JP2008309382A - Heat pump utilizing groundwater and ground heat - Google Patents

Heat pump utilizing groundwater and ground heat Download PDF

Info

Publication number
JP2008309382A
JP2008309382A JP2007156903A JP2007156903A JP2008309382A JP 2008309382 A JP2008309382 A JP 2008309382A JP 2007156903 A JP2007156903 A JP 2007156903A JP 2007156903 A JP2007156903 A JP 2007156903A JP 2008309382 A JP2008309382 A JP 2008309382A
Authority
JP
Japan
Prior art keywords
heat
groundwater
water
well
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007156903A
Other languages
Japanese (ja)
Other versions
JP5042716B2 (en
Inventor
Yoshiro Shiba
芳郎 柴
Hisao Shimanuki
久雄 嶋貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALEPH Inc
Zeneral Heatpump Industry Co Ltd
Original Assignee
ALEPH Inc
Zeneral Heatpump Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALEPH Inc, Zeneral Heatpump Industry Co Ltd filed Critical ALEPH Inc
Priority to JP2007156903A priority Critical patent/JP5042716B2/en
Publication of JP2008309382A publication Critical patent/JP2008309382A/en
Application granted granted Critical
Publication of JP5042716B2 publication Critical patent/JP5042716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a temperature difference of heat to be collected is small since a heat pump may be frozen when the groundwater of a heat pump system utilizing the groundwater is used as a heat source of the heat pump, and further the total length of an underground heat exchanger is increased since the quantity of heat absorbed from the ground is small when the brine is used as heat source water in a heat pump system utilizing ground heat, thus causing a cost increase. <P>SOLUTION: The brine is used as the heat source water of a water heat source heat pump. The brine absorbs heat from the groundwater and the ground in a returning well-groundwater well heat exchanger, and further exchanges heat with the groundwater in a water-water heat exchanger to absorb heat from the groundwater. Further a returning well-groundwater well device constituted by inserting an U-tube heat exchanger into the returning well for returning the groundwater to an original groundwater vein of the groundwater extracted from the groundwater vein, charging a water permeable filler material between the outside of the U-tube and a casing, and holding a cover for preventing the overflow of water from a ground surface is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地下水利用ヒートポンプシステム及び地中熱利用ヒートポンプに関するものである。 The present invention relates to a groundwater-based heat pump system and a ground heat-based heat pump.

従来の地下水利用ヒートポンプシステムは地下水(井水)をくみ上げて水熱源(水冷式)ヒートポンプの熱源とし、熱交換した後の地下水は地盤沈下防止のために還元井戸に還元するというものである(例えば、非特許文献1参照。)。ヒートポンプの熱源としては地下水を直接用いる方法と、地下水とブラインを水−水熱交換器で熱交換し、ヒートポンプの熱源としてはそのブラインを用いるという方法がある。
また、地中熱利用ヒートポンプシステムはUチューブや同軸熱交換器等の地中熱交換器により地中から熱を吸熱するものである(例えば、非特許文献2参照。)。
「地熱」 第39巻 第1号、2002年、p.63 「日本地熱学会誌」 第27巻 第4号、2005年、p.263
The conventional groundwater-based heat pump system pumps up groundwater (well water) and uses it as a heat source for a water heat source (water-cooled) heat pump, and the groundwater after heat exchange is returned to a reduction well to prevent ground subsidence (for example, Non-patent document 1). There are a method of directly using ground water as a heat source of the heat pump and a method of exchanging heat between the ground water and brine with a water-water heat exchanger and using the brine as a heat source of the heat pump.
In addition, the heat pump system using ground heat absorbs heat from the ground using a ground heat exchanger such as a U tube or a coaxial heat exchanger (for example, see Non-Patent Document 2).
“Geothermal” Vol. 39, No. 1, 2002, p. 63 “The Journal of the Geothermal Society of Japan” Vol. 27, No. 4, 2005, p. 263

しかしながら、地下水利用ヒートポンプシステムの地下水を直接ヒートポンプの熱源とする場合はヒートポンプ内蒸発器凍結のおそれがあるために採熱できる温度差が小さい。例えば、地下水をヒートポンプより吸熱した後の温度は通常5℃程度までとされ、これ以下の温度では突然の停電等でヒートポンプ内の凍結のおそれがあるために運用を控える必要がある。また、地下水とブラインを熱交換するシステムでもブライン温度が氷点下になると突然の停電等で地下水の凍結が起こる可能性がある。また、水−水熱交換器容量を大きくすれば利用できる熱量は増えるがその分熱交換器のコストが増大する。
また、地中熱利用ヒートポンプシステムの場合は熱源水としてブラインを用いるが、地中から吸熱できる熱量が少ないため、地中熱交換器の合計深さが大きくなり、コストアップとなる。
However, when the groundwater of the heat pump system using groundwater is directly used as the heat source of the heat pump, there is a risk of freezing of the evaporator in the heat pump, so the temperature difference that can be collected is small. For example, the temperature after the groundwater has absorbed heat from the heat pump is normally set to about 5 ° C., and if the temperature is lower than this temperature, there is a risk of freezing in the heat pump due to a sudden power failure or the like. In addition, even in a system that exchanges heat between groundwater and brine, if the brine temperature falls below freezing point, groundwater may freeze due to a sudden power failure. Further, if the capacity of the water-water heat exchanger is increased, the amount of heat that can be used increases, but the cost of the heat exchanger increases accordingly.
In the case of a heat pump system using geothermal heat, brine is used as the heat source water. However, since the amount of heat that can be absorbed from the ground is small, the total depth of the underground heat exchanger is increased, resulting in an increase in cost.

