JP2008309204A - Vacuum vibration absorbing device - Google Patents

Vacuum vibration absorbing device Download PDF

Info

Publication number
JP2008309204A
JP2008309204A JP2007155909A JP2007155909A JP2008309204A JP 2008309204 A JP2008309204 A JP 2008309204A JP 2007155909 A JP2007155909 A JP 2007155909A JP 2007155909 A JP2007155909 A JP 2007155909A JP 2008309204 A JP2008309204 A JP 2008309204A
Authority
JP
Japan
Prior art keywords
vibration
vacuum
elastic member
visualization means
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007155909A
Other languages
Japanese (ja)
Other versions
JP4967834B2 (en
Inventor
Hideto Maruyama
英人 丸山
Shin Matsumoto
伸 松本
Satoyuki Matsushita
智行 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007155909A priority Critical patent/JP4967834B2/en
Publication of JP2008309204A publication Critical patent/JP2008309204A/en
Application granted granted Critical
Publication of JP4967834B2 publication Critical patent/JP4967834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration absorbing device whose vibration absorbing effects is changed to meet the vibrating state of a vibrating object and is easily checked (viewed). <P>SOLUTION: The vacuum vibration absorbing device for suppressing vibration comprises: a vacuum maintaining member having a pair of flanges integrally mounted at both ends of a cylindrical bellows; and a plurality of elastic members arranged between the pair of flanges. The flanges 9 have a plurality of arm portions 10 (four pieces in Fig.) in which a plurality of holes 11 are opened. The positions of the holes 11 where the elastic members 3 are mounted, are changed to suppress vibration as desired. Besides, a vibration visualizing means 2 is mounted to easily and visually check the vibration absorbing effects. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、真空装置の配管や真空チャンバ等の真空機器の間に設置され振動の伝達を防ぐための防振装置に関する。   The present invention relates to a vibration isolator that is installed between vacuum equipment such as piping of a vacuum device and a vacuum chamber to prevent transmission of vibration.

振動を防ぐ手段として、バネやダンパーといった弾性部材を振動物体と絶縁物体との間に設置し、受動的に振動を絶縁物体に伝えないようにするものがある。真空ポンプのように配管を用いて空気を通す場合には、真空ポンプと真空に引く側の配管に防振装置を設置して、振動を伝えないようにしている。このような防振装置としては、図4に示すように、一対のフランジ101−1,102−1とその間に設置されたベローズ103からなる真空維持部材と、104の弾性体とからなるものが多い。なお、図4(a)は真空維持部材を含むダンパの斜視図、図4(b)はその断面図で、例えば特許文献1に開示されている。   As a means for preventing vibration, there is an apparatus in which an elastic member such as a spring or a damper is installed between the vibrating object and the insulating object so as not to passively transmit the vibration to the insulating object. When air is passed through a pipe like a vacuum pump, a vibration isolator is installed on the vacuum pump and the pipe on the vacuum side so that vibration is not transmitted. As such an anti-vibration device, as shown in FIG. 4, a device comprising a pair of flanges 101-1, 102-1 and a vacuum maintaining member comprising a bellows 103 disposed therebetween and an elastic body 104. Many. 4A is a perspective view of a damper including a vacuum maintaining member, and FIG. 4B is a cross-sectional view thereof, which is disclosed in Patent Document 1, for example.

特開2006−077714号公報JP 2006-077714 A

ところで、振動を絶縁するためには、振動物体と絶縁物体との間に設置される弾性体のバネ定数を小さくすればよいことが、理論的に証明されている。そのため、従来の防振機構では、フランジ間に設置する弾性体のバネ定数を小さくすることに集中している。このような防振機構では、設置される弾性体の位置はそのままで、バネ定数にのみ着目しているため、例えば真空ポンプの運転周波数の変更、絶縁側の質量変化などにより防振したい系全体の周波数が変化した場合、当初期待していた防振効果が得られない場合がある。   By the way, in order to insulate vibration, it has been theoretically proved that the spring constant of the elastic body installed between the vibrating body and the insulating body should be reduced. Therefore, the conventional vibration isolating mechanism concentrates on reducing the spring constant of the elastic body installed between the flanges. In such an anti-vibration mechanism, the position of the elastic body to be installed is kept as it is and only the spring constant is focused. For example, the entire system to be anti-vibrated by changing the operating frequency of the vacuum pump, changing the mass on the insulating side, etc. If the frequency changes, the initially expected anti-vibration effect may not be obtained.

