溶接が可能であり、キーホール(key hole)を生成させることでシーム溶接(deep penetration welding)が可能であるという長所がある。しかし、レーザーの狭い焦点半径は突き合せ溶接のような精巧な溶接線を追跡し難く、キーホールを不安定にさせて溶接部に気孔を発生させるなどの短所もある。また、レーザー溶接を用いる場合には、生産性を高めようとして溶接線速を速めるためには高出力レーザーを使わなければならないが、これは溶接コストの著しい増加をもたらす。   Laser welding and arc welding have been widely used to butt two metal materials together and join them together. Laser welding can focus the heat source (laser beam) very small, has a small heat-affected zone during welding, enables precision welding of delicate parts, and produces seam welding (key hole) There is an advantage that deep penetration welding is possible. However, the narrow focal radius of the laser makes it difficult to follow elaborate welding lines such as butt welding, and there are also disadvantages such as making the keyhole unstable and generating pores in the weld. In addition, when laser welding is used, a high-power laser must be used to increase the welding line speed in order to increase productivity, which leads to a significant increase in welding costs.

一方、アーク溶接やプラズマ溶接は、レーザー溶接に比べて溶接欠陥が少なく溶接線の追跡も容易であるという長所がある。しかし、特にアーク溶接は、溶接部の熱源面積が広いため、突き合せ間隔の狭い(例えば0.2mm以下)精緻な製品の溶接には適していないという短所がある。   On the other hand, arc welding and plasma welding have the advantages of fewer weld defects and easier tracking of weld lines than laser welding. However, arc welding, in particular, has a disadvantage that it is not suitable for welding precision products with a narrow butt interval (for example, 0.2 mm or less) because the heat source area of the welded portion is large.

このような二つの溶接法の短所を克服するため、レーザー溶接とアーク溶接を並行する溶接法(特許文献1、特許文献2、特許文献3等)が提案されてきた。これら日本及び米国の特開公報は、レーザー溶接とアーク溶接とを併用することで、アーク溶接では得られなかった深い溶込が得られ、溶接速度を高めるなどの効果が得られると主張している。しかし、二つの熱源の同時使用は、必ずしも長所だけをもたらすのではなく、二つの熱源間の先後関係や距離、角度、出力、溶接速度によっては、それぞれの熱源を単独で使ったときの効果の単なる組み合わせに過ぎない結果となる場合がある。   In order to overcome the disadvantages of these two welding methods, a welding method (Patent Document 1, Patent Document 2, Patent Document 3, etc.) in which laser welding and arc welding are performed in parallel has been proposed. These Japanese and US patent publications allege that by using laser welding and arc welding together, deep penetration that could not be obtained by arc welding can be obtained, and effects such as increased welding speed can be obtained. Yes. However, the simultaneous use of two heat sources does not necessarily bring only the advantages. Depending on the posterior relationship between the two heat sources, the distance, angle, power, and welding speed, the effect of using each heat source alone can be reduced. The result may be just a combination.

一方、内部に複数の光ファイバーが緩やかな状態で組み込まれる金属管(通常、ステンレス鋼で製造された、いわゆるルーズチューブ(loose tube)と言う)の製造に、溶接が用いられている。すなわち、帯状の金属板材を断面が略円形になるように塑性加工し、その対向する端部を溶接して接合することで金属管を製造する。通常、このようなルーズチューブは、その直径が2〜5mm、厚さは0.1〜0.2mmであり、溶接前の突き合せ間隔が0.2mm以下で非常に精巧な溶接が必要である。したがって、現在はこの際の溶接としてCOレーザーを用いたレーザー溶接を使用しているが、前述のようにレーザー溶接だけでは生産性の向上に限界がある。すなわち、金属板材を断面が略円形になるように塑性加工する速度に溶接速度が追いつかず、溶接工程が律速工程(ボトルネック工程)になり得る。 On the other hand, welding is used to manufacture a metal tube (a so-called loose tube, usually made of stainless steel) in which a plurality of optical fibers are gently incorporated. That is, a metal tube is manufactured by plastic-working a strip-shaped metal plate material so that the cross section is substantially circular, and welding and joining the opposing end portions. Usually, such a loose tube has a diameter of 2 to 5 mm, a thickness of 0.1 to 0.2 mm, and a butt interval before welding of 0.2 mm or less and requires very elaborate welding. . Therefore, at present, laser welding using a CO 2 laser is used as welding at this time. However, as described above, there is a limit to improvement in productivity only by laser welding. That is, the welding speed cannot catch up with the speed at which the metal plate material is plastically processed so as to have a substantially circular cross section, and the welding process can be a rate-limiting process (bottleneck process).

したがって、前述したレーザー溶接とアーク溶接との併用溶接のように、二つの熱源を同時に使用することで、溶接速度を向上させる方法が考えられる。しかし、前述したように二つの熱源の同時使用は、非常に煩雑な工程条件の管理を経て、初めて所望の効果が得られるだけでなく、被溶接材の特性毎に熱源の選択と工程条件の設定を行わなければならない。例えば、前述した日本国及び米国の特開公報に開示されたレーザーとアークとの併用溶接は、船舶や自動車の車体のように、相対的に厚い板材、さらにステンレス鋼以外の一般鋼板の溶接に用いられるものであり、突き合せ間隔が非常に小さく且つ薄板を対象とした被溶接材の溶接には不向きな技術である。   Therefore, a method of improving the welding speed by simultaneously using two heat sources, such as the combined welding of laser welding and arc welding described above, can be considered. However, as described above, the simultaneous use of the two heat sources can not only achieve the desired effect for the first time through the management of very complicated process conditions, but also the selection of the heat source and the process conditions for each property of the material to be welded. Must be set. For example, the laser and arc combined welding disclosed in the Japanese and US patent publications mentioned above is used for welding relatively thick plate materials and general steel plates other than stainless steel, such as the bodies of ships and automobiles. This technique is used and has a very small butt interval and is unsuitable for welding a material to be welded for a thin plate.

このように、ルーズチューブのように突き合せ間隔が非常に小さく且つ薄板を対象とした金属板材の突き合せ溶接に対し、溶接速度を向上させながら精巧な溶接が可能な溶接方法が求められていた。   Thus, there has been a demand for a welding method capable of performing elaborate welding while improving the welding speed for butt welding of a metal plate material with a very small butt interval such as a loose tube and intended for a thin plate. .

特開2001−334377号公報JP 2001-334377 A 特開2002−346777号公報JP 2002-346777 A 米国特許出願公開 2001/0047984 A1号公報US Patent Application Publication 2001/0047984 A1

本発明は、上述のような要求に応じ、突き合せ間隔が非常に小さく且つ薄板の被溶接材に対し、溶接速度を向上させながら精巧な溶接が可能な溶接方法を提供することを目的とする。   An object of the present invention is to provide a welding method capable of performing elaborate welding while improving the welding speed for a material to be welded having a very small butt interval and a thin plate in response to the above-described requirements. .

また、本発明は、突き合せ間隔が非常に小さく且つ薄板の金属板材を突き合せ溶接し、小さな直径の金属管を製造する方法を提供することを目的とする。   Another object of the present invention is to provide a method of manufacturing a metal tube having a small diameter by butt welding a thin metal plate material having a very small butt interval.

前記技術的課題を達成するために、本発明に係る溶接方法として、レーザー溶接とプラズマ溶接とを共に用いる方法であって、特に、レーザー溶接の前にプラズマ溶接を行い、プラズマにより母材(被溶接材)を予熱した後、レーザービームにより母材を溶融させて主溶接を行う。   In order to achieve the above technical problem, as a welding method according to the present invention, laser welding and plasma welding are both used. In particular, plasma welding is performed before laser welding, and a base material (covered material) is formed by plasma. After preheating the welding material, the base material is melted with a laser beam and main welding is performed.

すなわち、本発明の一側面によるプラズマとレーザーとを用いた連続的な突き合せ溶接方法は、まず、互いに対向する溶接部を有する被溶接材を連続的に供給し、前記溶接部をプラズマトーチを使って予熱した後、プラズマトーチによって予熱された溶接部に対してレーザービームを照射して溶接する。   That is, in the continuous butt welding method using plasma and laser according to one aspect of the present invention, first, a material to be welded having welded portions facing each other is continuously supplied, and the welded portion is subjected to a plasma torch. After preheating using the laser beam, the welded portion preheated by the plasma torch is irradiated with a laser beam for welding.

本発明において、プラズマトーチとレーザーヘッドとは、プラズマトーチによる入熱領域の中心とレーザービームによる入熱領域の中心間の距離が0.5〜2.5mmになるように配置されることが望ましい。   In the present invention, the plasma torch and the laser head are preferably arranged so that the distance between the center of the heat input region by the plasma torch and the center of the heat input region by the laser beam is 0.5 to 2.5 mm. .

本発明の溶接方法は、特に互いに対向する溶接部の突き合せ間隔が0.2mm以下である被溶接材の溶接に好適である。   The welding method of the present invention is particularly suitable for welding materials to be welded, in which the butt interval between welds facing each other is 0.2 mm or less.

