JP7311098B2 - Vibration cutting device, vibration device and cutting method - Google Patents

Vibration cutting device, vibration device and cutting method Download PDF

Info

Publication number
JP7311098B2
JP7311098B2 JP2017093136A JP2017093136A JP7311098B2 JP 7311098 B2 JP7311098 B2 JP 7311098B2 JP 2017093136 A JP2017093136 A JP 2017093136A JP 2017093136 A JP2017093136 A JP 2017093136A JP 7311098 B2 JP7311098 B2 JP 7311098B2
Authority
JP
Japan
Prior art keywords
vibration
resonance frequency
cutting
resonance
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017093136A
Other languages
Japanese (ja)
Other versions
JP2018187726A (en
Inventor
英二 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taga Electric Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Taga Electric Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taga Electric Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Taga Electric Co Ltd
Priority to JP2017093136A priority Critical patent/JP7311098B2/en
Publication of JP2018187726A publication Critical patent/JP2018187726A/en
Application granted granted Critical
Publication of JP7311098B2 publication Critical patent/JP7311098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、振動切削装置および振動装置に関する。 The present disclosure relates to vibratory cutting devices and vibration devices.

近年、光学部品や摺動部品に、機能性を向上する微細な凹凸形状を形成することが要求されている。特許文献1は、切削工具の刃先を被削材に対して楕円振動させる振動装置を備えた切削装置を開示し、この切削装置は、鉄系材料や脆性材料に対して高能率な精密微細加工を施すことを可能とする。 2. Description of the Related Art In recent years, optical parts and sliding parts are required to have fine irregularities that improve their functionality. Patent Document 1 discloses a cutting device equipped with a vibration device that elliptically vibrates the cutting edge of a cutting tool with respect to a work material. It is possible to apply

特開2008-221427号公報JP 2008-221427 A

機能表面に形成する微細な凹凸形状の一つに、孔形状や溝形状などを周期的に形成したマイクロテクスチャがある。マイクロテクスチャ加工技術は、周期的構造を形成して機能表面における力学特性を制御することを目的とし、様々な分野での応用研究が活発化している。たとえば潤滑油を使用する摺動面に、オイルプールの役割を果たすマイクロテクスチャを形成することで、摩擦係数および摩耗を低減でき、また少量かつ低粘度の潤滑油で高潤滑を実現できることが知られている。このマイクロテクスチャは、摺動面との境界部分をなだらかな形状とすることを要求される。 One of the fine uneven shapes formed on the functional surface is a microtexture in which holes, grooves, and the like are periodically formed. The purpose of microtexturing technology is to form a periodic structure to control the mechanical properties of functional surfaces, and applied research in various fields has been active. For example, it is known that by forming a microtexture that acts as an oil pool on the sliding surface using lubricating oil, it is possible to reduce the friction coefficient and wear, and achieve high lubrication with a small amount of low-viscosity lubricating oil. ing. This micro-texture is required to have a gentle shape at the boundary with the sliding surface.

マイクロテクスチャを機械加工する場合、切削工具を装着した振動子と被削材とを相対的に動かしながら、切削工具の刃先を被削材に対して周期的に振動させて加工面を切削する方法が考えられる。振動子を低周波で振動させる場合には、工具刃先の振動軌跡を所望に制御できるため、加工面に複雑な周期的形状を加工できる。しかしながら加工速度は遅く、能率的ではない。 When machining a microtexture, the cutting surface is cut by periodically vibrating the cutting edge of the cutting tool against the work material while relatively moving the vibrator with the cutting tool and the work material. can be considered. When the vibrator is vibrated at a low frequency, the vibration trajectory of the cutting edge of the tool can be controlled as desired, so that a complicated periodic shape can be machined on the machined surface. However, the processing speed is slow and inefficient.

高能率化のためには、振動周波数を超音波領域程度まで高くし、且つ振動子と被削材とを相対的に高速で動かせばよいが、そのような高周波でミクロンオーダの切削深さを得るためには、機械的な共振現象を利用する必要がある。この場合、振動子は正弦波振動することとなり、したがって得られる加工面の形状も、工具刃先の正弦波軌跡に依存した形状に制限される。 In order to improve the efficiency, the vibration frequency should be increased to the ultrasonic range and the vibrator and the work material should be moved at a relatively high speed. In order to obtain it, it is necessary to utilize a mechanical resonance phenomenon. In this case, the vibrator oscillates sinusoidally, and therefore the shape of the machined surface obtained is also limited to a shape dependent on the sinusoidal locus of the cutting edge of the tool.

本開示はこうした状況に鑑みてなされており、その目的とするところの1つは、加工の高能率化を実現しつつ、工具刃先に様々な振動軌跡を付与することを可能とする加工技術を提供することにある。 The present disclosure has been made in view of such circumstances, and one of the purposes thereof is to develop a processing technology that can impart various vibration trajectories to the cutting edge of a tool while realizing high efficiency of processing. to provide.

上記課題を解決するために、本発明のある態様の振動切削装置は、切削工具が装着され、振動を発生するアクチュエータを含む振動装置を備え、振動装置は、第1共振周波数と、第1共振周波数より高い第2共振周波数を有して、第1共振周波数および第2共振周波数で同時に共振する。 In order to solve the above problems, a vibration cutting apparatus according to one aspect of the present invention includes a vibration device having a cutting tool mounted thereon and including an actuator that generates vibration, the vibration device having a first resonance frequency and a first resonance frequency It has a second resonance frequency higher than the frequency and resonates simultaneously at the first resonance frequency and the second resonance frequency.

本発明の別の態様は、振動を発生するアクチュエータを備える振動装置である。この振動装置は、第1共振周波数と、第1共振周波数より高い第2共振周波数を有して、第1共振周波数および第2共振周波数で同時に共振する。 Another aspect of the invention is a vibrating device that includes an actuator that generates vibrations. The vibration device has a first resonance frequency and a second resonance frequency higher than the first resonance frequency, and resonates simultaneously at the first resonance frequency and the second resonance frequency.

なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above-described components and expressions of the present disclosure converted between methods, devices, systems, recording media, computer programs, etc. are also effective as aspects of the present disclosure.

本開示によれば、加工の高能率化を実現しつつ、工具刃先に様々な振動軌跡を付与することを可能とする加工技術を提供できる。 Advantageous Effects of Invention According to the present disclosure, it is possible to provide a machining technique capable of imparting various vibration trajectories to a cutting edge of a tool while achieving high machining efficiency.

