JP2008302383A - Mechanism for applying minute vibration in plastic forming - Google Patents

Mechanism for applying minute vibration in plastic forming Download PDF

Info

Publication number
JP2008302383A
JP2008302383A JP2007151328A JP2007151328A JP2008302383A JP 2008302383 A JP2008302383 A JP 2008302383A JP 2007151328 A JP2007151328 A JP 2007151328A JP 2007151328 A JP2007151328 A JP 2007151328A JP 2008302383 A JP2008302383 A JP 2008302383A
Authority
JP
Japan
Prior art keywords
cam
vibration
fine vibration
plastic working
applying mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151328A
Other languages
Japanese (ja)
Other versions
JP4324703B2 (en
Inventor
Kazuo Washida
一夫 鷲田
Koichi Tomita
孝一 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2007151328A priority Critical patent/JP4324703B2/en
Publication of JP2008302383A publication Critical patent/JP2008302383A/en
Application granted granted Critical
Publication of JP4324703B2 publication Critical patent/JP4324703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Press Drives And Press Lines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that in a traditional plastic forming process, the method and the apparatus for applying a minute vibration to a working tool and a workpiece material use an ultrasonic vibrator or a magnetostrictive vibrator as a vibrating source, and use the mechanical vibrating system including the working tool and the workpiece material in a resonant state because the vibrational displacement of the ultrasonic vibrator or the magnetostrictive vibrator is small within the order of several μm, and it is difficult to stably generate the ultrasonic vibration by keeping the resonant state, and to continuously apply the minute vibration during plastic forming, and it is furthermore difficult to change the frequency to be applied according to the conditions and stages of the plastic forming. <P>SOLUTION: In the method and apparatus of plastic forming, the minute vibration having a satisfactorily large amplitude is generated by a cam, and the minute vibration is directly applied to the working tool and the workpiece material. Further, the frequency to be applied can be changed according to the conditions and stages of the plastic forming. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、パンチやダイス等の加工具と被加工材の少なくともいずれか一つに微振動を印加しながら塑性加工をする装置に関するものである。   The present invention relates to an apparatus that performs plastic working while applying a slight vibration to at least one of a processing tool such as a punch or a die and a workpiece.

曲げ加工、絞り加工、しごき加工、引き抜き加工、押し出し加工、そして圧延加工などの塑性加工中に、パンチやダイ等の加工具あるいは被加工材の少なくともいずれか一つに微振動を印加すると、変形抵抗が減少する、高変形率加工が可能となる、スプリングバックが減少し高精度化が図られる等の優れた効果がある。   When plastic vibration such as bending, drawing, ironing, drawing, extrusion, and rolling is applied, a slight vibration is applied to at least one of a processing tool such as a punch or die or a workpiece. There are excellent effects such as reduction of resistance, enabling high deformation rate processing, reduction of springback and higher accuracy.

上記の効果をより確実なものとするには、印加する微振動の周波数は、加工条件、加工具、被加工材の変更に対応して最適な周波数に変化させることが必要である。   In order to make the above effect more reliable, it is necessary to change the frequency of the minute vibration to be applied to an optimum frequency corresponding to changes in the processing conditions, the processing tool, and the workpiece.

さらに、一連の塑性加工中、印加する微振動の周波数を、加工進行程度に合わせ、その時々で最適な周波数に変更しながら印加すれば前記した効果はさらに大きなものとなる。   Furthermore, if the frequency of the minute vibration applied during a series of plastic workings is adapted to the degree of progress of the machining and is changed to an optimum frequency from time to time, the effect described above becomes even greater.

従来から、微振動を加工具や被加工材に印加させるには、超音波振動子あるいは磁歪振動子を加振源として用い、その加振源に振動拡大伝達具、加工具、被加工材を連結し、振動拡大伝達具から、加工具、被加工材までの一連の機械振動系を加振源の共振周波数で共振させ加振エネルギーを拡大し、加工具や被加工材に微振動を印加する手段を用いている。   Conventionally, in order to apply micro vibrations to a processing tool or a workpiece, an ultrasonic vibrator or a magnetostrictive vibrator is used as a vibration source, and a vibration expansion transmission tool, a processing tool, or a workpiece is used as the vibration source. By connecting, a series of mechanical vibration systems from vibration expansion transmission tools to processing tools and workpieces are resonated at the resonance frequency of the excitation source to increase the excitation energy, and fine vibrations are applied to the processing tools and workpieces. The means to do is used.

しかし、変位とパワーの小さい超音波振動子あるいは磁歪振動子を共振状態で使用する上記の手段では、加工進行にともない共振条件が変化するので、その共振条件に追従し安定して共振振動を継続するのが困難である。ましてや、加工条件、被加工材、加工形状に対応して微振動の周波数を最適な周波数に制御することや、一連の塑性加工中に、加工進行程度に合わせて微振動の周波数をその時々の最適な周波数に制御することはまったく不可能である。   However, in the above-mentioned means that uses an ultrasonic vibrator or magnetostrictive vibrator with a small displacement and power in the resonance state, the resonance condition changes as the machining progresses, so the resonance condition continues stably following the resonance condition. Difficult to do. Furthermore, the frequency of micro vibrations is controlled to the optimum frequency according to the processing conditions, work material, and processing shape, and the frequency of micro vibrations is changed according to the progress of processing during a series of plastic processing. It is completely impossible to control to the optimum frequency.

また、シリンダを用いた流体圧機構や、クランクシャフト機構、偏心カム機構、そしてリンク機構を電動機で駆動して微振動を発生させる手段として、特許文献1に開示される「軸圧縮加工機及び圧延機」が知られている。   Further, as a means for generating a slight vibration by driving a fluid pressure mechanism using a cylinder, a crankshaft mechanism, an eccentric cam mechanism, and a link mechanism with an electric motor, “Axial Compression Machine and Rolling” disclosed in Patent Document 1 is disclosed. The machine is known.

