JP2008307146A - Medical low-density polyethylene container - Google Patents

Medical low-density polyethylene container Download PDF

Info

Publication number
JP2008307146A
JP2008307146A JP2007155927A JP2007155927A JP2008307146A JP 2008307146 A JP2008307146 A JP 2008307146A JP 2007155927 A JP2007155927 A JP 2007155927A JP 2007155927 A JP2007155927 A JP 2007155927A JP 2008307146 A JP2008307146 A JP 2008307146A
Authority
JP
Japan
Prior art keywords
mfr
density polyethylene
jis
container
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007155927A
Other languages
Japanese (ja)
Other versions
JP4962151B2 (en
Inventor
Hirohide Sakano
博英 坂野
Ken Watanabe
憲 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007155927A priority Critical patent/JP4962151B2/en
Publication of JP2008307146A publication Critical patent/JP2008307146A/en
Application granted granted Critical
Publication of JP4962151B2 publication Critical patent/JP4962151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Wrappers (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical low-density polyethylene container with improved workability and an elution property, which are defects of a conventional medical container using low-density polyethylene. <P>SOLUTION: The medical low-density polyethylene container is made of low-density polyethylene satisfying the following conditions (1)-(6). (1) The density is 910-935 kg/m<SP>3</SP>, (2) MFR is 0.1-4 g/10 min, (3) weight average molecular weight (Mw) and MFR satisfy -9,200×MFR+99,000<Mw<-9,200×MFR+100,700, (4) the quantity of extracted hot water refluxed for 7 hours with pure water 1L and extracted from a sample 470g is not more than 0.02 ml, (5) the number of terminal end vinyl groups per 1,000 carbon atoms is not more than 0.13, and (6) the relation between the melting tension and MFR at 190°C satisfies melt tension (mN)≤116.98×MFR<SP>-0.5383</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高圧法低密度ポリエチレン製の低溶出性医薬容器に関する。さらに詳しくは日本薬局方に適合し、加工性、製品外観、耐熱性、低溶出性、透明性に優れた、輸液、血液等を入れる輸液容器、点眼容器、点鼻容器、内服液容器等の医薬容器に関するものである。   The present invention relates to a low-elution pharmaceutical container made of high-pressure low-density polyethylene. More specifically, it conforms to the Japanese Pharmacopoeia and has excellent processability, product appearance, heat resistance, low elution, and transparency, such as infusion solutions, infusion containers containing blood, eye drops containers, nasal containers, oral liquid containers, etc. It relates to a pharmaceutical container.

高度医療技術の発展に伴い医療容器の多様化ならびに利便性が求められ、容器のディスポーザブル仕様が浸透する一方、多量の廃棄物問題もクローズアップされている。安全性に加え、焼却処理が可能なプラスチック素材へのニーズは益々高まっている。   With the advancement of advanced medical technology, diversification and convenience of medical containers are required. Disposable specifications for containers are spreading, and the problem of a large amount of waste is also highlighted. In addition to safety, there is an increasing need for plastic materials that can be incinerated.

ガラス素材からの転換が期待されているプラスチック素材の一例としてアンプル用途がある。同用途では、従来ブロー成形後に内壁を洗浄する工程を経ていたのに対して、生産性の向上を目的に同洗浄工程を省略すべく、ブロー成形と同時に薬液を充填する同時充填ブロー成形法が開発された。同時充填ブロー成形では、溶融樹脂中に薬液を直接充填するために従来の後充填方式と比較すると薬液中の微粒子数が増加する。したがって、ポリエチレン樹脂には微粒子数の低減すなわち低溶出性(クリーン性)が要求されるようになった。   An example of a plastic material that is expected to be converted from a glass material is an ampoule application. In the same application, the conventional process of washing the inner wall after blow molding is performed, but the simultaneous filling blow molding method that fills the chemical simultaneously with the blow molding is performed in order to omit the washing process for the purpose of improving productivity. It has been developed. In the simultaneous filling blow molding, since the chemical solution is directly filled in the molten resin, the number of fine particles in the chemical solution is increased as compared with the conventional post-filling method. Accordingly, the polyethylene resin is required to have a reduced number of fine particles, that is, low elution (cleanness).

高圧ラジカル重合法で得られる低密度ポリエチレンは溶融張力が高く、高剪断下での流動性に優れ、肉厚が均一で表面状態の良いブロー成形体が得られることから、ブロー成形用樹脂として広く用いられている。特に管状の重合器で得られたポリエチレン(チューブラー品)はオートクレーブ型の重合器で得られたポリエチレン(ベッセル品)に比較して長鎖分岐が少なく、また分子量分布が狭い傾向にあり、製品外観が良好な製品が得られるため好適である。しかし、チューブラー品はベッセル品に比較して溶出成分が多いため、滅菌処理した際に微粒子数が多くなる傾向にあった。これに対して、耐熱性、透明性が優れかつ内容液中への溶出が少ない容器として低密度ポリエチレンと直鎖状低密度ポリエチレンを混合する方法が提案されている(例えば特許文献1参照)。しかし、低密度ポリエチレンの微粒子数が多い場合、その混合物においても極端に微粒子を低減することは難しく、低溶出性の医薬容器の開発が望まれていた。   Low-density polyethylene obtained by high-pressure radical polymerization has a high melt tension, excellent flowability under high shear, and a blow molded product with a uniform wall thickness and good surface condition. It is used. In particular, polyethylene (tubular product) obtained with a tubular polymerizer has fewer long chain branches and a narrower molecular weight distribution than polyethylene (bessel product) obtained with an autoclave-type polymerizer. This is suitable because a product having a good appearance can be obtained. However, since the tubular product has more elution components than the vessel product, the number of fine particles tended to increase when sterilized. On the other hand, a method of mixing low density polyethylene and linear low density polyethylene has been proposed as a container having excellent heat resistance and transparency and little elution into the content liquid (see, for example, Patent Document 1). However, when the number of fine particles of low density polyethylene is large, it is difficult to extremely reduce the fine particles even in the mixture, and the development of a low-elution pharmaceutical container has been desired.

特開昭59−203560号公報JP 59-203560 A

本発明の目的は、容器の外観(表面肌)に優れ、かつ従来の管状型リアクターで製造された低密度ポリエチレンを用いた医薬容器の欠点である低溶出性に優れた医薬容器を提供することにある。     An object of the present invention is to provide a pharmaceutical container that is excellent in appearance (surface skin) of a container and excellent in low elution, which is a disadvantage of a pharmaceutical container using low-density polyethylene produced by a conventional tubular reactor. It is in.

本発明は、上記の目的に対して鋭意検討した結果、見出されたものである。すなわち、本発明は、下記(1)〜(6)の特性を満たす管状型リアクターを用いて製造された高圧法低密度ポリエチレン[A]からなることを特徴とする医薬用容器に関するものである。
(1)JIS K6922−1に準拠した密度が910〜935kg/m
(2)JIS K6922−1に準拠したメルトマスフローレイト(MFR)が0.1〜4g/10min、
(3)ゲル・パーミエーション・クロマトグラフィーにより求められる重量平均分子量(Mw)とJIS K6922−1に準拠したメルトマスフローレイトの関係が下記の条件を満たす。
The present invention has been found as a result of intensive studies on the above object. That is, the present invention relates to a pharmaceutical container comprising a high-pressure low-density polyethylene [A] produced using a tubular reactor satisfying the following characteristics (1) to (6).
(1) A density based on JIS K6922-1 is 910 to 935 kg / m 3 ,
(2) Melt mass flow rate (MFR) based on JIS K6922-1 is 0.1 to 4 g / 10 min,
(3) The relationship between the weight average molecular weight (Mw) obtained by gel permeation chromatography and the melt mass flow rate based on JIS K6922-1 satisfies the following conditions.

−9,200×MFR+99,000<重量平均分子量(Mw)<−9,200×MFR+100,700、
(4)試料470gを純水1Lで7時間還流抽出した熱水抽出量が0.02ml以下、
(5)1,000個の炭素原子当たりの末端ビニル基数が0.13個以下、
(6)190℃における溶融張力とJIS K6922−1に準拠したメルトマスフローレイトの関係が下記の条件を満たす。
−9,200 × MFR + 99,000 <weight average molecular weight (Mw) <− 9,200 × MFR + 100,700,
(4) The amount of hot water extracted by reflux extraction of 470 g of sample with 1 L of pure water for 7 hours is 0.02 ml or less,
(5) The number of terminal vinyl groups per 1,000 carbon atoms is 0.13 or less,
(6) The relationship between the melt tension at 190 ° C. and the melt mass flow rate based on JIS K6922-1 satisfies the following conditions.

