JP2007255803A - Waste heat storing and utilizing method - Google Patents

Waste heat storing and utilizing method Download PDF

Info

Publication number
JP2007255803A
JP2007255803A JP2006081876A JP2006081876A JP2007255803A JP 2007255803 A JP2007255803 A JP 2007255803A JP 2006081876 A JP2006081876 A JP 2006081876A JP 2006081876 A JP2006081876 A JP 2006081876A JP 2007255803 A JP2007255803 A JP 2007255803A
Authority
JP
Japan
Prior art keywords
heat
air
waste
heat exchanger
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081876A
Other languages
Japanese (ja)
Other versions
JP4970817B2 (en
Inventor
Toko Hashimoto
東光 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO POWER SYSTEM KK
Original Assignee
GEO POWER SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO POWER SYSTEM KK filed Critical GEO POWER SYSTEM KK
Priority to JP2006081876A priority Critical patent/JP4970817B2/en
Publication of JP2007255803A publication Critical patent/JP2007255803A/en
Application granted granted Critical
Publication of JP4970817B2 publication Critical patent/JP4970817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a temperature of a part buried in the ground is locally increased or decreased in an indoor heating/cooling system using an underground heat exchanger, by storing waste heat. <P>SOLUTION: The waste hot air or waste cold air is allowed to pass through the heat exchanger of a double tube structure buried in the ground, so that the waste heat of the hot air or cold air diffuses into and penetrates the ground kept into contact with the heat exchanger and is stored, the air flows in the heat exchanger to give and receive the heat between the air and the stored ground heat, and the stored heat is transmitted to the air to be carried out and utilized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、廃熱の蓄熱と利用方法に係り、更に詳しくは、一戸建て住宅、集合住宅、ホテル、病院、学校、体育館などの建物や、その他建造物全般の冷暖房に利用することが出来る廃熱の蓄熱と利用方法に係るものである。   The present invention relates to a method for storing and using waste heat, and more specifically, waste heat that can be used for air conditioning of buildings such as detached houses, apartment houses, hotels, hospitals, schools, gymnasiums, and other general buildings. This relates to the heat storage and utilization method.

地中熱は、夏は比較的涼しく、冬は比較的暖かい温度になる事から、この熱を回収する為に、従来から二重管構造の熱交換パイプを地中に埋入して、熱交換パイプに外気を通して、地熱の熱回収をしている(特許文献1)。例えば日本では、平均気温15℃の地中では、夏場に32℃、冬場にマイナス0.5℃の気温の時でも、地熱は平均15℃になる。この外気と地熱の温度差を利用して冷暖房に使用しているが、従来方法では、夏季、あるいは冬季、二重管構造の熱交換器が埋められた地域の地中温度は、大地の熱拡散速度が遅いために、他の場所(地中の平均気温)よりも夏季では局部的に高く、あるいは冬季では、局部的に低くなる。夜間、放置することによって緩やかに熱拡散が進み、早朝には概ね本来の地中平均温度に近づくが、長期間暑い日、あるいは寒い日が続くと、熱交換器を埋めた地中の温度が平均温度に回復しないことも多々あるのが現状である。 Since geothermal heat is relatively cool in summer and relatively warm in winter, in order to recover this heat, a heat exchange pipe with a double-pipe structure has been buried underground, Geothermal heat recovery is performed through outside air through the exchange pipe (Patent Document 1). In Japan, for example, in an area with an average temperature of 15 ° C, the geothermal heat averages 15 ° C even when the temperature is 32 ° C in summer and minus 0.5 ° C in winter. This difference in temperature between the outside air and geothermal heat is used for air conditioning. In the conventional method, the underground temperature in the area where the double-pipe heat exchanger is buried in summer or winter is the heat of the earth. Due to the slow diffusion rate, it is locally higher in summer than in other places (average temperature in the ground) or locally lower in winter. Thermal diffusion proceeds slowly by leaving it at night, and in the early morning it approaches the original average temperature in the ground, but if a hot or cold day continues for a long time, the temperature in the ground where the heat exchanger is buried There are many cases where the average temperature does not recover.

本発明者らは、この問題を改良するために、地中熱交換器を埋入する地中とその周辺区域の地中に良熱伝導性の物質、鉱物あるいは金属塊、粒を密に埋入して熱拡散を促進して温度を平準化させる発明を出願(特願2004-214184)しているが、この方法は施工に手間がかかり、施工コストが高くなる欠点がある。 In order to remedy this problem, the inventors of the present invention densely embedded materials, minerals, metal masses, and grains having good heat conductivity in the ground where the underground heat exchanger is embedded and in the surrounding area. However, this method has a drawback in that it takes time for construction and increases construction costs, in order to promote thermal diffusion and level the temperature (Japanese Patent Application No. 2004-214184).

一方、地中に廃熱を蓄熱することが特許文献1に開示されているが、設備が複雑で経済的な効果は疑問である。
特開2005-337645号
On the other hand, Patent Document 1 discloses that waste heat is stored in the ground, but the equipment is complicated and the economic effect is doubtful.
JP-A-2005-337645

本発明はかかる問題点に鑑みてなされたもので、その目的は、施工コストが極めて安価で、しかも従来捨てられている冷熱あるいは温熱エネルギーの蓄熱を利用して熱交換パイプを埋入した地中温度の局部的な上昇あるいは低下を防ぐことが出来る新しい廃熱の蓄熱と利用方法を提供することである。 The present invention has been made in view of such problems, and the purpose thereof is extremely low in construction cost, and in the underground in which a heat exchange pipe is embedded by utilizing cold energy or thermal energy storage that has been discarded conventionally. It is to provide a new waste heat storage and utilization method that can prevent the local rise or fall of temperature.

