JP2008303413A - High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same - Google Patents

High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same Download PDF

Info

Publication number
JP2008303413A
JP2008303413A JP2007149840A JP2007149840A JP2008303413A JP 2008303413 A JP2008303413 A JP 2008303413A JP 2007149840 A JP2007149840 A JP 2007149840A JP 2007149840 A JP2007149840 A JP 2007149840A JP 2008303413 A JP2008303413 A JP 2008303413A
Authority
JP
Japan
Prior art keywords
nitrogen
powder
stainless steel
corrosion resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007149840A
Other languages
Japanese (ja)
Inventor
Daien Yokoi
大円 横井
Yasushi Haruna
靖志 春名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2007149840A priority Critical patent/JP2008303413A/en
Publication of JP2008303413A publication Critical patent/JP2008303413A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high nitrogen stainless steel powder for solidification molding which is free of Ni or reduced in Ni, and is excellent in corrosion resistance, and to provide a method for producing the high nitrogen stainless steel powder. <P>SOLUTION: The high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance is obtained by absorbing nitrogen into alloy powder comprising, by mass, 0 to 5.0% Ni and 10.0 to 40.0% Cr and incorporating ≥0.5% N therein, and in which the maximum size of CrN at the inside of the powder is 3 μm. Also, the high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance is obtained by absorbing nitrogen into alloy powder comprising 0.1 to 15.0% Mn and 0.1 to 20.0% Mo, and further comprising 0.1 to 10.0% Cu, 0.3 to 2.0% Si and ≤0.2% C in addition to the above componential composition and incorporating ≥0.5% N therein, and in which the maximum size of CrN at the inside of the powder is 3 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Niフリー、省Ni型の耐食性に優れた固化成形用高窒素ステンレス鋼粉末およびその製造方法に関する。   The present invention relates to a Ni-free, Ni-saving high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance and a method for producing the same.

従来、ステンレス鋼を製造するに当たり、Niはステンレス鋼に耐食性を付与する上で重要な合金元素であり、多量に添加されてきたが、一方で非常に高価な合金元素であり、価格変動も大きいことからその添加量をできるだけ減らすことが望まれてきた。また、医療用のインプラント、装飾品、食器類など人体と接触する用途では、Niアレルギーが問題になっており、NiフリーまたはNi低減が望まれている。   Conventionally, in producing stainless steel, Ni is an important alloying element for imparting corrosion resistance to stainless steel, and has been added in a large amount, but on the other hand, it is an extremely expensive alloying element and has a large price fluctuation. Therefore, it has been desired to reduce the amount of addition as much as possible. Moreover, Ni allergy is a problem in applications that come into contact with the human body, such as medical implants, ornaments, and tableware, and Ni-free or Ni reduction is desired.

一方、上述したように、窒素はオーステナイトの安定化、耐食性、強度、靭性の向上に寄与する元素であり、ステンレス鋼でのNi代替、高性能化が注目されている。高窒素ステンレス鋼の製造には、加圧溶解法、固相吸収法、粉末焼結法、メカニカルアロイング法など様々な方法が提案されているが、いずれもコスト、生産性の点で工業的生産への適用には多くの課題があり、低コストでかつ安定した性能を有する高窒素ステンレス鋼の製造方法が望まれている。   On the other hand, as described above, nitrogen is an element that contributes to stabilization of austenite, corrosion resistance, strength, and toughness, and attention has been paid to Ni replacement with stainless steel and higher performance. Various methods such as pressure melting method, solid phase absorption method, powder sintering method and mechanical alloying method have been proposed for the production of high nitrogen stainless steel, all of which are industrial in terms of cost and productivity. There are many problems in application to production, and a manufacturing method of high nitrogen stainless steel having low cost and stable performance is desired.

そこで、例えば高窒素ステンレス鋼の製造方法として、特開2005−2431号公報(特許文献1)に開示されているように、溶鋼中に窒素ガスを吹き込み、加窒して高窒素ステンレス鋼を溶製する方法や特開平11−246928号公報(特許文献2)に開示されているように、ガスアトマイズされたステンレス鋼を軟鋼カプセルに充填し、減圧下で窒化させた後、熱間押出し法により棒鋼、鋼管または板材に固化成形する方法が提案されている。   Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No. 2005-2431 (Patent Document 1), as a method for producing high nitrogen stainless steel, nitrogen gas is blown into the molten steel, and nitriding is performed to dissolve the high nitrogen stainless steel. As disclosed in Japanese Patent Laid-Open No. 11-246828 (Patent Document 2), a gas atomized stainless steel is filled in a mild steel capsule, nitrided under reduced pressure, and then hot bar extruded by a hot extrusion method. A method of solidifying and forming a steel pipe or plate material has been proposed.