本発明の溶接方法は、特にステンレス鋼に好適に適用できるが、この以外にニッケル合金、銅、銅合金、アルミニウム、アルミニウム合金、チタン合金、軟鋼、または低合金鋼の突き合せ溶接に適用できる。   The welding method of the present invention can be suitably applied particularly to stainless steel, but can also be applied to butt welding of nickel alloy, copper, copper alloy, aluminum, aluminum alloy, titanium alloy, mild steel, or low alloy steel.

また、前記の溶接方法は、厚さと直径とが相対的に小さい金属管の製造に適用できる。すなわち、本発明の他の側面による金属管の製造方法は、帯状の金属板材を連続的に供給するステップと、金属板材の両側部が互いに対向するように管状に加工するステップと、管状に加工されて互いに対向する溶接部をプラズマトーチを使用して予熱するステップと、プラズマトーチによって予熱された溶接部に対してレーザービームを照射して溶接するステップとを含むものである。   Further, the above-described welding method can be applied to the production of a metal tube having a relatively small thickness and diameter. That is, the method of manufacturing a metal tube according to another aspect of the present invention includes a step of continuously supplying a strip-shaped metal plate material, a step of processing the metal plate material into a tubular shape so that both side portions thereof face each other, and a processing of the tubular shape And preheating the welds facing each other using a plasma torch, and irradiating the welds preheated by the plasma torch with a laser beam.

以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は、通常的、辞書的な意味に限定して解釈されてはならず、発明者は自らが発明を最善の方法で説明するための用語の概念を適切に定義できるという原則に則し、本発明の技術的な思想に対応した意味及び概念で解釈されねばならない。したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想をすべて代弁するものではないため、本出願の時点において、これらを代替できる多様な均等物及び変形例があり得ることを理解せねばならない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms and words used in this specification and claims should not be construed in a normal, lexicographic sense, and the inventor will explain the invention in the best possible manner. Therefore, it must be interpreted in the meaning and concept corresponding to the technical idea of the present invention in accordance with the principle that the concept of the term can be appropriately defined. Accordingly, the embodiments described in the present specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there are various equivalents and variations that can be substituted at this point.

図1は、本発明の実施例による溶接方法及び金属管の製造方法によって金属管を製造する装置を示した概略斜視図であり、図2aは図1のA−A線に沿う断面図、図2bは図1のB−B線に沿う断面図である。   FIG. 1 is a schematic perspective view illustrating an apparatus for manufacturing a metal pipe by a welding method and a metal pipe manufacturing method according to an embodiment of the present invention, and FIG. 2A is a cross-sectional view taken along line AA of FIG. 2b is a sectional view taken along line BB in FIG.

図1、図2a及び図2bを参照して本実施例によって金属管を製造する過程を説明すれば、まず、所定の幅と厚さとを有した金属板材10を、矢印x方向に一定の速度で供給する。すると、成形手段20が、金属板材10の両側部を塑性加工して、断面が円形である管状に曲げる。図2aに示されたように、所定の突き合せ間隔dを有して管状に成形された金属管10’は、プラズマトーチ30及びレーザーヘッド40によって溶接線10aに沿って溶接され、図2bに示されたように溶接部で接合された金属管10”になる。図1に示された構成において、金属板材10及び溶接前後の金属管10’、10”は、一体として進行し、成形手段20、プラズマトーチ30及びレーザーヘッド40が固定されているため、金属板材10の供給速度が溶接速度になる。しかし、金属板材10、成形手段20、プラズマトーチ30及びレーザーヘッド40の内、何れを固定して、何れを移動させるかは、装置構成や作業環境に応じて適切に変更でき、金属板材10と、プラズマトーチ30及びレーザーヘッド40とをそれぞれ移動させると、金属板材の供給速度と溶接速度とを
相異させることができる。
Referring to FIGS. 1, 2a and 2b, the process of manufacturing a metal tube according to the present embodiment will be described. First, a metal plate 10 having a predetermined width and thickness is moved at a constant speed in the direction of arrow x. Supply with. Then, the shaping | molding means 20 carries out plastic working of the both sides of the metal plate material 10, and bends it into the tubular shape whose cross section is circular. As shown in FIG. 2a, the metal tube 10 'formed into a tubular shape with a predetermined butt interval d is welded along the weld line 10a by the plasma torch 30 and the laser head 40, and is shown in FIG. 2b. As shown, the metal pipe 10 "is joined at the weld. In the configuration shown in FIG. 1, the metal plate 10 and the metal pipes 10 'and 10" before and after welding proceed as a single unit, forming means. 20, since the plasma torch 30 and the laser head 40 are fixed, the supply speed of the metal plate 10 becomes the welding speed. However, which of the metal plate material 10, the forming means 20, the plasma torch 30 and the laser head 40 is fixed and which is moved can be appropriately changed according to the apparatus configuration and work environment. When the plasma torch 30 and the laser head 40 are moved, the metal plate supply speed and the welding speed can be made different.

本実施例において、金属板材10は、次のような物性及び寸法を有するステンレス鋼を挙げて説明するが、金属板材の材質及び寸法は、要求に応じて金属管の材質や寸法の変更は任意に可能である。すなわち、金属板材10は、ステンレス鋼の他にニッケル合金、銅、銅合金、アルミニウム、アルミニウム合金、チタン合金、軟鋼、または低合金鋼を用いることもできる。   In the present embodiment, the metal plate material 10 will be described with reference to stainless steel having the following physical properties and dimensions. However, the material and dimensions of the metal plate material may be arbitrarily changed depending on requirements. Is possible. That is, the metal plate 10 may be made of nickel alloy, copper, copper alloy, aluminum, aluminum alloy, titanium alloy, mild steel, or low alloy steel in addition to stainless steel.

金属板材の常温における物性及び寸法
密度:7200kg/m
伝導度:14.9W/mK
比熱:477J/kgK
融点:1670K
融解潜熱:247kJ/kg
沸騰点:3000K
気化潜熱:7000kJ/kg
金属板材の厚さ:0.2mm
金属板材の幅:13.5mm
成形された金属管の直径:4.3mm
Physical properties and dimensions of metal plate at normal temperature Density: 7200 kg / m 3
Conductivity: 14.9 W / mK
Specific heat: 477J / kgK
Melting point: 1670K
Melting latent heat: 247 kJ / kg
Boiling point: 3000K
Vaporization latent heat: 7000 kJ / kg
Metal plate thickness: 0.2mm
Metal plate width: 13.5mm
Diameter of molded metal tube: 4.3mm

図1において、成形手段20は、二対の対向して回転する成形ローラーとして示されたが、ローラー対の数は示された数に限定されない。また、本実施例において、成形ローラー20は、金属板材10の断面形状が、円形である金属管に曲げるように示しているが、例えば、楕円形の断面の金属管10’とすることもできる。   In FIG. 1, the forming means 20 is shown as two pairs of opposing rotating forming rollers, but the number of roller pairs is not limited to the number shown. Further, in the present embodiment, the forming roller 20 is shown to be bent into a metal tube having a circular cross section of the metal plate member 10, but may be a metal tube 10 ′ having an elliptical cross section, for example. .

この成形手段20によって、管状に曲げられた溶接前の金属管10’は、図2aに示されたように、互いに対向する溶接部がV字形の溝(groove)を形成して、突き合せ間隔dが略0.15mm、V字形溝の角度θは略10°程度になるが、dとθは金属板材10の寸法と成形手段20の形状によっても変化する。特に、θが5°以下と非常に小さくすることもできる。   As shown in FIG. 2a, the metal tube 10 ′ before welding bent into a tubular shape by the forming means 20 forms a V-shaped groove in which the welds facing each other form a butt interval. Although d is approximately 0.15 mm and the angle θ of the V-shaped groove is approximately 10 °, d and θ also vary depending on the size of the metal plate 10 and the shape of the forming means 20. In particular, θ can be made very small as 5 ° or less.

本発明において使用されるプラズマトーチ30は、通常のアーク溶接機とは異なり、プラズマの分散角度が小さく、高精度、高密度の溶接を可能にするものである。すなわち、プラズマ溶接は、TIG(Tungsten Inert Gas)溶接と類似するが、プラズマトーチ30では、タングステン溶接棒が銅電極のノズル内に内蔵されており、追加されるパイロットガスと水冷式銅ノズルのガス冷却効果とによってガスが収縮し、TIG溶接におけるアークの分散角度よりプラズマの分散角度をより減少させることができる。また、プラズマの効率、すなわち、プラズマトーチ30の端(カソード)から放出されて母材表面(アノード)に吸収される電力(熱)の割合は60%以上であって、通常43%の効率を有するTIG溶接に比べて効率が高く、溶接棒の汚染及び摩耗が少ない。本実施例において、プラズマ溶接機は80A以下のものを使用し、供給電圧は20〜30Vで操作するが、母材の種類や寸法、または溶接速度に応じて、他規格のトーチの使用が可能なことは当然である。   Unlike a normal arc welder, the plasma torch 30 used in the present invention has a small plasma dispersion angle and enables high-precision and high-density welding. That is, plasma welding is similar to TIG (Tungsten Inert Gas) welding, but in the plasma torch 30, a tungsten welding rod is built in the nozzle of the copper electrode, and the pilot gas and the gas of the water-cooled copper nozzle are added. The gas shrinks due to the cooling effect, and the plasma dispersion angle can be reduced more than the arc dispersion angle in TIG welding. Further, the efficiency of the plasma, that is, the ratio of the electric power (heat) emitted from the end (cathode) of the plasma torch 30 and absorbed by the base material surface (anode) is 60% or more, and the efficiency is usually 43%. Higher efficiency than TIG welding, and less contamination and wear of the welding rod. In this embodiment, the plasma welding machine is 80A or less and is operated with a supply voltage of 20 to 30V. Depending on the type and dimensions of the base material or the welding speed, other standard torches can be used. Of course.