本発明者らは上記課題に関して鋭意研究を行った結果、捨てられている温廃熱、冷廃熱を二重管構造の熱交換器に通して地中に蓄熱することで上記課題を解決できることを見出したものであり、本発明は下記の構成からなるものである。
1.廃温風あるいは廃冷風を、地中に埋入した二重管構造の熱交換器に通して、該温風あるいは冷風の廃熱を該熱交換器に接した地中に拡散浸透せしめて蓄熱してなると共に、該熱交換器に空気を流して、該空気と該蓄熱された地熱との間で熱の授受を行わしめて、該蓄熱を該空気に伝達して外に運び出して利用することを特徴とする廃熱の蓄熱と利用方法。
2.廃温風あるいは廃冷風を、グリ石の堆積層に通して、該温風あるいは冷風の廃熱を該グリ石の堆積層に拡散浸透せしめて蓄熱してなると共に、該グリ石の堆積層に空気を流して、該空気と該グリ石の蓄熱との間で熱の授受を行わしめて、該蓄熱を該空気に伝達して外に運び出して利用することを特徴とする廃熱の蓄熱と利用方法。
3.廃温風あるいは廃冷風を、グリ石の堆積層と地中に埋入した二重管構造の熱交換器に通して、該温風あるいは冷風の廃熱を、該グリ石の堆積層と該熱交換器に接した地中に拡散浸透せしめて蓄熱してなると共に、該グリ石の堆積層と該熱交換器に空気を流して、該空気と該蓄熱されたグリ石および地熱との間で熱の授受を行わしめて、該蓄熱を該空気に伝達して外に運び出して利用することを特徴とする廃熱の蓄熱と利用方法。
4.上記廃棄された冷風が、夜間深夜電力の時間帯で使用されるヒートポンプ式湯沸し装置の冷媒の蒸発側で排出される冷風であることを特徴とする上記1〜3のいずれか1項に記載の廃熱の蓄熱と利用方法。
5.上記ヒートポンプ式湯沸し装置が、凝縮器、圧縮機、蒸発器、膨脹弁、水槽からなり、該凝縮器を水槽に浸漬し、該圧縮機で圧縮、昇温させた冷媒を該凝縮器に通して水槽の水を加熱する構造である上記4に記載の廃熱の蓄熱と利用方法。
6.上記二重管構造の熱交換器は、先端が封止され、他端が開放された外管に、両端が開放された内管を遊嵌せしめた構造の二重管の、該外管の先端を下にして地下に埋入して、内管と外管の隙間に空気を流して地熱と熱交換させる構造の交換器であって、該外管は地下5mの深さまで埋入されてなることを特徴とする上記1〜5のいずれか1項に記載の廃熱の蓄熱と利用方法。
As a result of diligent research on the above problems, the present inventors can solve the above problems by storing waste heat and cold waste heat through a double-tube heat exchanger in the ground. The present invention has the following configuration.
1. Waste warm air or waste cold air is passed through a heat exchanger with a double pipe structure embedded in the ground, and the waste heat of the warm air or cold air is diffused and penetrated into the ground in contact with the heat exchanger to store heat. In addition, air is passed through the heat exchanger, heat is transferred between the air and the stored geothermal heat, and the stored heat is transferred to the air and carried out for use. How to store and use waste heat.
2. Waste warm air or waste cold air is passed through a pile layer of guristone, and the waste heat of the hot air or cold air is diffused and permeated into the pile layer of guristone to store heat. Heat storage and utilization of waste heat, characterized by flowing air, transferring heat between the air and the heat storage of the grits, transferring the heat storage to the air and carrying it out Method.
3. Waste warm air or waste cold air is passed through a heat exchanger having a double-pipe structure embedded in the pile layer and the underground layer of guristone. It diffuses and penetrates into the ground in contact with the heat exchanger to store heat, and air is passed through the pile layer and the heat exchanger between the air and the stored hot stone and geothermal heat. A method for storing and using waste heat, wherein the heat transfer is performed in step (b), and the stored heat is transferred to the air and carried outside.
4). 4. The discarded cold air is cold air discharged on the refrigerant evaporation side of a heat pump type water heater used in a nighttime midnight power time zone. How to store and use waste heat.
5). The heat pump water heater comprises a condenser, a compressor, an evaporator, an expansion valve, and a water tank. The condenser is immersed in the water tank, and the refrigerant compressed and heated by the compressor is passed through the condenser. The heat storage and utilization method of waste heat according to the above 4, which is a structure for heating water in a water tank.
6). The heat exchanger having the double tube structure is a double tube having a structure in which an inner tube having both ends opened is loosely fitted to an outer tube having a sealed end and the other end opened. An exchanger with a structure where the tip is buried underground and heat is exchanged with geothermal heat by flowing air through the gap between the inner and outer tubes, and the outer tube is buried to a depth of 5 m underground. The heat storage and utilization method of waste heat according to any one of the above 1 to 5, characterized in that:

熱交換器が埋入された部位の局部的温度上昇および温度低下を防止できる。
本来捨てていた排熱を蓄熱できるので、極めて省エネ(省電力)になる。
設備費がほとんどかからない。
It is possible to prevent a local temperature increase and a temperature decrease at the site where the heat exchanger is embedded.
Since the waste heat that was originally discarded can be stored, it is extremely energy-saving.
There is almost no equipment cost.