しかし、特許文献1に開示されるシリンダを用いた流体圧機構は、作動流体の流路を制御弁で切り替えながら微振動を発生させるもので、発生できる微振動の周波数は高々数百Hzと低く、高周波数の微振動を印加することにより塑性変形が促進される効果は少ない。また、クランクシャフト機構、偏心カム機構、そしてリンク機構による微振動発生機構は、回転つりあいが取られていないので、これらの加振機構を高速回転駆動することはできず、そのため高周波数の微振動を発生することは困難である。   However, the fluid pressure mechanism using the cylinder disclosed in Patent Document 1 generates fine vibration while switching the flow path of the working fluid with a control valve, and the frequency of the fine vibration that can be generated is as low as several hundred Hz at most. The effect of promoting plastic deformation is small by applying a high-frequency fine vibration. In addition, since the crankshaft mechanism, the eccentric cam mechanism, and the fine vibration generating mechanism by the link mechanism are not balanced in rotation, it is not possible to drive these vibration mechanisms at high speed. It is difficult to generate

また、偏心部を持つ加振シャフトに、複数の滑らかな包絡線を有する軸方向の凹溝を持つ偏心リングカムを嵌め合せ、該偏心リングカムに、従動ローラを介して加振ロッド、振動テーブルをバネ力により当接し、前記加振シャフトを回転させることで、前記加振ロッド、振動テーブルに低周波振動に高周波振動を重畳させた振動を発生させる手段として、特許文献2に開示される「重畳振動装置」が知られている。   In addition, an eccentric ring cam having an axial groove having a plurality of smooth envelopes is fitted to an excitation shaft having an eccentric portion, and an excitation rod and a vibration table are connected to the eccentric ring cam via a driven roller as a spring. As a means for generating a vibration in which a high-frequency vibration is superimposed on a low-frequency vibration on the vibration rod and vibration table by rotating the vibration shaft by abutting by force, “superimposed vibration” disclosed in Patent Document 2 is disclosed. "Apparatus" is known.

しかし、特許文献2に開示された装置は、前記偏心リングカムに前記従動ローラ、加振ロッド、振動テーブルが拘束されていないので、前記加振シャフトが高速回転すると、前記従動ローラ、加振ロッド、振動テーブルは追従して振動することが不可能になる。また、前記加振シャフトは回転つりあいがとれていないため、高速回転は不可能で、その結果、高周波数の微振動を発生することは困難である。   However, in the apparatus disclosed in Patent Document 2, the driven roller, the vibration rod, and the vibration table are not constrained by the eccentric ring cam. Therefore, when the vibration shaft rotates at a high speed, the driven roller, the vibration rod, The vibration table cannot follow and vibrate. Further, since the excitation shaft is not balanced in rotation, high-speed rotation is impossible, and as a result, it is difficult to generate high-frequency fine vibrations.

また、複数の山を有するカムに追従して往復運動するピストンを摺動可能に内包する加圧シリンダの流体圧を加振シリンダに導き、該加振シリンダのピストンで作業ロールを加振する手段として、特許文献3に開示される「圧延機」が知られている。   Further, means for guiding the fluid pressure of a pressurizing cylinder that slidably includes a piston that reciprocates following a cam having a plurality of peaks to the excitation cylinder, and for exciting the work roll with the piston of the excitation cylinder As such, a “rolling mill” disclosed in Patent Document 3 is known.

しかし、特許文献3に開示された装置は、前記複数の山を有するカムと該カムに追従するべき前記加圧シリンダのピストンとは拘束されてなく、前記加圧シリンダのピストンが高速追従するには限界がある。また、前記加振シリンダのピストンを高速に往復運動、つまり加振運動させるべき機械的に連結した駆動源はない。したがって、高い周波数の微振動を発生することができない。   However, in the device disclosed in Patent Document 3, the cam having the plurality of peaks and the piston of the pressurizing cylinder that should follow the cam are not restrained, and the piston of the pressurizing cylinder follows the high speed. There are limits. Further, there is no mechanically connected drive source for reciprocating the piston of the exciting cylinder at high speed, that is, for exciting the piston. Therefore, high frequency micro vibrations cannot be generated.

特開平8−90010JP-A-8-9010 特開平3−32785JP 3-32785 特開平13−333503JP-A-13-333503

上記従来技術は、塑性変形を促進するに十分な高周波数の微振動を発生できない、一時的に発生しても安定的に継続できない、強力なパワーを持つ微振動でない、必要な周波数の微振動を任意に発生できない等の課題を抱えている。本発明はこれらの課題を解決し、加工条件、被加工材、加工形状に対応して最適な周波数の強力な微振動を確実に安定して発生印加することや、一連の塑性加工中に、加工進行程度に合わせて最適な周波数の微振動を確実に安定して発生印加することを可能とする塑性加工用微振動印加機構と前記塑性加工用微振動機構を備えた塑性加工装置を提供することを目的とする。   The above-mentioned prior art cannot generate micro-vibration with a high frequency sufficient to promote plastic deformation, cannot continue stably even if temporarily generated, is not micro-vibration with strong power, and has micro-vibration with a necessary frequency. Have problems such as not being able to occur arbitrarily. The present invention solves these problems and reliably generates and applies strong micro-vibration at an optimum frequency corresponding to the processing conditions, workpiece, and processing shape, and during a series of plastic processing, Provided is a plastic working fine vibration applying mechanism capable of reliably and stably generating and applying a fine vibration of an optimal frequency according to the degree of working progress, and a plastic working apparatus provided with the plastic working fine vibration mechanism. For the purpose.

本発明者が上記課題を解決するために採用した第1の手段は、
被加工材及び被加工材に圧接して塑性加工を行う加工具の少なくとも一方に微振動を印加するためのカム式微振動印加機構であって、
微振動を発生するためのカム面を有するカム部が周方向に形成された回転体と、
前記回転体を回転する回転駆動部と、
前記カム部に拘束されて前記カム面に追従することで微振動を行うカムフォロワ部を有する微振動伝達具と、
前記微振動伝達具を加工具及び被加工材の少なくとも一方に連結することを特徴とする塑性加工用カム式微振動印加機構である。
The first means employed by the inventor to solve the above problems is as follows:
A cam-type fine vibration applying mechanism for applying a fine vibration to at least one of a workpiece and a processing tool that performs plastic working while being pressed against the workpiece,
A rotating body having a cam portion having a cam surface for generating fine vibrations formed in the circumferential direction;
A rotation drive unit that rotates the rotating body;
A micro-vibration transmitter having a cam follower unit that is restrained by the cam unit and performs micro-vibration by following the cam surface;
A cam type fine vibration application mechanism for plastic working, wherein the fine vibration transmission tool is connected to at least one of a processing tool and a workpiece.