また、加圧溶製法として、例えば特開2006−52452号公報(特許文献3)に開示されているように、Cr:15〜35%、Mo:0.05〜8%、Mn:0.2〜10%、Cu:0.01〜4%、N:0.8〜1.5%に規制したNiレスの高窒素オーステナイト系ステンレス鋼が提案されている。また、加圧ESRとして、特開2007−51368号公報(特許文献4)に開示されているように、Cr:14〜30%、Mo:1〜10%、Mn:0〜1.5%、N:1.0〜2.0%に規制したNiレスの高窒素ステンレス鋼が提案されている。   Further, as a pressure melting method, for example, as disclosed in JP-A-2006-524252 (Patent Document 3), Cr: 15 to 35%, Mo: 0.05 to 8%, Mn: 0.2 Ni-less high-nitrogen austenitic stainless steels that are regulated to 10%, Cu: 0.01-4%, and N: 0.8-1.5% have been proposed. Further, as disclosed in JP 2007-51368 A (Patent Document 4), as pressure ESR, Cr: 14 to 30%, Mo: 1 to 10%, Mn: 0 to 1.5%, N: Ni-less high nitrogen stainless steel restricted to 1.0 to 2.0% has been proposed.

さらに、窒素雰囲気下での粉末焼結法として、例えば特開平2−57661号公報(特許文献5)に開示されているように、粉末を窒素ガス雰囲気中で焼結し、高窒素ステンレス鋼を製造する方法が提案されている。
特開2005−2431号公報 特開平11−246928号公報 特開2006−52452号公報 特開2007−51368号公報 特開平2−57661号公報
Further, as a powder sintering method under a nitrogen atmosphere, as disclosed in, for example, Japanese Patent Laid-Open No. 2-57661 (Patent Document 5), the powder is sintered in a nitrogen gas atmosphere, and a high nitrogen stainless steel is obtained. A manufacturing method has been proposed.
JP 2005-2431 A JP-A-11-246828 JP 2006-52452 A JP 2007-51368 A JP-A-2-57661

上述した特許文献1は溶鋼に直接窒素を添加するもので、比較的容易に鋼窒素鋼を製造することができる。しかし、加工せずに窒素添加するため、本発明で対象とした0.5%(5000ppm)以上は難しいという問題がある。また、特許文献2に示す粉末−キャニング−窒化法や特許文献5に示す窒素雰囲気下での粉末焼結法は比較的容易に高窒素鋼を製造することができるが、しかし、高温での窒化処理中に粉末同士が焼結し易く、均質な窒素の分布を得ることが難しく、大型品の製造が難しいという問題がある。   Patent document 1 mentioned above adds nitrogen directly to molten steel, and can manufacture steel nitrogen steel comparatively easily. However, since nitrogen is added without processing, there is a problem that 0.5% (5000 ppm) or more, which is the subject of the present invention, is difficult. In addition, the powder-canning-nitriding method shown in Patent Document 2 and the powder sintering method in a nitrogen atmosphere shown in Patent Document 5 can produce high nitrogen steel relatively easily, but nitriding at a high temperature. There is a problem in that powders are easily sintered during processing, it is difficult to obtain a uniform nitrogen distribution, and it is difficult to produce a large product.

さらに、特許文献3に示す加圧溶製法や特許文献4に示す加圧ESR法は引用文献1と同様に、溶鋼に直接窒素を添加することが可能であり、比較的大きいものでも製造できる。しかし、加圧誘導炉や加圧ESRなど特殊な溶解設備を必要とするし、高窒素鋼は加工硬化が著しいため、鋼塊から鋼材に加工、成形するのが難しいという問題がある。   Further, the pressure melting method shown in Patent Document 3 and the pressure ESR method shown in Patent Document 4 can add nitrogen directly to the molten steel, as in Reference Document 1, and can be manufactured even if it is relatively large. However, special melting equipment such as a pressure induction furnace and a pressure ESR is required, and high nitrogen steel has a problem that it is difficult to process and form steel ingots from steel ingots because work hardening is remarkable.

上述したような問題を解消するために発明者らは鋭意開発を進めた結果、窒素はオーステナイト相の安定化、耐食性、強度、靱性の向上に寄与することから、粉末に高窒素を含有させることにより、高価なNiフリーもしくは少量添加とする。そのためには、粉末状態で低温窒化することにより、窒化中の焼結を抑制し、各粉末に均一に窒素を含有させた高窒素ステンレス鋼の製造方法を提供するものである。   As a result of diligent development by the inventors to solve the above-mentioned problems, nitrogen contributes to the stabilization of the austenite phase, corrosion resistance, strength, and toughness. Therefore, expensive Ni-free or a small amount is added. For this purpose, a method for producing high nitrogen stainless steel in which sintering during nitriding is suppressed by low-temperature nitriding in a powder state and nitrogen is uniformly contained in each powder is provided.