溶融張力(mN)≦116.98×MFR−0.5383
以下、本発明について詳細に説明する。
Melt tension (mN) ≦ 116.98 × MFR −0.5383
Hereinafter, the present invention will be described in detail.

本発明の医薬用容器を構成する低密度ポリエチレン[A]は高圧法の管状(チューブラー)リアクターで重合することができる。オートクレーブリアクターで重合したものは、管状リアクターで重合したものと比較して長鎖分岐が多く、スウェル比や溶融張力が高いため、パリソンを押出した時のパリソン径が大きくなり、バリ取り性が悪化(自動でバリが取れない現象)したり、製品の外観(表面肌)が劣ったりする。   The low-density polyethylene [A] constituting the pharmaceutical container of the present invention can be polymerized in a high-pressure tubular (tubular) reactor. The polymerized in the autoclave reactor has more long chain branches than the polymerized in the tubular reactor, and the swell ratio and melt tension are high. (A phenomenon in which burrs cannot be removed automatically) or the appearance (surface skin) of the product is inferior.

本発明の医薬用容器を構成する低密度ポリエチレン[A]の密度は、JIS K6922−1(1997)に準拠して密度勾配管法で測定した値として、910〜935kg/mである。910kg/m未満では、薬品に溶出しやすい成分が増加するため耐薬品性が低下する恐れがあり、935kg/mを超えると耐ストレスクラッキング性が低下したり、容器の柔軟性が劣るものとなる。 The density of the low density polyethylene [A] constituting the pharmaceutical container of the present invention is 910 to 935 kg / m 3 as a value measured by a density gradient tube method in accordance with JIS K6922-1 (1997). If it is less than 910 kg / m 3 , chemical resistance may decrease due to an increase in components that are likely to elute into the drug. If it exceeds 935 kg / m 3 , stress cracking resistance will be reduced, or the container will have poor flexibility. It becomes.

本発明の医薬用容器を構成する低密度ポリエチレン[A]の190℃、2.16kg荷重におけるメルトマスフローレイトは、0.1〜4g/10分、好ましくは0.3〜2g/10分である。0.1g/10分未満の場合は溶融粘度が高すぎて押出負荷が大きいばかりでなく、ブロー容器の外観(表面肌)を損なう恐れがある。4g/10分を超えると溶融張力が小さくなりすぎてドローダウン(自重垂れ)が激しく成形できない。   The melt mass flow rate at 190 ° C. and a load of 2.16 kg of the low density polyethylene [A] constituting the pharmaceutical container of the present invention is 0.1 to 4 g / 10 minutes, preferably 0.3 to 2 g / 10 minutes. . If it is less than 0.1 g / 10 min, the melt viscosity is too high and the extrusion load is large, and the appearance (surface skin) of the blow container may be impaired. If it exceeds 4 g / 10 min, the melt tension becomes too small, and drawdown (self-weight drooping) cannot be formed vigorously.

本発明の医薬用容器を構成する低密度ポリエチレン[A]の直鎖状ポリエチレン換算の重量平均分子量(Mw)とJIS K6922−1に準拠したメルトマスフローレイト(MFR)は、下記式に示される関係にある。下記式の下限未満の場合、溶出成分が多く成り好ましくない。下記式の上限を超える場合、ブロー容器の外観(表面肌)を損なう恐れがある。   The weight average molecular weight (Mw) in terms of linear polyethylene of the low density polyethylene [A] constituting the pharmaceutical container of the present invention and the melt mass flow rate (MFR) based on JIS K6922-1 are represented by the following formulas. It is in. If it is less than the lower limit of the following formula, the amount of eluted components increases, which is not preferable. When the upper limit of the following formula is exceeded, the appearance (surface skin) of the blow container may be impaired.

−9,200×MFR+99,000<重量平均分子量(Mw)<−9,200×MFR+100,700
本発明の医薬用容器を構成する低密度ポリエチレン[A]の試料470gを純水1Lで7時間還流抽出した熱水抽出量は0.02ml以下である。熱水抽出量が0.02mlを超えると薬液への溶出成分が増加する恐れがある。熱水抽出量を0.02ml以下にするには、MFRが低め、密度が高め、低分子量成分が少なめものが好ましい。
−9,200 × MFR + 99,000 <weight average molecular weight (Mw) <− 9,200 × MFR + 100,700
The amount of hot water extracted from 470 g of the low density polyethylene [A] sample constituting the pharmaceutical container of the present invention by refluxing with 1 L of pure water for 7 hours is 0.02 ml or less. When the amount of hot water extraction exceeds 0.02 ml, there is a possibility that the eluted component to the chemical solution increases. In order to reduce the hot water extraction amount to 0.02 ml or less, it is preferable that the MFR is low, the density is high, and the low molecular weight component is small.

本発明の医薬用容器を構成する低密度ポリエチレン[A]の1,000個の炭素原子当たりの末端ビニル基の数が0.13個以下である。0.13個を超えると成形加工時の熱履歴において劣化しやすく、薬液への溶出成分が増加する恐れがある。末端ビニル基の数を1,000個の炭素原子当たり0.13個以下にするには、重合時の温度を低めに設定したり、低分子量成分を減らす条件で重合することにより得られる。   The number of terminal vinyl groups per 1,000 carbon atoms of the low density polyethylene [A] constituting the pharmaceutical container of the present invention is 0.13 or less. If it exceeds 0.13, it tends to deteriorate in the heat history at the time of molding, and there is a possibility that the elution component to the chemical solution increases. In order to reduce the number of terminal vinyl groups to 0.13 or less per 1,000 carbon atoms, the polymerization can be carried out by setting the temperature at the time of polymerization to a low level or by reducing the low molecular weight component.

本発明の医薬用容器を構成する低密度ポリエチレン[A]の190℃で測定した溶融張力(mN)とメルトマスフローレイト(MFR)は、下記式で示される関係にある。下記式を満たさない場合、ブロー容器の外観(表面肌)を損なう恐れがある。下記式を満足するには、高圧法の管状リアクター(チューブラー)で重合する。必要により重合温度を下げ、重合圧力を挙げることにより、より溶融張力が低くなる傾向がある。   The melt tension (mN) and melt mass flow rate (MFR) measured at 190 ° C. of the low density polyethylene [A] constituting the pharmaceutical container of the present invention are in the relationship represented by the following formula. If the following formula is not satisfied, the appearance (surface skin) of the blow container may be impaired. In order to satisfy the following formula, polymerization is carried out in a high-pressure tubular reactor (tubular). If necessary, the melt tension tends to be lowered by lowering the polymerization temperature and raising the polymerization pressure.

溶融張力(mN)≦116.98×MFR−0.5383
本発明の医薬用容器を構成する低密度ポリエチレン[A]は市販品を購入することで入手することができる。具体的には東ソー(株)のペトロセン175K−1、ペトロセン170Kがこれに該当する。
Melt tension (mN) ≦ 116.98 × MFR −0.5383
The low density polyethylene [A] constituting the pharmaceutical container of the present invention can be obtained by purchasing a commercial product. Specifically, Tosoh Corporation's Petrocene 175K-1 and Petrocene 170K correspond to this.