超音波振動切削装置の概略構成を示す図である。It is a figure which shows schematic structure of an ultrasonic vibration cutting apparatus. 超音波振動切削装置の機能構成を示す図である。It is a figure which shows the functional structure of an ultrasonic vibration cutting device. 超音波振動装置の縦方向の複数の共振モードを示す図である。FIG. 4 is a diagram showing multiple resonance modes in the longitudinal direction of the ultrasonic vibration device; (a)は複数の共振モードの振動波形を示し、(b)は複数の振動波形の合成波形を示し、(c)は被削材の加工面を模式的に示す図である。(a) shows vibration waveforms of a plurality of resonance modes, (b) shows a composite waveform of a plurality of vibration waveforms, and (c) schematically shows a machined surface of a work material. (a)は複数の共振モードの振動波形を示し、(b)は複数の振動波形の合成波形を示す図である。(a) shows vibration waveforms in a plurality of resonance modes, and (b) shows a composite waveform of the plurality of vibration waveforms. アクチュエータおよび駆動装置の変形例を示す図である。It is a figure which shows the modification of an actuator and a drive device.

図1は、実施例の超音波振動切削装置1の概略構成を示す。超音波振動切削装置1は、被削材6に対して切削工具11の刃先を往復振動させて旋削タイプの加工を行うことが可能な切削装置である。実施例の超音波振動切削装置1は、円筒状の被削材6を旋削して圧延用ロールを加工するロール旋盤であるが、他のタイプの切削装置であってもよい。被削材6は、代表的には表面にニッケルりんをめっきした金型鋼、銅素材やアルミニウム素材などであるが、他の素材であってもよい。 FIG. 1 shows a schematic configuration of an ultrasonic vibration cutting device 1 of an embodiment. The ultrasonic vibration cutting apparatus 1 is a cutting apparatus capable of performing turning-type machining by reciprocatingly vibrating the cutting edge of a cutting tool 11 with respect to a workpiece 6 . The ultrasonic vibration cutting device 1 of the embodiment is a roll lathe that turns a cylindrical work material 6 to machine rolling rolls, but other types of cutting devices may be used. The work material 6 is typically die steel plated with nickel phosphorous on the surface, a copper material, an aluminum material, or the like, but other materials may be used.

超音波振動切削装置1は、被削材6を回転可能に支持する主軸台2および心押し台3と、切削工具11が装着された振動装置12を支持する刃物台4とを、ベッド5上に備える。また超音波振動切削装置1は、少なくとも心押し台3を主軸台2に対して移動させる送り機構、刃物台4を被削材6の軸方向に平行な送り方向および軸方向に直角な切込み方向(切削工具11を被削材6の回転軸に対して近づける方向)に移動させる送り機構を備える。切削加工中、被削材6は、主軸台2に設けられた主軸により回転させられる。 The ultrasonic vibration cutting apparatus 1 has a headstock 2 and a tailstock 3 that rotatably support a work piece 6 and a tool post 4 that supports a vibration device 12 with a cutting tool 11 mounted thereon. Prepare for. The ultrasonic vibration cutting apparatus 1 also includes a feed mechanism that moves at least the tailstock 3 with respect to the headstock 2, a tool post 4 that moves in a feed direction parallel to the axial direction of the workpiece 6 and a cutting direction perpendicular to the axial direction. A feed mechanism is provided to move the cutting tool 11 in a direction (to bring the cutting tool 11 closer to the rotating shaft of the work material 6). During cutting, the work material 6 is rotated by a spindle provided on the headstock 2 .

振動装置12は、切削工具11が装着されて、切削工具11の刃先に一方向の往復振動を付与する超音波振動装置10を備える。超音波振動装置10は超音波振動子であって、内部に超音波振動を発生するアクチュエータを備える。アクチュエータは圧電素子であってよい。実施例において「超音波振動」の周波数は、概ね人間の可聴域を超えた周波数を意味し、たとえば16kHz以上の周波数であってよい。超音波振動切削装置1は超音波周波数帯域を利用することで、静音性の優れた加工を実現する。 The vibrating device 12 includes an ultrasonic vibrating device 10 to which the cutting tool 11 is attached and which applies reciprocating vibration in one direction to the cutting edge of the cutting tool 11 . The ultrasonic vibration device 10 is an ultrasonic vibrator, and includes an actuator that generates ultrasonic vibrations inside. The actuator may be a piezoelectric element. In embodiments, the frequency of "ultrasonic vibrations" means frequencies generally above the human audible range, and may be, for example, frequencies of 16 kHz or higher. The ultrasonic vibration cutting device 1 utilizes an ultrasonic frequency band to realize processing with excellent quietness.

駆動装置30は、超音波振動装置10の圧電素子に電圧を印加して超音波振動装置10を振動させ、切削工具11の刃先を一方向に往復振動させるドライバである。実施例で駆動装置30は、切削工具11の刃先を切込み方向に往復振動させる。制御部20は、駆動装置30に印加電圧の制御指令を供給して、駆動装置30による圧電素子への印加電圧を制御する。具体的に制御部20は、共振の振幅と位相を制御する振動制御機能と、共振周波数の自動追尾機能を実現するように、駆動装置30による印加電圧を制御する。なお図示の例では制御部20が、主軸台2の内部に設けられているが、それ以外のスペースに設けられてもよい。制御部20は、主軸および各種送り機構の動作を制御するNC制御装置(図示せず)と連携して、駆動装置30による印加電圧を制御してもよい。また制御部20はNC制御装置を内蔵する構成とし、主軸および各種送り機構の動作を制御するとともに、駆動装置30による印加電圧を制御してもよい。 The driving device 30 is a driver that applies a voltage to the piezoelectric element of the ultrasonic vibration device 10 to vibrate the ultrasonic vibration device 10 and reciprocate the cutting edge of the cutting tool 11 in one direction. In the embodiment, the driving device 30 reciprocates the cutting edge of the cutting tool 11 in the cutting direction. The control unit 20 supplies an applied voltage control command to the driving device 30 to control the voltage applied to the piezoelectric element by the driving device 30 . Specifically, the control unit 20 controls the voltage applied by the driving device 30 so as to realize a vibration control function of controlling the amplitude and phase of resonance and an automatic tracking function of the resonance frequency. Although the controller 20 is provided inside the headstock 2 in the illustrated example, it may be provided in a space other than that. The control unit 20 may control the voltage applied by the driving device 30 in cooperation with an NC control device (not shown) that controls the operation of the spindle and various feed mechanisms. Further, the control section 20 may be configured to incorporate an NC control device, control the operation of the spindle and various feed mechanisms, and control the voltage applied by the driving device 30 .