その発明の要旨とするところは、
(1)質量%で、Ni:0〜5.0%、Cr:10.0〜40.0%を含む合金粉末に窒素を吸収させて、0.5%以上のNを含有させ、かつ粉末内部のCrNの最大径が3μm以下になることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。
The gist of the invention is that
(1) Nitrogen is absorbed in an alloy powder containing Ni: 0 to 5.0% and Cr: 10.0 to 40.0% by mass%, and 0.5% or more of N is contained, and the powder High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, characterized in that the maximum diameter of internal CrN is 3 μm or less.

(2)質量%で、Ni:0〜5.0%、Cr:10.0〜40.0%、Mn:0.1〜15.0%、Mo:0.1〜20.0%含む合金粉末に窒素を吸収させて、0.5%以上のNを含有させ、かつ粉末内部のCrNの最大径が3μm以下になることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。   (2) Alloy containing Ni: 0 to 5.0%, Cr: 10.0 to 40.0%, Mn: 0.1 to 15.0%, Mo: 0.1 to 20.0% by mass A high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, characterized in that nitrogen is absorbed into the powder to contain 0.5% or more of N, and the maximum diameter of CrN inside the powder is 3 μm or less.

(3)質量%で、Ni:0〜5.0%、Cr:10.0〜40.0%、Mn:0.1〜15.0%、Mo:0.1〜20.0%、Cu:0.1〜10.0%、Si:0.3〜2.0%、C:0.2%以下を含む合金粉末に窒素を吸収させて、0.5%以上のNを含有させ、かつ粉末内部のCrNの最大径が3μm以下になることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。   (3) In mass%, Ni: 0 to 5.0%, Cr: 10.0 to 40.0%, Mn: 0.1 to 15.0%, Mo: 0.1 to 20.0%, Cu : 0.1 to 10.0%, Si: 0.3 to 2.0%, C: Nitrogen is absorbed into an alloy powder containing 0.2% or less, and 0.5% or more of N is contained, A high nitrogen stainless steel powder for solidification molding with excellent corrosion resistance, characterized in that the maximum diameter of CrN inside the powder is 3 μm or less.

(4)0.5%以上の窒素、0.2%以下の酸素を含有し、それ以外は前記(1)〜(3)のいずれか1項に記載の成分組成を有し、大きさが500μm以下の粉末からなることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。
(5)前記(1)〜(3)のいずれか1項に記載の成分組成を有する500μm以下の大きさからなる粉末に200〜600℃の低温窒化により窒素を含有させたことを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末の製造方法。
(4) It contains 0.5% or more of nitrogen and 0.2% or less of oxygen, and other than that, it has the component composition according to any one of (1) to (3), and has a size. A high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, characterized by comprising a powder of 500 μm or less.
(5) A powder having a size of 500 μm or less having the component composition described in any one of (1) to (3) is nitrogen-containing by low-temperature nitriding at 200 to 600 ° C. A method for producing high nitrogen stainless steel powder for solidification molding with excellent corrosion resistance.

(6)前記(1)〜(4)のいずれか1項に記載の成分組成を有する窒素を含有させた粉末を固化成形した高窒素ステンレス鋼の製造方法。
(7)前記(1)〜(4)のいずれか1項に記載の窒素を含有させた粉末をキャニング後、棒鋼、鋼管、板材、クラッド材に固化成形し、0.5%以上の窒素、0.2%以下の酸素を含有することを特徴とする高窒素ステンレス鋼の製造方法にある。
(6) A method for producing high nitrogen stainless steel obtained by solidifying and molding a powder containing nitrogen having the component composition according to any one of (1) to (4).
(7) After canning the powder containing nitrogen according to any one of (1) to (4), solidified and formed into a steel bar, a steel pipe, a plate material, and a clad material, 0.5% or more of nitrogen, It exists in the manufacturing method of the high nitrogen stainless steel characterized by containing 0.2% or less of oxygen.

以上述べたように、本発明による粉末状態で低温窒化した粉末をキャニング後、1000〜1300℃に加熱した状態で、HIP、熱間押出しにより固化成形することで窒化処理時に生成するCrNの固溶を促進し、かつ脱窒を抑制することで粉末に均一に窒素を含有させた高窒素ステンレス鋼を得ることにより、鋼管、板材、棒鋼、クラッドなどの様々な形状に高窒素ステンレス鋼を安価に製造することが出来る極めて優れた効果を奏するものである。   As described above, after the canned low-temperature nitrided powder in the powder state according to the present invention is heated to 1000 to 1300 ° C., it is solidified by HIP and hot extrusion to form a solid solution of CrN generated during nitriding treatment. High-nitrogen stainless steel with a uniform nitrogen content in the powder by promoting denitrification and suppressing denitrification makes it possible to reduce the cost of high-nitrogen stainless steel to various shapes such as steel pipes, plate materials, bar steel, and cladding An extremely excellent effect that can be produced is achieved.