また、本願発明は前記高圧法低密度ポリエチレン[A]100重量部に対し、さらに(7)〜(12)の特性を満たすエチレン・α−オレフィン共重合体[B]0〜67重量部を含んでなる医薬用容器であることが好ましい。
(7)エチレンと炭素数3〜20のα−オレフィンとの共重合体であり、
(8)JIS K6922−1に準拠した密度が880〜940kg/m
(9)JIS K6922−1に準拠したメルトマスフローレイトが0.1〜5g/10min、
(10)ゲル・パーミエーション・クロマトグラフィーにより求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜3.0であり、
(11)DSC(示差走査型熱量計)により測定された吸熱曲線のピーク(融点)が1つであり、
(12)日本薬局方に規定の強熱残分試験法による残分が0.1重量%以下である。
The present invention further includes 0 to 67 parts by weight of an ethylene / α-olefin copolymer [B] that satisfies the characteristics (7) to (12) with respect to 100 parts by weight of the high-pressure low-density polyethylene [A]. It is preferable that it is a pharmaceutical container consisting of
(7) A copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms,
(8) The density based on JIS K6922-1 is 880 to 940 kg / m 3 ,
(9) The melt mass flow rate based on JIS K6922-1 is 0.1 to 5 g / 10 min,
(10) The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) determined by gel permeation chromatography is 1.5 to 3.0,
(11) There is one endothermic curve peak (melting point) measured by DSC (differential scanning calorimeter),
(12) The residue by the ignition residue test method prescribed in the Japanese Pharmacopoeia is 0.1% by weight or less.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]はエチレンと炭素数3〜20のオレフィンとの共重合体であり、α−オレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、1−ペンテン、1−ヘプテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセンを例示することができる。また、これらのオレフィンを2種類以上混合して用いることもできる。   The ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention is a copolymer of ethylene and an olefin having 3 to 20 carbon atoms. As the α-olefin, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, 1-pentene, 1-heptene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1- Examples include tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene and 1-eicocene. Two or more of these olefins can be mixed and used.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]の製造方法等については特に制限はなく、例えば触媒系としてチタン系の遷移金属を主体とするチーグラー触媒、メタロセン等を主体とするカミンスキー型触媒などのいずれの触媒系を使用しても製造することができる。本発明において用いるエチレン・α−オレフィン共重合体としてはMw/Mnが1.5〜3の範囲であるエチレン・α−オレフィン共重合体が得やすく、特にエチレンとα−オレフィンの組成分布が均一であることから得られる容器の透明性と低溶出性が優れることからメタロセン等を主体とするカミンスキー型触媒を用いて製造されたエチレン・α−オレフィン共重合体が好ましい。   There is no particular limitation on the production method of the ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention. For example, a Ziegler catalyst mainly composed of a titanium-based transition metal, a metallocene, etc. is used as a catalyst system. It can be produced by using any catalyst system such as a main Kaminsky catalyst. As the ethylene / α-olefin copolymer used in the present invention, an ethylene / α-olefin copolymer having an Mw / Mn in the range of 1.5 to 3 is easily obtained, and the composition distribution of ethylene and α-olefin is particularly uniform. Therefore, an ethylene / α-olefin copolymer produced using a Kaminsky-type catalyst mainly composed of metallocene or the like is preferable because the resulting container is excellent in transparency and low elution.

このようなカミンスキー型触媒としては、例えばチタン、ジルコニウム、ハフニウム等の遷移金属を主体とするメタロセン化合物(遷移金属化合物)と有機金属化合物あるいはメタロセン化合物と反応して安定アニオンとなるイオン化合物、粘土鉱物との組み合わせからなる一般的に知られている重合触媒系を用いることができる。また、カミンスキー型触媒は、1種または2種以上混合して使用しても差し支えない。メタロセン化合物としては、例えばビス(シクロペンタジエニル)チタニウムジクロライド、ビス(シクロペンタジエニル)ジルコニウムジクロライド、ビス(シクロペンタジエニル)ハフニウムジクロライド、ビス(インデニル)チタニウムジクロライド、ビス(インデニル)ジルコニウムジクロライド、ビス(インデニル)ハフニウムジクロライド、エチレンビス(インデニル)チタニウムジクロライド、エチレンビス(インデニル)ジルコニウムジクロライド、エチレンビス(インデニル)ハフニウムジクロライド、ジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド等を挙げることができ、有機金属化合物として、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム等を挙げることができ、遷移金属化合物と反応して安定アニオンとなるイオン化合物として、例えばリチウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート等からなるものが挙げられ、粘土鉱物としては、モンモリロナイト、ヘクトライト、サポナイト等を挙げることができる。   Examples of such Kaminsky-type catalysts include ionic compounds, clays, which react with metallocene compounds (transition metal compounds) mainly composed of transition metals such as titanium, zirconium, hafnium and the like and organometallic compounds or metallocene compounds to form stable anions. A generally known polymerization catalyst system comprising a combination with a mineral can be used. The Kaminsky catalyst may be used alone or in combination. Examples of the metallocene compound include bis (cyclopentadienyl) titanium dichloride, bis (cyclopentadienyl) zirconium dichloride, bis (cyclopentadienyl) hafnium dichloride, bis (indenyl) titanium dichloride, bis (indenyl) zirconium dichloride, Bis (indenyl) hafnium dichloride, ethylenebis (indenyl) titanium dichloride, ethylenebis (indenyl) zirconium dichloride, ethylenebis (indenyl) hafnium dichloride, diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride, etc. For example, trimethylaluminum, triethylaluminum, triisopropyl Examples of ionic compounds that react with transition metal compounds to become stable anions include lithium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, and the like. Examples of clay minerals include montmorillonite, hectorite, and saponite.

また、その際の重合方法としては特に制限はなく、一般的な重合方法である気相法、スラリー法、溶液法、高圧法などいずれでも差し支えない。また、1段または2段以上の多段重合されたものでも、2種類以上の重合体を機械的にブレンドすることによっても製造できる。   In addition, the polymerization method at that time is not particularly limited, and any of a general polymerization method such as a gas phase method, a slurry method, a solution method, and a high pressure method may be used. Further, even one-stage or two-stage or more multi-stage polymerized can be produced by mechanically blending two or more kinds of polymers.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]の密度は、JIS K6922−1(1997)に準拠して密度勾配管法で測定した値として、880〜940kg/m、好ましくは900〜935kg/mである。880kg/m未満では、容器にした際の耐熱性が劣り、940kg/mを超えると柔軟性、透明性が劣るものとなる。 The density of the ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention is 880 to 940 kg / m as a value measured by a density gradient tube method in accordance with JIS K6922-1 (1997). 3 , preferably 900 to 935 kg / m 3 . Is less than 880 kg / m 3, poor heat resistance when formed into a container, flexible exceeds 940 kg / m 3, becomes the transparency is inferior.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]の190℃、2.16kg荷重におけるメルトマスフローレイトは、0.1〜5g/10分、好ましくは1〜5g/10分である。0.1g/10分未満の場合は溶融粘度が高すぎて押出負荷が大きいばかりでなく、製品外観(表面肌)を損なう恐れがある。5g/10分を超えると溶融張力が小さくなりすぎてドローダウンが激しく成形できない。   The melt mass flow rate at 190 ° C. and a load of 2.16 kg of the ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention is 0.1 to 5 g / 10 minutes, preferably 1 to 5 g / 10. Minutes. If it is less than 0.1 g / 10 minutes, the melt viscosity is too high and the extrusion load is large, and the product appearance (surface skin) may be impaired. If it exceeds 5 g / 10 min, the melt tension becomes too small and the drawdown cannot be violently molded.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]のゲル・パーミエーション・クロマトグラフィーにより求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は1.5〜3.0、好ましくは2.0〜3.0である。Mw/Mnが1.5未満の場合は押出負荷が大きくなりフィルムの外観(表面肌)を損なう恐れがある。また3.0を越えると透明性、溶出性が悪化する恐れがある。   Ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) determined by gel permeation chromatography of ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention (Mw / Mn) ) Is 1.5 to 3.0, preferably 2.0 to 3.0. When Mw / Mn is less than 1.5, the extrusion load increases, and the appearance (surface skin) of the film may be impaired. On the other hand, if it exceeds 3.0, transparency and dissolution may be deteriorated.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]のDSC(示差走査型熱量計)による昇温測定において得られる吸熱曲線のピーク(融点)が1つであることを特徴とし、これによって得られる医薬用容器は弾性率の温度依存性が小さく、かつ、透明性に優れる。吸熱曲線は、アルミニウム製のパンに5〜10mgのサンプルを挿填し、DSCにて昇温することによって得られる。なお、昇温測定は、予め230℃で3分間放置した後、10℃/分で−10℃まで降温し、その後、10℃/分の昇温速度で150℃まで昇温することにより行われる。   The peak (melting point) of the endothermic curve obtained in the temperature rise measurement by DSC (differential scanning calorimeter) of the ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention is one. The medicinal container obtained by this is small in temperature dependence of the elastic modulus and excellent in transparency. The endothermic curve is obtained by inserting 5 to 10 mg of sample into an aluminum pan and raising the temperature with DSC. The temperature rise measurement is performed by leaving the sample at 230 ° C. for 3 minutes in advance, then lowering the temperature to −10 ° C. at 10 ° C./min, and then raising the temperature to 150 ° C. at a rate of 10 ° C./min. .