図2は、超音波振動切削装置1の機能構成を示す。超音波振動装置10は、圧電素子13a、13bをボルト14で締込んで挟んだランジュバン型振動子であってよく、その長手方向に縦振動を発生させる。切削工具11はロウ材等により超音波振動装置10の先端に装着されてよいが、超音波振動装置10の先端に設けられた凹部に装着されてもよい。実施例で超音波振動装置10は、円筒状の被削材6に対して垂直方向に縦振動するように配置されるが、斜め方向に縦振動するように配置されてもよい。なお実施例では、粗密波の共振による縦振動を利用する超音波振動装置10について説明するが、超音波振動装置10は、たわみ振動やねじり振動を利用して一方向の往復振動を発生するものであってもよい。 FIG. 2 shows the functional configuration of the ultrasonic vibration cutting device 1. As shown in FIG. The ultrasonic vibration device 10 may be a Langevin type transducer in which piezoelectric elements 13a and 13b are clamped and sandwiched by bolts 14, and longitudinal vibration is generated in the longitudinal direction thereof. The cutting tool 11 may be attached to the tip of the ultrasonic vibration device 10 with brazing material or the like, or may be attached to a recess provided at the tip of the ultrasonic vibration device 10 . In the embodiment, the ultrasonic vibration device 10 is arranged so as to longitudinally vibrate in the direction perpendicular to the cylindrical workpiece 6, but it may be arranged so as to longitudinally vibrate obliquely. In the embodiment, the ultrasonic vibration device 10 that utilizes longitudinal vibration due to resonance of compressional waves will be described. may be

駆動装置30は、発振器31および増幅器32を備える。発振器31は、増幅器32を介して超音波振動装置10の圧電素子13a、13bと電気的に接続し、圧電素子13a、13bに電圧を印加する。制御部20は、超音波振動装置10がその長手方向に共振周波数で共振するように、駆動装置30による印加電圧を制御して圧電素子13a、13bを振動させる。 Driving device 30 comprises oscillator 31 and amplifier 32 . The oscillator 31 is electrically connected to the piezoelectric elements 13a and 13b of the ultrasonic vibration device 10 via the amplifier 32, and applies voltage to the piezoelectric elements 13a and 13b. The control unit 20 controls the voltage applied by the driving device 30 to vibrate the piezoelectric elements 13a and 13b so that the ultrasonic vibration device 10 resonates at the resonance frequency in its longitudinal direction.

超音波振動装置10が共振することで、切削工具11の刃先は被削材6の表面を、少なくとも深さ方向に正弦波の周期的形状、または正弦波の一部が残った周期的形状に切削できる。実施例の超音波振動切削装置1は、超音波振動装置10の機械的な共振現象を利用して、正弦波以外の形状に切削することを可能とする。 By resonating the ultrasonic vibration device 10, the cutting edge of the cutting tool 11 causes the surface of the work piece 6 to have a periodic shape of a sine wave or a periodic shape in which a part of the sine wave remains at least in the depth direction. Can be cut. The ultrasonic vibration cutting device 1 of the embodiment utilizes the mechanical resonance phenomenon of the ultrasonic vibration device 10 to enable cutting into shapes other than sinusoidal waves.

切削工具11が装着された超音波振動装置10は、少なくとも第1共振周波数、および第1共振周波数より高い第2共振周波数を有するように形成される。超音波振動装置10は、第2共振周波数より高い第3共振周波数を有してもよい。制御部20は、超音波振動装置10が少なくとも第1共振周波数および第2共振周波数において、それぞれ所望の位相で同時に共振するように、駆動装置30による印加電圧を制御する。 The ultrasonic vibration device 10 with the cutting tool 11 mounted thereon is formed to have at least a first resonance frequency and a second resonance frequency higher than the first resonance frequency. The ultrasonic vibration device 10 may have a third resonance frequency higher than the second resonance frequency. The control unit 20 controls the voltage applied by the driving device 30 so that the ultrasonic vibration device 10 simultaneously resonates at desired phases at least at the first resonance frequency and the second resonance frequency.

図3は、超音波振動装置10の縦方向の複数の共振モードを示す。図3に示す例では、2つ以上の節を有する振動モードの中で最も低い共振周波数の振動モードに対して、整数倍の共振周波数の振動モードを組み合わせ、複数の振動モードで超音波振動装置10を励振している。図3に示す例では、2次の基本共振モードに、6次の共振モードを組み合わせている。 FIG. 3 shows multiple longitudinal resonance modes of the ultrasonic vibration device 10 . In the example shown in FIG. 3, the vibration mode having the lowest resonance frequency among the vibration modes having two or more nodes is combined with the vibration mode having the resonance frequency that is an integral multiple of the vibration mode, and the ultrasonic vibration device is operated in a plurality of vibration modes. 10 is excited. In the example shown in FIG. 3, the 6th-order resonance mode is combined with the 2nd-order fundamental resonance mode.

超音波振動装置10は、複数の共振モードによる節の位置が2カ所以上で一致するように形成されて、一致した複数の節の位置で振動装置12の筐体に支持されることが好ましい。図3に示す例では、複数の共振モードによる節の位置が2カ所で一致し、超音波振動装置10は、一致した節の位置に設けられた取付部15a、15bにより振動装置12の筐体に支持される。これにより複数の共振モードにおける振動が、効率的に切削工具11に伝達されるようになる。なお丸棒形状の縦振動では、基本共振モードの節の位置と奇数倍の共振モードの節の位置とが重なるため、加工形状が基本共振モードと奇数倍の共振モードの組合せで形成される場合、実施例の超音波振動装置10は特に有利である。 It is preferable that the ultrasonic vibration device 10 is formed so that the positions of nodes due to a plurality of resonance modes match at two or more locations, and that the housing of the vibration device 12 supports the plurality of matching node positions. In the example shown in FIG. 3, the positions of nodes due to a plurality of resonance modes match at two locations, and the ultrasonic vibration device 10 is mounted on the housing of the vibration device 12 by the mounting portions 15a and 15b provided at the matching node positions. supported by As a result, vibrations in multiple resonance modes are efficiently transmitted to the cutting tool 11 . In the longitudinal vibration of a round bar shape, the position of the node of the fundamental resonance mode and the position of the node of the odd multiple resonance mode overlap, so if the machined shape is formed by combining the fundamental resonance mode and the odd multiple resonance mode, , the ultrasonic vibration device 10 of the embodiment is particularly advantageous.