以下、本発明に係る成分組成の限定理由について詳細に説明する。
Ni:0〜5.0%
Niは、オーステナイト相を安定させ、耐食性を得る上で重要な元素として知られている。一方で、高価な元素であり、Niアレルギーなど人体への悪影響も知られていることから、必要な諸特性を確保した上で、できるだけその添加量を低減することが望まれている。本発明では、粉末に高窒素を含有させることでNiの代替とすることができることから、高価なNiをフリーもしくは5.0%以下の少量添加とする。
Hereinafter, the reason for limitation of the component composition according to the present invention will be described in detail.
Ni: 0 to 5.0%
Ni is known as an important element in stabilizing the austenite phase and obtaining corrosion resistance. On the other hand, since it is an expensive element and known to have adverse effects on the human body such as Ni allergy, it is desired to reduce the amount of addition as much as possible while ensuring the necessary characteristics. In the present invention, Ni can be substituted by adding high nitrogen to the powder. Therefore, expensive Ni is added free or added in a small amount of 5.0% or less.

Cr:10.0〜40.0%
Crは、耐食性を付与する上で重要な元素であり、その効果を十分に得るには10.0%以上必要である。一方、Crはフェライト形成元素であり、過剰な添加は靭延性の低下を招くσ相の析出、オーステナイト相の不安定化を招くため、その上限を40.0%とする。好ましくは15〜30%とする。
Cr: 10.0-40.0%
Cr is an important element for imparting corrosion resistance, and needs to be 10.0% or more to sufficiently obtain the effect. On the other hand, Cr is a ferrite-forming element, and excessive addition causes precipitation of the σ phase that causes a decrease in toughness and instability of the austenite phase, so the upper limit is made 40.0%. Preferably it is 15 to 30%.

Mn:0.1〜15.0%
Mnは、オーステナイト相の安定化に寄与し、マトリックスの窒素溶解度を増大させる効果があるため、その下限を0.1%とした。一方、粉末表面に酸化物を生成して窒素の吸収を阻害する他、非金属介在物を形成し、耐食性の低下させるため、その上限を15.0%とした。好ましくは2.0〜10.0%とする。
Mn: 0.1 to 15.0%
Mn contributes to the stabilization of the austenite phase and has the effect of increasing the nitrogen solubility of the matrix, so the lower limit was made 0.1%. On the other hand, in addition to inhibiting the absorption of nitrogen by generating an oxide on the powder surface, non-metallic inclusions are formed and the corrosion resistance is lowered, so the upper limit was made 15.0%. Preferably it is 2.0 to 10.0%.

Mo:0.1〜20.0%
Moは、耐食性の向上に寄与し、Nとの複合添加は効果が高い。また、マトリックスの窒素溶解度を増大させる効果があるため、その下限を0.1%とした。一方、20.0%を越えると脆化相が析出し、靭延性を低下させる。好ましくは2.0〜15.0%とする。
Mo: 0.1 to 20.0%
Mo contributes to the improvement of corrosion resistance, and the combined addition with N is highly effective. Moreover, since there exists an effect which increases the nitrogen solubility of a matrix, the minimum was made into 0.1%. On the other hand, when it exceeds 20.0%, an embrittled phase precipitates and the toughness is lowered. Preferably, the content is 2.0 to 15.0%.

Cu:0.1〜10.0%
Cuは、オーステナイト相を安定させ、耐食性を向上させる効果があるため、その下限を0.1%とする。添加量が多いと、固化成形性が著しく低下し、耐食性も低下するので、その上限は10.0%とした。好ましくは2.0〜7.0%とする。
Cu: 0.1 to 10.0%
Cu has the effect of stabilizing the austenite phase and improving the corrosion resistance, so its lower limit is made 0.1%. If the addition amount is large, the solidification moldability is remarkably lowered and the corrosion resistance is also lowered, so the upper limit was made 10.0%. Preferably it is 2.0 to 7.0%.

Si:0.3〜2.0%
Siは、脱酸材として有効な元素であり、その効果は0.3%以上で得られる。一方、2.0%を越えると靭延性は著しく低下する。
C:0.2%以下
Cは、強度の向上に寄与する元素であるが、Crと炭化物を形成して耐食性を低下させる要因になるため、その上限を0.2%以下とする。
Si: 0.3-2.0%
Si is an effective element as a deoxidizing material, and the effect is obtained at 0.3% or more. On the other hand, if it exceeds 2.0%, the toughness is significantly reduced.
C: 0.2% or less C is an element that contributes to the improvement of strength. However, it forms a carbide with Cr and lowers the corrosion resistance, so the upper limit is made 0.2% or less.