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]の日本薬局方に規定の強熱残分試験法による残分が0.1重量%以下である。日本薬局方に規定の強熱残分試験法による残分が0.1重量%を超える場合には、薬剤等の内容液への不純物溶出が懸念され、衛生性が悪くなる恐れがある。強熱残分は触媒残渣や無機系添加剤を検出することから、強熱残分を0.1重量%以下にするには触媒残渣を少なくし、無機系添加剤は添加しないことが好ましい。   The residue of the ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention is 0.1% by weight or less by the ignition residue test method prescribed in the Japanese Pharmacopoeia. If the residue by the ignition residue test method stipulated by the Japanese Pharmacopoeia exceeds 0.1% by weight, the elution of impurities into the contents liquid such as drugs may be concerned, and hygiene may be deteriorated. Since the ignition residue detects a catalyst residue and an inorganic additive, it is preferable to reduce the catalyst residue and not add an inorganic additive in order to reduce the ignition residue to 0.1% by weight or less.

本発明の医薬用容器を構成するエチレン・α−オレフィン共重合体[B]は実施例に示す方法で製造することができる。   The ethylene / α-olefin copolymer [B] constituting the pharmaceutical container of the present invention can be produced by the method shown in Examples.

本発明の医薬用容器を構成する樹脂組成物は低密度ポリエチレン[A]とエチレン・α−オレフィン共重合体[B]の配合割合(重量比)が100/0〜100/67であり、特に透明性と耐熱性のバランスに優れる容器が得られる100/0〜100/45からなることが好ましい。ここで低密度ポリエチレン[A]/エチレン・α−オレフィン共重合体[B]=100/67より低い場合、スウェル比が大きくなって加工性が悪化したり、容器外観(表面肌)、透明性が劣るものとなる。   The resin composition constituting the pharmaceutical container of the present invention has a blending ratio (weight ratio) of the low density polyethylene [A] and the ethylene / α-olefin copolymer [B] of 100/0 to 100/67, particularly It is preferable that it consists of 100 / 0-100 / 45 from which the container excellent in balance of transparency and heat resistance is obtained. Here, when the density is lower than the low density polyethylene [A] / ethylene / α-olefin copolymer [B] = 100/67, the swell ratio becomes large and the workability deteriorates, or the container appearance (surface skin), transparency Is inferior.

本発明の[A]および[B]の樹脂組成物は、任意の方法で混合することによって得られる。混合方法としては、単軸または二軸押出機、オープンロールミル、バンバリーミキサー、ニーダー、ニーダールーダーを用いて、機械的混合条件下で混合する方法、容器成形時に混合するドライブレンドする方法等を採用することができる。   The resin compositions [A] and [B] of the present invention can be obtained by mixing by any method. As a mixing method, a single-screw or twin-screw extruder, an open roll mill, a Banbury mixer, a kneader, a kneader ruder, a method of mixing under mechanical mixing conditions, a method of dry blending to mix at the time of container molding, etc. are adopted. be able to.

本発明の医薬用容器を構成するポリエチレン樹脂は、無添加、または、必要に応じて酸化防止剤、耐候安定剤、帯電防止剤、滑剤、ブロッキング防止剤、有機・無機顔料等、通常ポリオレフィンに使用される添加剤を添加しても構わない。樹脂中に上記の添加剤を混合する方法は特に制限されるものではないが、例えば、重合後のペレット造粒工程で直接添加する方法、また、予め高濃度のマスターバッチを作製し、これを成形時にドライブレンドする方法等が挙げられる。   The polyethylene resin constituting the pharmaceutical container of the present invention is not added or used for polyolefins, such as antioxidants, weathering stabilizers, antistatic agents, lubricants, antiblocking agents, organic / inorganic pigments, etc., if necessary Additives to be added may be added. The method of mixing the above-mentioned additives into the resin is not particularly limited, but for example, a method of directly adding in the pellet granulation step after polymerization, or a high concentration master batch is prepared in advance, Examples thereof include a method of dry blending at the time of molding.

本発明の医薬用容器の製造方法は、特に限定されるものではないが、アキュムレーター方式や連続押出方式の押出ブロー成形法、同時充填ブロー成形法、射出ブロー成形法、押出延伸ブロー成形法、射出延伸ブロー成形法等のブロー成形法、インフレーション成形法、チューブ成形法、射出成形法、回転成形法が挙げられる。その中でもブロー成形法が好ましく、更には生産性に優れる同時充填ブロー成形法が好ましい。例えば本発明のポリエチレン樹脂を180℃に設定した65mmφの押出スクリューを有するブロー成形機(プラコー社製)に投入し、スクリュー回転数10rpmでパリソンを押し出す。押し出されたパリソンを25℃に設定された200mlの容器の金型で挟み込み、ブローピンよりエアーを吹き込み、薬液を100ml充填した後、口部をシールすることによって得られる。   The method for producing the pharmaceutical container of the present invention is not particularly limited, but is an accumulator type or continuous extrusion type extrusion blow molding method, simultaneous filling blow molding method, injection blow molding method, extrusion stretch blow molding method, Examples thereof include blow molding methods such as injection stretch blow molding, inflation molding methods, tube molding methods, injection molding methods, and rotational molding methods. Among them, the blow molding method is preferable, and the simultaneous filling blow molding method that is excellent in productivity is more preferable. For example, the polyethylene resin of the present invention is put into a blow molding machine (Placo) having a 65 mmφ extrusion screw set at 180 ° C., and the parison is extruded at a screw rotation speed of 10 rpm. It is obtained by sandwiching the extruded parison with a mold of a 200 ml container set at 25 ° C., blowing air from a blow pin, filling 100 ml of a chemical solution, and then sealing the mouth.

また、本発明の医薬用容器は、単層または多層とすることができる。この場合、層の構成は特に限定されないが、内層に本ポリエチレン樹脂を使用するのが効果的である。   Further, the pharmaceutical container of the present invention can be a single layer or a multilayer. In this case, the structure of the layer is not particularly limited, but it is effective to use the present polyethylene resin for the inner layer.

本発明の医薬用容器は、その厚みが0.1〜1.5mmであることが好ましく、更には0.2〜1.0mmであることが好ましい。   The pharmaceutical container of the present invention preferably has a thickness of 0.1 to 1.5 mm, and more preferably 0.2 to 1.0 mm.

本発明の医療容器には薬液が充填される。薬液としては、蒸留水、生理食塩水、注射用水、目薬、鼻薬、洗浄液等が挙げられる。   The medical container of the present invention is filled with a chemical solution. Examples of the chemical liquid include distilled water, physiological saline, water for injection, eye drops, nasal drops, and washing liquid.

本発明の医薬用容器は減菌処理されることが好ましく、滅菌する際の滅菌方法としては、例えば高圧蒸気(オートクレーブ)滅菌法、乾熱滅菌法が挙げられる。特に高圧蒸気滅菌処理する際の滅菌温度は耐熱性と透明性のバランスから105℃以下が好ましい。   The pharmaceutical container of the present invention is preferably sterilized, and examples of the sterilization method for sterilization include a high-pressure steam (autoclave) sterilization method and a dry heat sterilization method. In particular, the sterilization temperature at the time of high-pressure steam sterilization is preferably 105 ° C. or less in view of the balance between heat resistance and transparency.

日本薬局方では医薬用容器内の水または生理食塩水に含まれる5μm以上の微粒子数が100個/ml以下の規格を設けられているが、使用に際しては微粒子数の少ない方が衛生上好ましい。本発明の医薬用容器では1μm以上の微粒子数が30個/ml以下となる。   In the Japanese Pharmacopoeia, there is a standard that the number of fine particles of 5 μm or more contained in water or physiological saline in a pharmaceutical container is 100 particles / ml or less. In the pharmaceutical container of the present invention, the number of fine particles of 1 μm or more is 30 particles / ml or less.

本発明の医薬用低密度ポリエチレン容器は、日本薬局方に適合し、製品外観、耐熱性、低溶出性、透明性に優れることから、輸液、血液等を入れる輸液容器、注射用容器、点眼容器、点鼻容器、内服液容器等の医薬容器用に好適に利用される。   The low-density polyethylene container for medical use of the present invention conforms to the Japanese Pharmacopoeia and is excellent in product appearance, heat resistance, low elution, and transparency. Therefore, an infusion container for infusion, blood, etc. It is suitably used for pharmaceutical containers such as nasal drops and internal liquid containers.