本発明者が上記課題を解決するために採用した第2の手段は、第1の手段の前記カム部のカム面は、前記回転体の一回転で2サイクル以上するカム曲線で輪郭曲線が形成されることを特徴とする塑性加工用カム式微振動印加機構である。   The second means employed by the present inventor to solve the above problems is that the cam surface of the cam portion of the first means forms a contour curve with a cam curve that takes two cycles or more in one rotation of the rotating body. This is a cam-type fine vibration applying mechanism for plastic working.

本発明者が上記課題を解決するために採用した第3の手段は、第2の手段の前記カム部のカム面は、無停留カム曲線で輪郭曲線が形成されることを特徴とする塑性加工用カム式微振動印加機構である。   The third means employed by the present inventor to solve the above-mentioned problem is that the cam surface of the cam portion of the second means is formed by a contour curve with a non-stationary cam curve. Cam type fine vibration applying mechanism.

本発明者が上記課題を解決するために採用した第4の手段は、第1の手段から第3の手段のいずれかの手段の前記カム部はリブ状であって、該カム部を一対の前記カムフォロワ部で予圧を付加して挟み込むことを特徴とする塑性加工用カム式微振動印加機構である。   The fourth means employed by the present inventor to solve the above problems is that the cam portion of any one of the first means to the third means is rib-shaped, and the cam portions are paired with each other. A cam-type fine vibration applying mechanism for plastic working, wherein a preload is applied between the cam follower portions.

本発明者が上記課題を解決するために採用した第5の手段は、第1の手段から第3の手段のいずれかの手段の前記カム部は溝状であって、該カム部に前記カムフォロワ部が隙間なく嵌りこんでいること特徴とする塑性加工用カム式微振動印加機構である。   The fifth means employed by the present inventor to solve the above problems is that the cam portion of any one of the first means to the third means has a groove shape, and the cam follower includes the cam follower. This is a cam type fine vibration applying mechanism for plastic working, characterized in that the portion is fitted without a gap.

本発明者が上記課題を解決するために採用した第6の手段は、第1の手段から第5の手段のいずれかの手段の前記カム部は揚程が200μm以下であることを特徴とする塑性加工用カム式微振動印加機構である。   The sixth means employed by the present inventor to solve the above problems is characterized in that the cam portion of any one of the first to fifth means has a lift of 200 μm or less. This is a machining cam type fine vibration applying mechanism.

本発明者が上記課題を解決するために採用した第7の手段は、第1の手段から第6の手段のいずれかの手段の、発生する微振動の周波数が1kHz以上であることを特徴とする塑性加工用カム式微振動印加機構である。   The seventh means employed by the present inventor to solve the above-mentioned problem is characterized in that the frequency of the minute vibration generated by any one of the first to sixth means is 1 kHz or more. This is a cam type fine vibration applying mechanism for plastic working.

本発明者が上記課題を解決するために採用した第8の手段は、第1の手段から第7の手段のいずれかの手段の塑性加工用カム式微振動印加機構を備えた塑性加工装置である。   The eighth means employed by the present inventor in order to solve the above problems is a plastic working apparatus provided with a cam-type fine vibration applying mechanism for plastic working as any one of the first to seventh means. .

上述したように、本発明の塑性加工用カム式微振動印加機構を用いれば、前記微振動伝達具は、前記カム部に拘束されているため、前記カム部のカム面に形成された一周間の輪郭曲線のサイクル数をKサイクル、揚程をHμm、前記回転体の回転速度をNrpmとすれば、振幅はHμmで、振動数fはK・N/60Hzの微振動を確実に発生させ印加できる。   As described above, if the cam-type fine vibration applying mechanism for plastic working according to the present invention is used, the fine vibration transmission tool is constrained by the cam portion. If the contour curve cycle number is K cycles, the lift is H μm, and the rotational speed of the rotating body is N rpm, the amplitude is H μm and the frequency f can be generated and applied with a slight vibration of K · N / 60 Hz.

前記回転体の回転速度を変化させることで、加工具、被加工材、加工条件、加工進行程度に対応して最適な周波数の微振動を安定して加工具や被加工材に印加できる。   By changing the rotation speed of the rotating body, it is possible to stably apply a fine vibration having an optimum frequency to the processing tool or the work material in accordance with the processing tool, the work material, the processing conditions, and the progress of the processing.

また、本発明の塑性加工用カム式微振動印加機構は、カムによる機械的な微振動発生方法であるため、塑性加工中に加工具や被加工材に作用する大きな荷重にも打ち勝つことができる。   In addition, since the cam-type fine vibration applying mechanism for plastic working according to the present invention is a method for generating mechanical fine vibration using a cam, it can overcome a large load acting on a work tool or a workpiece during plastic working.

また、本発明の塑性加工用カム式微振動印加機構は、シンプルな機構であるので適用範囲が広い。   Further, the cam-type fine vibration applying mechanism for plastic working according to the present invention is a simple mechanism and thus has a wide range of application.

その結果、本発明は、塑性加工中に加工具や被加工材に微振動を印加する技術を幅広く安定して適用できるものとした。また、微振動を印加することによる効果を最大限に発揮させ、従来技術に比べ、より低い変形抵抗、より高い加工精度、より高い変形率を実現可能とした。   As a result, the present invention can widely and stably apply a technique for applying micro vibrations to a processing tool or a workpiece during plastic processing. In addition, the effects of applying micro vibrations are maximized, and lower deformation resistance, higher machining accuracy, and higher deformation rate can be realized as compared with the prior art.

以下、本発明の構成を添付図面に図示する好ましい実施の形態に基づいて、さらに詳しく説明する。   Hereinafter, the configuration of the present invention will be described in more detail based on preferred embodiments illustrated in the accompanying drawings.