図4(a)は、基本共振モードの振動波形40aと6次共振モードの振動波形40bを示す。縦軸は振動変位[μm]を、横軸は時間[秒(×10-4)]を表現する。この例では、基本共振モードの周波数を20kHz、振幅を10μm、正弦波として見た場合の初期位相を0度とし、6次共振モードの周波数を60kHz、振幅を3.33μm、初期位相を180度としている。 FIG. 4(a) shows a vibration waveform 40a in the fundamental resonance mode and a vibration waveform 40b in the sixth resonance mode. The vertical axis represents vibration displacement [μm], and the horizontal axis represents time [seconds (×10 −4 )]. In this example, the fundamental resonance mode has a frequency of 20 kHz, an amplitude of 10 μm, and an initial phase of 0 degrees when viewed as a sine wave, and the sixth resonance mode has a frequency of 60 kHz, an amplitude of 3.33 μm, and an initial phase of 180 degrees. and

図4(b)は、基本共振モードの振動波形40aと6次共振モードの振動波形40bを合成した振動波形41を示す。制御部20は、超音波振動装置10が20kHzと60kHzで同時に共振するように、駆動装置30による印加電圧を制御する。同時に複数の共振モードで超音波振動装置10を励振することで、超音波振動装置10に装着された切削工具11は、図4(b)に示す振動軌跡をとることが可能となる。 FIG. 4(b) shows a vibration waveform 41 obtained by synthesizing the vibration waveform 40a of the fundamental resonance mode and the vibration waveform 40b of the sixth resonance mode. The control unit 20 controls the voltage applied by the driving device 30 so that the ultrasonic vibration device 10 resonates simultaneously at 20 kHz and 60 kHz. By exciting the ultrasonic vibration device 10 in a plurality of resonance modes at the same time, the cutting tool 11 attached to the ultrasonic vibration device 10 can follow the vibration trajectory shown in FIG. 4(b).

図4(c)は、振動波形41により形成される加工形状を説明するための図である。ここで正方向の変位は超音波振動装置10が縮む方向を、負方向の変位は超音波振動装置10が伸びる方向を表現する。 FIG. 4(c) is a diagram for explaining the processed shape formed by the vibration waveform 41. As shown in FIG. Here, the displacement in the positive direction represents the direction in which the ultrasonic vibration device 10 contracts, and the displacement in the negative direction represents the direction in which the ultrasonic vibration device 10 extends.

切削工具11の刃先の振動中立点を被削材6の表面位置にセットし、回転する被削材6に対して超音波振動装置10を振動させると、正方向に変位したときには工具刃先が被削材6から離れ、負方向に変位したときには工具刃先が被削材6を切削する。これにより非切削部分を残しつつ、図4(c)においてハッチングした部分を凹部とする周期的形状が被削材表面に形成される。 When the vibration neutral point of the cutting edge of the cutting tool 11 is set at the surface position of the work piece 6 and the ultrasonic vibrating device 10 is vibrated with respect to the rotating work piece 6, the cutting edge of the cutting tool is moved in the positive direction. The cutting edge of the tool cuts the workpiece 6 when it is separated from the workpiece 6 and displaced in the negative direction. As a result, a periodic shape is formed on the surface of the material to be cut, while leaving the non-cutting portion, with the hatched portions as recesses in FIG. 4(c).

振動波形41では、振動の中立点(変位0)で振動速度が低下するため、凹部は、非切削部分との境界において非常になだらかな形状をもつ。このような境界形状は、すべり軸受面においてオイルプールの役割を果たすマイクロテクスチャに望まれている。単一の共振モードの正弦波振動によれば振動の中立点における振動速度が大きいために、このような形状を形成することはできないが、実施例では複数の共振モードで超音波振動装置10を励振させることで、マイクロテクスチャの要求仕様を満たす形状を形成することが可能となる。 In the vibration waveform 41, since the vibration speed decreases at the neutral point of vibration (displacement 0), the concave portion has a very gentle shape at the boundary with the non-cutting portion. Such a boundary shape is desired for the microtexture that acts as an oil pool on the plain bearing surface. With sinusoidal vibration in a single resonance mode, the vibration speed at the neutral point of vibration is high, so such a shape cannot be formed. Excitation makes it possible to form a shape that satisfies the required specifications of the microtexture.

図5(a)は、基本共振モードの振動波形42a、6次共振モードの振動波形42bと10次共振モードの振動波形42cを示す。縦軸は振動変位[μm]を、横軸は時間[秒(×10-4)]を表現する。この例では、基本共振モードの周波数を20kHz、振幅を10μm、正弦波として見た場合の初期位相を0度とし、6次共振モードの周波数を60kHz、振幅を0.7μm、初期位相を180度とし、10次共振モードの周波数を100kHz、振幅を0.1μm、初期位相を0度としている。 FIG. 5(a) shows a vibration waveform 42a in the fundamental resonance mode, a vibration waveform 42b in the sixth resonance mode, and a vibration waveform 42c in the tenth resonance mode. The vertical axis represents vibration displacement [μm], and the horizontal axis represents time [seconds (×10 −4 )]. In this example, the fundamental resonance mode has a frequency of 20 kHz, an amplitude of 10 μm, and an initial phase of 0 degrees when viewed as a sine wave, and the sixth resonance mode has a frequency of 60 kHz, an amplitude of 0.7 μm, and an initial phase of 180 degrees , the frequency of the 10th resonance mode is 100 kHz, the amplitude is 0.1 μm, and the initial phase is 0 degree.