また、本実施例において、レーザー溶接機は、出力680W、焦点位置におけるレーザービームの有効直径が略0.5mmであるCOレーザーを使用するが、母材の種類や寸法、または溶接速度に応じて、他規格のレーザー溶接機の使用が可能なことは当然である。 In this embodiment, the laser welder uses a CO 2 laser having an output of 680 W and an effective diameter of the laser beam at the focal position of approximately 0.5 mm, depending on the type and size of the base material or the welding speed. Of course, it is possible to use laser welding machines of other standards.

一方、本発明において、プラズマトーチ30とレーザーヘッド40とを共に用いて金属管10’を溶接線10aに沿って溶接することによって、図2bに示されたような溶接された金属管10”を製造することになるが、プラズマトーチ30によるプラズマ30aとレーザーヘッド40によるレーザービーム40aとの位置関係、これらの間の距離xoff、プラズマ30aとレーザービーム40aとの入射角度などが溶接速度及び溶接結果に大きい影響を及ぼす。このような溶接性能に影響を及ぼす要素に対して詳しく説明する。 On the other hand, in the present invention, the welded metal tube 10 ″ as shown in FIG. 2b is obtained by welding the metal tube 10 ′ along the weld line 10a using the plasma torch 30 and the laser head 40 together. Although it is manufactured, the positional relationship between the plasma 30a by the plasma torch 30 and the laser beam 40a by the laser head 40, the distance x off between them, the incident angle between the plasma 30a and the laser beam 40a, and the like are the welding speed and welding. The factors that affect the welding performance will be described in detail.

まず、プラズマトーチ30は、図3a及び図3bに示されたように、母材10’表面に対して略45°程度に傾けて使用するが、このときの母材表面におけるプラズマによる入熱エネルギー分布に関して説明する。   First, as shown in FIGS. 3a and 3b, the plasma torch 30 is used while being inclined at about 45 ° with respect to the surface of the base material 10 ′. At this time, the heat input energy by the plasma on the surface of the base material is used. The distribution will be described.

プラズマ30aが平らな母材表面に垂直に入射するならば、プラズマによる入熱エネルギー分布I(r)は次の数1のようにガウス分布になるはずであるが、母材表面に斜めに入射する場合には、母材表面でプラズマの入熱領域(図4の30b参照)は、母材の進行方向xに沿って長い楕円になり、この際の入熱エネルギー分布は数2のようになる。   If the plasma 30a is perpendicularly incident on the flat base metal surface, the heat input energy distribution I (r) by the plasma should be Gaussian as shown in the following equation 1, but is incident obliquely on the base metal surface. In this case, the plasma heat input region (see 30b in FIG. 4) on the surface of the base material becomes a long ellipse along the traveling direction x of the base material, and the heat input energy distribution at this time is as shown in Equation 2 below. Become.

Figure 2008502485
Figure 2008502485

ここで、Iはピークエネルギー密度、rは入熱領域における半径方向の距離、rは入熱領域の有効半径、cはプラズマエネルギーがr内に分布する集中度である。一方、以下の説明において、プラズマの分散角度は無視できる程度であるため0°にし(すなわち、プラズマを円柱と仮定し)計算して説明する。 Here, I 0 is a peak energy density, r is a radial distance in the heat input region, r 0 is an effective radius of the heat input region, and c is a degree of concentration in which the plasma energy is distributed in r 0 . On the other hand, in the following explanation, since the dispersion angle of plasma is negligible, it will be explained by calculating 0 ° (that is, assuming that the plasma is a cylinder).

Figure 2008502485
Figure 2008502485

ここで、θはプラズマの入射角、aは楕円の長軸長さであってr/sinθ、bは楕円の短軸長さであってb=r、xは楕円の中心から長軸方向の距離、yは楕円の中心から短軸方向の距離である。 Here, θ t is the angle of incidence of the plasma, a is the major axis length of the ellipse, r 0 / sin θ t , b is the minor axis length of the ellipse, b = r 0 , x is from the center of the ellipse The distance in the major axis direction, y is the distance in the minor axis direction from the center of the ellipse.

一方、上記の数1及び数2は、プラズマが平坦な母材の表面に入射する場合のエネルギー密度であるが、実際、本実施例の場合、プラズマ30aはその中心でV字形溝に入射する。したがって、V字形溝の内部に入射するプラズマの入熱エネルギー分布を考慮せねばならないが、プラズマは質量の流れであるため、V字形溝の内部ではかなり複雑な流動をを行うことになり、この現象の解析は極めて困難である。よって、ここではV字形溝の壁面における入熱エネルギー分布を、プラズマの進行方向に対して一定であって、トーチの移動方向(実際には母材の移動方向x)に対してはガウス分布しているものと単純化した状態を想定する。すなわち、V字形溝の壁面に沿って深さ方向に対するプラズマ入熱エネルギー密度は一定であると仮定する。   On the other hand, the above formulas 1 and 2 are the energy density when the plasma is incident on the surface of the flat base material. In fact, in this embodiment, the plasma 30a is incident on the V-shaped groove at the center. . Therefore, it is necessary to consider the heat input energy distribution of the plasma incident on the inside of the V-shaped groove. However, since the plasma is a mass flow, the flow inside the V-shaped groove is considerably complicated. Analysis of the phenomenon is extremely difficult. Therefore, here, the heat input energy distribution on the wall surface of the V-shaped groove is constant with respect to the plasma traveling direction, and is Gaussian distributed with respect to the moving direction of the torch (actually the moving direction x of the base material). Assuming a simplified state. That is, it is assumed that the plasma heat input energy density in the depth direction along the wall surface of the V-shaped groove is constant.

レーザーヘッド40のレーザービーム40aによる入熱エネルギー分布は、平坦な母材の表面に垂直にレーザービームが入射するとすれば、上記の数1で示されると同様になる。但し、レーザービームのエネルギーは、母材の表面に吸収されるとともに、反射されることもあるため、これを考慮せねばならない。レーザービームの母材表面における吸収率は、レーザービームの特性及び母材の材質や特性によって異なるが、レーザービームの入射角にも依存する。フレネル(Fresnel)の吸収率式によれば、レーザービームは入射角が約85°であるときに最も高い吸収率を示す。すなわち、母材に対してレーザービームを傾け、母材の表面とほとんど平行に照射する場合に、最大の吸収率が得られる。ここで、注意すべき点は、最大の吸収率を得るため、図3aまたは図3bにおいて、レーザーヘッド40を母材10’に対して、ほとんど平行になるように傾けねばならないことを意味しているのではない。前述のように、本実施例の母材10’の溶接部は、突き合せ間隔dが約0.15mmであるV字形溝であり、レーザービーム40aの大部分は該V字形溝の内部に照射される(図4の40b参照)。また、V字形溝は前述したように、その挟角θが約10°程度であるため、図3aまたは図3bにおいてレーザーヘッド40を、母材10’表面にほぼ垂直に配置するとしたとき、V字形溝の壁面に入射するレーザービームの入射角は、ほぼ85°になる。但し、V字形溝外側の母材10’表面に照射されるレーザービームが反射され、レーザーヘッド40に損傷を与える恐れがあるため、図3a及び図3bに示されたように、レーザーヘッド40を少し傾けて配置することが望ましい。   The heat input energy distribution by the laser beam 40a of the laser head 40 is the same as expressed by the above equation 1 if the laser beam is incident on the surface of the flat base material perpendicularly. However, since the energy of the laser beam is absorbed and sometimes reflected by the surface of the base material, this must be taken into consideration. The absorption rate of the laser beam on the surface of the base material varies depending on the characteristics of the laser beam and the material and characteristics of the base material, but also depends on the incident angle of the laser beam. According to the Fresnel absorptance equation, the laser beam exhibits the highest absorptance when the incident angle is about 85 °. That is, the maximum absorption rate can be obtained when the laser beam is tilted with respect to the base material and irradiated almost parallel to the surface of the base material. Here, it should be noted that in order to obtain the maximum absorption rate, in FIG. 3a or 3b, the laser head 40 must be tilted so as to be almost parallel to the base material 10 ′. I'm not. As described above, the welded portion of the base material 10 ′ of the present embodiment is a V-shaped groove having a butt interval d of about 0.15 mm, and most of the laser beam 40a is irradiated to the inside of the V-shaped groove. (See 40b in FIG. 4). Further, since the V-shaped groove has the included angle θ of about 10 ° as described above, when the laser head 40 is arranged substantially perpendicular to the surface of the base material 10 ′ in FIG. The incident angle of the laser beam incident on the wall surface of the letter-shaped groove is approximately 85 °. However, since the laser beam applied to the surface of the base material 10 ′ outside the V-shaped groove is reflected and may damage the laser head 40, the laser head 40 is used as shown in FIGS. 3a and 3b. It is desirable to place it at a slight angle.