本発明の構造とその作用機能を図面で説明する。
図1は、本発明の温冷排熱を蓄熱して冷暖房に利用する時の一般的な説明図である。
本発明の地中熱交換器は、熱伝導の良い金属のパイプの中に、両端が開放された内管を遊嵌せしめた構造からなり、外管の先端は封止され、もう一方の端は開放され、この封止された先端が地中に垂直に埋入されている。
内管と外管の隙間に排温風、排冷風を流して地熱と熱交換、つまり地中に廃温風、廃冷風の温熱、冷熱を吸収、蓄熱させ、熱交換させた廃温風、廃冷風は内管を通って上昇させて外に排出させる。
廃温風の温度は、少なくとも地中熱交換器が埋入された地中の温度よりも高いことが必要であり、一方廃冷風の温度は、少なくとも地中熱交換器が埋入された地中の温度よりも低いことが必要である。
地中熱交換器が埋入された地中付近の温度は、夏季では地中の平均気温よりも局部的に高く、冬季では局部的に低くなっている。冬季は少なくとも地中温度よりも高い廃温風、夏季は地中温度よりも低い廃冷風を通すことで、熱交換が行われて地中の局部的な温度のピークは解消されて平準化されてくる。あるいは逆に、冬季、地中の平均気温よりも高い逆ピーク、あるいは夏季、地中の平均気温よりも低い逆ピークが形成されてくる。
内管を上昇してきた廃温風、廃冷風は、必要に応じてそのまま屋内の冷暖房に転用しても良いし、あるいは外に排出しても良い。
The structure of the present invention and its function will be described with reference to the drawings.
FIG. 1 is a general explanatory diagram when the hot and cold exhaust heat of the present invention is stored and used for air conditioning.
The underground heat exchanger according to the present invention has a structure in which an inner pipe having both ends opened is loosely fitted in a metal pipe having good heat conduction, and the tip of the outer pipe is sealed and the other end is sealed. Is open and this sealed tip is buried vertically in the ground.
Exhaust warm air and exhaust cool air flow through the gap between the inner and outer tubes to exchange heat with geothermal heat, that is, waste warm air, waste heat from the cold, absorbs and stores heat, waste heat air that has been heat exchanged, Waste cold air is raised through the inner pipe and discharged outside.
The temperature of the waste warm air must be at least higher than the temperature of the ground where the underground heat exchanger is embedded, while the temperature of the waste cold air is at least the ground where the underground heat exchanger is embedded. It needs to be lower than the medium temperature.
The temperature near the ground where the underground heat exchanger is buried is locally higher than the average underground temperature in the summer and locally lower in the winter. By passing waste warm air that is at least above the ground temperature in the winter and waste cold air that is below the ground temperature in the summer, heat exchange takes place and local temperature peaks in the ground are eliminated and leveled. Come. Or, conversely, a reverse peak higher than the average temperature in the ground in the winter or a reverse peak lower than the average temperature in the ground in the summer is formed.
The waste warm air and waste cold air that have risen up the inner pipe may be diverted directly to indoor air conditioning as needed, or may be discharged outside.

本発明は、廃温風、廃冷風が不定期に間歇的或いは時間限定で得られる場合に最も好適である。つまり廃温風、廃冷風が24時間一定して得られる場合は、当然廃温風、廃冷風をそのまま屋内冷暖房に利用出来るわけであるが、廃温風、廃冷風が間歇的或いは限られた時間のみ得られる場合、冷暖房熱源として利用しがたいことになる。このようなときに本発明の廃温風、廃冷風の温熱、冷熱を一旦地中に蓄熱して、これを空気に熱交換して外に取り出し、小出しにして使用するようにすると、24時間冷暖房が可能となる訳である。   The present invention is most suitable when waste warm air and waste cold air are obtained intermittently or intermittently. In other words, if the waste warm air and waste cool air can be obtained for 24 hours, the waste warm air and waste cool air can be used directly for indoor air conditioning, but the waste warm air and waste cold air are intermittent or limited. If only time is available, it will be difficult to use as a heating / cooling heat source. In such a case, if the waste warm air of the present invention, the warm heat of the waste cold wind, and the cold heat are temporarily stored in the ground, the heat is exchanged with the air, and then taken out and used as a small amount for 24 hours. Air conditioning is possible.

本発明で廃温熱、廃冷熱は、必ずしも温風、冷風でなくても良い。つまり液体あるいは固体の持っている廃熱でも、これを熱交換して温風、冷風に変換して利用すればよい。   In the present invention, the waste heat and waste heat may not necessarily be warm air or cold air. That is, even waste heat possessed by a liquid or solid may be used by exchanging it into hot air or cold air.

図2はヒートポンプ式の湯沸し装置から排出される廃冷風を蓄熱して冷房に利用するときの説明図である。
図2の例は、ヒートポンプ式の湯沸し装置と地中に埋入された二重管構造の熱交換器の組合せからなる。
ヒートポンプ式の湯沸し装置(図2中右側)は、凝縮器、圧縮機、蒸発器、膨脹弁、水槽からなり、凝縮器を水槽に浸漬し、圧縮機で圧縮、昇温させた冷媒(CO2)を凝縮器に通して水槽の水を加熱する構造である。
本発明で凝縮器とは、図2中、凝縮側の熱交換器を指す。蒸発器とは図中、蒸発側の熱交換器を指す。
凝縮器の中では、圧縮機によって加圧、昇温された気体の冷媒が水槽の水で冷却されて液化する。一方気体冷媒の放出した凝縮熱を貰って水は昇温する。水槽の水は目的に応じて沸騰まで昇温できるが、概ね70〜80℃の経済的な温度で保持する。
凝縮器を通過した液体の冷媒は膨脹弁から噴射されて体積膨脹して温度が下がり、更に蒸発器を通過する時に、外気で加熱されて、気化する。この時、外気から蒸発熱を奪って気化する為に、外気は冷却されて外に排出されることとなる。
ヒートポンプ式湯沸し装置の蒸発器から常に冷風が排出されるのは、このためである。
夏季、冷風の温度は15.5〜18℃である。一方地中熱交換器と接する部分の地中温度は
20〜25℃であり、地中熱交換器に冷風を流すことにより熱交換器と接する部分の地中温度は低下する。つまり地中に冷風の冷熱が蓄熱されることとなる。
FIG. 2 is an explanatory diagram when the waste cold air discharged from the heat pump type water heater is stored and used for cooling.
The example of FIG. 2 is composed of a combination of a heat pump type water heater and a heat exchanger having a double pipe structure embedded in the ground.
The heat pump water heater (right side in Fig. 2) consists of a condenser, a compressor, an evaporator, an expansion valve, and a water tank. The refrigerant is immersed in the water tank and compressed and heated by the compressor (CO 2 ) Is passed through a condenser to heat the water in the aquarium.
In the present invention, the condenser refers to a heat exchanger on the condensing side in FIG. In the figure, an evaporator refers to a heat exchanger on the evaporation side.
In the condenser, the gaseous refrigerant pressurized and heated by the compressor is cooled with water in the water tank and liquefied. On the other hand, the temperature of water rises with the heat of condensation released by the gaseous refrigerant. The water in the aquarium can be heated up to boiling depending on the purpose, but is kept at an economical temperature of about 70-80 ° C.
The liquid refrigerant that has passed through the condenser is jetted from the expansion valve, expands in volume and decreases in temperature, and further passes through the evaporator and is heated by the outside air to be vaporized. At this time, in order to remove the evaporation heat from the outside air and vaporize it, the outside air is cooled and discharged outside.
This is why the cold air is always discharged from the evaporator of the heat pump water heater.
In summer, the temperature of cold air is 15.5-18 ° C. On the other hand, the underground temperature of the portion in contact with the underground heat exchanger is 20 to 25 ° C., and the underground temperature of the portion in contact with the heat exchanger is lowered by flowing cold air through the underground heat exchanger. That is, the cold air of cold wind is stored in the ground.

冷風の排出するパイプは、地中熱交換器の外気取り入れ口と連結される。
夏季、夜間、深夜電力の時間帯(23時〜翌朝4時)、切替弁が開かれて冷風が地中熱交換器に流される。
図2で、冷風は、グリ石層を通って地中パイプを通るようになっているが、グリ石層は必ずしも必要ではない。必要に応じて除去しても良い。又図2では、グリ石、地中パイプを通過した風が、家屋(図示していない)の1階床下に排出されるようになっているが、
必ずしもこれに限定されるものではなく、逆の流れ、つまり冷風が先ず地中パイプに入り、
ついでグリ石層を通って、外気に放出されても良い。要するに、少なくとも冷風は地中パイプの中を通って、冷風の冷熱が地中に蓄熱できる構造であれば、いかなる構造でも良い。
The pipe from which the cold air is discharged is connected to the outside air intake of the underground heat exchanger.
During the summer, night, and late-night power hours (23:00 to 4am the next morning), the switching valve is opened and cold air flows through the underground heat exchanger.
In FIG. 2, the cold air is passed through the underground pipe through the underground stone layer, but the unnecessary stone layer is not always necessary. You may remove as needed. In FIG. 2, the breeze and the wind that has passed through the underground pipe are discharged below the first floor of the house (not shown).
It is not necessarily limited to this, the reverse flow, that is, cold wind first enters the underground pipe,
Then, it may be released to the outside air through the guristone layer. In short, any structure may be used as long as at least cold air passes through the underground pipe and the cold air of the cold air can be stored in the ground.

図3は、夏季昼間の場合の説明図である。
この場合、ヒートポンプ式湯沸し装置は休止しているので、切替弁を切り替えて、地中熱交換器には外気を取り込んで流すことになる。図3はグリ石なしの場合を例示したが、勿論これのみに限定されるものでないことはいうまでも無いことである。グリ石有り、無しに係らず、外気を取り込んで流す。これは地中熱交換器の従来の使用法である。
FIG. 3 is an explanatory diagram in the case of summer daytime.
In this case, since the heat pump type water heater is at rest, the changeover valve is switched, and the outside heat is taken into the underground heat exchanger. Although FIG. 3 has illustrated the case without grit stone, it is needless to say that the present invention is not limited to this. Take in the outside air with or without cobblestone. This is the traditional use of underground heat exchangers.

図4は、図3の構造で、夜間、深夜電力の時間帯(22時〜翌朝4時)にヒートポンプ式湯沸し装置を稼動させて、切替弁を切り替えて外気は遮断、冷風を地中熱交換器に流して地中に冷熱を蓄熱した後、昼間、外気を取り入れて地中熱交換器を通過させ、床下に排出した時の排出側の温度状況を示した図である。グリ石層なしの場合である。
地中熱交換器の仕様
外管 :外径φ250mm、長さ:5,000mm
外管材質:厚さ3.2mmのアルミニウムパイプ
内間 :外径φ150mm、長さ:5,500mm
内管材質:厚さ3.8mmのポリエチレンパイプ
ヒートポンプ式湯沸し装置の仕様
定格電力 :6KW
タンク容量:460リットル
湯温 :65〜95℃
定格COP:4.51
冷風の温度:15.5〜18℃
Fig. 4 shows the structure of Fig. 3. The heat pump water heater is operated during nighttime and late-night power hours (22:00 to 4:00 the next morning), the switching valve is switched to shut off the outside air, and the cold air is exchanged with the ground heat. It is the figure which showed the temperature condition of the discharge | emission side when flowing in a container and storing cold heat in the ground, taking in outside air in the daytime, passing the underground heat exchanger, and discharging it under the floor. This is the case without the calcite layer.
Specification of underground heat exchanger Outer pipe: Outer diameter 250mm, Length: 5,000mm
Outer tube material: Aluminum pipe with a thickness of 3.2mm Inside: Outer diameter φ150mm, Length: 5,500mm
Inner tube material: Polyethylene pipe with a thickness of 3.8mm Specifications of heat pump water heater Rated power: 6KW
Tank capacity: 460 liters Hot water temperature: 65-95 ° C
Rated COP: 4.51
Cold air temperature: 15.5-18 ℃

図4で、エコ排気とは冷風の排気温度である。GEOパイプとは、夜間冷風を流さない場合、つまり通常の地中熱交換器の温度変化を示したものである。エコ+GEOパイプとは、GEOパイプに夜間、冷風を流した場合の温度変化を示したものである。なおエコ排気を流す前の地中熱交換器と接する地中付近の温度は20〜25℃である。
GEOパイプ(地中熱交換器)の使用で外気温度が7.5℃程度低下し、更にエコ+GEOパイプにすることで、つまり夜間エコ排気の冷風をGEOパイプ(地中熱交換器)に流すことで、昼間、GEOパイプ(地中熱交換器)から出てくる空気の温度はGEOパイプ単独の場合よりも更に1.4〜3.4℃低下することがわかる。外気温度よりは、実に10℃近く下がることになる。
夜間10時から翌朝6時までの、エコ+GEOパイプの曲線と、エコ排気の曲線の差の面積(斜線部の面積)が、地中に蓄熱される冷熱量を示す目安となる。
朝6時から夜間10時までのGEOパイプの曲線と、エコ+GEOパイプの曲線の差の面積(斜線部の面積)が、地中に蓄熱された冷熱に因ってもたらされた冷房効果である。
ヒートポンプ式湯沸し装置の冷熱は、本来外気に放出されて捨てられていたエネルギーであるので、上記した地中に蓄熱された冷熱に因ってもたらされた冷房効果は、まさに捨てられたエネルギーの活用に因って生まれた効果であり、本発明は、極めて省エネ性に優れた発明であることがわかる。
In FIG. 4, eco exhaust is the exhaust temperature of cold air. The GEO pipe shows the temperature change of a normal underground heat exchanger when no cold air flows at night. Eco + GEO pipe is a change in temperature when cold air is passed through the GEO pipe at night. In addition, the temperature of the underground vicinity which contacts the underground heat exchanger before flowing eco exhaust is 20-25 degreeC.
By using a GEO pipe (Ground Heat Exchanger), the outside air temperature drops by about 7.5 ° C, and by using Eco + GEO Pipe, that is, by letting the cool air of night eco exhaust flow through the GEO Pipe (Ground Heat Exchanger) In the daytime, it can be seen that the temperature of the air coming out of the GEO pipe (ground heat exchanger) is further lowered by 1.4 to 3.4 ° C. than the case of the GEO pipe alone. The temperature will drop by nearly 10 ° C from the outside temperature.
The area of the difference between the eco + GEO pipe curve and the eco exhaust curve from 10 o'clock at night to 6 o'clock the next morning (the area of the shaded area) is a measure of the amount of cold stored in the ground.
The area of the difference between the curve of the GEO pipe from 6 am to 10 pm and the curve of the eco + GEO pipe (area of the shaded area) is the cooling effect brought about by the cold stored in the ground is there.
Since the cold energy of the heat pump water heater is energy that was originally released to the outside air and was discarded, the cooling effect caused by the above-described cold energy stored in the ground is exactly the energy of the discarded energy. It is an effect born from the utilization, and it can be seen that the present invention is an extremely excellent energy-saving invention.

本発明の廃熱は、上記冷熱のみに限定されるものではなく、温廃熱、例えば大規模調理場より排出される温風、浴場の温排水、家庭の風呂の温排水も温廃熱源として有効に活用することが出来る。 The waste heat of the present invention is not limited only to the above-mentioned cold heat, but also warm waste heat, for example, warm air discharged from a large-scale cooking place, warm drainage of a bathhouse, and warm drainage of a household bath are also used as a waste heat source. It can be used effectively.

本発明の地中熱交換器は、熱伝導の良い金属のパイプの中に、両端が開放された内管を遊嵌せしめた構造からなる。
外管の先端は封止され、もう一方の端は開放され、この封止された先端が地中に垂直に埋入されている。
内管と外管の隙間に外気の空気を流して地熱と熱交換させて、内管を通って上昇する。
夏季、外気温が32℃の時、熱交換されて内管を上昇する空気の温度は26℃まで下がっている。冬季、外温度が0℃の時でも、熱交換された空気は10℃程度まで上昇する。
外管は熱伝導の良い金属のパイプ(たとえばアルミ製)、内管は熱伝導の悪い、たとえば樹脂製(たとえばポリエチレンのような)パイプからなる。
地中温度は、6m以上の深さで、ほぼ一定(平均温度)してくるが、夏場では2〜5mの深さ部分は、これよりも低く、冬場では逆に高くなる。
従って外管の埋入深さは、地中5mの深さが、熱効率的にも、掘削費用の点でも、最も好ましい。
The underground heat exchanger of the present invention has a structure in which an inner pipe having both ends opened is loosely fitted in a metal pipe having good heat conduction.
The tip of the outer tube is sealed, the other end is opened, and this sealed tip is buried vertically in the ground.
Outside air flows through the gap between the inner tube and the outer tube to exchange heat with geothermal heat, and ascends through the inner tube.
In the summer, when the outside air temperature is 32 ° C., the temperature of the air that is heat-exchanged and rises up the inner pipe is lowered to 26 ° C. In winter, even when the outside temperature is 0 ° C., the heat-exchanged air rises to about 10 ° C.
The outer pipe is made of a metal pipe (for example, made of aluminum) having good heat conduction, and the inner pipe is made of a pipe having a poor heat conduction, for example, resin (eg, polyethylene).
The underground temperature is almost constant (average temperature) at a depth of 6 m or more, but the depth portion of 2 to 5 m is lower in summer and higher in winter.
Therefore, the depth of the outer pipe is most preferably 5 m from the viewpoint of thermal efficiency and excavation cost.

一方地表から500〜1000mm深さ部分は夏季温度が高く、冬季温度が低いために、地面に埋入した熱交換パイプの地表から500〜1000mm深さ部分はこの熱影響を受ける。通常、パイプ材料には熱伝導性に優れたアルミ合金が使用されているために、この熱影響はパイプのより深い部分にも伝播して、パイプが接触する地面よりも高くなる部分が発生する。当然パイプの熱交換効率を下げることとなる。 On the other hand, since the summer temperature is high at the depth of 500 to 1000 mm from the ground surface and the winter temperature is low, the depth of 500 to 1000 mm from the ground surface of the heat exchange pipe embedded in the ground is affected by this heat. Usually, aluminum alloy with excellent thermal conductivity is used for the pipe material, so this thermal effect propagates to the deeper part of the pipe, generating a part that is higher than the ground that the pipe contacts. . Naturally, the heat exchange efficiency of the pipe will be lowered.

本発明で使用する地中熱交換器は、開口部は地表から500〜1000mm深さ埋入部分として、断熱材で形成して、地表からの熱影響を遮断することが好ましい。
断熱材としては、セラミックスや樹脂類が好ましい。特に樹脂類が好ましい。
In the underground heat exchanger used in the present invention, it is preferable that the opening is formed of a heat insulating material as an embedded portion having a depth of 500 to 1000 mm from the ground surface to block the heat influence from the ground surface.
As the heat insulating material, ceramics and resins are preferable. Resins are particularly preferable.

開口部、胴部、先端部を分離して、適宜着脱できるようにすることで、搬送費用の急騰を防止できる。
長尺物を運搬する場合、長さ4mを境にして運送費が急騰するが、胴部、先端部は熱伝導性の良いアルミあるいはアルミ合金で形成し、胴部、先端部を併せた長さは、4〜4.5m、先端部を0.5m程度とすることで、胴部長さを4m以下にすることで、搬送費用の急騰を防止できる。
By separating the opening, the body, and the tip so that they can be attached and detached as appropriate, a sharp increase in transportation costs can be prevented.
When transporting long objects, the transportation cost increases sharply at a length of 4m, but the body and tip are made of aluminum or aluminum alloy with good thermal conductivity, and the body and tip are combined. By setting the length of the body portion to 4 m or less by setting the tip portion to about 4 to 4.5 m and the tip portion to about 0.5 m, it is possible to prevent a sharp increase in transportation cost.

胴部、先端部、開口部の接合は、各パイプの端面にフランジ等を取付け、隣り合うパイプ同士は、フランジ間にOリングを挟んで、フランジをボルトで締め付けて接合するようにしても良い。 The body part, the tip part, and the opening part may be joined by attaching a flange or the like to the end face of each pipe, and the adjacent pipes may be joined by sandwiching an O-ring between the flanges and fastening the flange with a bolt. .

建築物全般の冷房に利用できる。
動物飼育、植物栽培のグリーンハウスなどの温度調整に利用できる。
水、その他の流体の冷却、昇温等、産業上発生する気体、液体の冷却、昇温に利用できる。
It can be used for cooling buildings in general.
It can be used for temperature control in animal breeding and plant cultivation green houses.
It can be used for cooling and temperature raising of industrially generated gases and liquids such as cooling of water and other fluids and temperature rising.

図1は、本発明の温冷廃熱を蓄熱して冷暖房に利用する時の一般的な説明図である。FIG. 1 is a general explanatory diagram when the heat and cooling waste heat of the present invention is stored and used for air conditioning. 図2は、ヒートポンプ式湯沸し装置の冷熱を利用する冷房システムの作用機能説明図である。FIG. 2 is a functional explanatory diagram of a cooling system that uses the cold energy of the heat pump water heater. 図3は、図2の夏季昼間の場合の説明図である。FIG. 3 is an explanatory diagram for the summer daytime of FIG. 図4は、図2で示したヒートポンプ式湯沸し装置の冷熱を蓄熱したときの地中熱交換器の温度変化を示した図である。FIG. 4 is a diagram showing a temperature change of the underground heat exchanger when the cold energy of the heat pump type water heater shown in FIG. 2 is stored.

Claims (6)

廃温風あるいは廃冷風を、地中に埋入した二重管構造の熱交換器に通して、該温風あるいは冷風の廃熱を該熱交換器に接した地中に拡散浸透せしめて蓄熱してなると共に、該熱交換器に空気を流して、該空気と該蓄熱された地熱との間で熱の授受を行わしめて、該蓄熱を該空気に伝達して外に運び出して利用することを特徴とする廃熱の蓄熱と利用方法。 Waste warm air or waste cold air is passed through a heat exchanger with a double pipe structure embedded in the ground, and the waste heat of the warm air or cold air is diffused and penetrated into the ground in contact with the heat exchanger to store heat. In addition, air is passed through the heat exchanger, heat is transferred between the air and the stored geothermal heat, and the stored heat is transferred to the air and carried out for use. How to store and use waste heat. 廃温風あるいは廃冷風を、グリ石の堆積層に通して、該温風あるいは冷風の廃熱を該グリ石の堆積層に拡散浸透せしめて蓄熱してなると共に、該グリ石の堆積層に空気を流して、該空気と該グリ石の蓄熱との間で熱の授受を行わしめて、該蓄熱を該空気に伝達して外に運び出して利用することを特徴とする廃熱の蓄熱と利用方法。 Waste warm air or waste cold air is passed through a pile layer of guristone, and the waste heat of the hot air or cold air is diffused and permeated into the pile layer of guristone to store heat. Heat storage and utilization of waste heat, characterized by flowing air, transferring heat between the air and the heat storage of the grits, transferring the heat storage to the air and carrying it out Method. 廃温風あるいは廃冷風を、グリ石の堆積層と地中に埋入した二重管構造の熱交換器に通して、該温風あるいは冷風の廃熱を、該グリ石の堆積層と該熱交換器に接した地中に拡散浸透せしめて蓄熱してなると共に、該グリ石の堆積層と該熱交換器に空気を流して、該空気と該蓄熱されたグリ石および地熱との間で熱の授受を行わしめて、該蓄熱を該空気に伝達して外に運び出して利用することを特徴とする廃熱の蓄熱と利用方法。 Waste warm air or waste cold air is passed through a heat exchanger having a double-pipe structure embedded in the pile layer and the underground layer of guristone. It diffuses and penetrates into the ground in contact with the heat exchanger to store heat, and air is passed through the pile layer and the heat exchanger between the air and the stored hot stone and geothermal heat. A method for storing and using waste heat, wherein the heat transfer is performed in step (b), and the stored heat is transferred to the air and carried outside. 上記廃棄された冷風が、夜間深夜電力の時間帯で使用されるヒートポンプ式湯沸し装置の冷媒の蒸発側で排出される冷風であることを特徴とする請求項1〜3のいずれか1項に記載の廃熱の蓄熱と利用方法。 The said abandoned cool air is a cool air discharged | emitted by the evaporating side of the refrigerant | coolant of the heat pump type water heater used in the time zone of the night midnight electric power, The any one of Claims 1-3 characterized by the above-mentioned. Storage and use of waste heat. 上記ヒートポンプ式湯沸し装置が、凝縮器、圧縮機、蒸発器、膨脹弁、水槽からなり、該凝縮器を水槽に浸漬し、該圧縮機で圧縮、昇温させた冷媒を該凝縮器に通して水槽の水を加熱する構造である請求項4に記載の廃熱の蓄熱と利用方法。 The heat pump water heater comprises a condenser, a compressor, an evaporator, an expansion valve, and a water tank. The condenser is immersed in the water tank, and the refrigerant compressed and heated by the compressor is passed through the condenser. The heat storage and utilization method of waste heat according to claim 4, which has a structure for heating water in a water tank. 上記二重管構造の熱交換器は、先端が封止され、他端が開放された外管に、両端が開放された内管を遊嵌せしめた構造の二重管の、該外管の先端を下にして地下に埋入して、内管と外管の隙間に空気を流して地熱と熱交換させる構造の交換器であって、該外管は地下5mの深さまで埋入されてなることを特徴とする請求項1〜5のいずれか1項に記載の廃熱の蓄熱と利用方法。