〔実施例1〕
図1は、本発明の塑性加工用カム式微振動印加機構の構成を適用した実施例である引き抜き加工装置(実施例1)の主要部分を図示したものである。
[Example 1]
FIG. 1 illustrates a main part of a drawing apparatus (Example 1), which is an example to which the configuration of the cam type fine vibration applying mechanism for plastic working of the present invention is applied.

図面上、符号1で指示するものは、前記回転体である。図面上、符号11で指示するものは、前記回転体1に形成されたカム部である。本実施例では、前記カム部11はリブ状で、前記カム部11のカム面は、15μmの揚呈、単弦曲線のカム曲線、昇り行程0.5度の割り付け角、下り行程0.5度の割り付け角の輪郭曲線で形成され、一周間の輪郭曲線のサイクル数は360サイクルである。前記回転体1は前記回転駆動部である電動機Dで回転駆動される。前記電動機Dの回転速度は回転速度制御器SPCにより制御される。前記回転体1は、前記カム部11単独でも、また、全体でも完全に回転つりありが取られていて高速回転可能である。   In the drawing, what is indicated by reference numeral 1 is the rotating body. In the figure, what is indicated by reference numeral 11 is a cam portion formed on the rotating body 1. In this embodiment, the cam portion 11 has a rib shape, and the cam surface of the cam portion 11 has a 15 μm lift, a single-curved cam curve, an allocation angle of 0.5 ° ascending stroke, and a downward stroke of 0.5. The contour curve is formed with a contour curve with a degree of allocation angle, and the number of cycles of the contour curve during one round is 360 cycles. The rotating body 1 is rotationally driven by an electric motor D which is the rotational driving unit. The rotation speed of the electric motor D is controlled by a rotation speed controller SPC. The rotating body 1 can be rotated at a high speed even if the cam portion 11 is used alone or entirely as a whole.

図面上、符号2で指示するものは、前記微振動伝達具である。前記微振動伝達具2の一端に一対の前記カムフォロワ部21が付設してある。一対の前記カムフォロワ部21は、リブ状の前記カム部11を予圧付加して隙間なく挟んでいる。与圧付加の方法は、一対の前記カムフォロワ部21の一方を前記微振動伝達具2に固定し、他方はリブ状の前記カム部11を挟む位置に可動に配設し、該カムフォロワ部の軸部(図示せず)をセットボルト(図示せず)でカム面方向へ圧接し、予圧付加した状態で前記微振動伝達具2に固定ボルト(図示せず)で固定する方法である。前記微振動伝達具2は、前記カム部11が形成された前記回転体1が1回転すると、一対の前記カムフォロワ部21を介して、案内具22に案内され、振幅15μmで360回往復運動する。前記回転体1が、前記回転速度制御器SPCからの、例えば、3000rpmの回転速度指令により前記電動機Dで3000rpmの速度で回転駆動されると、前記微振動伝達具2は、前記カム部11のカム面が一周する間の輪郭曲線のサイクル数K=360サイクル、揚程H=15μm、前記回転体1の回転速度N=3000rpmであるから、振幅は15μmで、振動数fはK・N/60で計算される18kHzの微振動を確実に発生させ印加できる。   In the drawing, what is indicated by reference numeral 2 is the fine vibration transmission tool. A pair of the cam follower portions 21 is attached to one end of the fine vibration transmission tool 2. The pair of cam follower portions 21 pre-load the rib-shaped cam portions 11 and sandwich them without gaps. In the method of applying pressure, one of the pair of cam follower portions 21 is fixed to the fine vibration transmitting tool 2, and the other is movably disposed at a position sandwiching the rib-shaped cam portion 11, and the shaft of the cam follower portion is fixed. This is a method in which a portion (not shown) is pressed against the cam surface with a set bolt (not shown) and fixed to the fine vibration transmission tool 2 with a fixing bolt (not shown) in a state where a preload is applied. When the rotating body 1 on which the cam portion 11 is formed makes one rotation, the fine vibration transmission tool 2 is guided to the guide tool 22 via the pair of cam follower portions 21 and reciprocates 360 times with an amplitude of 15 μm. . When the rotating body 1 is rotationally driven by the electric motor D at a speed of 3000 rpm, for example, according to a rotational speed command of 3000 rpm from the rotational speed controller SPC, the fine vibration transmission tool 2 Since the contour curve cycle number K = 360 cycles, the lift H = 15 μm, and the rotational speed N = 3000 rpm of the rotating body 1 while the cam surface makes one round, the amplitude is 15 μm and the frequency f is K · N / 60. It is possible to reliably generate and apply a fine vibration of 18 kHz calculated by

つぎに、図面上、符号3で指示するものは、前記加工具である引き抜き加工用ダイスであり、前記微振動伝達具2の中央部に微振動方向に引き抜き方向を合わせて固着されている。前記引き抜き加工用ダイス3には、被加工材Mである線材が挿入され、線材把持具Cで前記被加工材Mである線材を把持し引き抜き加工する。また、前記引き抜き加工用ダイス3は、印加する微振動の方向に対して任意の角度を付けて固着することができる。また、引き抜き加工前の前記被加工材Mに本発明の塑性加工用カム式微振動印加機構により微振動を印加することもできる。   Next, what is indicated by reference numeral 3 in the drawing is a drawing die, which is the processing tool, and is fixed to the center of the fine vibration transmitting tool 2 with the drawing direction aligned with the fine vibration direction. A wire material, which is a workpiece M, is inserted into the drawing die 3, and the wire material, which is the workpiece M, is gripped and drawn by a wire gripper C. Further, the drawing die 3 can be fixed at an arbitrary angle with respect to the direction of fine vibration to be applied. Further, a fine vibration can be applied to the workpiece M before drawing by the plastic working cam-type fine vibration applying mechanism of the present invention.

前記回転体1は、本実施例では板状の回転体であるが、円筒状の回転体とすることもできる。また、前記カム部11は溝状であって、該カム部に1個の前記カムフォロワ部21が隙間なく嵌りこんで拘束することもできる。   The rotary body 1 is a plate-like rotary body in this embodiment, but may be a cylindrical rotary body. Further, the cam portion 11 has a groove shape, and one cam follower portion 21 can be fitted into the cam portion without any gap and restrained.