一方、このようにレーザービームがV字形溝の内部に照射されるとき、V字形溝の内部の壁面に入熱されるエネルギー分布は多重反射効果によって説明される。すなわち、図5に示されたように、V字形溝に入射するレーザービーム40aは内部壁面で多重反射を経るようになり、その結果、非常に微小なエネルギーだけを有して溝外部へ反射されて行く。V字形溝の内部における多重反射の回数は、溝の角度が小さいほど増加するが、本発明者の計算では溝の角度が20°であるとき、8回程度反射することになる。該8回の反射のそれぞれにおいて、壁面に対するレーザービームの入射角が変化するため、それぞれの反射時の吸収率も変化するはずであるが、概ね平均して一回の反射時の吸収率を0.5と仮定すると、8回の反射を経て溝外部へと出て行くレーザービームのエネルギーは、当初の入射時エネルギーの0.4%以下(0.5≒0.0039)に落ちる。すなわち、ほとんどすべてのエネルギーは、V字形溝の内部に吸収されると言える。また、V字形溝の壁面に沿って深さ方向に深くなるほど、反射の回収が増加し、入熱領域40bの中心部分でエネルギー密度が最も高いため(図5の40c参照)、V字形溝の内部における入熱エネルギー分布は、溝の最も下部で最大になり、上方へ行くほど少なくなる分布を示す。 On the other hand, when the laser beam is irradiated inside the V-shaped groove in this way, the energy distribution input to the wall surface inside the V-shaped groove is explained by the multiple reflection effect. That is, as shown in FIG. 5, the laser beam 40a incident on the V-shaped groove undergoes multiple reflections on the inner wall surface, and as a result, has only a very small energy and is reflected to the outside of the groove. Go. The number of multiple reflections inside the V-shaped groove increases as the groove angle is smaller. However, according to the calculation by the present inventor, when the groove angle is 20 °, reflection is performed about eight times. In each of the eight reflections, since the incident angle of the laser beam with respect to the wall surface changes, the absorptance at each reflection should also change, but the average absorptance at one reflection is 0 on average. Assuming .5, the energy of the laser beam that goes out of the groove after eight reflections falls below 0.4% of the initial incident energy (0.5 8 ≈0.0039). That is, it can be said that almost all of the energy is absorbed inside the V-shaped groove. Moreover, since the recovery of reflection increases as the depth increases along the wall surface of the V-shaped groove, and the energy density is highest in the central portion of the heat input region 40b (see 40c in FIG. 5), the V-shaped groove The heat input energy distribution inside becomes maximum at the lowest part of the groove and decreases as it goes upward.

一方、本発明に係る実験によれば、V字形溝の内部の全体エネルギー吸収率(効率)は、V字形溝の角度θによって(結局、レーザービームの入射角の変化によって)異なっていたが、θが10°であるとき約35%の効率を見せ、20〜40°において最大の効率を示し、120°以上では単純平板とほとんど同じ約15%の効率を示すことが分かった。上記の解析では、θが小さいほど多重反射が多く起きるので効率が高くなるはずだが、θが小さいほど入熱領域40bのV字形溝の外側に集中するエネルギーの割合が増加することで、V字形溝の内部への絶対入射量が少なくなるため、上記の結果となると考えられる。   On the other hand, according to the experiment according to the present invention, the overall energy absorption rate (efficiency) inside the V-shaped groove was different depending on the angle θ of the V-shaped groove (after all, depending on the change in the incident angle of the laser beam). It was found that when θ was 10 °, the efficiency was about 35%, the maximum efficiency was shown at 20-40 °, and the efficiency was about 15% almost the same as that of a simple flat plate at 120 ° or more. In the above analysis, the smaller the θ, the more the multiple reflections occur, so the efficiency should be higher. However, the smaller the θ, the higher the ratio of the energy concentrated outside the V-shaped groove in the heat input region 40b. Since the absolute incident amount to the inside of the groove is reduced, the above result is considered.

以上のプラズマ入熱エネルギー分布及びレーザー入熱エネルギー分布に対する解析は、それぞれの熱源を単独で使用したときの解析結果である。該二つの熱源を共に使用するときの入熱エネルギー分布は、二つの熱源が互いに干渉とすると、一応それぞれの入熱エネルギー分布を重ね合わせた値になると考えられる。   The above analysis on the plasma heat input energy distribution and the laser heat input energy distribution is an analysis result when each heat source is used alone. When the two heat sources are used together, the heat input energy distribution is considered to be a value obtained by superimposing the respective heat input energy distributions if the two heat sources interfere with each other.

二つの熱源の干渉性を確認するため、次のような簡単な実験を行った。まず、レーザービームのみを平坦な母材の表面に垂直に入射させ、母材表面に入射するエネルギーを測定する。このとき、レーザービームは母材表面より少し上側で焦点が合わせられるようにデフォーカスする。以後、レーザービームと垂直に(すなわち、母材表面と平行な方向で)レーザービームの焦点位置にプラズマを重畳させ、このときの母材表面に入射されるエネルギーを測定する。その結果、レーザービームだけを照射したときに測定されたエネルギーは41Wであったし、プラズマで干渉させたときの測定されたエネルギーは40Wであった。すなわち、二つの熱源を同時に重畳させると、僅かではあるが、プラズマ柱にレーザービームが少し吸収されるようになる。同時に、この結果は母材表面でレーザービームとプラズマ柱とを重畳させたときの測定ではないという点、すなわち、実際母材表面で重畳させる場合の溶接の干渉まで考慮すると、二つの熱源を同時に使用する場合、二つの熱源による入熱領域30b、40bの中心間には、少し距離xoffを設けた方がよいと判断できる。しかし、二つの入熱領域間の距離xoffを過度に大きくすると、先行する熱源による予熱効果が落ちるはずであり、これも避けねばならないと考える。xoffの最適値は、プラズマトーチ及びレーザー溶接機の出力と溶接速度など工程条件によって異なるが、その具体的な値は、後述する実験例を通じて算出する。 In order to confirm the coherence of the two heat sources, the following simple experiment was conducted. First, only the laser beam is vertically incident on the surface of the flat base material, and the energy incident on the surface of the base material is measured. At this time, the laser beam is defocused so as to be focused slightly above the surface of the base material. Thereafter, plasma is superimposed on the focal position of the laser beam perpendicularly to the laser beam (that is, in a direction parallel to the surface of the base material), and the energy incident on the surface of the base material at this time is measured. As a result, the energy measured when only the laser beam was irradiated was 41 W, and the energy measured when the plasma was interfered was 40 W. That is, when two heat sources are simultaneously superimposed, the laser beam is slightly absorbed by the plasma column, although only slightly. At the same time, considering that this result is not a measurement when the laser beam and the plasma column are superimposed on the base metal surface, that is, considering the interference of welding when superimposing on the base metal surface, the two heat sources are simultaneously When used, it can be determined that it is better to provide a small distance x off between the centers of the heat input regions 30b and 40b by the two heat sources. However, if the distance x off between the two heat input regions is excessively increased, the preheating effect by the preceding heat source should be reduced, and this must also be avoided. The optimum value of x off varies depending on the process conditions such as the output of the plasma torch and laser welder and the welding speed, but the specific value is calculated through an experimental example to be described later.

一方、二つの熱源を同時に使用したとき、二つの熱源間の干渉を避ければ、入熱エネルギー分布がそれぞれの熱源を単独で使用したときに比べ増加するはずであるが、全体の入熱エネルギー分布はそれぞれの入熱エネルギー分布を単純に積算した以上となることが望ましいと考える。そこで、この二つの熱源の同時使用による相乗効果は、プラズマによる予熱を行い、レーザービームの吸収率を増加させることが好ましいものとして求められ得る。すなわち、前述においてレーザービームの吸収率は、母材表面に対するレーザービームの入射角によって異なると説明したが、レーザービームの吸収率は、その他母材の温度にも依存する。前述した物性を有する本実施例のステンレス鋼の場合、前述したフレネルの吸収率式において、温度が1℃増加するとき、吸収係数は約3.5×10−5増加する。この数値は些細なもののように考えられるが、プラズマ予熱によって、母材の温度が例えば1000℃増加すると、レーザービームの吸収係数は0.035増加し、常温における吸収係数が0.08程度であることを考慮すると、かなりの吸収率の増加となると言える。 On the other hand, when two heat sources are used at the same time, if the interference between the two heat sources is avoided, the heat input energy distribution should increase compared to when each heat source is used alone, the overall heat input energy distribution. I think that it is desirable to have more than simply integrating the heat input energy distribution. Therefore, the synergistic effect by the simultaneous use of these two heat sources can be sought preferably by preheating with plasma and increasing the absorption rate of the laser beam. That is, it has been described above that the laser beam absorptance varies depending on the incident angle of the laser beam with respect to the surface of the base material, but the laser beam absorptance also depends on the temperature of the other base material. In the case of the stainless steel of this embodiment having the above-described physical properties, the absorption coefficient increases by about 3.5 × 10 −5 when the temperature increases by 1 ° C. in the Fresnel absorption rate formula described above. Although this number seems to be trivial, when the temperature of the base material increases by, for example, 1000 ° C. due to plasma preheating, the absorption coefficient of the laser beam increases by 0.035, and the absorption coefficient at room temperature is about 0.08. Considering this, it can be said that the absorption rate is considerably increased.