N:0.5%以上
窒素は、オーステナイト相の安定化、耐食性、強度、靭性の向上に寄与する。Ni代替、窒素による耐食性、強度、靭性の向上を得るためには0.5%以上の窒素が必要である。窒素量は窒化温度、窒化時間、窒素分圧を調整することで用途、合金成分に応じて含有させることができる。
O:0.2%以下
酸素は、微細な酸化物は、強度、靭性の向上に寄与するが、酸化物が多くなると耐食性が低下することから酸素量は0.2%以下とする。
N: 0.5% or more Nitrogen contributes to stabilization of the austenite phase, corrosion resistance, strength, and toughness. Ni substitution of 0.5% or more of nitrogen is required to obtain corrosion resistance, strength, and toughness improvement by nitrogen. The amount of nitrogen can be contained depending on the application and alloy components by adjusting the nitriding temperature, nitriding time, and nitrogen partial pressure.
O: 0.2% or less Oxygen contributes to improvement in strength and toughness of fine oxides. However, the amount of oxygen is 0.2% or less because the corrosion resistance decreases when the amount of oxides increases.

CrNの最大径が3μm以下
マトリックスに固溶できないNはCrと結合し、CrNを生成する。微細なCrNは結晶粒の粗大化抑制に寄与するが、粗大なCrNはマトリックスの窒素溶解度が増大する熱間での固化成形、固溶化処理時にも固溶しきらず、残存したCrNは耐食性を低下させるため、その最大径は3μm以下とする。
The maximum diameter of CrN is 3 μm or less N that cannot be dissolved in the matrix is combined with Cr to produce CrN. Fine CrN contributes to suppression of coarsening of crystal grains, but coarse CrN does not completely dissolve during hot solidification and solidification processes in which the matrix nitrogen solubility increases, and the remaining CrN reduces corrosion resistance. Therefore, the maximum diameter is 3 μm or less.

500μm以下
低温窒化により粉末内部まで窒素を含有させるため、粉末粒径を500μm以下とする。望ましくは250μm以下とする。粉末の製法や形状は問わないが、均一な窒素分布を得易いという点からは球形状のガスアトマイズ粉末が望ましい。
500 μm or less In order to incorporate nitrogen into the powder by low-temperature nitriding, the powder particle size is set to 500 μm or less. Desirably, it shall be 250 micrometers or less. The method and shape of the powder are not limited, but spherical gas atomized powder is preferable from the viewpoint of obtaining a uniform nitrogen distribution.

200〜600℃で低温窒化
粉末に窒素を含有させるには200℃以上の温度が必要である。しかし、窒化温度が高くなると、粗大な窒化物が生成し易く、粉末同士の焼結が生じて均質な窒化粉末が得られないので600℃以下とする。処理中の酸化を抑制するため、炉内の大気を排出した減圧下での処理が望ましい。
A temperature of 200 ° C. or higher is required to contain nitrogen in the low-temperature nitrided powder at 200 to 600 ° C. However, if the nitriding temperature is increased, coarse nitrides are likely to be generated, and powders are sintered and a uniform nitrided powder cannot be obtained. In order to suppress oxidation during the treatment, it is desirable to carry out the treatment under reduced pressure with the atmosphere in the furnace discharged.

以下、本発明について実施例によって具体的に説明する。
表1に示す各粉末の化学成分について真空誘導溶解炉にて30kgを溶解した後ガスアトマイズ法にて得た粉末を得た。なお、初期粉末の段階では、酸素、窒素ともに不可避的不純物である。500μm以下に分級した後、100×100mmのトレイの上に20mm程度の厚さで分散させるか、またはΦ100mm×L200mmのSC製缶に粉末を入れた後、缶の片側を開放した状態で低温窒化(200〜600℃、アンモニアガス雰囲気)により粉末に窒素を吸収させた。窒化した粉末をキャニング、HIP、熱間押出し(1000〜1300℃)などの方法で固化成形することにより、径10〜60mmの高窒素ステンレス鋼を得た。その後、1100〜1300℃で固溶化熱処理することによりCrNを固溶させた。その処理条件および評価結果を表2に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
About the chemical component of each powder shown in Table 1, after dissolving 30 kg in the vacuum induction melting furnace, the powder obtained by the gas atomization method was obtained. In the initial powder stage, oxygen and nitrogen are unavoidable impurities. After classifying to 500 μm or less, disperse in a thickness of about 20 mm on a 100 × 100 mm tray, or after putting powder in a SC can of Φ100 mm × L200 mm, low-temperature nitriding with one side of the can open The powder was made to absorb nitrogen by (200 to 600 ° C., ammonia gas atmosphere). The nitrided powder was solidified by a method such as canning, HIP, or hot extrusion (1000 to 1300 ° C.) to obtain a high nitrogen stainless steel having a diameter of 10 to 60 mm. Then, CrN was made into solid solution by carrying out the solution heat treatment at 1100-1300 degreeC. The processing conditions and evaluation results are shown in Table 2.