前記カム部11のカム面は、前記した単弦曲線や無停留変形台形曲線、無停留変形等速度曲線等の無停留曲線の他に、両停留対称曲線、両停留非対称曲線、そして片停留曲線のいずれかのカム曲線による輪郭曲線で形成することができる。前記微振動伝達具2や前記引き抜き加工用ダイス3の質量が大きく加振に必要なエネルギーが大きい場合は、前記カム部11のカム面は最も加速度の小さい無停留曲線である単弦曲線による輪郭曲線で形成する。また、前記微振動伝達具2や前記引き抜き加工用ダイス3の質量が小さく加振に必要なエネルギーが小さい場合は、前記引き抜き加工用ダイス3に印加する微振動力を大きくするため、前記カム部11のカム面は両停留対称曲線、両停留非対称曲線、そして片停留曲線など加速度の大きいカム曲線による輪郭曲線で形成する。   The cam surface of the cam portion 11 has a non-stationary curve such as a single-string curve, a non-stationary deformation trapezoid curve, a non-stationary deformation constant velocity curve, etc. It can be formed by a contour curve by any one of the cam curves. When the mass of the micro-vibration transmission tool 2 or the drawing die 3 is large and the energy required for vibration is large, the cam surface of the cam portion 11 is contoured by a single-string curve that is a non-stationary curve with the smallest acceleration. Form with a curve. In addition, when the mass of the micro-vibration transmission tool 2 or the drawing die 3 is small and the energy required for vibration is small, the cam portion is used to increase the micro-vibration force applied to the drawing die 3. The eleven cam surfaces are formed by contour curves formed by cam curves having a large acceleration, such as both stationary symmetrical curves, both stationary asymmetric curves, and single stationary curves.

印加する微振動の振幅は、加工具、被加工材、加工条件に対応して最適な振幅とする必要がある。微振動の振幅を200μmに変化させる場合は、揚程Hが200μmである前記カム部11が形成された回転体1と交換して実現する。また、印加する微振動の周波数fも、加工具、被加工材、加工条件、加工進行程度に対応して最適な周波数とする必要がある。微振動の周波数fを1kHzにする場合は、前記カム部11のカム面が一周する間の輪郭曲線のサイクル数K=360サイクルであるから、前記回転体1の回転速度Nは60・f/Kで計算される167rpmとする。   The amplitude of the fine vibration to be applied needs to be an optimum amplitude corresponding to the processing tool, the workpiece, and the processing conditions. When the amplitude of the minute vibration is changed to 200 μm, it is realized by exchanging it with the rotating body 1 on which the cam portion 11 having the lift H of 200 μm is formed. Further, the frequency f of the fine vibration to be applied needs to be an optimum frequency corresponding to the processing tool, the workpiece, the processing conditions, and the progress of processing. When the frequency f of the fine vibration is 1 kHz, the contour curve cycle number K = 360 cycles while the cam surface of the cam portion 11 goes around makes the rotational speed N of the rotating body 1 60.f / It is set to 167 rpm calculated by K.

以上の一連の構成により、引き抜き加工中に、前記被加工材Mの種類、引き抜き加工速度、並びに前記引き抜き加工ダイス3の絞り角等の加工条件に対応して最適に設定された周波数の微振動を前記引き抜き加工用ダイス3に印加することができる。引き抜き加工後の完成品に求められる用途仕様により、長さ方向において部分的に異なる表面粗さ、仕上げ寸法精度、硬度を必要とする場合は、連続した一連の引き抜き加工中に微振動の周波数を上下させ、仕様を実現することができる。   With the above-described series of configurations, the fine vibration of the frequency optimally set according to the processing conditions such as the type of the workpiece M, the drawing speed, and the drawing angle of the drawing die 3 during the drawing process. Can be applied to the drawing die 3. Depending on the application specifications required for the finished product after drawing, if a slightly different surface roughness, finish dimensional accuracy, and hardness are required in the length direction, the frequency of micro vibrations should be set during a series of drawing operations. The specification can be realized by moving up and down.

〔実施例2〕
図2は、本発明の塑性加工用カム式微振動印加機構の構成を適用した実施例である曲げ加工装置(実施例2)の主要部分を図示したものである。
[Example 2]
FIG. 2 illustrates a main part of a bending apparatus (Example 2) which is an example to which the configuration of the cam type fine vibration applying mechanism for plastic working of the present invention is applied.

この実施例2の曲げ加工装置が前述の実施例1と異なる点は、前記電動機D、前記カム部11が周方向に形成された前記回転体1、前記微振動伝達具2、一対の前記カムフォロワ部21、前記案内具22、そして加工具である曲げ加工用パンチ4ならびに曲げ加工用ダイス5で構成される微振動発生伝達機構を上下に2組保有し、上側の微振動発生伝達機構で曲げ加工用パンチ4に微振動を印加し、下側の微振動発生伝達機構で曲げ加工用ダイス5に微振動を印加する点である。さらに、前記パンチ側の微振動発生伝達機構は、前記パンチ4と一体となって、パンチ上昇下降機構Uにより上昇下降する。前記パンチ側とダイス側の微振動発生伝達機構の微振動条件は、異なるものにすることも可能である。また、パンチ側とダイス側の少なくとも一方でもよい。   The bending apparatus according to the second embodiment is different from the first embodiment in that the electric motor D, the rotating body 1 in which the cam portion 11 is formed in the circumferential direction, the fine vibration transmission tool 2, and a pair of the cam followers. Two sets of fine vibration generation and transmission mechanisms composed of the portion 21, the guide tool 22, and the bending punch 4 and the bending die 5 which are processing tools are held up and down, and bent by the upper fine vibration generation and transmission mechanism. A slight vibration is applied to the processing punch 4 and a slight vibration is applied to the bending die 5 by the lower fine vibration generation and transmission mechanism. Further, the fine vibration generation and transmission mechanism on the punch side is integrated with the punch 4 and is raised and lowered by the punch raising and lowering mechanism U. The fine vibration conditions of the fine vibration generation and transmission mechanism on the punch side and the die side may be different. Further, at least one of the punch side and the die side may be used.