また、振動物体が地面ではなく空中に支持されている場合、下に接続される絶縁物の剛性や質量が変化すると、防振したい系の振動が変化し、望む防振効果が得られない場合がある。弾性体を設置する位置と防振の関係は一律ではなく、バネ定数を小さくすれば大きな防振効果が得られるというものでもない。例えば、回転振動を扱う簡略化モデルで考えた場合、振動物体の回転力が物体を回転させる割合は、次式のように表わされる。   In addition, when the vibrating object is supported in the air instead of the ground, if the rigidity or mass of the insulator connected below changes, the vibration of the system to be vibrated will change, and the desired anti-vibration effect will not be obtained There is. The relationship between the position where the elastic body is installed and the vibration isolation is not uniform, and it is not that a large vibration isolation effect can be obtained by reducing the spring constant. For example, when considering a simplified model that handles rotational vibration, the ratio of the rotational force of the vibrating object rotating the object is expressed by the following equation.

θ/M=1/(2kL2−Iω2
(θ:回転振幅、M:回転力、k:バネ定数、L:回転中心からバネまでの距離、I:慣性モーメント、ω:振動周波数)
上式の分母にはバネを設置する位置Lが含まれることから、回転振動の大きさはバネ定数だけでは決まらないことが分かる。振動物体の場合は通常、回転,並進など考えられる全ての振動モードが重なった状態で振動する。このため、弾性体を設置する位置も重要となる。
θ / M = 1 / ( 2 kL 2 −Iω 2 )
(Θ: rotational amplitude, M: rotational force, k: spring constant, L: distance from the center of rotation to the spring, I: moment of inertia, ω: vibration frequency)
Since the denominator of the above equation includes the position L where the spring is installed, it can be seen that the magnitude of the rotational vibration is not determined only by the spring constant. In the case of a vibrating object, it normally vibrates in a state where all possible vibration modes such as rotation and translation are overlapped. For this reason, the position where the elastic body is installed is also important.

振動物体の振動を絶縁したい側に伝わらせないようにするためには、まず物体の振動特性を調べ、その後、その振動特性に合った弾性体を用いて防振が施される。このように、振動物体の振動特性にあう専用の防振が施されるため、振動エネルギーを発散させる弾性体は、或る一定の場所に設置される。このような防振が施された後に振動物体の振動特性が変化した場合、単に弾性体のバネ定数を小さくすれば良いというわけではなく、上述のように弾性体の位置を変更することによっても、防振効果を変化させることができる。   In order to prevent the vibration of the vibrating object from being transmitted to the side to be insulated, the vibration characteristic of the object is first examined, and then the vibration is prevented by using an elastic body suitable for the vibration characteristic. In this way, since dedicated vibration isolation that matches the vibration characteristics of the vibrating object is performed, the elastic body that diverges the vibration energy is installed in a certain place. When the vibration characteristics of the vibrating object change after such vibration isolation, it is not necessary to simply reduce the spring constant of the elastic body, but also by changing the position of the elastic body as described above. The anti-vibration effect can be changed.

例えば、上下の並進振動が主の振動が、回転振動が主の振動に変化した場合、上式からも明らかなように、バネ定数を変化させるだけでなく弾性体の設置位置を変更することにより、防振効果は大きく変化する。ところが、従来はバネ定数を小さくすること、またはバネ定数を変化させることに着目するのみで、弾性体の設置位置を変更することは余り考慮されていない。また、弾性体の特性を変化させて防振効果を変化させた場合、防振したい系の防振効果を測定するために、加速度センサや位置センサを用いて測定することが必要となる。   For example, when the vertical vibration changes to the main vibration and the rotation vibration changes to the main vibration, as is clear from the above equation, not only by changing the spring constant, but also by changing the installation position of the elastic body The anti-vibration effect varies greatly. However, conventionally, only focusing on reducing the spring constant or changing the spring constant, changing the installation position of the elastic body is not considered much. Further, when the vibration isolating effect is changed by changing the characteristics of the elastic body, it is necessary to perform measurement using an acceleration sensor or a position sensor in order to measure the anti-vibration effect of the system to be anti-vibrated.

つまり、従来は防振効果の測定までを考えて防振装置を構成しておらず、手軽に防振効果を計ることができるものの出現が望まれていた。
したがって、この発明の課題は、防振装置の防振効果を振動物体の振動状態に合うように変更可能とし、かつその防振効果を簡単に確認できるようにすることにある。
That is, conventionally, the anti-vibration device has not been configured in consideration of the measurement of the anti-vibration effect, and it has been desired to develop a device that can easily measure the anti-vibration effect.
Therefore, an object of the present invention is to make it possible to change the vibration isolation effect of the vibration isolation device so as to match the vibration state of the vibrating object, and to easily check the vibration isolation effect.