なお、粉末、成形品の酸素、窒素値は不活性ガス溶解方により分析した。マトリックス中に固溶できなかった窒素は、熱間加工時または溶体化時に雰囲気中に放出される可能性があるが、その量は比較的小さい。CrNの大きさは、試験片を研磨し、希王水でエッチングした後、走査型電子顕微鏡で5000倍、10視野にて定量化した。表2に示す腐食試験は、25℃、10%NaCl溶液中に1週間浸漬し、その発錆状態により優劣を判定した。腐食試験結果:◎→発錆なし、○→良好、×→発錆あり、で示す。   The oxygen and nitrogen values of the powder and molded product were analyzed by the inert gas dissolution method. Nitrogen that could not be dissolved in the matrix may be released into the atmosphere during hot working or solution treatment, but the amount is relatively small. The size of CrN was quantified with a scanning electron microscope 5000 times and 10 fields of view after polishing the specimen and etching it with dilute aqua regia. The corrosion test shown in Table 2 was soaked in a 10% NaCl solution at 25 ° C. for 1 week, and the superiority or inferiority was determined by the rusting state. Corrosion test results: ◎ → No rusting, ○ → Good, × → Rusting.

Figure 2008303413
Figure 2008303413

Figure 2008303413
表2に示すように、No.1〜4、No.7〜9、No.12、No.14〜19、No.22〜23は本発明例であり、No.5〜6、No.10〜11、13、No.20〜21、No.24〜27は比較例である。
Figure 2008303413
As shown in Table 2, no. 1-4, no. 7-9, no. 12, no. 14-19, no. Nos. 22 to 23 are examples of the present invention. 5-6, no. 10-11, 13, no. 20-21, no. 24-27 are comparative examples.

比較例No.5は粉末粒径が大きく、固化成形後の窒素量が低いために、腐食試験評価結果が悪い。比較例No.6は窒化温度が高かいために、窒化後の窒素量が多く、固化成形後の窒素量が多く、かつCrNサイズが大きいために、腐食試験評価結果が悪い。比較例No.10は粉末粒径が大きく、かつ固化成形後の窒素量が低く、かつ固化成形後の窒素量が低いために、腐食試験評価結果が悪い。比較例No.11は窒化温度が低いために、固化成形後の窒素量が低く、腐食試験評価結果が悪い。   Comparative Example No. Since No. 5 has a large powder particle size and a low nitrogen content after solidification molding, the corrosion test evaluation result is poor. Comparative Example No. Since No. 6 has a high nitriding temperature, the amount of nitrogen after nitriding is large, the amount of nitrogen after solidification is large, and the CrN size is large, so the corrosion test evaluation result is bad. Comparative Example No. Since No. 10 has a large powder particle size, a low nitrogen content after solidification molding, and a low nitrogen content after solidification molding, the corrosion test evaluation result is poor. Comparative Example No. Since No. 11 has a low nitriding temperature, the amount of nitrogen after solidification molding is low, and the corrosion test evaluation result is poor.

比較例No.13は粉末粒径が大きく、窒化後の窒素量が低いために固化成形後の窒素量が低く、その結果腐食試験評価結果が悪い。比較例No.20は窒化温度が低く、窒化後の窒素量が低いために、固化成形後の窒素量が低く、腐食試験評価結果が悪い。比較例No.21は窒化温度が高く、かつCrNサイズが大きいために、腐食試験評価結果が悪い。比較例No.24は窒化温度が高く、窒化後の窒素量が高く、しかも固化成形後の窒素量が高く、かつCrNサイズが大きいために、腐食試験評価結果が悪い。   Comparative Example No. No. 13 has a large powder particle size, and since the amount of nitrogen after nitriding is low, the amount of nitrogen after solidification molding is low, resulting in poor corrosion test evaluation results. Comparative Example No. No. 20 has a low nitriding temperature and a low amount of nitrogen after nitriding, so that the amount of nitrogen after solidification is low and the corrosion test evaluation result is poor. Comparative Example No. Since No. 21 has a high nitriding temperature and a large CrN size, the corrosion test evaluation result is bad. Comparative Example No. No. 24 has a high nitriding temperature, a high amount of nitrogen after nitriding, a high amount of nitrogen after solidification molding, and a large CrN size, so that the corrosion test evaluation result is poor.

比較例No.25は粉末粒径が大きく、かつ窒化後の窒素量が低く、固化成形後の窒素量が低いために、腐食試験評価結果が悪い。比較例No.26は初期粉末のNi成分組成がもともと高い鋼であることから、腐食試験評価結果は良好である。比較例No.27は初期粉末のCr成分組成が高く、かつCrNサイズが大きいために腐食試験評価結果が悪い。これに対して、本発明例であるNo.1〜4、No.7〜9、No.12、No.14〜19、No.22〜23のいずれも本発明の条件を満たしていることから、その腐食試験評価結果の良好であることが分かる。   Comparative Example No. No. 25 has a large powder particle size, a low amount of nitrogen after nitriding, and a low amount of nitrogen after solidification molding, so that the corrosion test evaluation result is poor. Comparative Example No. Since No. 26 is a steel whose Ni component composition of the initial powder is originally high, the corrosion test evaluation result is good. Comparative Example No. In No. 27, the Cr component composition of the initial powder is high and the CrN size is large, so the corrosion test evaluation result is bad. On the other hand, No. which is an example of the present invention. 1-4, no. 7-9, no. 12, no. 14-19, no. Since 22-22 satisfy | fills the conditions of this invention, it turns out that the corrosion test evaluation result is favorable.