The heat exchanger having the double tube structure is a double tube having a structure in which an inner tube having both ends opened is loosely fitted to an outer tube having a sealed end and the other end opened. An exchanger with a structure where the tip is buried underground and heat is exchanged with geothermal heat by flowing air through the gap between the inner and outer tubes, and the outer tube is buried to a depth of 5 m underground. The heat storage and utilization method of waste heat according to any one of claims 1 to 5, wherein:

JP2006081876A 2006-03-24 2006-03-24 Indoor ventilation system with heat storage function for waste heat and temperature adjustment function for outside air Active JP4970817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081876A JP4970817B2 (en) 2006-03-24 2006-03-24 Indoor ventilation system with heat storage function for waste heat and temperature adjustment function for outside air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081876A JP4970817B2 (en) 2006-03-24 2006-03-24 Indoor ventilation system with heat storage function for waste heat and temperature adjustment function for outside air

Publications (2)

Publication Number Publication Date
JP2007255803A true JP2007255803A (en) 2007-10-04
JP4970817B2 JP4970817B2 (en) 2012-07-11

Family

ID=38630221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081876A Active JP4970817B2 (en) 2006-03-24 2006-03-24 Indoor ventilation system with heat storage function for waste heat and temperature adjustment function for outside air

Country Status (1)

Country Link
JP (1) JP4970817B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145037A (en) * 2008-08-26 2009-07-02 Sato Kogyo Co Ltd Supply and exhaust device performing heating and cooling of building
JP2009144976A (en) * 2007-12-13 2009-07-02 Sato Kogyo Co Ltd Air supplying/exhausting device with heating/cooling function for building
CN110770320A (en) * 2017-06-30 2020-02-07 达泰豪化学工业株式会社 Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103912938A (en) * 2013-01-08 2014-07-09 珠海格力电器股份有限公司 Air-conditioning system
KR101691189B1 (en) * 2016-09-22 2016-12-30 이은석 Heating and cooling system using geothermal pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184063A (en) * 1994-12-28 1996-07-16 Toshiba Corp Underground heat storage device
JP2001116292A (en) * 1999-10-18 2001-04-27 Toko Kogyo:Kk Air-conditioning system utilizing geothermy
JP2004101049A (en) * 2002-09-09 2004-04-02 Fuji Electric Retail Systems Co Ltd Hot-water supply device and drink supply device using it
JP2004197974A (en) * 2002-12-16 2004-07-15 Panahome Corp Air conditioner and air conditioning method for residence
JP2006038256A (en) * 2004-07-22 2006-02-09 Toko Kogyo:Kk Underground heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184063A (en) * 1994-12-28 1996-07-16 Toshiba Corp Underground heat storage device
JP2001116292A (en) * 1999-10-18 2001-04-27 Toko Kogyo:Kk Air-conditioning system utilizing geothermy
JP2004101049A (en) * 2002-09-09 2004-04-02 Fuji Electric Retail Systems Co Ltd Hot-water supply device and drink supply device using it
JP2004197974A (en) * 2002-12-16 2004-07-15 Panahome Corp Air conditioner and air conditioning method for residence
JP2006038256A (en) * 2004-07-22 2006-02-09 Toko Kogyo:Kk Underground heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144976A (en) * 2007-12-13 2009-07-02 Sato Kogyo Co Ltd Air supplying/exhausting device with heating/cooling function for building
JP2009145037A (en) * 2008-08-26 2009-07-02 Sato Kogyo Co Ltd Supply and exhaust device performing heating and cooling of building
CN110770320A (en) * 2017-06-30 2020-02-07 达泰豪化学工业株式会社 Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same
CN110770320B (en) * 2017-06-30 2021-12-14 达泰豪化学工业株式会社 Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same

Also Published As

Publication number Publication date
JP4970817B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US7234314B1 (en) Geothermal heating and cooling system with solar heating
KR101041745B1 (en) Solar sync geothermal heatpump system and the control method thereof
Pardiñas et al. State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps
US8567482B2 (en) Heat tube device utilizing cold energy and application thereof
US20130037236A1 (en) Geothermal facility with thermal recharging of the subsoil
JP2015511700A (en) Heat pump system using latent heat
JP2008164240A (en) Heat pump system
CN202675964U (en) Heat superconductor water source heat exchanger
JP2005048972A (en) Underground heat utilizing system
CN102705925A (en) Dual-source heat pump air conditioner
JP2007255803A (en) Waste heat storing and utilizing method
CN101634466A (en) Solar energy-soil source heat pump seasonal balance heating system
JP2010038507A (en) Heat pump utilizing underground heat reserve
JP5334493B2 (en) Sericulture pond insulation system
CN101769654B (en) Heating system for compression heat pump and heating method thereof
JP2013181676A (en) Air conditioning system and air conditioning method
JP2006084093A (en) Heat pump type air conditioner
Dincer et al. Thermal Energy Storage (TES)
JP2011133122A (en) Ground heat utilization heat pump system and water heat utilization heat pump system
JP2017146054A (en) Heat utilization device
JP2012057836A (en) Underground heat exchanger and heat pump using the same
CN110360852B (en) Phase-change energy tower and heat exchange method thereof
JP2002054857A (en) Heat pump system utilizing underground water
CN210569363U (en) Air source heat pump with efficient heating and defrosting functions
CN1595010A (en) Flat-type solar water heater with vacuum glass cover plate heating tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4970817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250