以上のような分析によれば、二つの熱源を同時に使用する場合、入熱領域の間に適切な距離を設けてプラズマをレーザーに先行させて母材を予熱することで、レーザービームの吸収率を高める方向に溶接を施した方がよいことが分かる。「プラズマをレーザーに先行させる」とは、母材10’が進行方向xに沿って供給されるとき、まずプラズマ30aが照射された後、レーザービーム40aが照射されることを意味する。プラズマトーチ30及びレーザーヘッド40は、図3aに示されたように、互いに対向するように配置してプラズマ30aとレーザービーム40aとを交差させるか(またはすれ違わせるか)、図3bのようにプラズマトーチ30とレーザーヘッド40とを平行な方向に配置して、プラズマ30aとレーザービーム40aとを平行な方向から照射する。   According to the above analysis, when two heat sources are used at the same time, the laser beam absorptivity is achieved by preheating the base metal by providing an appropriate distance between the heat input regions and causing the plasma to precede the laser. It can be seen that it is better to weld in the direction of increasing the. “Plasma is preceded by laser” means that when the base material 10 ′ is supplied along the traveling direction x, the plasma 30 a is first irradiated and then the laser beam 40 a is irradiated. As shown in FIG. 3a, the plasma torch 30 and the laser head 40 are arranged so as to face each other so that the plasma 30a and the laser beam 40a intersect (or pass each other), as shown in FIG. 3b. The plasma torch 30 and the laser head 40 are arranged in parallel directions, and the plasma 30a and the laser beam 40a are irradiated from the parallel directions.

このとき、プラズマ30aとレーザービーム40aとがなす挟角φは、図3aの場合は略70°以内、図3bの場合は略50°以内の範囲にあることが好ましい。一方、母材10’の進行方向から見たとき、母材10’のV字形溝(すなわち、溶接線)に対してプラズマトーチによるプラズマ30aの吐出方向及びレーザービーム40aの照射方向が±20°以内の角を有することが好ましい(図3c参照)。これはプラズマ30aまたはレーザービーム40aが、過度に傾いて吐出または照射されると、いずれか一方に偏って接合が行われ、溶接部の表面に凹凸ができるか、または、不完全な接合になる恐れがあるためである。   At this time, the included angle φ formed by the plasma 30a and the laser beam 40a is preferably within a range of about 70 ° in the case of FIG. 3A and within a range of about 50 ° in the case of FIG. 3B. On the other hand, when viewed from the traveling direction of the base material 10 ′, the discharge direction of the plasma 30a by the plasma torch and the irradiation direction of the laser beam 40a are ± 20 ° with respect to the V-shaped groove (that is, the welding line) of the base material 10 ′. It is preferable to have a corner within (see FIG. 3c). This is because if the plasma 30a or the laser beam 40a is ejected or irradiated at an excessively inclined angle, either one of the plasma 30a or the laser beam 40a is unevenly bonded, and the surface of the welded portion is uneven or incompletely bonded. Because there is a fear.

このように、二つの熱源間の距離xoff、プラズマトーチ30とレーザーヘッド40との位置関係及び角度が適切に調整されて、所定の出力でプラズマ30a及びレーザービーム40aが発生すると同時に、母材10’がx方向に連続的に供給されると、図4に示されたように、まずプラズマトーチ40のプラズマ40aによる入熱領域30bが形成されて母材を予熱する。母材の進行に従って、プラズマによる入熱領域30bの後方には予熱領域30cが尾を引くようにテール状になり、この予熱領域30cのテール側の内部にレーザービーム40aによる入熱領域40bが形成され後を付いていく形になる。予熱された母材は、レーザービームによる入熱領域40bで溶融され、主溶接が行われて連続的にビード10bを生成して行く。これで、金属板材10から断面円形である金属管10”が連続的に製造される。 As described above, the distance x off between the two heat sources, the positional relationship and the angle between the plasma torch 30 and the laser head 40 are appropriately adjusted, and at the same time the plasma 30a and the laser beam 40a are generated at a predetermined output, and the base material When 10 ′ is continuously supplied in the x direction, as shown in FIG. 4, first, a heat input region 30b is formed by the plasma 40a of the plasma torch 40, and the base material is preheated. As the base material advances, the preheating region 30c is tailed so as to have a tail behind the heat input region 30b by plasma, and the heat input region 40b by the laser beam 40a is formed inside the tail side of the preheating region 30c. It will be the form that follows. The preheated base material is melted in the heat input region 40b by the laser beam, and main welding is performed to continuously generate the beads 10b. Thus, the metal tube 10 ″ having a circular cross section is continuously manufactured from the metal plate material 10.

以下、本発明の溶接方法に関して、多様な実験を通じて溶接性能を確認した結果を説明する。まず、図6を参照して以下の実験で評価した溶接特性を定義する。図6は、母材10’の進行方向を境として、半分の領域だけを示したものである。溶接性能の評価は、他の評価方法もあり得るが、溶融プールAの深さを示す溶込深さ(penetration depth)LとビードBの幅(bead width)Lとを測定することで評価できる。 Hereinafter, with respect to the welding method of the present invention, results of confirming welding performance through various experiments will be described. First, the welding characteristics evaluated in the following experiment are defined with reference to FIG. FIG. 6 shows only a half region with the traveling direction of the base material 10 ′ as a boundary. Evaluation of weldability is may be other evaluation methods, by measuring the width (bead width) L B of penetration depth (penetration depth) L A and the bead B indicating the depth of the molten pool A Can be evaluated.

以下の実験において、金属板材は、前述した実施例の説明で述べたステンレス鋼を使用し、V字形溝の角度は10°にして行った。また、プラズマトーチ及びレーザー溶接機は前述した実施例で説明した装置を使用した。   In the following experiments, the stainless steel plate described in the description of the above-described embodiment was used as the metal plate material, and the angle of the V-shaped groove was set to 10 °. The plasma torch and the laser welding machine used the apparatuses described in the above-described examples.

以下の実験は、プラズマ溶接機だけを用いて溶接した場合(比較例1)、レーザー溶接機だけを用いて溶接した場合(比較例2)、プラズマを先行させて二つの熱源を共に使用した場合(実施例1)、及びレーザーを先行させて二つの熱源を共に使用した場合(比較例3)に分けて行った。比較例1と比較例2とにおいては、それぞれプラズマ出力及びレーザー出力を固定させて、溶接速度を変化させながら溶込深さとビード幅とを測定し、実施例1及び比較例3においては、溶接速度を固定させてプラズマ出力及び二つの熱源間の距離xoffを変化させながら溶込深さとビード幅とを測定した。各実験結果を説明すると、次のようになる。 The following experiments are conducted when welding is performed using only a plasma welder (Comparative Example 1), when welding is performed using only a laser welder (Comparative Example 2), and when two heat sources are used together with plasma preceding. (Example 1), and the case where two heat sources were used together with a laser preceding (Comparative Example 3). In Comparative Example 1 and Comparative Example 2, the plasma output and laser output were fixed, respectively, and the penetration depth and bead width were measured while changing the welding speed. In Example 1 and Comparative Example 3, welding was performed. The penetration depth and bead width were measured while changing the plasma output and the distance x off between the two heat sources at a fixed speed. Each experimental result will be described as follows.

まず、比較例1の結果は、図7a(プラズマ電流を10Aに固定)及び図7b(プラズマ電流が15A)に示されたように、溶接速度が増加するほど溶込深さとビード幅とが減少するものとなった。本実験で使用した金属板材の厚さが0.2mmであるので、溶込深さが0.2mm以上である場合を完全溶込とすると、図7a及び図7bの場合、溶接速度をそれぞれ4.0m/min以下及び6.0m/min以下に維持して初めて完全溶込が成り立つことが分かる。   First, as shown in FIG. 7a (the plasma current is fixed at 10A) and FIG. 7b (the plasma current is 15A), the results of Comparative Example 1 show that the penetration depth and bead width decrease as the welding speed increases. It became something to do. Since the thickness of the metal plate used in this experiment is 0.2 mm, assuming that the penetration depth is 0.2 mm or more and complete penetration, the welding speed is 4 for each of FIGS. 7a and 7b. It can be seen that complete penetration is not possible until 0.0 m / min or less and 6.0 m / min or less.

図8に示された比較例2においても、溶接速度が増加するにつれ、溶込深さ及びビード幅が減少するものとなり、完全溶込が起きるためには溶接速度を略5.0m/min以下にしなければならないことが分かる。   Also in Comparative Example 2 shown in FIG. 8, as the welding speed increases, the penetration depth and the bead width decrease, and in order to cause complete penetration, the welding speed is about 5.0 m / min or less. I understand that I have to do it.