図5(b)は、基本共振モードの振動波形42a、6次共振モードの振動波形42bと10次共振モードの振動波形42cを合成した振動波形43を示す。振動波形43は、三角波に近い波形をもつ。このように同時に複数の共振モードで超音波振動装置10を励振することで、超音波振動装置10に装着された切削工具11は、様々な振動軌跡をとることが可能となる。たとえば図4(a)に示した振動波形40bを逆位相にすると、矩形波に近い合成波形を得られるようになる。 FIG. 5(b) shows a vibration waveform 43 obtained by synthesizing the vibration waveform 42a of the fundamental resonance mode, the vibration waveform 42b of the sixth resonance mode, and the vibration waveform 42c of the tenth resonance mode. The vibration waveform 43 has a waveform close to a triangular wave. By simultaneously exciting the ultrasonic vibration device 10 in a plurality of resonance modes in this manner, the cutting tool 11 attached to the ultrasonic vibration device 10 can take various vibration trajectories. For example, if the phase of the vibration waveform 40b shown in FIG. 4(a) is reversed, a composite waveform close to a rectangular wave can be obtained.

以上、本開示を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the embodiments. It should be understood by those skilled in the art that this embodiment is an example, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are within the scope of the present disclosure. .

図6は、アクチュエータおよび駆動装置の変形例を示す。実施例では駆動装置30が一対の圧電素子13a、13bに対して、超音波振動装置10が複数の振動モードで共振するように電圧を印加したが、変形例では駆動装置30が、複数の一対の圧電素子に対して個別に電圧を印加する。 FIG. 6 shows a variant of the actuator and drive. In the embodiment, the driving device 30 applies voltages to the pair of piezoelectric elements 13a and 13b so that the ultrasonic vibration device 10 resonates in a plurality of vibration modes. A voltage is applied individually to each piezoelectric element.

図6には、超音波振動装置10を2つの振動モードで共振させる場合のアクチュエータおよび駆動装置30を示している。発振器31aは、増幅器32aを介して一対の圧電素子13a、13bと電気的に接続し、電圧を印加する。発振器31bは、増幅器32bを介して一対の圧電素子13c、13dと電気的に接続し、電圧を印加する。制御部20は、超音波振動装置10が一つの共振周波数(第1共振周波数)で共振するように、増幅器32aから出力される電圧を制御して、圧電素子13a、13bを振動させる。また制御部20は、超音波振動装置10が別の共振周波数(第2共振周波数)で共振するように、増幅器32bから出力される電圧を制御して、圧電素子13c、13dを振動させる。変形例では、アクチュエータと、発振器31および増幅器32との組合せを、超音波振動装置10の振動モードごとに設けることで、各アクチュエータに対して高振幅の振動制御を容易にする利点がある。 FIG. 6 shows an actuator and drive device 30 for resonating the ultrasonic vibration device 10 in two vibration modes. The oscillator 31a is electrically connected to the pair of piezoelectric elements 13a and 13b through an amplifier 32a and applies a voltage. The oscillator 31b is electrically connected to the pair of piezoelectric elements 13c and 13d via an amplifier 32b and applies a voltage. The control unit 20 controls the voltage output from the amplifier 32a to vibrate the piezoelectric elements 13a and 13b so that the ultrasonic vibration device 10 resonates at one resonance frequency (first resonance frequency). The control unit 20 also controls the voltage output from the amplifier 32b to vibrate the piezoelectric elements 13c and 13d so that the ultrasonic vibration device 10 resonates at another resonance frequency (second resonance frequency). In the modified example, a combination of an actuator, an oscillator 31 and an amplifier 32 is provided for each vibration mode of the ultrasonic vibration device 10, which has the advantage of facilitating high-amplitude vibration control for each actuator.

実施例で駆動装置30は、切削工具11の刃先を切込み方向に往復振動させることとしたが、変形例では、切削工具11の刃先を送り方向に往復振動させてもよく、また切込み方向と送り方向の間の所定の中間方向に往復振動させてもよい。 In the embodiment, the driving device 30 reciprocates the cutting edge of the cutting tool 11 in the cutting direction. Reciprocating vibration may be performed in a predetermined intermediate direction between the directions.

また実施例では、最も低い第1共振周波数に対して、第2共振周波数が第1共振周波数の整数倍であることを説明したが、第2共振周波数は第1共振周波数の整数倍でなくてもよい。たとえば液晶パネルなどにおいて光を均質に分散させるためのシート用のパターンを被削材6に加工する場合には、ある程度のランダム性が許容されるため、第1共振周波数の整数倍ではない第2共振周波数で超音波振動装置10を共振させてもよい。 In addition, in the embodiment, the second resonance frequency is an integer multiple of the first resonance frequency with respect to the lowest first resonance frequency, but the second resonance frequency is not an integer multiple of the first resonance frequency. good too. For example, when processing a pattern for a sheet for uniformly dispersing light in a liquid crystal panel or the like on the work material 6, a certain degree of randomness is allowed. The ultrasonic vibration device 10 may be resonated at the resonance frequency.

なお制御部20は、第1共振周波数と第2共振周波数の最大公約数となる周波数(第2共振周波数が第1共振周波数の整数倍である場合には、最大公約数となる周波数は第1共振周波数となる)の1/Nの周波数で切削運動が繰り返されるように、超音波振動装置10の駆動装置30と切削運動の関係を設定してもよい(なおNは整数)。図1に示す旋削加工では、主軸台2に取り付けられた主軸の回転周波数を、最大公約数となる周波数の1/Nに設定してもよい。その場合、各回転時に加工されるマイクロテクスチャの位相が等しくなり、同じマイクロテクスチャが同じ回転位置に繰り返して形成される。またマイクロテクスチャは最大公約数となる周波数で繰り返し形成され、その繰り返し数は被削材6が1回転する間にN回となる。また旋削加工ではなく、直線的な切削運動を繰り返す平削りまたは形削りの場合には、各切削運動を開始する瞬間に、超音波振動の位相が同じ値になるように制御してもよい。その場合にも、各切削運動によって加工されるマイクロテクスチャの位相が等しくなり、同じマイクロテクスチャが同じ切削運動位置に繰り返して形成される。 Note that the control unit 20 selects a frequency that is the greatest common divisor of the first resonance frequency and the second resonance frequency (when the second resonance frequency is an integral multiple of the first resonance frequency, the frequency that is the greatest common divisor is the first The relationship between the driving device 30 of the ultrasonic vibration device 10 and the cutting motion may be set so that the cutting motion is repeated at a frequency of 1/N of the resonance frequency (N is an integer). In the turning shown in FIG. 1, the rotational frequency of the spindle mounted on the headstock 2 may be set to 1/N of the frequency that is the greatest common divisor. In that case, the phases of the microtextures processed during each rotation are the same, and the same microtextures are repeatedly formed at the same rotational positions. Further, the microtexture is repeatedly formed at frequencies that are the greatest common divisor, and the number of repetitions is N times while the work material 6 rotates once. In the case of planing or shaping, which repeats linear cutting motions instead of turning, the phase of ultrasonic vibration may be controlled to have the same value at the moment each cutting motion is started. Even in that case, the phases of the microtextures machined by each cutting motion are equal, and the same microtexture is repeatedly formed at the same cutting motion positions.