以上のように、本発明による200〜600℃の低温窒化により得た粉末に窒素を吸収させた後、キャニング、HIP、熱間押出し、またはHIPと熱間押出しなどの方法で固化成形することでCrNの固溶を促進し、かつ脱窒を抑制することで均一に窒素を含有させた高窒素ステンレス鋼を得ることを可能とするものである。



特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, after nitrogen is absorbed in the powder obtained by low temperature nitriding at 200 to 600 ° C. according to the present invention, solidification molding is performed by a method such as canning, HIP, hot extrusion, or HIP and hot extrusion. It is possible to obtain a high nitrogen stainless steel containing nitrogen uniformly by promoting solid solution of CrN and suppressing denitrification.



Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney Atsushi Shiina

Claims (7)

質量%で、Ni:0〜5.0%、Cr:10.0〜40.0%を含む合金粉末に窒素を吸収させて、0.5%以上のNを含有させ、かつ粉末内部のCrNの最大径が3μm以下になることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。 Nitrogen is absorbed in an alloy powder containing Ni: 0 to 5.0% and Cr: 10.0 to 40.0% by mass% to contain 0.5% or more of N, and CrN inside the powder A high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, characterized by having a maximum diameter of 3 μm or less. 質量%で、Ni:0〜5.0%、Cr:10.0〜40.0%、Mn:0.1〜15.0%、Mo:0.1〜20.0%含む合金粉末に窒素を吸収させて、0.5%以上のNを含有させ、かつ粉末内部のCrNの最大径が3μm以下になることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。 Nitrogen in an alloy powder containing Ni: 0 to 5.0%, Cr: 10.0 to 40.0%, Mn: 0.1 to 15.0%, Mo: 0.1 to 20.0% by mass% Is a high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, characterized in that 0.5% or more of N is absorbed and the maximum diameter of CrN inside the powder is 3 μm or less. 質量%で、Ni:0〜5.0%、Cr:10.0〜40.0%、Mn:0.1〜15.0%、Mo:0.1〜20.0%、Cu:0.1〜10.0%、Si:0.3〜2.0%、C:0.2%以下を含む合金粉末に窒素を吸収させて、0.5%以上のNを含有させ、かつ粉末内部のCrNの最大径が3μm以下になることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。 In mass%, Ni: 0 to 5.0%, Cr: 10.0 to 40.0%, Mn: 0.1 to 15.0%, Mo: 0.1 to 20.0%, Cu: 0.00. Nitrogen is absorbed into an alloy powder containing 1 to 10.0%, Si: 0.3 to 2.0%, and C: 0.2% or less, and 0.5% or more of N is contained, and the inside of the powder A high nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, characterized in that the maximum diameter of CrN is 3 μm or less. 0.5%以上の窒素、0.2%以下の酸素を含有し、それ以外は請求項1〜3のいずれか1項に記載の成分組成を有し、大きさが500μm以下の粉末からなることを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末。 It contains 0.5% or more of nitrogen and 0.2% or less of oxygen, and other than that, it has the component composition according to any one of claims 1 to 3, and consists of a powder having a size of 500 μm or less. High nitrogen stainless steel powder for solidification molding with excellent corrosion resistance. 請求項1〜3のいずれか1項に記載の成分組成を有する500μm以下の大きさからなる粉末に200〜600℃の低温窒化により窒素を含有させたことを特徴とする耐食性に優れた固化成形用高窒素ステンレス鋼粉末の製造方法。 Solidified molding excellent in corrosion resistance, characterized in that a powder having a component composition according to any one of claims 1 to 3 and having a size of 500 µm or less contains nitrogen by low-temperature nitriding at 200 to 600 ° C. Of manufacturing high nitrogen stainless steel powder for use. 請求項1〜4のいずれか1項に記載の成分組成を有する窒素を含有させた粉末を固化成形した高窒素ステンレス鋼の製造方法。 The manufacturing method of the high nitrogen stainless steel which solidified and formed the powder containing the nitrogen which has the component composition of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の窒素を含有させた粉末をキャニング後、棒鋼、鋼管、板材、クラッド材に固化成形し、0.5%以上の窒素、0.2%以下の酸素を含有することを特徴とする高窒素ステンレス鋼の製造方法。 After canning the powder containing nitrogen according to any one of claims 1 to 4, it is solidified and formed into a steel bar, a steel pipe, a plate material, and a clad material, 0.5% or more of nitrogen, 0.2% or less A method for producing high nitrogen stainless steel, comprising oxygen.
JP2007149840A 2007-06-06 2007-06-06 High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same Withdrawn JP2008303413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149840A JP2008303413A (en) 2007-06-06 2007-06-06 High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149840A JP2008303413A (en) 2007-06-06 2007-06-06 High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008303413A true JP2008303413A (en) 2008-12-18