以下実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

さらに、実施例および比較例におけるポリエチレン樹脂の諸物性は、以下に示す方法により測定した。   Furthermore, various physical properties of the polyethylene resins in Examples and Comparative Examples were measured by the following methods.

〜密度の測定〜
密度は、JIS K6922−1(1997)に準拠して密度勾配管法で測定した。
~ Measurement of density ~
The density was measured by a density gradient tube method in accordance with JIS K6922-1 (1997).

〜メルトマスフローレイトの測定〜
MFRは、JIS K6922−1(1997)に準拠して190℃、2.16kg荷重で測定した。
~ Measurement of melt mass flow rate ~
MFR was measured at 190 ° C. under a load of 2.16 kg in accordance with JIS K6922-1 (1997).

〜重量平均分子量の測定〜
重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては東ソー(株)製 HLC−8121GPC/HTを用い、カラムとしては東ソー(株)製 TSKgel GMHhr−H(20)HTを用い、カラム温度を140℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は1.0mg/mLの濃度で調製し、0.3mL注入して測定した。分子量の検量線は、分子量既知のポリスチレン試料を用いて校正されている。なお、Mwは直鎖状ポリエチレン換算の値として求めた。
~ Measurement of weight average molecular weight ~
The weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC). Tosoh Co., Ltd. HLC-8121GPC / HT is used as the GPC apparatus, Tosoh Co., Ltd. TSKgel GMHhr-H (20) HT is used as the column, the column temperature is set to 140 ° C., and 1 is used as the eluent. Measurement was performed using 2,4-trichlorobenzene. A measurement sample was prepared at a concentration of 1.0 mg / mL, and 0.3 mL was injected and measured. The calibration curve of molecular weight is calibrated using a polystyrene sample having a known molecular weight. In addition, Mw was calculated | required as a value of linear polyethylene conversion.

〜熱水抽出量の測定〜
内容積1,000mlのフラスコに、試料470gと純水1Lを入れ、ガラス製水分計、還流冷却器を取り付け、7時間還流抽出を行ない、水分計に抽出された成分量を測定した。
-Measurement of hot water extraction amount-
A flask having an internal volume of 1,000 ml was charged with 470 g of a sample and 1 L of pure water, a glass moisture meter and a reflux condenser were attached, reflux extraction was performed for 7 hours, and the amount of components extracted by the moisture meter was measured.

〜末端ビニル基数の測定〜
試料を熱プレス後、氷水冷却して得たフィルムをFT−IR(PERKIN ELMER社製SPECTRUM ONE)を用いて4,000〜400cm−1の範囲で赤外スキャンし、得られた吸収スペクトルから既知検量線を用いて末端ビニル基を測定した。
-Measurement of the number of terminal vinyl groups-
The film obtained by hot pressing the sample and cooling with ice water is infrared-scanned in the range of 4,000 to 400 cm −1 using FT-IR (SPECTRUM ONE manufactured by PERKIN ELMER), and known from the obtained absorption spectrum. The terminal vinyl group was measured using a calibration curve.

〜溶融張力の測定〜
溶融張力(MS)の測定はバレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に、長さ(L)が8mm,直径(D)が2.095mm、流入角が90°のオリフィスを使用して、樹脂温度190℃、ピストン降下速度を10mm/分の条件で、引き取りに必要な荷重(mN)をMSとした。
~ Measurement of melt tension ~
Melt tension (MS) was measured with a capillary viscometer (Toyo Seiki Seisakusho, trade name: Capillograph) with a barrel diameter of 9.55 mm, a length (L) of 8 mm, a diameter (D) of 2.095 mm, and an inflow angle of 90. MS was used as the load (mN) necessary for take-up, using an orifice of ° C under the conditions of a resin temperature of 190 ° C and a piston lowering speed of 10 mm / min.

〜吸熱曲線のピーク(融点)の数〜
DSC(パーキンエルマー社製、商品名:DSC−7)を用いて測定を行なった。5〜10mgのサンプルをアルミニウムパンに挿填し、DSCに設置した後、80℃/分の昇温速度で230℃まで昇温し、230℃で3分間放置する。その後、10℃/分の降温速度で−10℃まで冷却し、再度10℃/分の昇温速度で−10℃から150℃まで昇温するの手順で昇温/降温操作を行い、2回目の昇温時に観測される吸熱曲線のピーク(融点)数を評価した。
~ Number of peaks (melting point) of endothermic curve ~
Measurement was performed using DSC (trade name: DSC-7, manufactured by Perkin Elmer). A sample of 5 to 10 mg is inserted into an aluminum pan and placed on the DSC, then heated to 230 ° C. at a heating rate of 80 ° C./min, and left at 230 ° C. for 3 minutes. Thereafter, the temperature is lowered to −10 ° C. at a temperature lowering rate of 10 ° C./min, and then the temperature is raised / lowered by the procedure of increasing the temperature from −10 ° C. to 150 ° C. at the rate of 10 ° C./min. The number of peaks (melting point) of the endothermic curve observed when the temperature was increased was evaluated.

〜強熱残分の測定〜
日本薬局方に規定の強熱残分試験法に準拠し、試料50gを精秤した後、白金皿に入れてガスバーナーにより燃焼させ、さらに電気炉で650℃×1時間の条件で完全灰化させたときの残留物の重量を秤量し、初期重量に対する百分率を求めることによって算出した。
-Measurement of ignition residue-
In accordance with the Japanese Pharmacopoeia stipulated by the ignition residue test method, weigh accurately 50 g of the sample, put it in a platinum dish and burn it with a gas burner, and then complete ashing in an electric furnace at 650 ° C x 1 hour The weight of the residue was measured, and the percentage was calculated by calculating the percentage with respect to the initial weight.

〜加工性の評価〜
実施例1に示す方法により容器を作製し、容器のバリ取り性を評価した。バリ取り性が良好なものを○、バリ取り性が悪いものを×とした。
~ Processability evaluation ~
A container was prepared by the method shown in Example 1, and the deburring property of the container was evaluated. A sample having a good deburring property was indicated by ◯, and a sample having poor deburring property was indicated by ×.

〜製品外観の評価〜
上記の成形で得られた容器の内側を観察した。シャークスキン、メルトフラクチャーの発生がないものを○、発生したものを×とした。
~ Evaluation of product appearance ~
The inside of the container obtained by the above molding was observed. The case where no sharkskin or melt fracture occurred was rated as “◯”, and the case where it was generated was marked as “X”.

〜耐熱性の評価〜
日本薬局方に準拠し、実施例1に示す方法により作製した容器をオートクレーブ内にセットした後、105℃の温度で30分間加熱処理した後、室温まで冷却後、容器を取り出し、外観を以下の項目について観察して評価した。容器の波打ち状態を観察した。ほとんど波打ちが見られず変形度合いが小さかったものを○、容器の波打ちが大きく、容器の変形が大きかったものを×とした。肌荒れ状態を観察した。容器の表面に斑点状の模様が見られなかったものを○、容器表面に数個の斑点状の模様が見られたものを×とした。
~ Evaluation of heat resistance ~
In accordance with the Japanese Pharmacopoeia, after setting the container produced by the method shown in Example 1 in an autoclave, heat-treating at a temperature of 105 ° C. for 30 minutes, cooling to room temperature, taking out the container, Items were observed and evaluated. The waved state of the container was observed. The case where almost no undulation was observed and the degree of deformation was small was marked with ◯, and the case where the waving of the container was large and the deformation of the container was large was marked with x. The rough skin was observed. The case where no spotted pattern was seen on the surface of the container was marked with ◯, and the case where several spotted patterns were seen on the surface of the container was marked with x.

〜透明性の評価〜
耐熱性の評価を行った後の容器の胴部の中心付近より幅9.5mm、長さ50mmのサンプルを切り出し、島津製作所製、紫外可視分光光度計(商品名UV−1600)を用いて、純水中で波長450nmの透過率を測定した。55%以上を合格、55%未満を不合格とした。
~ Evaluation of transparency ~
A sample having a width of 9.5 mm and a length of 50 mm was cut out from the vicinity of the center of the body of the container after the heat resistance evaluation, and an ultraviolet-visible spectrophotometer (trade name UV-1600) manufactured by Shimadzu Corporation was used. The transmittance at a wavelength of 450 nm was measured in pure water. More than 55% was accepted and less than 55% was rejected.