なお逆に制御部20は、第1共振周波数と第2共振周波数の最大公約数となる周波数の1/Nの周波数で切削運動が繰り返されないように、超音波振動装置10の駆動装置30と切削運動の関係を設定してもよい。その場合、各回転または切削運動によって形成されるマイクロテクスチャの位相がずれ、同じ回転位置または同じ切削運動位置に同位相のマイクロテクスチャが形成されないようにすることができる。 Conversely, the control unit 20 controls the driving unit 30 of the ultrasonic vibration device 10 so that the cutting motion is not repeated at a frequency that is 1/N of the greatest common divisor of the first resonance frequency and the second resonance frequency. A cutting motion relationship may be set. In that case, the microtextures formed by each rotation or cutting motion may be out of phase, preventing in-phase microtextures from being formed at the same rotational position or the same cutting motion position.

実施例では、複数の共振周波数で同時に共振する超音波振動装置10を超音波振動切削装置1に利用する例を示したが、超音波振動装置10は、超音波振動切削装置1以外の他用途の装置、たとえば溶接装置、洗浄装置、はつり装置、センサ装置などに利用されてもよい。 In the embodiment, an example is shown in which the ultrasonic vibration device 10 that resonates simultaneously at a plurality of resonance frequencies is used in the ultrasonic vibration cutting device 1, but the ultrasonic vibration device 10 is used for other purposes than the ultrasonic vibration cutting device 1. devices such as welding devices, cleaning devices, chipping devices, sensor devices, and the like.

また実施例では、超音波振動装置10が、好適には16kHz以上の超音波周波数帯域で共振することを説明した。変形例では超音波振動装置10は、16kHz以下の周波数帯域で共振する振動装置であってもよい。アクチュエータである圧電素子13a、13bは、16kHz以下の振動を発生するが、この場合であっても、共振する振動装置は、静音性に配慮した周波数帯域で共振することが好ましい。 Further, in the embodiments, it has been described that the ultrasonic vibration device 10 preferably resonates in an ultrasonic frequency band of 16 kHz or higher. In a modification, the ultrasonic vibration device 10 may be a vibration device that resonates in a frequency band of 16 kHz or less. The piezoelectric elements 13a and 13b, which are actuators, generate vibrations of 16 kHz or less. Even in this case, it is preferable that the resonating vibrating device resonate in a frequency band that considers quietness.

なお実施例および変形例では、複数の共振周波数を所定の関係に設定することを示したが、実際に使用される超音波振動装置10の共振周波数が設定値と一致するとは限らない。これは、超音波振動装置10の製作誤差、振動開始後の熱変形や外部からの負荷(例えば切削力)等に起因する。このため複数の共振周波数に設定した関係の維持を優先すると、少なくともいずれかの共振周波数から少しずれた周波数で超音波振動装置10を振動させる必要がある。このように共振周波数から少しずれた周波数においても、共振周波数の近傍であることで振幅拡大率は大きく、高い振動速度を得ることが可能である。そこで本明細書では、このように高い振動速度を得やすい共振周波数近傍の周波数を含めて「共振周波数」、その場合の振動を「共振」と表現している。 Although the embodiment and the modified example show that a plurality of resonance frequencies are set in a predetermined relationship, the resonance frequency of the ultrasonic vibration device 10 that is actually used does not necessarily match the set value. This is caused by a manufacturing error of the ultrasonic vibration device 10, thermal deformation after the start of vibration, an external load (for example, cutting force), and the like. Therefore, if priority is given to maintaining the relationship set to a plurality of resonance frequencies, it is necessary to vibrate the ultrasonic vibration device 10 at a frequency slightly shifted from at least one of the resonance frequencies. Even at a frequency slightly deviated from the resonance frequency in this way, the amplitude enlargement ratio is large because the frequency is in the vicinity of the resonance frequency, and a high vibration velocity can be obtained. Therefore, in this specification, the frequency near the resonance frequency at which such a high vibration speed can be easily obtained is referred to as "resonance frequency", and the vibration in that case is referred to as "resonance".

本開示の態様の概要は、次の通りである。本開示のある態様の振動切削装置は、切削工具が装着され、振動を発生するアクチュエータを含む振動装置を備え、振動装置は、第1共振周波数と、第1共振周波数より高い第2共振周波数を有して、第1共振周波数および第2共振周波数で同時に共振する。この態様によると、同時に複数の共振モードで振動装置を励振させることで、加工の高能率化を実現しつつ、工具刃先に様々な振動軌跡を付与することが可能となる。 A summary of aspects of the disclosure follows. A vibration cutting device according to an aspect of the present disclosure includes a vibration device to which a cutting tool is attached and which includes an actuator that generates vibration, the vibration device having a first resonance frequency and a second resonance frequency higher than the first resonance frequency. and resonate simultaneously at the first resonant frequency and the second resonant frequency. According to this aspect, by simultaneously exciting the vibrator in a plurality of resonance modes, it is possible to impart various vibration trajectories to the cutting edge of the tool while achieving high machining efficiency.

振動切削装置は、アクチュエータに電圧を印加して、切削工具の刃先を一方向に往復振動させる駆動装置と、駆動装置による印加電圧を制御する制御部とをさらに備えてよい。制御部は、振動装置が第1共振周波数および第2共振周波数で同時に共振するように駆動装置による印加電圧を制御する。これにより振動装置を同時に複数の共振モードで共振させることが可能となる。 The vibration cutting apparatus may further include a driving device that applies a voltage to the actuator to reciprocate the cutting edge of the cutting tool in one direction, and a control unit that controls the voltage applied by the driving device. The controller controls the voltage applied by the driving device so that the vibration device resonates at the first resonance frequency and the second resonance frequency simultaneously. This allows the vibration device to resonate in a plurality of resonance modes at the same time.