Family

ID=40232396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149840A Withdrawn JP2008303413A (en) 2007-06-06 2007-06-06 High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008303413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036090A (en) * 2011-08-09 2013-02-21 Gauss Kk Nickel-free and manganese-free high n-containing austenitic stainless steel sintering powder for member for living body or for medical use, and sintered member for living body or for medical use using the same
CN108031851A (en) * 2017-12-28 2018-05-15 西安交通大学 A kind of preparation method of austenitic stainless steel alloy
JP2019529697A (en) * 2017-03-20 2019-10-17 アップル インコーポレイテッドApple Inc. Solid composition nitriding of steel composition and its stainless steel
CN113913679A (en) * 2014-07-16 2022-01-11 尤迪霍尔姆斯有限责任公司 Cold work tool steel
JP2022532043A (en) * 2019-05-16 2022-07-13 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Nickel-free austenitic stainless steel powder composition and parts manufactured by sintering using this powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036090A (en) * 2011-08-09 2013-02-21 Gauss Kk Nickel-free and manganese-free high n-containing austenitic stainless steel sintering powder for member for living body or for medical use, and sintered member for living body or for medical use using the same
CN113913679A (en) * 2014-07-16 2022-01-11 尤迪霍尔姆斯有限责任公司 Cold work tool steel
JP2019529697A (en) * 2017-03-20 2019-10-17 アップル インコーポレイテッドApple Inc. Solid composition nitriding of steel composition and its stainless steel
JP2021063299A (en) * 2017-03-20 2021-04-22 アップル インコーポレイテッドApple Inc. Steel compositions and solid solution nitriding of stainless steel thereof
US11021782B2 (en) 2017-03-20 2021-06-01 Apple Inc. Steel compositions and solution nitriding of stainless steel thereof
JP7464516B2 (en) 2017-03-20 2024-04-09 アップル インコーポレイテッド Steel composition and its solution nitriding of stainless steel
CN108031851A (en) * 2017-12-28 2018-05-15 西安交通大学 A kind of preparation method of austenitic stainless steel alloy
JP2022532043A (en) * 2019-05-16 2022-07-13 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Nickel-free austenitic stainless steel powder composition and parts manufactured by sintering using this powder
JP7238166B2 (en) 2019-05-16 2023-03-13 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Nickel-free austenitic stainless steel powder composition and parts produced by sintering using this powder

Similar Documents

Publication Publication Date Title
JP3227734B2 (en) High corrosion resistant duplex stainless steel and its manufacturing method
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
RU2753717C2 (en) Stainless steel powder for duplex sintered stainless steel
ES2212523T3 (en) STEEL POWDER FOR THE PREPARATION OF SINTERED PRODUCTS.
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
CN102428200A (en) High strength/corrosion-resistant austenitic stainless steel with carbon - nitrogen complex additive, and method for manufacturing same
TW201730355A (en) Method for producing high strength stainless steel plate with excellent fatigue property
EP1229142B1 (en) High strength, high corrosion-resistant and non-magnetic stainless steel
JP2008303413A (en) High nitrogen stainless steel powder for solidification molding excellent in corrosion resistance, and method for producing the same
KR102061839B1 (en) Neutron absorption material and method for manufacturing the same
JP2015206090A (en) Die steel for plastic molding and manufacturing method therefor
JPH0225541A (en) Processable boron-containing stainless steel alloy, article produced therefrom and production thereof
JP4376826B2 (en) Co-Cr alloy pellet and method for producing the same
JPH07138713A (en) Production of fe-based alloy powder and high corrosion resistant sintered compact
TWI665314B (en) High-nitrogen low-nickel austenite stainless steel alloy and method for making the same
JPH0257606A (en) Stainless steel fine powder and sintering material
JP4737614B2 (en) Fe-Ni alloy plate and method for producing Fe-Ni alloy plate
JP2019116688A (en) Powder high speed tool steel
JP2008174789A (en) High nitrogen austenitic stainless steel
JP3025406B2 (en) Ferritic and martensitic stainless steels with excellent machinability
JP5929320B2 (en) Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy
JPH06306553A (en) Stainless steel excellent in pitting corrosion resistance
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
CN112981218A (en) High-strength corrosion-resistant austenitic stainless steel alloy and manufacturing method thereof
JP2021535282A (en) Modified high speed steel particles, powder metallurgy methods using them, and sintered parts obtained from them.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110823

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906