図9a及び図9bは、実施例1と比較例3の結果を示したグラフであって、溶接速度を12m/minに固定して、二つの熱源間の距離xoffを変化させながら測定したビード幅と溶込深さとを示したものである。図面において、LFとPFとは、それぞれレーザー先行させた場合とプラズマを先行させた場合とを意味し、その後の電流値はプラズマ溶接機の電流を示すものである。 9a and 9b are graphs showing the results of Example 1 and Comparative Example 3, in which the welding speed was fixed at 12 m / min and the beads measured while changing the distance x off between the two heat sources. It shows the width and penetration depth. In the drawing, LF and PF mean the case where laser is preceded and the case where plasma is preceded, respectively, and the current value after that indicates the current of the plasma welding machine.

図9a及び図9bに示されたように、二つの熱源を共に使用するときには、プラズマを先行させた場合の実施例1がレーザー先行を先行させた場合の比較例3より溶接性に優れている結果となった。また、本実験のような条件では、xoffが0.5〜2.5mmであるとき、実施例1の溶接性が優れることが確認された。 As shown in FIGS. 9a and 9b, when two heat sources are used together, Example 1 when the plasma is preceded is superior to Comparative Example 3 when the laser is preceded. As a result. Further, it was confirmed that the weldability of Example 1 was excellent when x off was 0.5 to 2.5 mm under the conditions as in this experiment.

このように、実施例1によれば、溶接速度を12.0m/minまで増加でき、従来のプラズマを単独で用いた溶接時の溶接速度(6.0m/min以下)とレーザーを単独で用いた溶接時の溶接速度(5.0m/min以下)のそれぞれの溶接速度はもとより、これらの溶接速度を単純に積算した値を明らかに超える速い溶接速度が得られる。   Thus, according to Example 1, the welding speed can be increased to 12.0 m / min, and the welding speed (6.0 m / min or less) at the time of welding using a conventional plasma alone and a laser alone are used. In addition to the welding speeds of the welding speeds (5.0 m / min or less) during welding, high welding speeds that clearly exceed the values obtained by simply integrating these welding speeds can be obtained.

以上、本発明を限定された実施例と図面とによって説明したが、これらの限定した記載に拘泥されることなく、多様な修正及び変形が可能である。例えば、上述した実施例においては、金属板材を曲げて溶接して金属管を製造する場合に関して説明したが、金属管に限定せず本発明の溶接方法の適用が可能である。   While the present invention has been described with reference to the embodiments and the drawings, various modifications and variations can be made without being limited to these limited descriptions. For example, in the above-described embodiments, the case where a metal tube is manufactured by bending and welding a metal plate material has been described. However, the present invention is not limited to a metal tube, and the welding method of the present invention can be applied.

また、上述した実施例においては、母材(被溶接材)としてステンレス鋼を挙げて説明したが、他にもニッケル合金、銅、銅合金、アルミニウム、アルミニウム合金、チタン合金、軟鋼、低合金鋼などの金属材にも適用できる。さらに、上述した実施例においては、金属板材を曲げて対向させたため、対向する二つの被溶接材が同じ金属になるが、組成の異なる金属材の突き合せ溶接にも本発明の溶接方法は適用できる。勿論、母材の材質がステンレス鋼以外の金属や異なる組成の金属材の突き合せ溶接の場合には、プラズマ溶接機及びレーザー溶接機の出力や溶接速度を、それに合わせて適切に変更できる。   In the above-described embodiments, stainless steel is described as the base material (material to be welded), but other than that, nickel alloy, copper, copper alloy, aluminum, aluminum alloy, titanium alloy, mild steel, low alloy steel It can also be applied to metal materials such as. Furthermore, in the above-described embodiments, since the metal plate materials are bent and face each other, the two materials to be welded are the same metal, but the welding method of the present invention is also applied to butt welding of metal materials having different compositions. it can. Of course, when the base material is a butt welding of a metal other than stainless steel or a metal material having a different composition, the output and welding speed of the plasma welding machine and the laser welding machine can be appropriately changed accordingly.

したがって、本発明は特許請求の範囲の権利範囲は、その均等範囲まで及ぶものと解釈されねばならない。本明細書に記載された実施例と図面とに示された構成は、本発明の最も望ましい一実施例に過ぎず、本発明の技術的思想をすべて代弁するものではないため、本出願時点において、これらを代替できる多様な均等物及び変形例があり得ることを理解せねばならない。   Therefore, the scope of the present invention should be construed to extend to the equivalent scope of the claims. The configurations shown in the embodiments and drawings described in the present specification are only the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. It should be understood that there can be various equivalents and variations that can be substituted for these.

以上の如く、本発明の溶接方法によれば、プラズマトーチによる予熱処理後、レーザー溶接を行うことによって、突き合せ間隔が非常に狭い被溶接材の突き合せ溶接時の溶接性及び溶接速度を著しく向上できる。特に、従来には正確かつ迅速な溶接のために、高価なレーザー溶接装備が必要であったが、プラズマ溶接とレーザー溶接とを共に施すことで溶接精度の正確性を保ちつつ、安価なコストで溶接速度を向上させることができる。さらに、レーザー溶接だけを単独で施す場合には、精密な溶接線の追跡が必要であって、作業性が低下したが、プラズマ溶接を共に施すことで作業性が向上し溶接品質も向上する。   As described above, according to the welding method of the present invention, by performing laser welding after pre-heat treatment with a plasma torch, the weldability and welding speed at the time of butt welding of materials to be welded with very narrow butt intervals are remarkably increased. It can be improved. In particular, expensive laser welding equipment has been required for accurate and rapid welding, but it is possible to maintain the accuracy of welding accuracy by performing both plasma welding and laser welding at low cost. The welding speed can be improved. Further, when laser welding alone is performed alone, it is necessary to accurately track the welding line and the workability is reduced. However, by performing plasma welding together, the workability is improved and the welding quality is also improved.

また、本発明の溶接方法は、厚さと直径とが小さい金属管の製造に好適であり、金属板材の供給速度(塑性加工速度)に合わせた溶接が可能であるため、金属管製造時の律速工程を解消でき、金属管製造の生産性を大きく向上させ得る。   In addition, the welding method of the present invention is suitable for manufacturing a metal pipe having a small thickness and diameter, and can be welded in accordance with the supply speed (plastic working speed) of the metal plate material. The process can be eliminated, and the productivity of metal pipe manufacturing can be greatly improved.

明細書内に統合され明細書の一部を構成する添付図面は、発明の現在の望ましい実施例を例示し、実施例の詳細な説明とともに本発明の技術的思想を説明する役割をする。
図1は、本発明の実施例による溶接方法及び金属管の製造方法によって金属管を製造するための装置の概略構成図である。 図2aは、図1のA−A線に沿う断面図である。 図2bは、図1のB−B線に沿う断面図である。 図3aは、被溶接材に対するプラズマトーチとレーザーヘッドの配置例を示した図面である。 図3bは、被溶接材に対するプラズマトーチとレーザーヘッドの配置例を示した図面である。 図3cは、プラズマトーチとレーザーヘッドとの角度を説明するために被溶接材の進行方向から見た模式図である。 図4は、本発明の溶接方法を説明するために溶接部及びその周辺を示した平面図である。 図5は、V字形溝の内部で起きるレーザービームの多重反射効果を説明するための模式断面図である。 図6は、溶込深さとビード幅とを説明するための模式断面図である。 図7aは、プラズマ単独溶接時の溶接速度と溶込深さ及びビード幅との関係を示したグラフである。 図7bは、プラズマ単独溶接時の溶接速度と溶込深さ及びビード幅との関係を示したグラフである。 図8は、レーザー単独溶接時の溶接速度と溶込深さ及びビード幅との関係を示したグラフである。 図9aは、プラズマ溶接とレーザー溶接とを共に施した場合、二つの熱源による入熱領域の中心間距離とビード幅及び溶込深さとの関係を示したグラフである。 図9bは、プラズマ溶接とレーザー溶接とを共に施した場合、二つの熱源による入熱領域の中心間距離とビード幅及び溶込深さとの関係を示したグラフである。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the detailed description of the embodiments, serve to explain the technical idea of the invention.
FIG. 1 is a schematic configuration diagram of an apparatus for manufacturing a metal pipe by a welding method and a metal pipe manufacturing method according to an embodiment of the present invention. 2a is a cross-sectional view taken along line AA in FIG. 2b is a cross-sectional view taken along line BB in FIG. FIG. 3A is a view showing an arrangement example of a plasma torch and a laser head with respect to a material to be welded. FIG. 3b is a view showing an arrangement example of a plasma torch and a laser head with respect to a material to be welded. FIG. 3c is a schematic view seen from the traveling direction of the material to be welded in order to explain the angle between the plasma torch and the laser head. FIG. 4 is a plan view showing a welded portion and its periphery in order to explain the welding method of the present invention. FIG. 5 is a schematic cross-sectional view for explaining the multiple reflection effect of the laser beam that occurs inside the V-shaped groove. FIG. 6 is a schematic cross-sectional view for explaining the penetration depth and the bead width. FIG. 7a is a graph showing the relationship between the welding speed, penetration depth, and bead width at the time of plasma single welding. FIG. 7b is a graph showing the relationship between the welding speed, the penetration depth, and the bead width during plasma single welding. FIG. 8 is a graph showing the relationship between the welding speed, penetration depth, and bead width at the time of laser independent welding. FIG. 9a is a graph showing the relationship between the center-to-center distance of the heat input region by two heat sources, the bead width, and the penetration depth when both plasma welding and laser welding are performed. FIG. 9B is a graph showing the relationship between the center-to-center distance of the heat input region by two heat sources, the bead width, and the penetration depth when both plasma welding and laser welding are performed.