このような課題を解決するため、請求項1の発明では、円筒状ベローズの両端に一体的に一対のフランジが接続された真空維持部材と、その一対のフランジ間に複数個の弾性部材とを配置して振動を抑制する真空防振装置において、
前記弾性部材の位置を調整する調整機構と、振動を光に変える振動可視化手段とを設けたことを特徴とする。
この請求項1の発明においては、前記フランジには、フランジ中心で点対称となるようにフランジから突出し、前記弾性部材を支持するための複数の腕部を設けることができ(請求項2の発明)、この請求項2の発明においては、前記腕部には、前記弾性部材の取付け位置を調整するための複数の穴を形成することができる(請求項3の発明)。また、上記請求項1〜3の発明においては、前記振動可視化手段は、前記腕部の外側に設けることができる(請求項4の発明)。
In order to solve such a problem, in the invention of claim 1, a vacuum maintaining member having a pair of flanges integrally connected to both ends of the cylindrical bellows, and a plurality of elastic members between the pair of flanges. In the vacuum vibration isolator that arranges and suppresses vibration,
An adjustment mechanism for adjusting the position of the elastic member and vibration visualization means for changing vibration into light are provided.
In the first aspect of the present invention, the flange can be provided with a plurality of arms for projecting from the flange so as to be point-symmetrical at the center of the flange and supporting the elastic member. In the invention of claim 2, a plurality of holes for adjusting the mounting position of the elastic member can be formed in the arm portion (invention of claim 3). In the first to third aspects of the invention, the vibration visualization means can be provided outside the arm portion (the invention of claim 4).

また、上記請求項1の発明においては、前記フランジは、フランジ中心で点対称となるようにフランジから突出し、前記弾性部材を支持するための複数の腕部を介して、同心円状部材と連結されていることができ(請求項5の発明)、この請求項5の発明においては、前記腕部には、前記弾性部材の取付け位置を調整するための長方形状の穴を形成することができ(請求項6の発明)、この請求項6の発明においては、前記長方形の穴には、厚さ方向に段差を形成することができる(請求項7の発明)。上記請求項5〜7の発明においては、前記振動可視化手段は、前記同心円状部材の外側に設けることができ(請求項8の発明)、これら請求項1〜8の発明においては、前記振動可視化手段を、応力発光体とすることができる(請求項9の発明)。   In the first aspect of the invention, the flange protrudes from the flange so as to be point-symmetrical at the center of the flange, and is connected to the concentric member via a plurality of arms for supporting the elastic member. (Invention of Claim 5) In this invention of Claim 5, a rectangular hole for adjusting the mounting position of the elastic member can be formed in the arm portion ( (Invention of claim 6) In the invention of claim 6, a step can be formed in the rectangular hole in the thickness direction (invention of claim 7). In the inventions of the fifth to seventh aspects, the vibration visualization means can be provided outside the concentric member (invention of the eighth aspect). In the inventions of the first to eighth aspects, the vibration visualization is performed. The means can be a stress-stimulated luminescent material (the invention of claim 9).

この発明によれば、ベローズに設置されるフランジに弾性部材の設置位置を変更できる腕部と、例えば応力発光体からなる振動可視化手段とを設けることで、振動物体の振動状態が変化した場合でも、防振装置の防振効果をその振動状態に合わせることができ、振動可視化手段により光に変えることで、大掛かりな機器を使わずに防振効果を確認することが可能となる。このため、防振装置を多く設置する場合には、1つ1つの振動の抑制効果を加速度センサなどを使わずに発光状態で確認でき、防振に要する時間を短くできる。また、物体の振動状態の変化に対応することができ、1つの防振装置でいくつもの振動に対応できるため、製造コストを抑えることができる。   According to this invention, even when the vibration state of the vibrating object is changed by providing the arm portion that can change the installation position of the elastic member on the flange installed on the bellows and the vibration visualization means made of, for example, a stress light emitter. The anti-vibration effect of the anti-vibration device can be matched to the vibration state, and by changing to light by the vibration visualization means, the anti-vibration effect can be confirmed without using a large-scale device. For this reason, when many anti-vibration devices are installed, the suppression effect of each vibration can be confirmed in the light emission state without using an acceleration sensor or the like, and the time required for anti-vibration can be shortened. In addition, it is possible to cope with changes in the vibration state of an object, and it is possible to cope with a number of vibrations with a single vibration isolator, thereby reducing manufacturing costs.

図1はこの発明の実施の形態を示す構成図である。図1(a)は全体構成図、図1(b),(c)はフランジを示す平面図,断面図、図1(d),(e)は振動可視化手段の例を示す平面図,断面図である。図1において、1は冷凍機、2は振動可視化手段、3は弾性部材、4は防振装置、5は真空チャンバ、6はスペーサー、7,8はナット、9はフランジ、10は腕部、11は弾性部材取付け穴、12は真空ベローズ、13は錘部材、14は応力発光体、15は設置部材を示す。   FIG. 1 is a block diagram showing an embodiment of the present invention. 1A is an overall configuration diagram, FIGS. 1B and 1C are plan views and sectional views showing flanges, and FIGS. 1D and 1E are plan views and sectional views showing examples of vibration visualization means. FIG. In FIG. 1, 1 is a refrigerator, 2 is a vibration visualization means, 3 is an elastic member, 4 is a vibration isolator, 5 is a vacuum chamber, 6 is a spacer, 7 and 8 are nuts, 9 is a flange, 10 is an arm, 11 is an elastic member mounting hole, 12 is a vacuum bellows, 13 is a weight member, 14 is a stress light emitter, and 15 is an installation member.