水冷式ヒートポンプの熱源水としてブラインを用い、そのブラインを還元井及び地中熱井を兼用した熱交換器において地下水及び地中から熱を吸熱し、さらに水−水熱交換器において地下水と熱交換して地下水から熱を吸熱する。また、地下水脈から抽出した地下水を元の地下水脈に戻すために地下水脈部分にメッシュを擁したケーシングをもつ還元井戸にUチューブ熱交換器を挿入し、Uチューブの外とケーシングの間は透水性をもった珪砂などの充填材により充填し、地表部から水が溢れないようにする蓋を擁した、地中と還元する地下水から熱を吸熱する請求項2記載の還元井及び地中熱井を兼用した熱交換器を用いるという、請求項1の方法により解決する。 Brine is used as the heat source water for the water-cooled heat pump, and the brine absorbs heat from the groundwater and the ground in a heat exchanger that also serves as a reduction well and a geothermal heat well, and further exchanges heat with groundwater in the water-water heat exchanger. And absorbs heat from groundwater. In addition, in order to return the groundwater extracted from the groundwater vein to the original groundwater vein, a U-tube heat exchanger is inserted into the reduction well having a casing having a mesh in the groundwater vein portion, and water is transmitted between the outside of the U-tube and the casing. The reduction well and the geothermal heat according to claim 2, wherein the heat is absorbed from the ground and the groundwater to be reduced, which is filled with a filler such as silica sand and has a lid that prevents water from overflowing from the surface. The problem is solved by the method of claim 1 in which a heat exchanger that also serves as a well is used.

本発明によれば、地下水を水−水熱交換器で熱交換しさらに還元井及び地中熱井を兼用した熱交換器により熱交換することにより、従来の地下水利用ヒートポンプシステムと比べてヒートポンプの熱源として利用できる熱量を大きくとることができ、さらに、地中熱利用ヒートポンプシステムと比べて同じ地中熱交換器深さ当たりの採熱量を多くとる事ができる。
また、地下水利用ヒートポンプシステムでは抽出井より抽出した地下水は地盤沈下影響がないように地下に還元する必要があるが、本発明により、還元井において地下水脈からケーシングとメッシュにより抽出した地下水の元の地下水脈に地下水を戻すことができるとともに、間接的に熱交換するUチューブも還元井内に設置されているため、地下水の還元水とUチューブとの強制対流熱伝達と地中からの採熱により、従来の地中熱交換器よりも単位深さ当たりの採熱量の大きい地中熱交換器として兼用できる。
このため、還元井と地中熱井のトータルコストが低減できる。
このように地下水を水−水熱交換器とさらに還元及び地中熱井により2回熱交換して採熱することにより、水−水熱交換器だけのシステムと比べて多くの採熱量となる。
According to the present invention, by exchanging heat of groundwater with a water-water heat exchanger and further exchanging heat with a heat exchanger that also serves as a reduction well and a geothermal heat well, the heat pump of the heat pump is compared with the conventional heat pump system using groundwater. The amount of heat that can be used as a heat source can be increased, and furthermore, the amount of heat collected per depth of the same underground heat exchanger can be increased as compared with a heat pump system using underground heat.
In the groundwater heat pump system, groundwater extracted from the extraction well needs to be reduced to the ground so that there is no impact on land subsidence. However, according to the present invention, the original groundwater extracted from the groundwater vein by the casing and mesh is used in the reduction well. Groundwater can be returned to the groundwater vein, and a U tube that indirectly exchanges heat is also installed in the reduction well, so forced convection heat transfer between the groundwater reduced water and the U tube and heat collection from the ground It can also be used as a ground heat exchanger having a larger amount of heat collected per unit depth than a conventional ground heat exchanger.
For this reason, the total cost of a reduction well and a geothermal well can be reduced.
In this way, groundwater is heat-exchanged twice with a water-water heat exchanger and further with a reduction and underground heat well to collect heat, resulting in a larger amount of heat collection than a system with only a water-water heat exchanger. .

本発明の請求項1に記載の発明は、図1のように、水熱源ヒートポンプ1と抽出井2と水−水熱交換器4と還元及び地中熱井3とそれらを結ぶ地下水配管とブライン配管としたものである。地下水側から見ると、地下水は抽出井2よりポンプ6により抽出され、水−水熱交換器4を通過して放熱し、複数の還元及び地中熱井3に分配されて流れ、ケーシング内かつUチューブ13の外の透過性のある充填材の中を通り、元の地下水脈15へ流れる。還元及び地中熱井3の地表部より地下水が溢れないように蓋を設置する。ブライン側からみると、ブラインはポンプ5により循環し、ヒートポンプ内の熱交換器7で放熱した後、分配されて還元及び地中熱井3のUチューブ13へ流れて地下水及び地中より吸熱して地上で集まり、水−水熱交換器4で地下水より吸熱してポンプ5に戻りこれを繰り返す。   As shown in FIG. 1, the invention according to claim 1 of the present invention includes a water heat source heat pump 1, an extraction well 2, a water-water heat exchanger 4, a reduction and underground thermal well 3, groundwater piping and brine connecting them. It is a pipe. When viewed from the groundwater side, the groundwater is extracted from the extraction well 2 by the pump 6, dissipates heat through the water-water heat exchanger 4, is distributed to the plurality of reduction and geothermal wells 3, flows in the casing and It passes through the permeable filler outside the U tube 13 and flows to the original groundwater vein 15. Install a lid so that groundwater does not overflow from the surface part of the reduction and geothermal well 3. When viewed from the brine side, the brine is circulated by the pump 5 and radiated by the heat exchanger 7 in the heat pump, and then distributed and flows to the U tube 13 of the reduction and underground thermal well 3 to absorb heat from the groundwater and underground. The water gathers on the ground, absorbs heat from the groundwater by the water-water heat exchanger 4, returns to the pump 5, and repeats this.