なお第2共振周波数は、第1共振周波数の整数倍であってよい。第2共振周波数を第1共振周波数の整数倍とすることで、節の位置を合わせることが容易となる。アクチュエータは、圧電素子であってよい。 The second resonance frequency may be an integral multiple of the first resonance frequency. By setting the second resonance frequency to be an integral multiple of the first resonance frequency, it becomes easy to align the positions of the nodes. The actuator may be a piezoelectric element.

本開示の別の態様は、振動を発生するアクチュエータを備える振動装置である。この態様の振動装置は、第1共振周波数と、第1共振周波数より高い第2共振周波数を有して、第1共振周波数および第2共振周波数で同時に共振する。複数の共振モードで同時に共振することで、振動装置の先端部は、様々な振動軌跡をとることが可能となる。 Another aspect of the present disclosure is a vibration device that includes an actuator that generates vibrations. The vibration device of this aspect has a first resonance frequency and a second resonance frequency higher than the first resonance frequency, and resonates simultaneously at the first resonance frequency and the second resonance frequency. By simultaneously resonating in a plurality of resonance modes, the distal end of the vibration device can take various vibration trajectories.

1・・・超音波振動切削装置、6・・・被削材、10・・・超音波振動装置、11・・・切削工具、12・・・振動装置、13a,13b・・・圧電素子、20・・・制御部、30・・・駆動装置、31・・・発振器、32・・・増幅器。 Reference Signs List 1 Ultrasonic vibration cutting device 6 Work material 10 Ultrasonic vibration device 11 Cutting tool 12 Vibration device 13a, 13b Piezoelectric element 20... Control section, 30... Driving device, 31... Oscillator, 32... Amplifier.

Claims (7)

被削材を加工する振動切削装置であって、
切削工具が装着され、振動を発生するアクチュエータを含む振動装置であって、第1共振周波数と、第1共振周波数より高く且つ第1共振周波数の奇数倍である第2共振周波数を有する振動装置と、
前記アクチュエータに電圧を印加して、切削工具の刃先を振動させる駆動装置と、
前記駆動装置による印加電圧を制御する制御部と、を備え、
前記制御部は、第1共振周波数または第2共振周波数を自動追尾する機能および共振の振幅と位相を制御する振動制御機能を有し、前記振動装置が第1共振周波数および第2共振周波数においてそれぞれ所望の位相で同時に共振し、且つ第2共振周波数における振動振幅が一定となるように前記駆動装置による印加電圧を制御して、前記切削工具の刃先により前記被削材の表面に、第1共振周波数の共振モードの振動波形と第2共振周波数の共振モードの振動波形を合成した合成波形の一部である周期的な形状を形成させる、
ことを特徴とする振動切削装置。
A vibration cutting device for processing a work material,
A vibration device having a cutting tool mounted thereon and including an actuator for generating vibration, the vibration device having a first resonant frequency and a second resonant frequency higher than the first resonant frequency and being an odd multiple of the first resonant frequency. ,
a driving device that applies a voltage to the actuator to vibrate the cutting edge of the cutting tool;
A control unit that controls the voltage applied by the driving device,
The control unit has a function of automatically tracking a first resonance frequency or a second resonance frequency and a vibration control function of controlling the amplitude and phase of resonance , and the vibrating device vibrates at the first resonance frequency and the second resonance frequency, respectively . The voltage applied by the driving device is controlled so that the vibration amplitude at the second resonance frequency is constant at the desired phase at the same time, and the cutting edge of the cutting tool applies a second vibration to the surface of the work material . Forming a periodic shape that is part of a synthesized waveform obtained by synthesizing the vibration waveform of the resonance mode of the first resonance frequency and the vibration waveform of the resonance mode of the second resonance frequency;
A vibration cutting device characterized by:
前記アクチュエータは、圧電素子である、
ことを特徴とする請求項1に記載の振動切削装置。
the actuator is a piezoelectric element,
The vibration cutting device according to claim 1, characterized in that:
第1共振周波数は、2つ以上の節を有する振動モードの共振周波数である、
ことを特徴とする請求項1または2に記載の振動切削装置。
the first resonance frequency is a resonance frequency of a vibration mode having two or more nodes;
3. The vibration cutting device according to claim 1 or 2 , characterized in that:
第1共振周波数の振動を正弦波として見た場合の初期位相を、第2共振周波数の振動を正弦波として見た場合の初期位相から180度ずらす、
ことを特徴とする請求項1からのいずれかに記載の振動切削装置。
The initial phase when the vibration at the first resonance frequency is viewed as a sine wave is shifted by 180 degrees from the initial phase when the vibration at the second resonance frequency is viewed as a sine wave;
The vibration cutting device according to any one of claims 1 to 3 , characterized in that:
旋削加工において、主軸回転周波数を、第1共振周波数の1/N(Nは整数)に設定する、
ことを特徴とする請求項1からのいずれかに記載の振動切削装置。
In turning, setting the spindle rotation frequency to 1/N (N is an integer) of the first resonance frequency,
The vibration cutting device according to any one of claims 1 to 4 , characterized in that:
被削材を加工するための切削工具が装着され、振動を発生するアクチュエータを備える振動装置であって、第1共振周波数と、第1共振周波数より高く且つ第1共振周波数の奇数倍である第2共振周波数を有し、第1共振周波数および第2共振周波数においてそれぞれ所望の位相で同時に共振し、且つ第2共振周波数における振動振幅が一定となるように、第1共振周波数または第2共振周波数を自動追尾する振動切削装置が前記アクチュエータに印加する電圧を制御することで、前記切削工具の刃先により前記被削材の表面に、第1共振周波数の共振モードの振動波形と第2共振周波数の共振モードの振動波形を合成した合成波形の一部である周期的な形状を形成する、
ことを特徴とする振動装置。
A vibrating device to which a cutting tool for machining a work material is mounted and provided with an actuator for generating vibration, comprising a first resonance frequency and a second resonance frequency higher than the first resonance frequency and odd multiple of the first resonance frequency. The first resonance frequency or the second resonance frequency is set so that the first resonance frequency and the second resonance frequency simultaneously resonate at desired phases , and the vibration amplitude at the second resonance frequency is constant . By controlling the voltage applied to the actuator by the vibration cutting device that automatically tracks the resonance frequency, the cutting edge of the cutting tool causes the surface of the work material to generate vibration waveforms in the resonance mode of the first resonance frequency and the second resonance mode. forming a periodic shape that is part of a composite waveform obtained by synthesizing vibration waveforms of resonant modes of frequency ;
A vibration device characterized by:
切削工具が装着され、振動を発生するアクチュエータを含む振動装置を備えた振動切削装置であって、共振周波数の自動追尾機能を有する振動切削装置を用いて被削材を切削する方法であって、前記振動装置は、第1共振周波数と、第1共振周波数より高く且つ第1共振周波数の奇数倍である第2共振周波数を有し、
前記振動装置が第1共振周波数および第2共振周波数においてそれぞれ所望の位相で同時に共振し、且つ第2共振周波数における振動振幅が一定となるように前記アクチュエータに印加する電圧を制御して、前記切削工具の刃先により前記被削材の表面に、第1共振周波数の共振モードの振動波形と第2共振周波数の共振モードの振動波形を合成した合成波形の一部である周期的な形状を形成する、
ことを特徴とする切削方法。
A method for cutting a work material using a vibration cutting device having a vibrating device including an actuator for generating vibration, to which a cutting tool is attached, wherein the vibration cutting device has an automatic resonance frequency tracking function, The vibration device has a first resonant frequency and a second resonant frequency that is higher than the first resonant frequency and an odd multiple of the first resonant frequency;
controlling the voltage applied to the actuator so that the vibrating device resonates at desired phases simultaneously at the first resonance frequency and the second resonance frequency and the vibration amplitude at the second resonance frequency is constant , A periodic shape, which is a part of a synthesized waveform obtained by synthesizing the vibration waveform of the resonance mode of the first resonance frequency and the vibration waveform of the resonance mode of the second resonance frequency, on the surface of the work material by the cutting edge of the cutting tool. Form,
A cutting method characterized by:
JP2017093136A 2017-05-09 2017-05-09 Vibration cutting device, vibration device and cutting method Active JP7311098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017093136A JP7311098B2 (en) 2017-05-09 2017-05-09 Vibration cutting device, vibration device and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093136A JP7311098B2 (en) 2017-05-09 2017-05-09 Vibration cutting device, vibration device and cutting method