すなわち、図1(a)のように、冷凍機1と真空チャンバ5の間に設けられる防振装置4は冷凍機1,真空チャンバ5と接続する図1(b),(c)のようなフランジ9を持ち、このフランジ9から弾性部材3を支持する複数の穴11が開いた腕部10を持っている。一対のフランジ9は、真空ベローズ12により結合されている。また、振動可視化手段2は図1(d),(e)のように、同心円状の形をしており、内側から設置部材15、応力発光体14、錘部材13のように並べて構成されている。   That is, as shown in FIG. 1A, the vibration isolator 4 provided between the refrigerator 1 and the vacuum chamber 5 is connected to the refrigerator 1 and the vacuum chamber 5 as shown in FIGS. The arm 9 has a flange 9 and a plurality of holes 11 that support the elastic member 3 from the flange 9. The pair of flanges 9 are connected by a vacuum bellows 12. Further, the vibration visualization means 2 has a concentric shape as shown in FIGS. 1D and 1E, and is arranged side by side like an installation member 15, a stress light emitter 14, and a weight member 13 from the inside. Yes.

防振装置4の腕部10には、弾性部材3がナット7(A)で挟み込むように支持されている。弾性部材3はその両端にオスねじを持っており、これを貫通するメスねじを持つナット7(A)で腕部10に固定する。次いで、ナット7(A)の上に振動可視化手段2を置き、オスねじを持つナット8(B)で固定する。防振装置4の先には真空チャンバ5がつながっており、真空ベローズ12には大気圧が加わるので弾性部材3は圧力を受けるが、振動可視化手段2は腕部10の外側に設置されているので、圧力を受けることはない。   The elastic member 3 is supported on the arm portion 10 of the vibration isolator 4 so as to be sandwiched between the nuts 7 (A). The elastic member 3 has male screws at both ends thereof, and is fixed to the arm portion 10 with a nut 7 (A) having a female screw passing therethrough. Next, the vibration visualization means 2 is placed on the nut 7 (A) and fixed with the nut 8 (B) having a male screw. A vacuum chamber 5 is connected to the tip of the vibration isolator 4, and since the atmospheric pressure is applied to the vacuum bellows 12, the elastic member 3 receives pressure, but the vibration visualization means 2 is installed outside the arm portion 10. So do not receive pressure.

以上のような構成で、冷凍機1が発生する振動を真空チャンバ5側に伝えないようにしている。ここで、冷凍機1の運転周波数や質量が変化すると、系全体の振動に変化が生じる。変化する前に振動を十分に抑えていれば、振動可視化手段2は殆ど発光しない。そして、変化が起こった後、はじめに構成した防振装置4で振動が抑えられなくなると、振動可視化手段2の発する光は強くなる。なお、このような応力発光体は応力を受けることで発光するもので、例えば特開2005−291875号公報等により周知なので、詳細は省略する。   With the above configuration, vibration generated by the refrigerator 1 is not transmitted to the vacuum chamber 5 side. Here, when the operating frequency or mass of the refrigerator 1 changes, the vibration of the entire system changes. If the vibration is sufficiently suppressed before the change, the vibration visualization means 2 emits little light. Then, after the change occurs, if the vibration is not suppressed by the vibration isolator 4 configured first, the light emitted from the vibration visualization means 2 becomes strong. Such a stress-stimulated luminescent material emits light upon receiving stress, and is well known, for example, in Japanese Patent Application Laid-Open No. 2005-291875.

そこで、設置している弾性部材3の位置を変更して、振動の状態が変化したことに対して適応する弾性部材3の位置を見つける。弾性部材3はナット7(A)で固定されているので、取付け穴11から取り外すことができ、真空ベローズ12は伸縮可能であるので、両フランジ間の距離を長くとり、弾性部材3を現在の穴11から取り出して、他の穴11へ移動させることができる。そして、弾性部材3の他の穴11への取り付け時に、振動可視化手段2の発する光の強さを確認することにより、弾性部材3の位置が適当かどうかを確認することができる。   Therefore, the position of the elastic member 3 installed is changed to find the position of the elastic member 3 that adapts to the change in the state of vibration. Since the elastic member 3 is fixed by the nut 7 (A), it can be removed from the mounting hole 11, and the vacuum bellows 12 can be expanded and contracted. It can be taken out from the hole 11 and moved to another hole 11. Then, when the elastic member 3 is attached to the other hole 11, it is possible to confirm whether the position of the elastic member 3 is appropriate by checking the intensity of light emitted by the vibration visualization means 2.

弾性部材3は、スペーサー6を介して腕部10に固定されているので、このスペーサー6のサイズを選択することで、他の弾性部材3も腕部10に取り付け可能である。また、弾性部材3のバネ定数を変更したければ、バネ定数の異なる弾性部材3とそれに対応するスペーサー6とを用意しておけば良い。   Since the elastic member 3 is fixed to the arm portion 10 via the spacer 6, another elastic member 3 can be attached to the arm portion 10 by selecting the size of the spacer 6. If the spring constant of the elastic member 3 is to be changed, the elastic member 3 having a different spring constant and the corresponding spacer 6 may be prepared.

振動可視化手段2は図1(d),(e)のように構成され、上下振動、回転振動、ねじり振動などの振動を可視化することができる。例えば、上下振動ならば、図1(a)の上下方向に系全体が揺れる。このとき、振動可視化手段2の錘部材13は自由端となっているので、錘部材13は上下に振動して応力発光体14に振動を伝える。この場合は上下振動なので、振動可視化手段2はすべて同時に発光する。   The vibration visualization means 2 is configured as shown in FIGS. 1D and 1E, and can visualize vibrations such as vertical vibration, rotational vibration, and torsional vibration. For example, in the case of vertical vibration, the entire system shakes in the vertical direction in FIG. At this time, since the weight member 13 of the vibration visualization means 2 is a free end, the weight member 13 vibrates up and down and transmits the vibration to the stress light emitter 14. In this case, because of vertical vibration, all the vibration visualization means 2 emit light simultaneously.

回転振動の場合は、図1(a)の紙面と垂直な方向の軸を中心に回転する。この回転振動でも、振動可視化手段2の錘部材13は上下に振動して応力発光体14に振動を伝える。この場合、回転中心軸上にある振動可視化手段2はあまり発光せず、回転中心軸に対し法線方向軸上にある振動可視化手段2が強く発光する。これにより、回転振動と判断することができる。   In the case of rotational vibration, it rotates about an axis in a direction perpendicular to the paper surface of FIG. Even with this rotational vibration, the weight member 13 of the vibration visualization means 2 vibrates up and down and transmits the vibration to the stress light emitter 14. In this case, the vibration visualization unit 2 on the rotation center axis does not emit much light, and the vibration visualization unit 2 on the normal axis with respect to the rotation center axis emits light strongly. Thereby, it can be determined as rotational vibration.

また、ねじり振動の場合は、図1(a)の縦方向軸を中心に系全体がねじり運動をし、振動可視化手段2には図1(d)で上下に揺らすような振動が加わる。このため、応力発光体14は図1(d)の縦中心軸上に最も力が加わることになる。その結果、応力発光体14は上下振動、回転振動とは異なる発光状態となり、これによりねじり振動と判別できるようになる。   In addition, in the case of torsional vibration, the entire system performs a torsional motion around the vertical axis in FIG. 1A, and vibrations that swing up and down in FIG. For this reason, the stress-stimulated illuminant 14 is most subjected to the force on the longitudinal center axis in FIG. As a result, the stress-stimulated illuminant 14 has a light emission state different from the vertical vibration and the rotational vibration, and can be distinguished from torsional vibration.

図2はこの発明の他の実施の形態を示す構成図で、同(a)は平面図、同(b)はその断面図である。
これは、主として防振装置を、真空配管等につながるフランジ16と、フランジ16から突出し図示されない弾性部材を設置するための腕部17と、この腕部17の先端を連結する同心円状部材19とから構成したものである。
2A and 2B are configuration diagrams showing another embodiment of the present invention, wherein FIG. 2A is a plan view and FIG. 2B is a cross-sectional view thereof.
This is mainly because the vibration isolator includes a flange 16 connected to a vacuum pipe or the like, an arm portion 17 for installing an elastic member (not shown) that protrudes from the flange 16, and a concentric member 19 that connects the tip of the arm portion 17. It consists of

腕部17には弾性部材の位置を変更するための長方形状の穴20が開いており、同心円状部材19の外側には振動可視化手段18が取り付けられている。振動可視化手段18は図1(d),(e)とは異なり、棒状の応力発光体21の先端に錘部材22を取り付けた構造となっている。同心円状部材19は、この応力発光体21を多数取り付けるための部材としての役目を果たしている。   A rectangular hole 20 for changing the position of the elastic member is opened in the arm portion 17, and vibration visualization means 18 is attached to the outside of the concentric member 19. Unlike FIGS. 1D and 1E, the vibration visualization means 18 has a structure in which a weight member 22 is attached to the tip of a rod-like stress light emitter 21. The concentric circular member 19 serves as a member for attaching a large number of the stress-stimulated light emitters 21.

従って、図2の防振装置を振動している真空配管に接続することで、振動可視化手段18により振動の方向を知ることが可能となる。例えば、真空配管が左右に振動していれば、その方向に設置されている振動可視化手段18が強く発光し、振動方向と垂直に設置されている振動可視化手段18は殆ど発光しない。また、真空配管が回転していれば、振動可視化手段18は順々に発光していく。この振動可視化手段18の発光状態から弾性部材の位置を変更し、振動の効果を確認することができる。   Therefore, by connecting the vibration isolator shown in FIG. 2 to the vibrating vacuum pipe, the vibration visualization means 18 can know the direction of vibration. For example, if the vacuum pipe vibrates left and right, the vibration visualization means 18 installed in that direction emits strong light, and the vibration visualization means 18 installed perpendicular to the vibration direction emits little light. If the vacuum pipe is rotating, the vibration visualization means 18 emits light sequentially. The vibration effect can be confirmed by changing the position of the elastic member from the light emission state of the vibration visualization means 18.

なお、応力発光体21はゴムなどの弾性体に混合される。振動可視化手段18は、弾性体である応力発光体21と錘部材22で構成されるため、応力発光体21のバネ定数、錘部材22の質量を考慮することにより、或る一定の固有周波数を持たせることができる。そして、抑えたい周波数があるならば、振動可視化手段18のバネ定数と質量の少なくとも一方を変更することにより、振動可視化手段18の固有周波数を、その抑えたい周波数に合わせ、振動可視化手段18が強く発光するかどうかによって、目的とする周波数成分が抑えられているか否かが分かる。   The stress light emitter 21 is mixed with an elastic body such as rubber. Since the vibration visualization means 18 is composed of the stress light emitter 21 and the weight member 22 which are elastic bodies, a certain natural frequency is obtained by considering the spring constant of the stress light emitter 21 and the mass of the weight member 22. You can have it. If there is a frequency to be suppressed, by changing at least one of the spring constant and the mass of the vibration visualization means 18, the natural frequency of the vibration visualization means 18 is matched with the frequency to be suppressed, and the vibration visualization means 18 is strong. Whether or not the target frequency component is suppressed is determined depending on whether or not light is emitted.

なお、目的とする周波数成分が抑えられていなければ、弾性部材の位置、またはバネ定数を変更して、振動可視化手段18が発光しないようにする。このようにすれば、目的とする周波数成分が抑えられているか否かが分かり、加速度センサなどを使わずに、振動可視化手段18の発光状態によって防振効果を確認することができる。   If the target frequency component is not suppressed, the position of the elastic member or the spring constant is changed so that the vibration visualization means 18 does not emit light. In this way, it can be seen whether or not the target frequency component is suppressed, and the anti-vibration effect can be confirmed by the light emission state of the vibration visualization means 18 without using an acceleration sensor or the like.

図3はこの発明のさらに他の実施の形態を示す構成図で、図1,図2に示す弾性部材取付け穴の変形例を示す。図3(a)は正面図、同(b)はB−B断面図、同(c)はA−A断面図、同(d)は裏面図である。
すなわち、穴23は長方形の穴に対し、図3(b)のように厚さ方向の段差を設けた点が特徴である。そして、この段差の径の大きい方で図1(a)のようなスペーサーを支持し、径の小さい方でナット等を支持するものである。
FIG. 3 is a block diagram showing still another embodiment of the present invention, and shows a modification of the elastic member mounting hole shown in FIGS. 3A is a front view, FIG. 3B is a BB cross-sectional view, FIG. 3C is an AA cross-sectional view, and FIG. 3D is a back view.
That is, the hole 23 is characterized in that a step in the thickness direction is provided as shown in FIG. A spacer as shown in FIG. 1A is supported by the larger diameter of the step, and a nut or the like is supported by the smaller diameter.

回転振動の場合、弾性部材を設置する位置を変更すると、振動の大きさが変化する。そのため、弾性部材を設置する位置は多くある方が振動を低減させる位置が見つけ易いことになる。この点について、図1では弾性部材3の位置は或る間隔を開けて設けられた穴11で決まるため、弾性部材を設置する位置が限られる代わりに位置ずれのおそれは無い。一方、図2のような長方形の穴20では弾性部材を設置する位置は無限であり、極めて柔軟に振動を低減できる弾性部材設置位置を見つけ易い代わりに位置ずれのおそれがある。   In the case of rotational vibration, if the position where the elastic member is installed is changed, the magnitude of vibration changes. Therefore, it is easier to find a position where vibration is reduced when there are many positions where the elastic member is installed. In this regard, in FIG. 1, the position of the elastic member 3 is determined by the hole 11 provided at a certain interval, and therefore, there is no possibility of positional displacement instead of limiting the position where the elastic member is installed. On the other hand, in the rectangular hole 20 as shown in FIG. 2, the position where the elastic member is installed is infinite, and there is a possibility that the elastic member installation position where vibration can be reduced extremely easily can be found instead of being displaced.

図3は上記のような点に鑑みなされたもので、図1のものよりは弾性部材の設置可能位置を多くし、図2のものよりは弾性部材の設置可能位置は少ないが、強固な固定を可能にし、位置ずれのおそれを低減したものと言うことができる。   FIG. 3 is made in view of the above points, and the elastic member can be installed more positions than those of FIG. 1, and the elastic members can be installed less positions than those of FIG. It can be said that the possibility of positional deviation is reduced.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention この発明の他の実施の形態を示す部分構成図Partial configuration diagram showing another embodiment of the present invention 図1,図2の変形例を示す部分構成図Partial configuration diagram showing a modification of FIGS. 従来例を示す構成図Configuration diagram showing a conventional example

符号の説明Explanation of symbols

1…冷凍機、2,18…振動可視化手段、3…弾性部材、4…防振装置、5…真空チャンバ、6…スペーサー、7,8…ナット、9,16…フランジ、10,17…腕部、11,20…弾性部材取付け穴、12…真空ベローズ、13,22…錘部材、14,21…応力発光体、15…設置部材。   DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2,18 ... Vibration visualization means, 3 ... Elastic member, 4 ... Vibration isolator, 5 ... Vacuum chamber, 6 ... Spacer, 7, 8 ... Nut, 9, 16 ... Flange, 10, 17 ... Arm 11, 20, elastic member mounting holes, 12, vacuum bellows, 13, 22, weight members, 14, 21, stress light emitter, 15, installation member.

Claims (9)

円筒状ベローズの両端に一体的に一対のフランジが接続された真空維持部材と、その一対のフランジ間に複数個の弾性部材とを配置して振動を抑制する真空防振装置において、
前記弾性部材の位置を調整する調整機構と、振動を光に変える振動可視化手段とを設けたことを特徴とする真空防振装置。
In a vacuum vibration isolator that suppresses vibration by disposing a vacuum maintaining member in which a pair of flanges are integrally connected to both ends of a cylindrical bellows and a plurality of elastic members between the pair of flanges,
A vacuum vibration isolator comprising an adjustment mechanism for adjusting the position of the elastic member and vibration visualization means for converting vibration into light.
前記フランジには、フランジ中心で点対称となるようにフランジから突出し、前記弾性部材を支持するための複数の腕部を設けたことを特徴とする請求項1に記載の真空防振装置。   2. The vacuum vibration isolator according to claim 1, wherein the flange is provided with a plurality of arms that project from the flange so as to be point-symmetrical at the flange center and support the elastic member. 前記腕部には、前記弾性部材の取付け位置を調整するための複数の穴を形成したことを特徴とする請求項2に記載の真空防振装置。   The vacuum vibration isolator according to claim 2, wherein a plurality of holes for adjusting the mounting position of the elastic member are formed in the arm portion. 前記振動可視化手段は、前記腕部の外側に設けたことを特徴とする請求項1〜3のいずれか1つに記載の真空防振装置。   The vacuum vibration isolator according to any one of claims 1 to 3, wherein the vibration visualization means is provided outside the arm portion. 前記フランジは、フランジ中心で点対称となるようにフランジから突出し、前記弾性部材を支持するための複数の腕部を介して、同心円状部材と連結されていること特徴とする請求項1に記載の真空防振装置。   The said flange protrudes from a flange so that it may become point-symmetrical at the flange center, and is connected with the concentric member via the several arm part for supporting the said elastic member. Vacuum anti-vibration device. 前記腕部には、前記弾性部材の取付け位置を調整するための長方形状の穴を形成することを特徴とする請求項5に記載の真空防振装置。   The vacuum vibration isolator according to claim 5, wherein a rectangular hole for adjusting a mounting position of the elastic member is formed in the arm portion. 前記長方形の穴には、厚さ方向に段差を形成することを特徴とする請求項6に記載の真空防振装置。   The vacuum vibration isolator according to claim 6, wherein a step is formed in the rectangular hole in a thickness direction. 前記振動可視化手段は、前記同心円状部材の外側に設けることを特徴とする請求項5〜7のいずれか1つに記載の真空防振装置。   The vacuum vibration isolator according to any one of claims 5 to 7, wherein the vibration visualization means is provided outside the concentric member. 前記振動可視化手段を、応力発光体とすることを特徴とする請求項1〜8のいずれか1つに記載の真空防振装置。   The vacuum vibration isolator according to any one of claims 1 to 8, wherein the vibration visualization means is a stress light emitter.
JP2007155909A 2007-06-13 2007-06-13 Vacuum vibration isolator Active JP4967834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155909A JP4967834B2 (en) 2007-06-13 2007-06-13 Vacuum vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155909A JP4967834B2 (en) 2007-06-13 2007-06-13 Vacuum vibration isolator