本発明の請求項2に記載の発明は、図2のように、井戸の中にケーシング16があり、下部にメッシュ17があり、地表部に蓋19があり、そのケーシングの中にUチューブ18があり、そのUチューブ18とケーシング16の間には透水性をもつ充填材40を充填させることにより、地下水を還元するとともに、Uチューブ18により地下水から熱を吸収することができるという還元井と地中熱井の両方の特性をもつことができ、さらに通常の地中熱交換器よりも単位深さ当たりの採熱量を増やすことができる。   The invention according to claim 2 of the present invention has a casing 16 in a well, a mesh 17 in a lower portion, a lid 19 in a ground surface portion, and a U tube 18 in the casing as shown in FIG. A reduction well in which the U-tube 18 and the casing 16 are filled with a water-permeable filler 40 to reduce the groundwater, and the U-tube 18 can absorb heat from the groundwater. It can have the characteristics of both geothermal wells, and more heat can be collected per unit depth than a normal underground heat exchanger.

(本発明の請求項1および請求項2に記載の発明の実施例)
図3に本発明の請求項1および請求項2に記載の発明の実施例を示す。
図3は暖房および冷房を行うときの実施例である。ブライン配管36は分配して複数台の水熱源ヒートポンプ25に接続している。還元および地中熱井26は井水還元量に応じて本数を調整することができる。
(Embodiments of the invention described in claims 1 and 2 of the present invention)
FIG. 3 shows an embodiment of the invention described in claim 1 and claim 2 of the present invention.
FIG. 3 shows an embodiment when heating and cooling are performed. The brine piping 36 is distributed and connected to a plurality of water heat source heat pumps 25. The number of reduction and underground thermal wells 26 can be adjusted according to the amount of well water reduction.

最初に、暖房時について説明する。ここでは水熱源ヒートポンプ25は直膨方式であり、暖房時の空調機29は凝縮器となる。   First, the heating will be described. Here, the water heat source heat pump 25 is a direct expansion system, and the air conditioner 29 during heating is a condenser.

地下水を中心に考えると、地下水は抽出井27から井水ポンプ30によって抽出され、熱交換器32で放熱し、地下水配管34で分配されて還元および地中熱井26に入り、ケーシング内の透水性を持つ充填材35を通り地中43より吸熱するとともにUチューブ38に放熱し、元の地下水脈44に戻る。このとき熱交換した後の地下水が元の抽出井27から再度抽出されないように、還元及び地中熱井26の設置位置は抽出井27に対して地下水脈の下流にあるとよい。 Considering the groundwater as the center, the groundwater is extracted from the extraction well 27 by the well pump 30, dissipated by the heat exchanger 32, distributed by the groundwater piping 34, enters the reduction and underground heat well 26, and the water permeability in the casing The heat is absorbed from the underground 43 through the filler 35 having the property, and is radiated to the U tube 38, and returns to the original underground water vein 44. At this time, it is preferable that the groundwater well 26 is located downstream from the extraction well 27 with respect to the extraction well 27 so that the groundwater after heat exchange is not extracted again from the original extraction well 27.

例えば、地中温度が10℃と仮定した場合、地下水温度も10℃になると考えられる。抽出井27より10℃の地下水を汲み上げ水−水熱交換器32にて放熱して5℃となり、地下水配管34を通り、還元及び地中熱井26でさらに放熱して温度が低下する。この時一部地中43より吸熱するがUチューブ38への放熱量の方が多い。その計算結果については後に述べる。   For example, if the underground temperature is assumed to be 10 ° C, the groundwater temperature is considered to be 10 ° C. The groundwater of 10 ° C. is pumped up from the extraction well 27 and radiated to 5 ° C. by the water-water heat exchanger 32, passes through the groundwater piping 34, and further radiated by the reduction and underground heat well 26, and the temperature is lowered. At this time, a part of the heat is absorbed from the underground 43, but the amount of heat released to the U tube 38 is larger. The calculation results will be described later.

ケーシング内で地下水脈に到達するまでに氷点下になると、凍結のおそれがあるので氷点下にならないように、流量や充填材の透過率に注意する。また、停電等で井水ポンプが停止した場合はUチューブ内のブラインが氷点下になる場合があるため、Uチューブ周りが若干凍結する可能性もあるが、重力による地下水還元による水流があるため凍結しにくく、また、地中から熱を吸熱するため温度が回復すると考えられ、さらに、地下水回路は開放回路であるので凍結による膨張の影響がほとんどない。 Pay attention to the flow rate and the permeability of the filler so that it does not fall below freezing when it is below freezing before it reaches the underground waterway in the casing. In addition, when the well pump is stopped due to a power failure or the like, the brine in the U tube may be below freezing, so the area around the U tube may freeze slightly, but there is a water flow due to groundwater reduction due to gravity. In addition, it is considered that the temperature recovers because heat is absorbed from the ground, and further, since the groundwater circuit is an open circuit, there is almost no influence of expansion due to freezing.

ブラインを中心に考えると、ブラインは、ブラインポンプ31により搬送され、水熱源ヒートポンプ25の蒸発器42で放熱し、ブライン配管37で分配されて、還元及び地中熱井26内のUチューブ38にて吸熱し、地上に戻りブライン配管39を通って水−水熱交換器32にてさらに吸熱し、ブラインポンプ31へ戻りこれを繰り返す。   Considering the brine as the center, the brine is conveyed by the brine pump 31, dissipated heat by the evaporator 42 of the water heat source heat pump 25, distributed by the brine pipe 37, and reduced to the U tube 38 in the geothermal well 26. Then, it returns to the ground, passes through the brine pipe 39, further absorbs heat in the water-water heat exchanger 32, returns to the brine pump 31 and repeats this.