以上の一連の構成により、曲げ加工中に、前記被加工材Mの種類、曲げ加工速度、並びに前記曲げ加工用パンチ4ならびに曲げ加工用ダイス5の曲げ加工角等の加工条件に対応して最適に設定された周波数の微振動を前記曲げ加工用パンチ4ならびに曲げ加工用ダイス5に印加することができる。一連の曲げ加工中、曲げ角度が大きくなるに伴い、微振動の周波数を上げることで、加工硬化によるひび割れが減少する、より大きな曲げ角度まで加工することが可能となる、そして、スプリングバックが減少し加工精度が向上する等の効果がある。   With the above-described series of configurations, during bending, the type of the workpiece M, the bending speed, and the processing conditions such as the bending angle of the bending punch 4 and the bending die 5 are optimal. Can be applied to the bending punch 4 and the bending die 5. During a series of bending operations, as the bending angle increases, increasing the frequency of micro-vibration reduces the cracks caused by work hardening, enabling processing to a larger bending angle and reducing springback. This has the effect of improving the machining accuracy.

〔実施例3〕
図3は、本発明の塑性加工用カム式微振動印加機構の構成を適用した実施例である深絞り加工装置(実施例3)の主要部分を図示したものである。
Example 3
FIG. 3 shows the main part of a deep drawing apparatus (Embodiment 3) which is an embodiment to which the structure of the cam type fine vibration applying mechanism for plastic working of the present invention is applied.

この実施例3の深絞り加工装置が前述の実施例2と異なる点は、上側の微振動発生伝達機構で深絞り加工用パンチ6に微振動を印加し、下側の微振動発生伝達機構で深絞り加工用ダイス7に微振動を印加する点である。図面上、符号8で指示するものは、しわ抑え具である。前記深絞り加工用パンチ6側と前記深い絞り加工用ダイス7側の微振動発生伝達機構の微振動条件は、異なるものにすることも可能である。また、前記深絞り加工用パンチ6側と前記深い絞り加工用ダイス7側の少なくとも一方でもよい。   The deep drawing apparatus according to the third embodiment is different from the second embodiment described above in that a fine vibration is applied to the deep drawing punch 6 by the upper fine vibration generating transmission mechanism and a lower fine vibration generating transmission mechanism is used. This is a point where a fine vibration is applied to the deep drawing die 7. In the drawing, what is indicated by reference numeral 8 is a wrinkle suppressor. The fine vibration conditions of the fine vibration generation and transmission mechanism on the deep drawing punch 6 side and the deep drawing die 7 side may be different. Further, it may be at least one of the deep drawing punch 6 side and the deep drawing die 7 side.

以上の一連の構成により、深絞り加工中に、前記被加工材Mの種類、深絞り加工速度、並びに前記深絞り加工用パンチ6ならびに深絞り加工用ダイス7の絞り形状等の加工条件に対応して最適に設定された周波数の微振動を前記深絞り加工用パンチ6ならびに深絞り加工用ダイス7に印加することができる。一連の深絞り加工中、絞り程度が大きくなるに伴い、微振動の周波数を上げることで、加工硬化によるひび割れが減少する、より深く絞り加工することが可能となる等の効果がある。   With the above-described series of configurations, during the deep drawing, the processing conditions such as the type of workpiece M, the deep drawing speed, and the drawing shape of the deep drawing punch 6 and the deep drawing die 7 are supported. Thus, the fine vibration of the optimally set frequency can be applied to the deep drawing punch 6 and the deep drawing die 7. During a series of deep drawing processes, there is an effect that, as the degree of drawing increases, increasing the frequency of fine vibration reduces cracks due to work hardening and enables deeper drawing.

〔実施例4〕
図4は、本発明の塑性加工用カム式微振動印加機構の構成を適用した実施例であるしごき加工装置(実施例4)の主要部分を図示したものである。
Example 4
FIG. 4 illustrates a main part of an ironing apparatus (Embodiment 4), which is an embodiment to which the configuration of the cam-type fine vibration applying mechanism for plastic working of the present invention is applied.

この実施例4のしごき加工装置が前述の実施例3と異なる点は、上側の微振動発生伝達機構でしごき加工用パンチ9に微振動を印加し、下側の微振動発生伝達機構でしごき加工用ダイス10に微振動を印加する点である。前記しごき加工用パンチ9側と前記しごき加工用ダイス10側の微振動発生伝達機構の微振動条件は、異なるものにすることも可能である。また、前記しごき加工用パンチ9側と前記しごき加工用ダイス10側の少なくとも一方でもよい。   The ironing apparatus of the fourth embodiment is different from the above-described third embodiment in that a fine vibration is applied to the ironing punch 9 by the upper fine vibration generation and transmission mechanism, and an ironing process is performed by the lower fine vibration generation and transmission mechanism. This is a point where a slight vibration is applied to the working die 10. The fine vibration conditions of the fine vibration generation and transmission mechanism on the ironing punch 9 side and the ironing die 10 side may be different. Further, it may be at least one of the ironing punch 9 side and the ironing die 10 side.

以上の一連の構成により、しごき加工中に、前記被加工材Mの種類、しごき加工速度、並びに前記しごき加工用パンチ9ならびにしごき加工用ダイス10の形状等の加工条件に対応して最適に設定された周波数の微振動を前記しごき加工用パンチ9ならびにしごき加工用ダイス10に印加することができる。しごき加工後の完成品に求められる用途仕様により、長さ方向において部分的に異なる表面粗さ、仕上げ寸法精度、硬度を必要とする場合は、連続した一連のしごき加工中に微振動の周波数を上下させ、仕様を実現することができる。   With the above-described series of configurations, optimally set during the ironing process according to the processing conditions such as the type of the workpiece M, the ironing speed, and the shapes of the ironing punch 9 and the ironing die 10. The fine vibration having the frequency can be applied to the ironing punch 9 and the ironing die 10. Depending on the application specifications required for the finished product after ironing, if the surface roughness, finishing dimensional accuracy, and hardness that are partially different in the length direction are required, the frequency of micro vibrations should be set during a series of ironing operations. The specification can be realized by moving up and down.