Claims (16)

互いに対向する溶接部を有する被溶接材を連続的に供給するステップと、
前記溶接部に対してプラズマトーチを使用して予熱するステップと、
前記プラズマトーチによって予熱された前記溶接部に対してレーザービームを照射して溶接するステップとを含むプラズマとレーザーとを用いた連続的な突き合せ溶接方法。
Continuously supplying materials to be welded having welds facing each other;
Preheating the weld with a plasma torch;
A continuous butt welding method using plasma and laser, including the step of irradiating and welding a laser beam to the welded portion preheated by the plasma torch.
前記互いに対向する溶接部の突き合せ間隔が0.2mm以下であることを特徴とする請求項1に記載のプラズマとレーザーとを用いた連続的な突き合せ溶接方法。 The continuous butt welding method using plasma and laser according to claim 1, wherein a butt interval between the welds facing each other is 0.2 mm or less. 前記プラズマトーチによる入熱領域の中心と前記レーザービームによる入熱領域の中心との間の距離が0.5〜2.5mmであることを特徴とする請求項1に記載のプラズマとレーザーを用いた連続的な突き合せ溶接方法。 The plasma and laser according to claim 1, wherein a distance between the center of the heat input region by the plasma torch and the center of the heat input region by the laser beam is 0.5 to 2.5 mm. Had continuous butt welding method. 前記プラズマトーチによるプラズマの吐出方向と前記レーザービームの照射方向との間の挟角が70°以内であることを特徴とする請求項1に記載のプラズマとレーザーとを用いた連続的な突き合せ溶接方法。 2. The continuous matching using plasma and laser according to claim 1, wherein an included angle between a plasma discharge direction of the plasma torch and an irradiation direction of the laser beam is within 70 °. Welding method. 前記被溶接材の進行方向から見たとき、前記溶接部に対して前記プラズマトーチによるプラズマの吐出方向と前記レーザービームの照射方向とが±20°以内の角を有することを特徴とする請求項1に記載のプラズマとレーザーとを用いた連続的な突き合せ溶接方法。 The plasma discharge direction by the plasma torch and the irradiation direction of the laser beam have an angle within ± 20 ° with respect to the welded portion when viewed from the traveling direction of the workpiece. 2. A continuous butt welding method using the plasma and laser according to 1. 前記被溶接材はステンレス鋼、ニッケル合金、銅、銅合金、アルミニウム、アルミニウム合金、チタン合金、軟鋼及び低合金鋼のうちいずれか一つまたは二つであることを特徴とする請求項1に記載のプラズマとレーザーとを用いた連続的な突き合せ溶接方法。 The welded material is one or two of stainless steel, nickel alloy, copper, copper alloy, aluminum, aluminum alloy, titanium alloy, mild steel, and low alloy steel. Continuous butt welding method using plasma and laser. 前記被溶接材は前記溶接部の断面形象がV字形溝をなして互いに対向するように供給されることを特徴とする請求項1に記載のプラズマとレーザーとを用いた連続的な突き合せ溶接方法。 2. The continuous butt welding using plasma and laser according to claim 1, wherein the material to be welded is supplied such that a cross-sectional shape of the welded portion forms a V-shaped groove and faces each other. Method. 前記V字形溝の挟角が40°以下であることを特徴とする請求項7に記載のプラズマとレーザーを用いた連続的な突き合せ溶接方法。 8. The continuous butt welding method using plasma and laser according to claim 7, wherein the included angle of the V-shaped groove is 40 [deg.] Or less. 帯状の金属板材を連続的に供給するステップと、
前記金属板材の両側部が互いに対向するように管状に加工するステップと、
管状に加工されて互いに対向する溶接部をプラズマトーチを使って予熱するステップと、 前記プラズマトーチによって予熱された前記溶接部に対してレーザービームを照射して溶接するステップとを含む金属管の製造方法。
Continuously supplying a strip-shaped metal sheet;
Processing into a tubular shape so that both sides of the metal plate face each other;
Manufacturing a metal tube comprising the steps of preheating welds that are processed into a tubular shape and facing each other using a plasma torch, and irradiating the welds preheated by the plasma torch with a laser beam. Method.
前記互いに対向する溶接部の突き合せ間隔が0.2mm以下であることを特徴とする請求項9に記載の金属管の製造方法。 The metal pipe manufacturing method according to claim 9, wherein a butt interval between the welds facing each other is 0.2 mm or less. 前記プラズマトーチによる入熱領域の中心と前記レーザービームによる入熱領域の中心間距離が0.5〜2.5mmあることを特徴とする請求項9に記載の金属管の製造方法。 The method for manufacturing a metal tube according to claim 9, wherein a distance between the center of the heat input region by the plasma torch and the center of the heat input region by the laser beam is 0.5 to 2.5 mm. 前記プラズマトーチによるプラズマの吐出方向と前記レーザービームの照射方向間の挟角が70°以内であることを特徴とする請求項9に記載の金属管の製造方法。 The method for manufacturing a metal tube according to claim 9, wherein an included angle between a plasma discharge direction by the plasma torch and an irradiation direction of the laser beam is within 70 °. 前記金属板材の進行方向から見たとき、前記溶接部に対して前記プラズマトーチによるプラズマの吐出方向と前記レーザービームの照射方向とが±20°以内の角を有することを特徴とする請求項9に記載の金属管の製造方法。 10. When viewed from the traveling direction of the metal plate, the plasma discharge direction by the plasma torch and the laser beam irradiation direction have an angle within ± 20 ° with respect to the welded portion. The manufacturing method of the metal pipe as described in any one of. 前記金属板材はステンレス鋼、ニッケル合金、銅、銅合金、アルミニウム、アルミニウム合金、チタン合金、軟鋼及び低合金鋼のうちいずれか一つよりなることを特徴とする請求項9に記載の金属管の製造方法。 The metal plate according to claim 9, wherein the metal plate material is made of any one of stainless steel, nickel alloy, copper, copper alloy, aluminum, aluminum alloy, titanium alloy, mild steel, and low alloy steel. Production method. 前記管状に加工するステップにおいて、前記金属板材の両側部は断面形象がV字形溝をなしながら互いに対向するように加工されることを特徴とする請求項9に記載の金属管の製造方法。 10. The method of manufacturing a metal tube according to claim 9, wherein, in the step of processing into a tubular shape, both side portions of the metal plate material are processed so that cross-sectional shapes face each other while forming a V-shaped groove. 前記V字形溝の挟角が40°以下であることを特徴とする請求項15に記載の金属管の製造方法。 The metal tube manufacturing method according to claim 15, wherein an included angle of the V-shaped groove is 40 ° or less.
JP2007516371A 2004-06-16 2004-06-18 Continuous butt welding method using plasma and laser, and metal pipe manufacturing method using the same Pending JP2008502485A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020040044724A KR100489692B1 (en) 2004-06-16 2004-06-16 Continuous butt welding method using plasma and laser, and fabricating method for metal tube using the same
PCT/KR2004/001466 WO2005123325A1 (en) 2004-06-16 2004-06-18 Continuous butt welding method using plasma and laser, and method for fabricating metal tube using the same

Publications (1)

Publication Number Publication Date
JP2008502485A true JP2008502485A (en) 2008-01-31

Family

ID=35509514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007516371A Pending JP2008502485A (en) 2004-06-16 2004-06-18 Continuous butt welding method using plasma and laser, and metal pipe manufacturing method using the same

Country Status (6)

Country Link
US (1) US20070246446A1 (en)
JP (1) JP2008502485A (en)
KR (1) KR100489692B1 (en)
CN (1) CN1968782B (en)
RU (1) RU2356713C2 (en)
WO (1) WO2005123325A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111634A1 (en) 2010-03-08 2011-09-15 株式会社神戸製鋼所 Laser/arc hybrid welding method and method of producing welded member using same
CN103476535A (en) * 2011-03-29 2013-12-25 杰富意钢铁株式会社 Laser welding method
JP2016046176A (en) * 2014-08-25 2016-04-04 古河電気工業株式会社 Weld joint, terminal with weld joint, method of manufacturing weld joint, and method of manufacturing terminal