Publications (2)

Publication Number Publication Date
JP2018187726A JP2018187726A (en) 2018-11-29
JP7311098B2 true JP7311098B2 (en) 2023-07-19

Family

ID=64479061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093136A Active JP7311098B2 (en) 2017-05-09 2017-05-09 Vibration cutting device, vibration device and cutting method

Country Status (1)

Country Link
JP (1) JP7311098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199223A1 (en) * 2020-03-30 2021-10-07 国立大学法人東海国立大学機構 Cutting apparatus and cutting method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276738A (en) 2000-03-28 2001-10-09 Jiromaru Tsujino Ultrasonic machining device using higher order vibration frequency
JP2002254201A (en) 2001-02-23 2002-09-10 Towa Corp Method for controlling elliptical vibrator
JP2002345915A (en) 2001-05-28 2002-12-03 Matsushita Electric Works Ltd Ultrasonic instrument for cosmetic
JP2008221427A (en) 2007-03-14 2008-09-25 Univ Nagoya Elliptical vibration cutting device and method
WO2010084234A1 (en) 2009-01-26 2010-07-29 Elpro Oy Ultrasonic treatment device
JP2014237181A (en) 2013-06-06 2014-12-18 株式会社ジェイテクト Vibration cutting device and vibration cutting method
JP5718208B2 (en) 2011-10-27 2015-05-13 京セラ株式会社 Radio base station, radio base station control method, and radio base station control program
JP5881469B2 (en) 2012-02-29 2016-03-09 Jx金属株式会社 Ruthenium recovery method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649241B2 (en) * 1985-12-16 1994-06-29 淳一郎 隈部 Superposed vibration cutting method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276738A (en) 2000-03-28 2001-10-09 Jiromaru Tsujino Ultrasonic machining device using higher order vibration frequency
JP2002254201A (en) 2001-02-23 2002-09-10 Towa Corp Method for controlling elliptical vibrator
JP2002345915A (en) 2001-05-28 2002-12-03 Matsushita Electric Works Ltd Ultrasonic instrument for cosmetic
JP2008221427A (en) 2007-03-14 2008-09-25 Univ Nagoya Elliptical vibration cutting device and method
WO2010084234A1 (en) 2009-01-26 2010-07-29 Elpro Oy Ultrasonic treatment device
JP5718208B2 (en) 2011-10-27 2015-05-13 京セラ株式会社 Radio base station, radio base station control method, and radio base station control program
JP5881469B2 (en) 2012-02-29 2016-03-09 Jx金属株式会社 Ruthenium recovery method
JP2014237181A (en) 2013-06-06 2014-12-18 株式会社ジェイテクト Vibration cutting device and vibration cutting method

Also Published As

Publication number Publication date
JP2018187726A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP2007069344A (en) Method and device for oscillating work process based on use of two independent shafts
WO2016056526A1 (en) Machine tool and control device for machine tool
KR100901809B1 (en) Band saw machine
JP6249776B2 (en) System with two vibration components for machining a workpiece
JP6289766B2 (en) Machine tool control device, machine tool
CN105263695B (en) The device for ultrasonic welding of instrument is matched including vibration uncoupling
KR20190134697A (en) Machine tools and machine tools
JP4268246B2 (en) Elliptical vibration cutting machine
JP2013223406A (en) Oscillator, oscillatory wave driving device, and process of manufacturing oscillator
JP7311098B2 (en) Vibration cutting device, vibration device and cutting method
JP3754881B2 (en) Cutting method, cutting device, and tool holding device
JP4088061B2 (en) Vibration cutting method and vibration cutting apparatus
JP2007111803A (en) Ultrasonic vibration cutting device
WO2006022236A1 (en) Vibrating device
JP7049729B2 (en) Cutting equipment and cutting method
JP2002301601A (en) Work device and work method
JP6793912B2 (en) Vibration processing equipment and vibration processing method
JP3676769B2 (en) Machining tools
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
JP2006326705A (en) Cutting tool
JP2002103101A (en) Grinding method for parting chips, and apparatus therefor
JP2004025416A (en) Precision hole finishing method and device
KR100516807B1 (en) Micro machining apparatus using ultrasonic vibration
JP2009226574A (en) Ultrasonic grinding wheel
JPH09267241A (en) Projection defect correcting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220202

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220301

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220325

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220329

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220719

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230627

R150 Certificate of patent or registration of utility model

Ref document number: 7311098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150