〜微粒子数の測定〜
耐熱性の評価を行った後の容器内の純水を室温で一定期間放置した後、HIAC/ROYCO社製液体微粒子カウンター・シリーズ4100で、0.1μm以上の微粒子の数を測定した。全ての操作は、クラス1000のクリーンルーム内で行った。
-Measurement of the number of fine particles-
After pure water in the container after the heat resistance evaluation was allowed to stand at room temperature for a certain period, the number of fine particles of 0.1 μm or more was measured with a liquid fine particle counter series 4100 manufactured by HIAC / ROYCO. All operations were performed in a Class 1000 clean room.

〜TOC(全有機炭素)の測定〜
耐熱性の評価を行った後の容器内の純水を室温で一定期間放置した後、島津製作所社製TOC分析装置TOC−VCSHで、TOCを測定した。TOCは純水中の酸化されうる有機物の全量を、主要構成成分である炭素の量で示したものであり、有機物中の炭素を酸化して二酸化炭素とし、赤外吸収法で定量した。
-Measurement of TOC (total organic carbon)-
After the pure water in the container after the heat resistance evaluation was allowed to stand at room temperature for a certain period, the TOC was measured with a TOC analyzer TOC-V CSH manufactured by Shimadzu Corporation. TOC indicates the total amount of organic matter that can be oxidized in pure water in terms of the amount of carbon, which is the main component, and the carbon in the organic matter is oxidized to carbon dioxide and quantified by an infrared absorption method.

合成例1
〔エチレン・α−オレフィン共重合体の製造〕
実施例および比較例に使用したエチレン・α−オレフィン共重合体[B1]及び[B2]は、以下の方法で製造した。
Synthesis example 1
[Production of ethylene / α-olefin copolymer]
The ethylene / α-olefin copolymers [B1] and [B2] used in Examples and Comparative Examples were produced by the following method.

重合操作、反応および溶媒精製は、すべて不活性ガス雰囲気下で行った。また、反応に用いた溶媒等は、すべて予め公知の方法で精製、乾燥、脱酸素を行ったものを用いた。さらに、反応に用いた化合物は、公知の方法により合成、同定したものを用いた。
<触媒(A)の調製>
窒素雰囲気下、脱水ヘプタン4.6リットルにトリエチルアルミニウム(アルミニウム原子当たり4.5mol)を加え溶解した。その溶液にジフェニルメチレン(シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロライド(ジルコニウム原子当たり10mmol)の粉末を加え得られた赤色懸濁液に、更にN,N−ジメチル−アニリニウム塩酸塩変性されたヘクトライト(ヘクトライト1kgあたり1molのN,N−ジメチル−アニリニウム塩酸塩を含有)の粉末300gを加えて触媒(A)を得た。この触媒溶液に肪族系飽和炭化水素溶媒(IPソルベント2835(出光石油化学社製))を加えることにより、触媒濃度をジルコニウム原子あたりの濃度(0.5mmol/L)に調製した。
<重合>
重合反応は触媒(A)を用いて槽型反応器により行った。エチレン・α−オレフィン共重合体[B1]の重合方法および条件は以下のとおりである。原料であるエチレン、1−ヘキセンおよび反応の希釈溶媒であるエタンを連続的に反応器内に圧入して、内装される攪拌機の回転数を1,500rpmとして反応系を均一となるように十分攪拌しながら全圧を90MPaに保ち重合を行った。その際1−ヘキセン濃度を23.0mol%になるように原料導入量を制御した。
The polymerization operation, reaction and solvent purification were all performed under an inert gas atmosphere. Moreover, the solvent etc. which were used for the reaction were all purified, dried and deoxygenated by a known method in advance. Furthermore, the compound used for the reaction was synthesized and identified by a known method.
<Preparation of catalyst (A)>
Under a nitrogen atmosphere, triethylaluminum (4.5 mol per aluminum atom) was added and dissolved in 4.6 liters of dehydrated heptane. Diphenylmethylene (cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride (10 mmol per zirconium atom) was added to the solution, and the resulting red suspension was further mixed with N, N-dimethyl-anilinium hydrochloride-modified hectorite (containing 1 mol of N, N-dimethyl-anilinium hydrochloride per kg of hectorite) powder (300 g) was added to obtain catalyst (A). An aliphatic saturated hydrocarbon solvent (IP solvent 2835 (manufactured by Idemitsu Petrochemical Co., Ltd.)) was added to the catalyst solution to adjust the catalyst concentration to a concentration per zirconium atom (0.5 mmol / L).
<Polymerization>
The polymerization reaction was performed in a tank reactor using the catalyst (A). The polymerization method and conditions of the ethylene / α-olefin copolymer [B1] are as follows. Ethylene, 1-hexene as raw materials, and ethane as a dilution solvent for the reaction were continuously injected into the reactor, and the internal stirring system was rotated at 1,500 rpm to sufficiently stir the reaction system. While maintaining the total pressure at 90 MPa, polymerization was carried out. At that time, the raw material introduction amount was controlled so that the 1-hexene concentration was 23.0 mol%.

そして、触媒(A)を反応器の供給口より連続的に供給して、触媒供給量にて平均温度が213℃に保たれるように重合を行った。得られたエチレン・α−オレフィン共重合体[B1]はメルトマスフローレイト=4.0、密度=923kg/m、Mw/Mn=2.9、融点が1つ、強熱残分が0.03重量%であった。 Then, the catalyst (A) was continuously supplied from the supply port of the reactor, and polymerization was performed so that the average temperature was maintained at 213 ° C. with the amount of catalyst supplied. The obtained ethylene / α-olefin copolymer [B1] had a melt mass flow rate of 4.0, a density of 923 kg / m 3 , an Mw / Mn of 2.9, a melting point of 1, and an ignition residue of 0.8. It was 03% by weight.

合成例2
重合時の1−ヘキセン濃度を30.0mol%、平均重合温度を195℃とした以外は、合成例1と同様にして重合を行い、エチレン・ヘキセン−1共重合体[B2]を得た。得られたエチレン・α−オレフィン共重合体[B2]はメルトマスフローレイト=2.0g/10min、密度=920kg/m、Mw/Mn=2.2、融点が1つ、強熱残分が0.02重量%であった。
Synthesis example 2
Polymerization was carried out in the same manner as in Synthesis Example 1 except that the 1-hexene concentration during polymerization was 30.0 mol% and the average polymerization temperature was 195 ° C., to obtain an ethylene / hexene-1 copolymer [B2]. The obtained ethylene / α-olefin copolymer [B2] has a melt mass flow rate = 2.0 g / 10 min, a density = 920 kg / m 3 , Mw / Mn = 2.2, a melting point of 1, and an ignition residue. 0.02% by weight.

実施例1
低密度ポリエチレン[A1](東ソー(株)製、商品名ペトロセン175K−1、メルトマスフローレイト=0.6g/10min、密度=922kg/m)を下記の条件で容器の製造、滅菌処理を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であり、微粒子数、TOCも少なかった。
Example 1
Low-density polyethylene [A1] (product name Petrocene 175K-1, melt mass flow rate = 0.6 g / 10 min, density = 922 kg / m 3 ) manufactured by Tosoh Corporation is manufactured and sterilized under the following conditions. The processability and product properties were evaluated. Workability, product appearance, heat resistance, and transparency were good, and the number of fine particles and TOC were low.

[同時充填ブロー成形]
低密度ポリエチレン樹脂[A1]を180℃に設定した65mmφの押出スクリューを有するブロー成形機(プラコー社製)に投入し、スクリュー回転数10rpmでパリソンを押し出す。押し出されたパリソンを25℃に設定された200ml容器用の金型で挟み込み、ブローピンよりエアーを吹き込み、純水を100ml充填した後、口部をシールすることによって得られる。
[Simultaneous filling blow molding]
The low density polyethylene resin [A1] is charged into a blow molding machine (Placo) having a 65 mmφ extrusion screw set at 180 ° C., and the parison is extruded at a screw rotation speed of 10 rpm. The extruded parison is sandwiched between molds for a 200 ml container set at 25 ° C., blown with air from a blow pin, filled with 100 ml of pure water, and then sealed at the mouth.