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
KR20080057967A (en) * 2006-12-21 2008-06-25 재단법인 포항산업과학연구원 Air tank for vehicle and fabricating method thereof
EP2133160A4 (en) * 2007-03-02 2017-01-25 Nippon Steel & Sumitomo Metal Corporation Method for producing steel conduit tube and high si component or high cr component steel conduit tube
US9194512B2 (en) * 2007-04-30 2015-11-24 Mark Andreychuk Coiled tubing with heat resistant conduit
CN102284775B (en) * 2010-06-17 2013-08-28 上海宝钢设备检修有限公司 Method for welding roll gaps of large-diameter technical roller coiled by plank stuffs
FR2962673B1 (en) * 2010-07-13 2013-03-08 Air Liquide ARC / LASER HYBRID WELDING PROCESS OF ALUMINIZED STEEL PARTS WITH GAMAGENIC ELEMENTS
KR101247106B1 (en) * 2010-11-24 2013-03-29 주식회사 성우하이텍 Control method of laser welding device for roll forming system
US9364921B2 (en) 2011-03-30 2016-06-14 Jfe Steel Corporation Method of manufacturing laser welded steel pipe
EP2703112B1 (en) * 2011-04-28 2018-01-10 JFE Steel Corporation Method for producing laser welded steel pipe
EP2698215A1 (en) * 2012-08-17 2014-02-19 Alstom Technology Ltd Method for manufacturing high temperature steam pipes
CN103084735A (en) * 2012-11-21 2013-05-08 丹东通博电器(集团)有限公司 Stainless steel thin-wall pore-free laser welding method
KR101493205B1 (en) * 2013-02-22 2015-02-12 후루카와 덴키 고교 가부시키가이샤 Method for manufacturing crimp terminal, crimp terminal, and wire harness
CN103240571A (en) * 2013-05-06 2013-08-14 湖北省奥克南管业有限公司 Aluminum and aluminum alloy spiral pipe forming stirring friction welding method
EP2871020A1 (en) * 2013-11-11 2015-05-13 Siemens Aktiengesellschaft Welding of two parts to each other and resulting component
KR101543886B1 (en) * 2013-12-20 2015-08-11 주식회사 포스코 Method for laser welding of stainless steel and welded joint metal using the same
RU2555701C1 (en) * 2013-12-30 2015-07-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Method of laser-plasma welding of metals and device to this end
RU2572671C1 (en) * 2014-09-04 2016-01-20 Открытое акционерное общество "Национальный институт авиационных технологий" (ОАО НИАТ) Method of aluminium alloy butt weld laser-arc welding by consumable electrode
CN104690434B (en) * 2015-03-09 2016-06-08 江苏藤仓亨通光电有限公司 A kind of tool structure of the method not cutting welding rustless steel light unit and correspondence
DE102015014276A1 (en) 2015-11-06 2017-05-11 Cool-System Keg Gmbh Disposable drinks barrel made of stainless steel
CN106425101A (en) * 2016-11-29 2017-02-22 沈阳黎明航空发动机(集团)有限责任公司 Thin-walled air coolant guide tube connecting method
CN106694888B (en) * 2016-12-31 2019-01-18 广东明路电力电子有限公司 Cylinder metal foam welding procedure and metal foam sheets roughening process
RU2660540C1 (en) * 2017-08-28 2018-07-06 Публичное акционерное общество "Челябинский трубопрокатный завод" (ПАО "ЧТПЗ") Welding method of the formed tubular piece with induction heating
RU2697545C1 (en) * 2018-08-17 2019-08-15 Акционерное общество "Центр технологии судостроения и судоремонта" (АО "ЦТСС") Method for laser-arc welding of fillet welds of t-joints
WO2020196646A1 (en) * 2019-03-27 2020-10-01 日立金属株式会社 Welded pipe manufacturing method, and welded pipe manufacturing device
KR20220040661A (en) 2020-09-24 2022-03-31 나재훈 Method for butt solid state joining undercut puzzle-type metal plates
EP4237187A1 (en) * 2020-10-30 2023-09-06 Saint-Gobain Performance Plastics Corporation Apparatus for welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238474A (en) * 1993-02-22 1994-08-30 Ishikawajima Harima Heavy Ind Co Ltd Laser beam machine
JP2001018081A (en) * 1999-07-01 2001-01-23 Sumitomo Metal Ind Ltd Manufacture of laser beam welded metal tube
JP2002001557A (en) * 2000-04-19 2002-01-08 Hitachi Constr Mach Co Ltd Butt welding method by laser beam
JP2003245786A (en) * 2002-02-26 2003-09-02 Daihen Corp Ac mig pulse arc combined with laser welding method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1103882A (en) * 1964-03-14 1968-02-21 Yawata Iron & Steel Co High speed arc welding method
US4354090A (en) * 1979-10-23 1982-10-12 Sws Incorporated Z-bar guide apparatus and method of butt welding
JP2659809B2 (en) * 1989-08-07 1997-09-30 三菱重工業株式会社 Laser reflection mirror
US5140123A (en) * 1990-05-25 1992-08-18 Kusakabe Electric & Machinery Co., Ltd. Continuous manufacturing method for a metal welded tube and a manufacturing apparatus therefor
WO1994016838A1 (en) * 1993-01-28 1994-08-04 Nippon Steel Corporation Continuous hot rolling method and rolled material joining apparatus
JPH08300172A (en) * 1995-04-28 1996-11-19 Nkk Corp Manufacture of welded steel tube
JPH10216972A (en) * 1997-02-04 1998-08-18 Kubota Corp Dual welding method of laser beam and consumable electrode arc
US6229111B1 (en) * 1999-10-13 2001-05-08 The University Of Tennessee Research Corporation Method for laser/plasma surface alloying
JP3631936B2 (en) * 2000-04-07 2005-03-23 三菱重工業株式会社 Welding method and welding apparatus
FR2809648B1 (en) * 2000-05-31 2002-08-30 Air Liquide METHOD AND INSTALLATION FOR HYBRID LASER AND ELECTRIC ARC WELDING, PARTICULARLY FOR AUTOMOTIVE PARTS OR TUBES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238474A (en) * 1993-02-22 1994-08-30 Ishikawajima Harima Heavy Ind Co Ltd Laser beam machine
JP2001018081A (en) * 1999-07-01 2001-01-23 Sumitomo Metal Ind Ltd Manufacture of laser beam welded metal tube
JP2002001557A (en) * 2000-04-19 2002-01-08 Hitachi Constr Mach Co Ltd Butt welding method by laser beam
JP2003245786A (en) * 2002-02-26 2003-09-02 Daihen Corp Ac mig pulse arc combined with laser welding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111634A1 (en) 2010-03-08 2011-09-15 株式会社神戸製鋼所 Laser/arc hybrid welding method and method of producing welded member using same
US9061374B2 (en) 2010-03-08 2015-06-23 Kobe Steel, Ltd. Laser/arc hybrid welding method and method for producing welded member using same
CN103476535A (en) * 2011-03-29 2013-12-25 杰富意钢铁株式会社 Laser welding method
CN103476535B (en) * 2011-03-29 2015-07-29 杰富意钢铁株式会社 Method for laser welding
JP2016046176A (en) * 2014-08-25 2016-04-04 古河電気工業株式会社 Weld joint, terminal with weld joint, method of manufacturing weld joint, and method of manufacturing terminal

Also Published As

Publication number Publication date
WO2005123325A1 (en) 2005-12-29
CN1968782B (en) 2010-10-20
RU2356713C2 (en) 2009-05-27
KR100489692B1 (en) 2005-05-17
CN1968782A (en) 2007-05-23
RU2006143343A (en) 2008-07-27
US20070246446A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP2008502485A (en) Continuous butt welding method using plasma and laser, and metal pipe manufacturing method using the same
EP2546020B1 (en) Laser/arc hybrid welding method and method for producing welded member using same
JP5519494B2 (en) Method for joining thick metal workpieces by welding
EP3750665B1 (en) Hybrid-welding method and device for continuous welding
US6469277B1 (en) Method and apparatus for hybrid welding under shielding gas
US11786989B2 (en) Method for splash-free welding, in particular using a solid-state laser
JPH08300172A (en) Manufacture of welded steel tube
KR20110038073A (en) Method for eccentrically orienting a laser cutting beam in relation to a nozzle axis and for cutting at an angle; corresponding laser machining head and laser machining tool
JP5600837B2 (en) Narrow groove multi-layer laser welding method
US20140352835A1 (en) Welding process, welding system, and welded article
CN111185666B (en) Scanning laser-TIG electric arc composite deep melting welding method
EP2692475B1 (en) Laser welding method
RU2440221C1 (en) Method of arc laser welding of aluminium and its alloys by consumable electrode
JP5954009B2 (en) Manufacturing method of welded steel pipe
JP2005021912A (en) Laser beam welding method for shape steel
JP5866790B2 (en) Laser welded steel pipe manufacturing method
CN114523207B (en) Laser welding method
JP5600838B2 (en) Laser welding method
JP2009195964A (en) Laser arc composite welding head
CA3055547C (en) Laser welding with filler wire
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
JP2001025865A (en) Welding method of small diameter tube
JP2014024078A (en) Laser welding apparatus
JP2012187590A (en) Method for producing laser-welded steel pipe
JP2020015053A (en) Welding method, welding device and welding steel plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426