Publications (2)

Publication Number Publication Date
JP2008309204A true JP2008309204A (en) 2008-12-25
JP4967834B2 JP4967834B2 (en) 2012-07-04

Family

ID=40236994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155909A Active JP4967834B2 (en) 2007-06-13 2007-06-13 Vacuum vibration isolator

Country Status (1)

Country Link
JP (1) JP4967834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953458A (en) * 2018-06-28 2018-12-07 芜湖中淇节能科技有限公司 A kind of vibration abatement of adjustable instrument and meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818587B (en) * 2012-07-27 2014-08-20 北京中科科仪股份有限公司 Vacuum operating platform with damping mechanism

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275829A (en) * 1987-05-06 1988-11-14 Inoue Japax Res Inc Vibration isolator
JPH0328686U (en) * 1989-07-31 1991-03-22
JPH04318292A (en) * 1991-04-15 1992-11-09 Tokico Ltd Reciprocating compressor
JPH09119477A (en) * 1995-10-27 1997-05-06 Kazuto Sedo Dynamic vibration absorber
JPH09196096A (en) * 1995-06-07 1997-07-29 Mitsubishi Heavy Ind Ltd Piping vibration control device
JP2003140569A (en) * 2001-11-02 2003-05-16 Seiko Epson Corp Stress luminescence display device
JP2004316931A (en) * 1989-08-16 2004-11-11 David L Platus Nondirectional vibration isolating system
JP2005307998A (en) * 2004-04-16 2005-11-04 Koyo Seiko Co Ltd Bearing components, bearing retainer, bearing with optical sensor, and sensing method for stress on bearing unit
JP2006077714A (en) * 2004-09-10 2006-03-23 Boc Edwards Kk Damper and vacuum pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275829A (en) * 1987-05-06 1988-11-14 Inoue Japax Res Inc Vibration isolator
JPH0328686U (en) * 1989-07-31 1991-03-22
JP2004316931A (en) * 1989-08-16 2004-11-11 David L Platus Nondirectional vibration isolating system
JPH04318292A (en) * 1991-04-15 1992-11-09 Tokico Ltd Reciprocating compressor
JPH09196096A (en) * 1995-06-07 1997-07-29 Mitsubishi Heavy Ind Ltd Piping vibration control device
JPH09119477A (en) * 1995-10-27 1997-05-06 Kazuto Sedo Dynamic vibration absorber
JP2003140569A (en) * 2001-11-02 2003-05-16 Seiko Epson Corp Stress luminescence display device
JP2005307998A (en) * 2004-04-16 2005-11-04 Koyo Seiko Co Ltd Bearing components, bearing retainer, bearing with optical sensor, and sensing method for stress on bearing unit
JP2006077714A (en) * 2004-09-10 2006-03-23 Boc Edwards Kk Damper and vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953458A (en) * 2018-06-28 2018-12-07 芜湖中淇节能科技有限公司 A kind of vibration abatement of adjustable instrument and meter

Also Published As

Publication number Publication date
JP4967834B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP5779033B2 (en) Vibration isolator for vehicle
JP2011012757A (en) Vibration reducing device
WO2013018443A1 (en) Anti-vibration device for vehicle
US11161256B2 (en) Robot gravity balancer and robot
JP5476087B2 (en) Charged particle beam object positioning device
CN110542529B (en) Oil tank shaking and vibrating test device
JP4967834B2 (en) Vacuum vibration isolator
JP2012015695A (en) Dynamic microphone
JPWO2007108075A1 (en) Wind power generator
JP5314727B2 (en) Instrumentation equipment installation device for stationary engine
JP2005030423A (en) Vibration removing system
JP2000240718A (en) Vibration damping device for compressor
US20220009312A1 (en) Vibration-isolating device
JP2012202476A (en) Vibration control frame
WO2019180807A1 (en) Sound damper, sound damping method and vibration detection device
JPS6333571B2 (en)
JP2009216636A (en) Testing unit and testing apparatus of conduction machine
WO2016076157A1 (en) Test piece attachment apparatus for vibration testing apparatus
JPH11355876A (en) Mounting structure for loudspeaker
JP2002081494A (en) Vehicular vibration damper
JP2000205332A (en) Vibrationproof supporting device
CN114793312A (en) Acoustic device
JP2005163915A (en) Vibration resistant device
JP2005098326A (en) Vibration eliminating device
JP2009236225A (en) Dynamic damper device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4967834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250