[滅菌処理]
上記操作で得られた容器を日阪製作所製高温高圧調理殺菌機内にセットして105℃で30分間加熱処理を行い、サンプルを室温まで冷却した。
[Sterilization]
The container obtained by the above operation was set in a high-temperature and high-pressure cooking sterilizer manufactured by Hisaka Seisakusho and subjected to heat treatment at 105 ° C. for 30 minutes, and the sample was cooled to room temperature.

実施例2
低密度ポリエチレン樹脂を[A2] (東ソー(株)製、商品名ペトロセン170K、メルトマスフローレイト=1.0g/10min、密度=920kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であり、微粒子数、TOCも少なかった。
Example 2
The same operation as in Example 1 was performed except that the low-density polyethylene resin was changed to [A2] (trade name Petrocene 170K, melt mass flow rate = 1.0 g / 10 min, density = 920 kg / m 3 ) manufactured by Tosoh Corporation. The processability and product properties were evaluated. Workability, product appearance, heat resistance, and transparency were good, and the number of fine particles and TOC were low.

実施例3
低密度ポリエチレン樹脂を[A3] (東ソー(株)製、商品名ペトロセン05K03A、メルトマスフローレイト=3.2g/10min、密度=922kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であり、微粒子数、TOCも少なかった。
Example 3
The same operation as in Example 1 was carried out except that the low density polyethylene resin was changed to [A3] (trade name Petrocene 05K03A, melt mass flow rate = 3.2 g / 10 min, density = 922 kg / m 3 ) manufactured by Tosoh Corporation. The processability and product properties were evaluated. Workability, product appearance, heat resistance, and transparency were good, and the number of fine particles and TOC were low.

実施例4
低密度ポリエチレン[A1](東ソー(株)製、商品名ペトロセン175K−1、メルトマスフローレイト=0.6g/10min、密度=922kg/m)100重量部、合成例1で得られたエチレン・α−オレフィン共重合体[B1]25重量部をタンブラーでドライブレンド後、210℃に設定したブロー成形機で実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であり、微粒子数、TOCも少なかった。
Example 4
Low-density polyethylene [A1] (manufactured by Tosoh Corporation, trade name Petrocene 175K-1, melt mass flow rate = 0.6 g / 10 min, density = 922 kg / m 3 ), 100 parts by weight; After dry blending 25 parts by weight of the α-olefin copolymer [B1] with a tumbler, the same operation as in Example 1 was performed with a blow molding machine set at 210 ° C. to evaluate workability and product physical properties. Workability, product appearance, heat resistance, and transparency were good, and the number of fine particles and TOC were low.

比較例1
低密度ポリエチレン樹脂を[A3] (東ソー(株)製、商品名ペトロセン175K、メルトマスフローレイト=0.6g/10min、密度=922kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であるものの、微粒子数、TOCは多かった。
Comparative Example 1
The same operation as in Example 1 was performed except that the low-density polyethylene resin was changed to [A3] (trade name Petrocene 175K, melt mass flow rate = 0.6 g / 10 min, density = 922 kg / m 3 ) manufactured by Tosoh Corporation. The processability and product properties were evaluated. Although the processability, product appearance, heat resistance and transparency were good, the number of fine particles and TOC were large.

比較例2
低密度ポリエチレン樹脂を[A4] (東ソー(株)製、商品名ペトロセン170R、メルトマスフローレイト=1.0g/10min、密度=920kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であるものの、微粒子数、TOCは多かった。
Comparative Example 2
The same operation as in Example 1 was performed except that the low-density polyethylene resin was [A4] (trade name Petrocene 170R, melt mass flow rate = 1.0 g / 10 min, density = 920 kg / m 3 , manufactured by Tosoh Corporation). The processability and product properties were evaluated. Although the processability, product appearance, heat resistance and transparency were good, the number of fine particles and TOC were large.

比較例3
低密度ポリエチレン樹脂を[A5] (東ソー(株)製、商品名ペトロセン05C01A、メルトマスフローレイト=0.6g/10min、密度=923kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、耐熱性、透明性は良好であり、微粒子数、TOCも少なかったものの、製品外観が悪化した。
Comparative Example 3
The same operation as in Example 1 was performed except that the low density polyethylene resin was changed to [A5] (trade name Petrocene 05C01A, melt mass flow rate = 0.6 g / 10 min, density = 923 kg / m 3 , manufactured by Tosoh Corporation). The processability and product properties were evaluated. Although the processability, heat resistance and transparency were good and the number of fine particles and TOC were small, the product appearance deteriorated.

比較例4
低密度ポリエチレン樹脂を[A7] (東ソー(株)製、商品名ペトロセン360−1、メルトマスフローレイト=1.6g/10min、密度=919kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、耐熱性、透明性は良好であり、微粒子数、TOCも少なかったものの、製品外観が悪化した。
Comparative Example 4
The same operation as in Example 1 except that [A7] (trade name Petrocene 360-1, Melt Mass Flow Rate = 1.6 g / 10 min, density = 919 kg / m 3 ) manufactured by Tosoh Corporation was used as the low density polyethylene resin. The processability and product properties were evaluated. Although the processability, heat resistance and transparency were good and the number of fine particles and TOC were small, the product appearance deteriorated.

比較例5
低密度ポリエチレン[A1](東ソー(株)製、商品名ペトロセン175K−1、メルトマスフローレイト=0.6g/10min、密度=922kg/m)100重量部、合成例2で得られたエチレン・α−オレフィン共重合体[B2]100重量部をタンブラーでドライブレンド後、210℃に設定したブロー成形機で実施例1と同様の操作を行い、加工性と製品物性を評価した。耐熱性、透明性は良好であり、微粒子数、TOCも少なかったものの、加工時のパリソン径が大きくなり、バリ取り性、製品外観が悪化した。
Comparative Example 5
Low-density polyethylene [A1] (manufactured by Tosoh Corporation, trade name Petrocene 175K-1, melt mass flow rate = 0.6 g / 10 min, density = 922 kg / m 3 ) 100 parts by weight, ethylene After 100 parts by weight of α-olefin copolymer [B2] was dry blended with a tumbler, the same operations as in Example 1 were performed on a blow molding machine set at 210 ° C. to evaluate workability and product physical properties. Although the heat resistance and transparency were good and the number of fine particles and TOC were small, the parison diameter during processing increased, and the deburring property and product appearance deteriorated.

比較例6
低密度ポリエチレン樹脂を[A8] (日本ユニカー(株)製、商品名NUCポリエチレンDND−2450M、メルトマスフローレイト=1.0g/10min、密度=921kg/m)とした以外は実施例1と同様の操作を行い、加工性と製品物性を評価した。加工性、製品外観、耐熱性、透明性は良好であるものの、微粒子数、TOCは多かった。
Comparative Example 6
Example 1 except that the low density polyethylene resin was [A8] (trade name NUC polyethylene DND-2450M, melt mass flow rate = 1.0 g / 10 min, density = 921 kg / m 3 , manufactured by Nippon Unicar Co., Ltd.) The process and the physical properties of the product were evaluated. Although the processability, product appearance, heat resistance and transparency were good, the number of fine particles and TOC were large.

Figure 2008307146
Figure 2008307146

Figure 2008307146
Figure 2008307146

Figure 2008307146
Figure 2008307146

Claims (5)