〔実施例5〕
図5は、本発明の塑性加工用カム式微振動印加機構の構成を適用した実施例である圧延加工装置(実施例5)の主要部分を図示したものである。
Example 5
FIG. 5 illustrates a main part of a rolling processing apparatus (Example 5) which is an example to which the configuration of the cam type fine vibration applying mechanism for plastic working of the present invention is applied.

この実施例5の圧延加工装置が前述の実施例4と異なる点は、上側の微振動発生伝達機構で上圧延ロール20に微振動を印加し、下側の微振動発生伝達機構で下圧延ロール30に微振動を印加する点である。前記上圧延ロール20側と前記下圧延ロール30側の微振動発生伝達機構の微振動条件は、異なるものにすることも可能である。また、前記上圧延ロール20側と前記下圧延ロール30側の少なくとも一方でもよい。また、圧延前の前記被加工材Mに本発明の塑性加工用カム式微振動印加機構により微振動を印加することもできる。   The fifth embodiment is different from the above-described fourth embodiment in that a fine vibration is applied to the upper rolling roll 20 by the upper fine vibration generation and transmission mechanism, and a lower rolling roll by the lower fine vibration generation and transmission mechanism. 30 is a point at which a slight vibration is applied. The fine vibration conditions of the fine vibration generation and transmission mechanism on the upper rolling roll 20 side and the lower rolling roll 30 side may be different. Further, it may be at least one of the upper rolling roll 20 side and the lower rolling roll 30 side. Further, a fine vibration can be applied to the workpiece M before rolling by the plastic working cam type fine vibration applying mechanism of the present invention.

以上の一連の構成により、圧延加工中に、前記被加工材Mの種類、圧延加工速度、並びに前記上圧延ロール20ならびに下圧延ロール30の形状等の加工条件に対応して最適に設定された周波数の微振動を前記上圧延ロール20ならびに下圧延ロール30に印加することができる。圧延加工後の完成品に求められる用途仕様により、長さ方向において部分的に異なる表面粗さ、仕上げ寸法精度、硬度を必要とする場合は、連続した一連の圧延加工中に微振動の周波数を上下させ、仕様を実現することができる。   With the above series of configurations, during the rolling process, it was optimally set according to the processing conditions such as the type of the workpiece M, the rolling speed, and the shapes of the upper rolling roll 20 and the lower rolling roll 30. A slight vibration of a frequency can be applied to the upper rolling roll 20 and the lower rolling roll 30. Depending on the application specifications required for the finished product after rolling, if a slightly different surface roughness, finishing dimensional accuracy, and hardness are required in the length direction, the frequency of micro vibrations should be set during a series of rolling operations. The specification can be realized by moving up and down.

図1は、本発明を適用して構成した実施例1の引き抜き加工装置の構成を表現した説明図である。FIG. 1 is an explanatory diagram expressing the configuration of a drawing apparatus according to a first embodiment configured by applying the present invention. 図2は、本発明を適用して構成した実施例2の曲げ加工装置の構成を表現した説明図である。FIG. 2 is an explanatory diagram representing the configuration of the bending apparatus according to the second embodiment configured by applying the present invention. 図3は、本発明を適用して構成した実施例3の深絞り加工装置の構成を表現した説明図である。FIG. 3 is an explanatory diagram expressing the configuration of the deep drawing apparatus of the third embodiment configured by applying the present invention. 図4は、本発明を適用して構成した実施例4のしごき加工装置の構成を表現した説明図である。FIG. 4 is an explanatory diagram expressing the configuration of the ironing apparatus of Example 4 configured by applying the present invention. 図5は、本発明を適用して構成した実施例5の圧延加工装置の構成を表現した説明図である。FIG. 5 is an explanatory diagram expressing the configuration of the rolling processing apparatus of Example 5 configured by applying the present invention.

符号の説明Explanation of symbols

1 回転体
11 カム部
2 微振動伝達具
21 カムフォロワ部
22 案内具
3 引き抜き加工用ダイス
4 曲げ加工用パンチ
5 曲げ加工用ダイス
6 深絞り加工用パンチ
7 深絞り加工用ダイス
8 しわ抑え具
9 しごき加工用パンチ
10 しごき加工用ダイス
20 上圧延ロール
30 下圧延ロール
D 電動機
SPC 回転速度制御器
M 被加工材
C 線材把持具
U パンチ上昇下降機構
DESCRIPTION OF SYMBOLS 1 Rotating body 11 Cam part 2 Micro vibration transmission tool 21 Cam follower part 22 Guide tool 3 Drawing die 4 Bending punch 5 Bending die 6 Deep drawing punch 7 Deep drawing die 8 Wrinkle control tool 9 Ironing Punch for processing 10 Die for ironing 20 Upper rolling roll 30 Lower rolling roll D Electric motor SPC Rotational speed controller M Work material C Wire material gripper U Punch raising / lowering mechanism

Claims (8)