例えば、水熱源ヒートポンプ25の蒸発器42のブライン入口温度が5℃、出口温度が−5℃となり、Uチューブ38で吸熱して0℃となり、水−水熱交換器32で吸熱して5℃となる。   For example, the brine inlet temperature of the evaporator 42 of the water heat source heat pump 25 is 5 ° C., the outlet temperature is −5 ° C., the heat is absorbed by the U tube 38 to 0 ° C., the heat is absorbed by the water-water heat exchanger 32 and 5 ° C. It becomes.

このような順序で水−水熱交換器、水熱源ヒートポンプ、還元及び地中熱井について熱交換を行わないと、高い熱源温度を確保することができない。   Unless heat exchange is performed for the water-water heat exchanger, the water heat source heat pump, the reduction, and the underground heat well in this order, a high heat source temperature cannot be ensured.

次に、冷房時について説明する。ここでは水熱源ヒートポンプは直膨方式であり、冷房時空調機29は蒸発器となる。   Next, the cooling time will be described. Here, the water heat source heat pump is a direct expansion system, and the cooling air conditioner 29 is an evaporator.

地下水を中心に考えると、地下水は井水ポンプ30で抽出され、水−水熱交換器32で吸熱し、地下水配管34で分配されて還元及び地中熱井26に入り、ケーシング内の透水性を持つ充填材35を通り地中43へ放熱するとともにUチューブ38から吸熱し、元の地下水脈44に戻る。   Considering groundwater as the center, groundwater is extracted by a well pump 30, absorbs heat by a water-water heat exchanger 32, is distributed by a groundwater pipe 34, enters a reduction and geothermal well 26, and is permeable in the casing. The heat is dissipated to the ground 43 through the filler 35 having the heat and absorbed from the U tube 38 to return to the original underground water vein 44.

例えば、地中温度、地下水温度が年間を通して一定の10℃と仮定した場合、地下水は抽出井27より10℃の地下水を汲み上げられ、水−水熱交換器32にて吸熱して15℃となり、地下水配管34を通り、還元及び地中熱井26でさらに吸熱して温度が上昇して地下水脈44へ戻る。この時一部地中43へ放熱するがUチューブ38からの吸熱量の方が多い。その計算結果については後に述べる。   For example, when the underground temperature and the groundwater temperature are assumed to be constant 10 ° C. throughout the year, the ground water is pumped up to 10 ° C. from the extraction well 27 and is absorbed by the water-water heat exchanger 32 to 15 ° C. After passing through the groundwater pipe 34, the heat is further absorbed by the reduction and underground well 26 and the temperature rises and returns to the groundwater vein 44. At this time, some heat is dissipated to the ground 43, but the amount of heat absorbed from the U tube 38 is larger. The calculation results will be described later.

同様にブラインを中心に考えると、ブラインは、ブラインポンプ31により搬送され、水熱源ヒートポンプ25の凝縮器42で吸熱し、ブライン配管37で分配されて、還元及び地中熱井26内のUチューブ38にて放熱し、地上に戻りブライン配管39を通って水−水熱交換器32にてさらに放熱し、ブラインポンプ31へ戻りこれを繰り返す。   Similarly, considering the brine as the center, the brine is conveyed by the brine pump 31, absorbs heat by the condenser 42 of the water heat source heat pump 25, and is distributed by the brine piping 37, and the U tube in the reduction and geothermal well 26. The heat is radiated at 38, returned to the ground, further radiated by the water-water heat exchanger 32 through the brine pipe 39, and returned to the brine pump 31 to repeat this.

例えば、水熱源ヒートポンプの凝縮器ブライン入口温度が20℃、出口温度が30℃となり、Uチューブ38で放熱して地上で25℃となり、水−水熱交換器32で吸熱して20℃となる。   For example, the condenser brine inlet temperature of the water heat source heat pump is 20 ° C., the outlet temperature is 30 ° C., heat is radiated by the U tube 38 to 25 ° C. on the ground, and the water-water heat exchanger 32 absorbs heat to 20 ° C. .

このように本発明を用いれば、冷暖切り替え可能な水熱源ヒートポンプを用いることが可能である。   Thus, if this invention is used, it is possible to use the water heat source heat pump which can be switched between cooling and heating.

ブライン配管については、地中温度が高いなどで凍結温度にならなければブラインは水でも構わない。   As for the brine piping, the brine may be water as long as the underground temperature is high and the freezing temperature is not reached.

請求項2の還元及び地中熱交換器の採熱効果を簡易的な方法で計算する。 The reduction of claim 2 and the heat collection effect of the underground heat exchanger are calculated by a simple method.

まず、比較のために通常のUチューブ地中熱交換器の採熱量を計算する。
Uチューブは管の内径に比べて十分長い管であり、先端のU部分の計算は無視する。また、Uチューブは2本であるが、簡単のために2本の内径の断面積の合計と同じ内径の断面積で同じ配管厚さをもつ1本の仮想チューブとみなす。また、仮想チューブの温度はUチューブの入口・出口の平均温度として一定とする。
図4のようにパイプ(熱伝導率λ1[W/m・K]、中心からの距離r1[m]〜r2[m]の部分)と土(熱伝導率λ2[W/m・K]、中心からの距離r2[m]〜r3[m]の部分)の単位長さの円筒面を通過する熱量φ[W/m]はフーリエの法則を用いて数1のようになる。ここで、パイプ内表面r1で温度はt1[℃]、パイプ外表面r2で温度はt2[℃]、土壌半径r3で温度はt3[℃]とする。

Figure 2008309382
First, for the purpose of comparison, the amount of heat collected by a normal U-tube underground heat exchanger is calculated.
The U tube is sufficiently long compared to the inner diameter of the tube, and the calculation of the U portion at the tip is ignored. Further, although there are two U tubes, for the sake of simplicity, it is regarded as one virtual tube having the same pipe thickness with the same cross sectional area as the total of the cross sectional areas of the two inner diameters. Further, the temperature of the virtual tube is constant as the average temperature of the inlet and outlet of the U tube.
As shown in FIG. 4, the pipe (thermal conductivity λ1 [W / m · K], a portion from the distance r1 [m] to r2 [m] from the center) and soil (thermal conductivity λ2 [W / m · K], The amount of heat φ [W / m] passing through the cylindrical surface having a unit length of a distance r2 [m] to r3 [m] from the center is expressed by Equation 1 using Fourier's law. Here, the temperature is t1 [° C.] at the pipe inner surface r1, the temperature is t2 [° C.] at the pipe outer surface r2, the temperature is t3 [° C.] at the soil radius r3.

Figure 2008309382

土壌温度を10℃、土壌直径を5.5m、土壌熱伝導率を2.0W/m・K、Uチューブの内径27mm、Uチューブの肉厚3.5mm、Uチューブの熱伝導率0.42W/m・K、入り口温度−5℃、出口温度0度とすると、1mあたりの仮想チューブ当たりの採熱量は28W/mとなった。
Soil temperature 10 ° C, soil diameter 5.5m, soil thermal conductivity 2.0W / m · K, U tube inner diameter 27mm, U tube wall thickness 3.5mm, U tube thermal conductivity 0.42W / M · K, inlet temperature −5 ° C., outlet temperature 0 ° C., the amount of heat collected per virtual tube per meter was 28 W / m.

次に、請求項2の還元及び地中熱交換器の採熱効果を計算する。
Uチューブは管の内径に比べて十分長い管であり、先端のU部分の計算は無視する。また、Uチューブは2本であるが、簡単のために2本の内径の断面積の合計と同じ内径の断面積で同じ配管厚さをもつ1本の仮想チューブとみなす。また、仮想チューブの温度はUチューブの入口・出口の平均温度として一定とする。ここまでは普通のUチューブと同様である。
ケーシング内かつ仮想チューブの外に透過性のある充填材があり地下水が流れる。地下水は仮想チューブに放熱し、地中から吸熱する。計算では深さ方向に1mずつ区切り、その区間内では水温は一定と仮定する。また、地下水とケーシング内表面の熱伝達抵抗と地下水と仮想チューブ外表面の熱伝達抵抗は十分に小さいとして無視する。また、充填材の熱伝導についてはすべて地下水に熱が伝わるとして無視する。地中から吸熱する熱量と仮想チューブへ放熱する熱量は、次の1mでの水温に反映させる。これを繰り返すことにより還元井の深さまで計算させる。
土壌から地下水に得られる熱量をφs[W/m]、地下水から仮想チューブに与える熱量をφu[W/m]、地下水部分に与えられる熱量をφw[W/m]、仮想チューブの採熱量φ[W/m]はフーリエの法則を用いて数2のようになる。

Figure 2008309382
Figure 2008309382
Figure 2008309382
Figure 2008309382
ここで、r:中心からの距離、λ:熱伝導率、t:温度
仮想チューブ(r1≦r≦r2、λ=λ1)
地下水部分(r2≦r≦r3、t=t2=t3)
ケーシング(r3≦r≦r4、λ=λ3)
土壌(r4≦r≦r5、λ=λ4)
(仮想チューブ内表面r1での温度(=地中熱温度)はt1[℃]、仮想チューブ外表面r2で温度はt2[℃]、ケーシング内表面r3で温度はt3、土壌半径r5で温度はt5[℃]とする) Next, the reduction of Claim 2 and the heat collection effect of the underground heat exchanger are calculated.
The U tube is sufficiently long compared to the inner diameter of the tube, and the calculation of the U portion at the tip is ignored. Further, although there are two U tubes, for the sake of simplicity, it is regarded as one virtual tube having the same pipe thickness with the same cross sectional area as the total of the cross sectional areas of the two inner diameters. Further, the temperature of the virtual tube is constant as the average temperature of the inlet and outlet of the U tube. Up to this point, it is the same as an ordinary U tube.
There is a permeable filler inside the casing and outside the virtual tube, and groundwater flows. Groundwater dissipates heat to the virtual tube and absorbs heat from the ground. In the calculation, 1 m is divided in the depth direction, and the water temperature is assumed to be constant within the section. In addition, the heat transfer resistance between the groundwater and the inner surface of the casing and the heat transfer resistance between the groundwater and the outer surface of the virtual tube are ignored because they are sufficiently small. In addition, the heat conduction of the filler is ignored because heat is transferred to the groundwater. The amount of heat absorbed from the ground and the amount of heat released to the virtual tube are reflected in the water temperature at the next 1 m. By repeating this, the depth of the reduction well is calculated.
The amount of heat obtained from the soil to the groundwater is φs [W / m], the amount of heat given from the groundwater to the virtual tube is φu [W / m], the amount of heat given to the groundwater portion is φw [W / m], and the amount of heat collected from the virtual tube is φ [W / m] is expressed by Equation 2 using Fourier's law.

Figure 2008309382
Figure 2008309382
Figure 2008309382
Figure 2008309382
Here, r: distance from the center, λ: thermal conductivity, t: temperature virtual tube (r1 ≦ r ≦ r2, λ = λ1)
Groundwater part (r2 ≦ r ≦ r3, t = t2 = t3)
Casing (r3 ≦ r ≦ r4, λ = λ3)
Soil (r4 ≦ r ≦ r5, λ = λ4)
(The temperature at the virtual tube inner surface r1 (= ground heat temperature) is t1 [° C.], the temperature is t2 [° C.] at the virtual tube outer surface r2, the temperature is t3 at the casing inner surface r3, and the temperature is at the soil radius r5. t5 [° C])

通常のUチューブ地中熱交換器と同様に、土壌温度を10℃、土壌直径を5.5m、土壌熱伝導率を2.0W/m・K、Uチューブの内径27mm、Uチューブの肉厚3.5mm、Uチューブの熱伝導率0.42W/m・K、入り口温度−5℃、出口温度0度とした。
また、ケーシング熱伝達率50W/m・K、ケーシング内径150mm、ケーシング肉厚10mm、透過性をもつ充填材の空隙率γは10%、還元井水量Qは25L/min、ケーシング内の井水通過断面積はケーシング内面積からUチューブ外断面積(単管2本分)を引いた値とする。井水の比熱を1kcal/L、比重を1kg/Lとして、井水が1m通過して低下する温度はφw×0.86/(60Q)[℃]となる。
これを深さ100mまで計算した結果を表1、表2、図5、図6にまとめた。
表1、表2は深さ1mごとに深さ100mまで、井水温度、井水と地中熱(ブライン)の温度差、(地中熱ブラインへの)井水放熱量、土壌と井水の温度差、(土壌からの)井水吸熱量、(井水の)温度低下を示したものである。井水温度がケーシング内を進むにつれて低下する様子がわかる。井水温度が低下すると、地中熱ブライン温度との温度差が小さくなるので地中熱ブラインへの井水放熱量が低下するが、逆に、土壌と井水の温度差が大きくなり土壌からの井水吸熱量が増加する。ただし、井水吸熱量よりも井水放熱量の方が大きいため、図5のように全体的には井水温度は下降する。
還元及び地中熱井の地中熱ブラインの採熱量の平均値を図6で示す。深さ100mの時は86W/mとなり、この条件においては通常のUチューブ地中熱交換器に比べると3倍以上の採熱量を得ることができることがわかった。
As with a normal U-tube underground heat exchanger, the soil temperature is 10 ° C., the soil diameter is 5.5 m, the soil thermal conductivity is 2.0 W / m · K, the U-tube inner diameter is 27 mm, and the U-tube thickness is The thermal conductivity was 3.5 mm, the U tube thermal conductivity was 0.42 W / m · K, the inlet temperature was −5 ° C., and the outlet temperature was 0 degrees.
Also, the casing heat transfer rate is 50 W / m · K, the casing inner diameter is 150 mm, the casing thickness is 10 mm, the porosity γ of the permeable filler is 10%, the reduced well water amount Q is 25 L / min, and the well water passes through the casing. The cross-sectional area is a value obtained by subtracting the U-tube outer cross-sectional area (for two single tubes) from the casing inner area. Assuming that the specific heat of the well is 1 kcal / L and the specific gravity is 1 kg / L, the temperature at which the well goes down by 1 m is φw × 0.86 / (60Q) [° C.].
The results of calculating this up to a depth of 100 m are summarized in Table 1, Table 2, FIG. 5 and FIG.
Tables 1 and 2 show the temperature of well water, the temperature difference between well water and geothermal heat (brine), the amount of well water radiated (to the geothermal brine), soil and well water, up to 100 m per depth Temperature difference, well water endotherm (from soil), and temperature drop (well water). It can be seen that the well water temperature decreases as it travels through the casing. When the well water temperature decreases, the temperature difference from the geothermal brine becomes small, so the amount of well water radiated to the geothermal brine decreases. The well water endotherm increases. However, since the well water heat dissipation amount is larger than the well water heat absorption amount, the well water temperature generally decreases as shown in FIG.
The average value of the amount of heat collected from the geothermal brine of the reduction and geothermal well is shown in FIG. When the depth is 100 m, it is 86 W / m. Under these conditions, it has been found that a heat collection amount of three times or more can be obtained as compared with a normal U-tube underground heat exchanger.

冷房時についても同様にこのような計算が可能である。   Similar calculations can be made for cooling.

また、水熱源ヒートポンプは直膨方式だけでなく、冷水、温水を生成するヒートポンプチラーでも利用できる。   The water heat source heat pump can be used not only in a direct expansion system but also in a heat pump chiller that generates cold water and hot water.

これらの計算は定常状態を推定しており、負荷最大ピーク時の状態を推定することができるため、地下水及び地中熱ヒートポンプシステムの熱源容量設計に有用である。


Figure 2008309382

Figure 2008309382




Since these calculations estimate the steady state and can estimate the state at the maximum load peak, they are useful for designing the heat source capacity of groundwater and underground heat pump systems.


Figure 2008309382

Figure 2008309382




本願発明は、空調、給湯、床暖房、浴槽加熱、プール加熱及び道路や駐車場の融雪について有用である。
The present invention is useful for air conditioning, hot water supply, floor heating, bathtub heating, pool heating, and snow melting on roads and parking lots.

本発明の請求項1に記載の発明である、水熱源ヒートポンプと抽出井と水−水熱交換器と還元及び地中熱井とそれらを結ぶ地下水配管とブライン配管を示したものであるIt shows the groundwater piping and brine piping connecting the water heat source heat pump, the extraction well, the water-water heat exchanger, the reduction and the underground thermal well, and the ground water piping, which is the invention described in claim 1 of the present invention. 本発明の請求項2に記載の発明である、井戸の中にケーシングがあり、下部にメッシュがあり、地上部に蓋があり、そのケーシングの中にUチューブがあり、そのUチューブとケーシングの間には透水性をもつ充填材を充填させた、還元井と地中熱井の両方の特性をもつ装置(還元及び地中熱井)を示したものである。The invention according to claim 2 of the present invention has a casing in the well, a mesh in the lower part, a lid in the ground part, a U tube in the casing, the U tube and the casing In the meantime, an apparatus (reduction and geothermal well) having both the characteristics of a reduction well and a geothermal well filled with a water-permeable filler is shown. 本発明の請求項1および請求項2に記載の発明の実施例を示したものであり、空調を利用する場合のヒートポンプシステムを示している。図中の括弧内ではない温度は暖房時の地下水、ブライン、地中の温度例であり、括弧内の温度は冷房時の地下水、ブライン、地中の温度例を示す。The Example of the invention of Claim 1 and Claim 2 of this invention is shown, The heat pump system in the case of utilizing an air conditioning is shown. In the figure, temperatures not in parentheses are examples of groundwater, brine, and underground temperatures during heating, and temperatures in parentheses are examples of groundwater, brine, and underground temperatures during cooling. 通常のUチューブ地中熱交換器の採熱量を計算するための図。The figure for calculating the amount of heat collection of a normal U tube underground heat exchanger. 本発明の請求項2に記載の発明である還元及び地中熱井を用いた場合の、その深さにおける井水温度を計算した結果の一例のグラフ。The graph of an example of the result of having calculated the well water temperature in the depth at the time of using the reduction | restoration which is invention of Claim 2 of this invention, and a geothermal hot well. 本発明の請求項2に記載の発明である還元及び地中熱井を用いた場合の、その深さに応じた平均採熱量を計算した結果の一例のグラフ。The graph of an example of the result of having calculated the average amount of heat collection according to the depth at the time of using the reduction | restoration and underground thermal well which are inventions of Claim 2 of this invention.

符号の説明Explanation of symbols

1 水熱源ヒートポンプ
2 抽出井
3 還元及び地中熱井(ケーシング)
4 水−水熱交換器
5 ブラインポンプ
6 井水ポンプ
7 熱交換器(蒸発器または凝縮器)
8 地下水配管
9 地下水配管
10 ブライン配管
11 ブライン配管
12 ブライン配管
13 Uチューブ(ブライン配管)
14 地中
15 地下水脈
16 ケーシング部
17 メッシュ部
18 Uチューブ(ブライン配管)
19 蓋
20 地下水配管
21 ブライン配管(往)
22 ブライン配管(還)
23 地中
24 地下水脈
25 水熱源ヒートポンプ
26 還元及び地中熱井
27 抽出井
28 冷媒配管
29 室内空調機
30 井水ポンプ
31 ブラインポンプ
32 水−水熱交換器
33 地下水配管
34 地下水配管
35 透過性のある充填材および地下水
36 ブライン配管
37 ブライン配管
38 Uチューブ(ブライン配管)
39 ブライン配管
40 透過性のある充填材および地下水
41 透過性のある充填材および地下水
42 蒸発器および凝縮器
43 地中
44 地下水脈

1 Water heat source heat pump 2 Extraction well 3 Reduction and underground heat well (casing)
4 Water-water heat exchanger 5 Brine pump 6 Well water pump 7 Heat exchanger (evaporator or condenser)
8 Groundwater piping 9 Groundwater piping 10 Brine piping 11 Brine piping 12 Brine piping 13 U tube (brine piping)
14 Underground 15 Groundwater veins 16 Casing part 17 Mesh part 18 U tube (brine piping)
19 Lid 20 Groundwater piping 21 Brine piping (out)
22 Brine piping (return)
23 underground 24 groundwater veins 25 water source heat pump 26 reduction and underground thermal well 27 extraction well 28 refrigerant pipe 29 indoor air conditioner 30 well water pump 31 brine pump 32 water-water heat exchanger 33 groundwater pipe 34 groundwater pipe 35 permeability Filling material and groundwater 36 Brine piping 37 Brine piping 38 U tube (brine piping)
39 Brine piping 40 Permeable filler and groundwater 41 Permeable filler and groundwater 42 Evaporator and condenser 43 Underground 44 Groundwater veins

Claims (2)

ヒートポンプシステムにおいて、水熱源ヒートポンプの熱源水としてブラインを用い、そのブラインを還元井及び地中熱井を兼用した熱交換器において地下水及び地中から熱を吸熱し、さらに水−水熱交換器において地下水と熱交換して地下水から熱を吸熱する方法。
In the heat pump system, brine is used as the heat source water of the water heat source heat pump, the brine absorbs heat from the ground water and the ground in the heat exchanger that also serves as the reduction well and the underground heat well, and further in the water-water heat exchanger A method of absorbing heat from groundwater by exchanging heat with groundwater.
地下水脈から抽出した地下水の元の地下水脈に地下水を戻すために地下水脈部分にメッシュを擁したケーシングをもつ還元井戸にUチューブ熱交換器を挿入し、Uチューブの外とケーシングの間は透水性をもった充填材により充填し、地表部から水が溢れないようにする蓋を擁する、地中と還元する地下水から熱を吸熱する請求項1記載の還元井及び地中熱井を兼用した装置。 In order to return the groundwater to the original groundwater vein extracted from the groundwater vein, a U-tube heat exchanger is inserted into the reduction well having a casing with a mesh in the groundwater vein portion, and water is transmitted between the outside of the U-tube and the casing. The reductive well and the geothermal heat well of claim 1 that absorbs heat from the ground and the groundwater to be reduced, having a lid that prevents the water from overflowing from the ground surface, and is filled with a filler having a property. apparatus.
JP2007156903A 2007-06-13 2007-06-13 Heat pump system and geothermal well Active JP5042716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007156903A JP5042716B2 (en) 2007-06-13 2007-06-13 Heat pump system and geothermal well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007156903A JP5042716B2 (en) 2007-06-13 2007-06-13 Heat pump system and geothermal well

Publications (2)

Publication Number Publication Date
JP2008309382A true JP2008309382A (en) 2008-12-25
JP5042716B2 JP5042716B2 (en) 2012-10-03

Family

ID=40237143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007156903A Active JP5042716B2 (en) 2007-06-13 2007-06-13 Heat pump system and geothermal well

Country Status (1)

Country Link
JP (1) JP5042716B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212593A (en) * 2014-05-02 2015-11-26 国立大学法人山形大学 Underground water heat utilization system
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism
CN107808228A (en) * 2017-09-27 2018-03-16 上海岩土工程勘察设计研究院有限公司 A kind of groundwater extraction efficiency evaluation method of hypotonicity soil layer
RU2664271C2 (en) * 2016-05-24 2018-08-15 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Ground heat exchanger of geothermal heat pump system with moistening of ground and method for its application
JP2021085616A (en) * 2019-11-28 2021-06-03 株式会社リビエラ Geothermal heat utilization device
CN113739450A (en) * 2021-08-12 2021-12-03 安徽南国机电科技发展有限公司 Device system and method for improving heat exchange efficiency of ground source heat pump heat exchange well
CN114893929A (en) * 2022-04-20 2022-08-12 中国地质大学(武汉) Underground pipe heat exchange enhancement system and method based on combined backfill

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546691B (en) * 2015-12-29 2018-08-24 西安天虹电气有限公司 A kind of energy-saving air conditioning system to be freezed using constant temperature water source heating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254259A (en) * 1989-03-27 1990-10-15 Hisaka Works Ltd Method and device for supplying geothermal water
JP2000356433A (en) * 1999-06-17 2000-12-26 Kubota Corp Underground heat exchanger and heat source equipment, and operation method for heat source equipment
JP2002054856A (en) * 2000-08-10 2002-02-20 Sekisui House Ltd Heat pump system utilizing underground water
JP2004317102A (en) * 2003-04-11 2004-11-11 Hokkaido Heat pump using well water heat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254259A (en) * 1989-03-27 1990-10-15 Hisaka Works Ltd Method and device for supplying geothermal water
JP2000356433A (en) * 1999-06-17 2000-12-26 Kubota Corp Underground heat exchanger and heat source equipment, and operation method for heat source equipment
JP2002054856A (en) * 2000-08-10 2002-02-20 Sekisui House Ltd Heat pump system utilizing underground water
JP2004317102A (en) * 2003-04-11 2004-11-11 Hokkaido Heat pump using well water heat

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212593A (en) * 2014-05-02 2015-11-26 国立大学法人山形大学 Underground water heat utilization system
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism
RU2664271C2 (en) * 2016-05-24 2018-08-15 Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" Ground heat exchanger of geothermal heat pump system with moistening of ground and method for its application
CN107808228A (en) * 2017-09-27 2018-03-16 上海岩土工程勘察设计研究院有限公司 A kind of groundwater extraction efficiency evaluation method of hypotonicity soil layer
CN107808228B (en) * 2017-09-27 2021-08-20 上海勘察设计研究院(集团)有限公司 Groundwater extraction effectiveness evaluation method for low-permeability soil layer
JP2021085616A (en) * 2019-11-28 2021-06-03 株式会社リビエラ Geothermal heat utilization device
JP7307949B2 (en) 2019-11-28 2023-07-13 株式会社リビエラ Geothermal heat utilization equipment
CN113739450A (en) * 2021-08-12 2021-12-03 安徽南国机电科技发展有限公司 Device system and method for improving heat exchange efficiency of ground source heat pump heat exchange well
CN114893929A (en) * 2022-04-20 2022-08-12 中国地质大学(武汉) Underground pipe heat exchange enhancement system and method based on combined backfill

Also Published As

Publication number Publication date
JP5042716B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5042716B2 (en) Heat pump system and geothermal well
US6450247B1 (en) Air conditioning system utilizing earth cooling
CA2541378C (en) Geothermal aqueduct network
KR100824419B1 (en) Structure for establishment in-case of heating exchange system using the geothermal
JP6009138B2 (en) Geothermal utilization system
KR20090110904A (en) Multi-faceted designs for a direct exchange geothermal heating/cooling system
JP2009036415A (en) Heat pump cycle system using geo-heat
GB2470400A (en) Heat energy collection and storage device comprising a phase change material
JP4792902B2 (en) Heat exchanger
JP2013181676A (en) Air conditioning system and air conditioning method
JP6524571B2 (en) Control method of heat exchange device, heat exchange device, water-cooled heat pump cooling and heating device, water-cooled heat pump device
JP6529151B2 (en) Groundwater heat utilization system
JP2015055365A (en) Heat collecting pipe for underground thermal heat pump system
JP2003262430A (en) Heat pump using underground heat
JP2007120781A (en) Water-cooled heat pump air-conditioning system utilizing ground heat
JP2006145059A (en) Hybrid type underground heat utilization heat pump device and its operating method
JP4990593B2 (en) Underground heat exchanger buried structure
KR101551911B1 (en) Heating and cooling systems for building using filtration-well in seaside
JP2007255803A (en) Waste heat storing and utilizing method
EP2163828A2 (en) Appartus and method for transferrign energy
JP6236254B2 (en) Geothermal heat exchanger and air conditioning system using the same
JP6303361B2 (en) Thermal well and snow melting method
JP7374776B2 (en) heat exchange system
KR20130059828A (en) Heating exchange system using the geothermal
JP2019132470A (en) Heat collecting and radiating tube and geothermal heat pump using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250