下記(1)〜(6)の特性を満たす管状型リアクターを用いて製造された高圧法低密度ポリエチレンからなることを特徴とする医薬用容器。
(1)JIS K6922−1に準拠した密度が910〜935kg/m
(2)JIS K6922−1に準拠したメルトマスフローレイト(MFR)が0.1〜4g/10min、
(3)ゲル・パーミエーション・クロマトグラフィーにより求められる重量平均分子量(Mw)とJIS K6922−1に準拠したメルトマスフローレイトの関係が下記の条件を満たす。
−9,200×MFR+99,000<重量平均分子量(Mw)<−9,200×MFR+100,700
(4)試料470gを純水1Lで7時間還流抽出した熱水抽出量が0.02ml以下、
(5)1,000個の炭素原子当たりの末端ビニル基数が0.13個以下、
(6)190℃における溶融張力とJIS K6922−1に準拠したメルトマスフローレイトの関係が下記の条件を満たす。
溶融張力(mN)≦116.98×MFR−0.5383
A pharmaceutical container comprising a high-pressure low-density polyethylene manufactured using a tubular reactor that satisfies the following characteristics (1) to (6).
(1) A density based on JIS K6922-1 is 910 to 935 kg / m 3 ,
(2) Melt mass flow rate (MFR) based on JIS K6922-1 is 0.1 to 4 g / 10 min,
(3) The relationship between the weight average molecular weight (Mw) obtained by gel permeation chromatography and the melt mass flow rate based on JIS K6922-1 satisfies the following conditions.
−9,200 × MFR + 99,000 <weight average molecular weight (Mw) <− 9,200 × MFR + 100,700
(4) The amount of hot water extracted by reflux extraction of 470 g of sample with 1 L of pure water for 7 hours is 0.02 ml or less,
(5) The number of terminal vinyl groups per 1,000 carbon atoms is 0.13 or less,
(6) The relationship between the melt tension at 190 ° C. and the melt mass flow rate based on JIS K6922-1 satisfies the following conditions.
Melt tension (mN) ≦ 116.98 × MFR −0.5383
請求項1記載の高圧法低密度ポリエチレン100重量部に対し、さらに(7)〜(12)の特性を満たすエチレン・α−オレフィン共重合体0〜67重量部を含んでなることを特徴とする請求項1記載の医薬用容器。
(7)エチレンと炭素数3〜20のα−オレフィンとの共重合体であり、
(8)JIS K6922−1に準拠した密度が880〜940kg/m
(9)JIS K6922−1に準拠したメルトマスフローレイトが0.1〜5g/10min、
(10)ゲル・パーミエーション・クロマトグラフィーにより求められる重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が1.5〜3.0であり、
(11)DSC(示差走査型熱量計)により測定された吸熱曲線のピ−ク(融点)が1つであり、
(12)日本薬局方に規定の強熱残分試験法による残分が0.1重量%以下である。
It further comprises 0 to 67 parts by weight of an ethylene / α-olefin copolymer satisfying the characteristics (7) to (12) with respect to 100 parts by weight of the high-pressure method low-density polyethylene according to claim 1. The pharmaceutical container according to claim 1.
(7) A copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms,
(8) The density based on JIS K6922-1 is 880 to 940 kg / m 3 ,
(9) The melt mass flow rate based on JIS K6922-1 is 0.1 to 5 g / 10 min,
(10) The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) determined by gel permeation chromatography is 1.5 to 3.0,
(11) The peak (melting point) of the endothermic curve measured by DSC (differential scanning calorimeter) is one,
(12) The residue by the ignition residue test method prescribed in the Japanese Pharmacopoeia is 0.1% by weight or less.
ブロー成形法により成形されたことを特徴とする請求項1または2記載の医薬用容器。 The pharmaceutical container according to claim 1 or 2, which is molded by a blow molding method. 薬液が充填されたことを特徴とする請求項1〜3のいずれかに記載の医薬用容器。 The medical container according to any one of claims 1 to 3, which is filled with a chemical solution. 滅菌処理されたことを特徴とする請求項1〜4のいずれかに記載の医薬用容器。 The pharmaceutical container according to any one of claims 1 to 4, which has been sterilized.
JP2007155927A 2007-06-13 2007-06-13 Pharmaceutical low density polyethylene container Active JP4962151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007155927A JP4962151B2 (en) 2007-06-13 2007-06-13 Pharmaceutical low density polyethylene container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155927A JP4962151B2 (en) 2007-06-13 2007-06-13 Pharmaceutical low density polyethylene container

Publications (2)

Publication Number Publication Date
JP2008307146A true JP2008307146A (en) 2008-12-25
JP4962151B2 JP4962151B2 (en) 2012-06-27

Family

ID=40235313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155927A Active JP4962151B2 (en) 2007-06-13 2007-06-13 Pharmaceutical low density polyethylene container

Country Status (1)

Country Link
JP (1) JP4962151B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196878A (en) * 2011-03-22 2012-10-18 Terumo Corp Method of manufacturing chemical container, and chemical container
US8969501B2 (en) 2009-11-10 2015-03-03 Basell Polyolefine Gmbh High pressure LDPE for medical applications
JP2015042557A (en) * 2013-08-26 2015-03-05 東ソー株式会社 Transparent container for liquid
JP2015535782A (en) * 2012-09-25 2015-12-17 アプタル ラドルフツエル ゲーエムベーハ Liquid distributor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023034685A1 (en) 2021-09-01 2023-03-09 Exxonmobil Chemical Patents Inc. Variable temperature tubular reactor profiles and intermediate density polyethylene compositions produced therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180258A (en) * 1997-09-03 1999-03-26 Tosoh Corp Polyethylene resin for highly pure chemical container, composition and highly pure chemical container comprising same
JPH11164874A (en) * 1997-12-08 1999-06-22 Nippon Polyolefin Kk Resin composition for medical transfusion vessel and medical transfusion vessel
JPH11286522A (en) * 1998-04-02 1999-10-19 Nippon Unicar Co Ltd High-melting and low-density polyethylene resin
JP2000202002A (en) * 1998-11-13 2000-07-25 Tosoh Corp Heat-resistant container for medical use
JP2006131712A (en) * 2004-11-04 2006-05-25 Tosoh Corp Resin cap
JP2006182941A (en) * 2004-12-28 2006-07-13 Nippon Polyethylene Kk Polyethylenic resin raw material for water crosslinking, polyethylenic resin composition for water crosslinking and water-crosslinked polyethylenic resin molded product using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180258A (en) * 1997-09-03 1999-03-26 Tosoh Corp Polyethylene resin for highly pure chemical container, composition and highly pure chemical container comprising same
JPH11164874A (en) * 1997-12-08 1999-06-22 Nippon Polyolefin Kk Resin composition for medical transfusion vessel and medical transfusion vessel
JPH11286522A (en) * 1998-04-02 1999-10-19 Nippon Unicar Co Ltd High-melting and low-density polyethylene resin
JP2000202002A (en) * 1998-11-13 2000-07-25 Tosoh Corp Heat-resistant container for medical use
JP2006131712A (en) * 2004-11-04 2006-05-25 Tosoh Corp Resin cap
JP2006182941A (en) * 2004-12-28 2006-07-13 Nippon Polyethylene Kk Polyethylenic resin raw material for water crosslinking, polyethylenic resin composition for water crosslinking and water-crosslinked polyethylenic resin molded product using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969501B2 (en) 2009-11-10 2015-03-03 Basell Polyolefine Gmbh High pressure LDPE for medical applications
JP2012196878A (en) * 2011-03-22 2012-10-18 Terumo Corp Method of manufacturing chemical container, and chemical container
JP2015535782A (en) * 2012-09-25 2015-12-17 アプタル ラドルフツエル ゲーエムベーハ Liquid distributor
US10538369B2 (en) 2012-09-25 2020-01-21 Aptar Radolfzell Gmbh Liquid dispenser
JP2015042557A (en) * 2013-08-26 2015-03-05 東ソー株式会社 Transparent container for liquid

Also Published As

Publication number Publication date
JP4962151B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP2006501351A (en) Polyethylene composition for rotational molding
JP6295588B2 (en) Polyethylene resin composition and medical container comprising the same
JPS62151429A (en) Production of porous film or sheet
JP5012151B2 (en) Pharmaceutical container
JP4962151B2 (en) Pharmaceutical low density polyethylene container
JP4705703B2 (en) Polypropylene medical blow container
JP2006314490A (en) Medical container
JP6458434B2 (en) Resin composition and transparent heat-resistant container
JP5909972B2 (en) Pharmaceutical container
JP2001064426A (en) Porous film and its production
TW200846378A (en) Monomodal copolymer of ethylene for injection molding and process for its preparation
JP6840950B2 (en) Polyethylene resin composition and container
JP4639590B2 (en) Resin composition and container comprising the same
JP6699175B2 (en) Polyethylene resin composition and medical container comprising the same
JP5281220B2 (en) Resin composition and container comprising the same
JP2000129045A (en) Clean vessel made of polyethylene
JP6357841B2 (en) Transparent liquid container
JP7110630B2 (en) Polyethylene resin composition and container
JP2017141408A (en) Tube comprising polyethylene resin composition
JP6436612B2 (en) Transparent heat-resistant container
JPWO2019139125A1 (en) Propylene resin compositions, moldings and containers
JP2015042557A (en) Transparent container for liquid
JP2003137928A (en) Highly glossy blow container
JP2018115268A (en) Film and medical container
JP5919768B2 (en) Film with excellent blocking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R151 Written notification of patent or utility model registration

Ref document number: 4962151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3