被加工材及び被加工材に圧接して塑性加工を行う加工具の少なくとも一方に微振動を印加するためのカム式微振動印加機構であって、
微振動を発生するためのカム面を有するカム部が周方向に形成された回転体と、
前記回転体を回転する回転駆動部と、
前記カム部に拘束されて前記カム面に追従することで微振動を行うカムフォロワ部を有する微振動伝達具と、
前記微振動伝達具を加工具及び被加工材の少なくとも一方に連結することを特徴とする塑性加工用カム式微振動印加機構。
A cam-type fine vibration applying mechanism for applying a fine vibration to at least one of a workpiece and a processing tool that performs plastic working while being pressed against the workpiece,
A rotating body in which a cam portion having a cam surface for generating micro vibrations is formed in the circumferential direction;
A rotation drive unit that rotates the rotating body;
A micro-vibration transmitter having a cam follower unit that is restrained by the cam unit and performs micro-vibration by following the cam surface;
A cam type fine vibration applying mechanism for plastic working, wherein the fine vibration transmitting tool is connected to at least one of a processing tool and a workpiece.
前記カム部のカム面は、前記回転体の一回転で2サイクル以上するカム曲線で輪郭曲線が形成されることを特徴とする請求項1に記載の塑性加工用カム式微振動印加機構。   2. The cam-type fine vibration applying mechanism for plastic working according to claim 1, wherein the cam surface of the cam portion is formed with a contour curve by a cam curve of two or more cycles in one rotation of the rotating body. 前記カム部のカム面は、無停留カム曲線で輪郭曲線が形成されることを特徴とする請求項2に記載の塑性加工用カム式微振動印加機構。   The cam type fine vibration applying mechanism for plastic working according to claim 2, wherein the cam surface of the cam portion is formed with a contour curve by a non-stationary cam curve. 前記カム部はリブ状であって、該カム部を一対の前記カムフォロワ部で予圧を付加して挟み込むことを特徴とする請求項1から請求項3のいずれかに記載の塑性加工用カム式微振動印加機構。   The cam type micro-vibration for plastic working according to any one of claims 1 to 3, wherein the cam part has a rib shape, and the cam part is sandwiched by applying a preload between the pair of cam follower parts. Application mechanism. 前記カム部は溝状であって、該カム部に前記カムフォロワ部が隙間なく嵌りこんでいること特徴とする請求項1から請求項3のいずれかに記載の塑性加工用カム式微振動印加機構。   The cam type micro-vibration applying mechanism for plastic working according to any one of claims 1 to 3, wherein the cam portion has a groove shape, and the cam follower portion is fitted into the cam portion without a gap. 前記カム部は揚呈が200μm以下であることを特徴とする請求項1から請求項5のいずれかに記載の塑性加工用カム式微振動印加機構。   The cam type fine vibration applying mechanism for plastic working according to any one of claims 1 to 5, wherein the cam portion has a lift of 200 µm or less. 発生する微振動の周波数が1kHz以上であることを特徴とする請求項1から請求項6のいずれかに記載の塑性加工用カム式微振動印加機構。   The cam type fine vibration applying mechanism for plastic working according to any one of claims 1 to 6, wherein the frequency of the generated fine vibration is 1 kHz or more. 請求項1から請求項7のいずれかに記載の塑性加工用カム式微振動印加機構を備えた塑性加工装置。

A plastic working device comprising the cam-type fine vibration applying mechanism for plastic working according to any one of claims 1 to 7.

JP2007151328A 2007-06-07 2007-06-07 Micro-vibration applying mechanism for plastic working Expired - Fee Related JP4324703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151328A JP4324703B2 (en) 2007-06-07 2007-06-07 Micro-vibration applying mechanism for plastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151328A JP4324703B2 (en) 2007-06-07 2007-06-07 Micro-vibration applying mechanism for plastic working

Publications (2)

Publication Number Publication Date
JP2008302383A true JP2008302383A (en) 2008-12-18
JP4324703B2 JP4324703B2 (en) 2009-09-02

Family

ID=40231550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151328A Expired - Fee Related JP4324703B2 (en) 2007-06-07 2007-06-07 Micro-vibration applying mechanism for plastic working

Country Status (1)

Country Link
JP (1) JP4324703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108584186A (en) * 2018-01-18 2018-09-28 福建工程学院 A kind of formula cement bunker cleaning equipment that do not stop production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478642A (en) * 1987-09-21 1989-03-24 Brother Ind Ltd Plastic working method and device therefor
JPH0332785A (en) * 1989-06-30 1991-02-13 Nachi Fujikoshi Corp Superposition oscillating device
JPH08309634A (en) * 1995-05-11 1996-11-26 Nachi Fujikoshi Corp Rotary oscillating jig holder
JP2001079609A (en) * 1999-09-13 2001-03-27 Masao Murakawa Vibration drawing method of wire and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478642A (en) * 1987-09-21 1989-03-24 Brother Ind Ltd Plastic working method and device therefor
JPH0332785A (en) * 1989-06-30 1991-02-13 Nachi Fujikoshi Corp Superposition oscillating device
JPH08309634A (en) * 1995-05-11 1996-11-26 Nachi Fujikoshi Corp Rotary oscillating jig holder
JP2001079609A (en) * 1999-09-13 2001-03-27 Masao Murakawa Vibration drawing method of wire and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108584186A (en) * 2018-01-18 2018-09-28 福建工程学院 A kind of formula cement bunker cleaning equipment that do not stop production
CN108584186B (en) * 2018-01-18 2023-08-29 福建工程学院 Cement silo cleaning equipment without stopping production

Also Published As

Publication number Publication date
JP4324703B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US10160175B2 (en) Press machine and method for controlling slide of press machine
CN110869163B (en) Ultrasonic roller polishing system and method for machining a part
KR100901808B1 (en) Band saw machine
JP5781552B2 (en) Press machine and slide control method of press machine
KR20130116191A (en) Method and device for finishing a workpiece surface
CN105312424B (en) Amplitude modulation swing die device
CN103071726A (en) Single-point longitudinal vibration controllable progressive forming system for metal plate
JP4324703B2 (en) Micro-vibration applying mechanism for plastic working
JP2013111676A (en) Press fitting method and press fitting device
Behrens et al. Development of a hydraulic actuator to superimpose oscillation in metal-forming presses
Seo et al. Development of audio frequency vibration microforming system
RU185980U1 (en) DEVICE FOR STRENGTHENING PROCESSING INTERNAL SURFACES OF PARTS
KR101582372B1 (en) Finishing apparatus for finishing processing of workpiece
JP5801841B2 (en) Press machine and slide control method of press machine
CN203109036U (en) Metal sheet single point longitudinal vibration controllable incremental forming system
JP2009090325A (en) Press machine
JP7311098B2 (en) Vibration cutting device, vibration device and cutting method
CN103406713B (en) For body method for oscillating and the device of the processing of hole slot ultrasonic surface
Fiedler et al. Incremental micro-forming for surface finishing with piezoelectrically actuated hammering tool with coupling unit
RU2429963C2 (en) Vibrating strengthening tool
Husanboyev STANDARDIZATION OF STRENGTHENING OF THE INTERNAL SURFACE OF CYLINDRICAL PARTS USING THE METHOD OF PLASTIC DEFORMATION
RU2429962C2 (en) Procedure for vibration strengthening treatment
Zhu et al. A new ultrasonic vibration machine for honing
JP4422503B2 (en) Magnetic region manufacturing apparatus and manufacturing method
JP2004114115A (en) Hydroforming method and hydroforming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees