JP4088061B2 - Vibration cutting method and vibration cutting apparatus - Google Patents

Vibration cutting method and vibration cutting apparatus Download PDF

Info

Publication number
JP4088061B2
JP4088061B2 JP2001338085A JP2001338085A JP4088061B2 JP 4088061 B2 JP4088061 B2 JP 4088061B2 JP 2001338085 A JP2001338085 A JP 2001338085A JP 2001338085 A JP2001338085 A JP 2001338085A JP 4088061 B2 JP4088061 B2 JP 4088061B2
Authority
JP
Japan
Prior art keywords
cutting
vibration
tool
cutting edge
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001338085A
Other languages
Japanese (ja)
Other versions
JP2003136359A (en
Inventor
英二 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2001338085A priority Critical patent/JP4088061B2/en
Publication of JP2003136359A publication Critical patent/JP2003136359A/en
Application granted granted Critical
Publication of JP4088061B2 publication Critical patent/JP4088061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工具を被削材に対して相対的に振動させながら切削を行う振動切削方法および振動切削装置に関する。
【0002】
【従来の技術】
従来から、切削加工における加工力を低減する手法として、工具に対し刃先方向(工具の切れ刃に沿った方向)に直線振動を与える振動切削加工法が実用化されている。この直線振動切削加工法では、工具の刃先を引きながらあるいは押しながら切削を行うことにより切削抵抗を低減している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の直線振動切削加工法では、工具の刃先が常に被削材と接しているため、摩擦による発熱が大きくなる。そのため、刃先の摩耗や被削材の変質を招くこととなる。また、一方向の単振動を行うため、刃先振動の上死点と下死点では振動速度がゼロになり、引きながら切削を行う効果がなくなる。このため、切削抵抗を減少し得る程度に限界がある。
【0004】
そこで、上述の問題を解決する振動切削加工法として、本願の発明者が特願2001−097979号に開示した手法がある。該出願に記載した振動切削加工法では、刃先方向を含む面内で楕円振動切削を行っている。
【0005】
この楕円振動切削では間欠切削を行っているので、工具の刃先を被削材から離して冷却する時間が存在し、また切削点に切削油が供給されることから工具の温度上昇を低減することができる。また、常に引きながら切削を行うことができるので、切削抵抗も低減することができる。
【0006】
ところが、上記の楕円振動切削では常に同じ方向に切削を行うので、刃先方向の切削力を相殺することができない。そのため、刃先方向分力の平均値を見かけ上ゼロにすることができず、結果として刃先方向の切削抵抗が現れるという問題が生じる。
【0007】
本発明は上述の課題を解決するためになされたものである。本発明の目的は、工具刃先の摩耗や被削材の変質を抑制することができ、切削抵抗を低減することができ、かつ刃先方向分力を見かけ上ゼロにすることにより刃先方向の切削抵抗が現れることをも回避できる振動切削方法および振動切削装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明に係る振動切削方法は、被削材に対して工具を相対的に振動させながら切削方向に切削を行うものであって、切削方向と直交する方向であって工具の切れ刃に沿う方向である刃先方向に工具の切れ刃を被削材に対して相対的に往復移動させ往復の両方向で切削を行うとともに、少なくとも該切削後に刃先方向における切れ刃の振動速度がゼロとなる点で切れ刃を切削点から離すことで間欠切削を行なうことを特徴とする。ここで、本願明細書において「切削」には、金属に代表される被削材を切り削る場合のみならず、金属以外の対象物を切断等する場合も含むものと定義する。また、刃先方向とは、工具の切れ刃に沿った方向をいい(切れ刃に沿った方向の振動成分を含んでいればよい)、切削方向とは、被削材を切断あるいは除去するために工具あるいは被削材を送る方向であり、振動成分を含む瞬間的な方向ではなく時間的に平均した方向をいう。
【0009】
このように切削後に工具の刃先方向における振動速度がゼロとなる点で切れ刃を切削点から離すことにより、間欠切削を行うことができ、摩擦による発熱を低減することができる。また、工具の刃先方向に工具の切れ刃を被削材に対し相対的に往復移動させ往復の両方向で切削を行うことにより、常に引きながらあるいは押しながら切削を行うことができる。さらに、切れ刃を往復移動させ往復の両方向で切削を行うので、引きながら切る場合と押しながら切る場合とで刃先方向の切削力を相殺することができる。それにより、刃先方向分力を見かけ上ゼロにすることができる。
【0010】
上記被削材と前記工具間の相対的な動コンプライアンス値が静荷重に対するコンプライアンス値よりも低い値となる周波数で工具を被削材に対して相対的に振動させる。それにより、切削時における被削材および工具等の機械系の変形量を低減することができ、切削抵抗の影響を事実上低減することができる。
【0011】
また、上記切削後に切れ刃を背分力方向にも移動させることにより、刃先方向における切れ刃の振動速度がゼロとなる点で切れ刃を切削点から離すとともに被削材における上記切削後の仕上げ面からも離すようにしてもよい。この場合には切削後に切れ刃を仕上げ面からも離すことができ、切れ刃の欠損を効果的に抑制することができる。
【0012】
本発明に係る振動切削装置は、被削材と工具間の相対的な動コンプライアンス値が静荷重に対するコンプライアンス値よりも低い値となる周波数で被削材に対して工具を相対的に振動させながら切削を行うものであって、工具を被削材に対して相対的に工具の切れ刃に沿う方向である刃先方向に振動させる第1アクチュエータと、工具を被削材に対して相対的に刃先方向と直交する方向である切削方向に振動させる第2アクチュエータと、工具の切れ刃を被削材に対して相対的に刃先方向に往復移動させ往復の両方向で切削を行うとともに、少なくとも切削後に刃先方向における切れ刃の振動速度がゼロとなる点で切れ刃を切削点から離すように第1と第2アクチュエータの動作を制御することで間欠切削を行なうための制御部とを備える。
【0013】
上記のように本発明の振動切削装置が第1と第2アクチュエータおよび制御部を備えることにより、切れ刃を被削材に対し相対的に刃先方向に往復移動させ往復の両方向で切削を行い、かつ切削後に切れ刃の刃先方向における振動速度がゼロとなる点で切れ刃を切削点から離すことができる。つまり、上述した本発明の振動切削方法を実施することができる。
【0014】
【発明の実施の形態】
以下、図1〜図6を用いて、本発明の実施の形態について説明する。図1は本発明の振動切削方法の原理を説明するための模式図である。
【0015】
図1に示すように、振動切削工具1の切れ刃3を有する刃部を、振動子4によって所望の軌跡に従って振動させながら被削材の切削を行う。より詳しくは、刃部に刃先方向6の振動と切削(切断)方向7の振動とを重畳して与え、振動切削工具1の刃先方向6に切れ刃3を往復移動させ往復の両方向で切削を行うとともに、切削後に振動切削工具1の刃先方向6における振動速度がゼロとなるポイントで切れ刃3を切削点から離すようにする。
【0016】
上記のように振動速度がゼロとなるポイントで切れ刃3を切削点から離すことにより、切削中は常に引きながらまたは押しながら切ることができる。さらにこのように間欠切削を行うことにより、切削点に切削油を供給し、その冷却効果と潤滑効果によって切削力を低減するとともに摩擦による温度上昇を低減することができ、工具刃先の摩耗や被削材2の変質を抑制することができる。
【0017】
また、振動切削工具1の刃先方向6に切れ刃3を往復移動させ往復の両方向で切削を行うことにより、常に引きながらあるいは押しながら切削を行うことができる。それにより、切削抵抗を低減することができる。
【0018】
さらに、切れ刃3を往復移動させ往復の両方向で切削を行うので、引きながら切る場合と押しながら切る場合とで刃先方向6の切削力を相殺することができる。それにより、刃先方向分力を見かけ上ゼロにすることができ、刃先方向6の切削抵抗が現れることをも回避することができる。
【0019】
なお、上記の例では振動切削工具1の刃部を振動させているが、振動切削工具1の刃部を被削材2に対し相対的に所望の軌跡に従って振動させることができるものでれば、被削材2側を振動させてもよい。
【0020】
次に、本発明に係る振動切削工具1の切れ刃(工具刃先)3の具体的な振動軌跡の例について説明する。
【0021】
図1に示す例では、切れ刃3を∞形の軌跡に従って駆動しながら切削を行う。すなわち、図1における左方向に切削した後に刃部を被削材2(切削点)から離すように上方に移動させ、刃先方向6にける振動速度がゼロとなる第1点16で切れ刃3を被削材2から離れた状態とし、その後再び刃部を被削材2に向けて下方に移動させながら図1における右方向に切削を行い、該切削後に刃部を再び被削材2(切削点)から離すように上方に移動させ、刃先方向6にける振動速度がゼロとなる第2点17で切れ刃3を被削材2から離れた状態とする。このような軌跡に従って切れ刃3を駆動しながら切削を行うことにより、上述の効果が得られる。
【0022】
図2(a)〜(c)に、切れ刃(工具刃先)3の軌跡の他の例を示す。図2(a)に示すように、放物線状の軌跡に沿って切れ刃3を往復移動させてもよい。この場合、図2(a)において刃先方向6である左右方向に切れ刃3を交互に移動させながら切削を行い、切削後に刃先方向6および切削方向7における振動速度がゼロとなる第1と第2点(上死点と下死点)16,17で切れ刃3を被削材2(切削点)から離す。
【0023】
また、図2(b)および(c)に示すように複雑な形状の軌跡に沿って切れ刃3を往復移動させてもよい。いずれの場合にも、振動切削工具1の刃先方向6に切れ刃3を往復移動させ往復の両方向で切削を行うとともに、切削後に振動切削工具1の刃先方向6における振動速度がゼロとなる第1と第2点16、17で切れ刃3を被削材2(切削点)から離すことができる。
【0024】
上記の∞形や放物線形の軌跡は、切削方向7の振動周波数を刃先方向6の振動周波数の2倍にし、初期位相差をそれぞれ0,π/2にすることで得られる。また、図2(b)に示す軌跡は、切削方向7の振動周波数を刃先方向6の振動周波数の2/3倍とし位相差をゼロにすることで得られ、図2(c)に示す軌跡は、切削方向7の振動周波数を刃先方向6の振動周波数の4倍とし位相差をゼロにすることで得られる。
【0025】
次に、図3〜図5を用いて、上述した本発明の振動切削方法を実施可能な振動切削装置の構成例について説明する。なお、以下の例では、工具の刃先を放物線状の軌跡に従って振動させる場合について説明する。
【0026】
図3に示す例では、振動切削装置は、カッターやメスなどの振動切削工具1と、アクチュエータとして機能するたわみ振動励振用圧電素子10および縦振動励振用圧電素子11と、制御部12とを備える。
【0027】
振動切削工具1は、切れ刃3を有する刃部と、支持点9を介して工具本体を支持する支持具8と、工具本体に取付けられたたわみ振動励振用圧電素子10および縦振動励振用圧電素子11とを有する。
【0028】
たわみ振動励振用圧電素子10は、1組の圧電素子で構成され、たわみが最大となるたわみ振動の腹の位置付近に設置される。また、縦振動励振用圧電素子11も、1組の圧電素子で構成され、縦ひずみが最大となる縦振動の節の位置付近に設置される。
【0029】
圧電素子を組で使用するのは、その間に電極を挿入するためであり、他方の電極は振動子自体とする。また振動子の固定は、振動を妨げることがないように両方向の振動がともに節となる位置で局所的に行う。なお、本実施の形態では、縦振動の2次の共振モードとたわみ振動の5次の共振モードとを使用している。
【0030】
これらの振動を一致させる際には、振動子の直径を調整すれば縦振動の共振周波数にはほとんど影響せずにたわみ振動の周波数のみを変化させることができるので、比較的簡単に両周波数を一致させることができる。
【0031】
制御部12は、たわみ振動励振用圧電素子10および縦振動励振用圧電素子11に接続され、これらの動作制御を行う。たとえば、制御部12から縦振動励振用圧電素子11に数Hz〜数十kHz程度の周波数の正弦波電圧を印加し、たわみ振動励振用圧電素子10にその2倍の周波数の余弦波電圧を印加する。ただし、印加電圧と振動変位の間の位相差は、共振周波数付近で急激に変化するため、実際には2方向の変位の間の位相差が所望の値となるように両電圧間の位相差を補正する。
【0032】
それにより、振動切削工具1に図3に示すようなたわみ振動と縦振動を同時に与えることができ、これらを重畳することで切れ刃3を放物線状の軌跡に沿って駆動することができる。このように切れ刃3を駆動しながら紙、食品、プラスティック、人体の各部等の対象物を切断する。
【0033】
図4(a),(b)に示す例では、振動切削装置は、旋削加工や彫刻を行う振動切削工具1と、アクチュエータとして機能するねじり振動励振用圧電素子13および縦振動励振用圧電素子11と、制御部12とを備える。
【0034】
振動切削工具1は、円弧状の切れ刃3を有する。そして、この円弧の半径は、刃先振動を振動切削工具1の軸方向から見たときの円弧(ねじり振動成分)の半径以上である方が良い。なお、刃先および振動軌跡は必ずしも円弧形状でなくてもよい。刃先が円弧形状でない曲線の場合には、振動切削工具1の刃先曲率は常に振動の曲率以上である方がよい。これは刃先の逃げ面を振動によって仕上げ面に押し付けないようにするためである。
【0035】
ねじり振動励振用圧電素子13は、1組の圧電素子で構成され、ねじりによるひずみが最大となるねじり振動の節の位置付近に設置される。また、縦振動励振用圧電素子11も、1組の圧電素子で構成され、縦ひずみが最大となる縦振動の節の位置付近に設置される。
【0036】
本例の場合、ねじり振動励振用圧電素子13に数Hz〜数十kHz程度の周波数の正弦波電圧を印加し、縦振動励振用圧電素子11にその2倍の周波数の余弦波電圧を印加する。
【0037】
それにより、振動切削工具1に図4に示すようなねじり振動と縦振動を同時に与えることができ、これらを重畳することで切れ刃3を放物線状の軌跡(正確には円筒面内の軌跡)に沿って駆動することができる。このように切れ刃3を駆動しながら金属材料等の対象物の旋削加工や彫刻を行う。
【0038】
図5(a),(b)に示す例では、振動切削装置は、対象物の切断を行う振動切削工具1と、アクチュエータとして機能する左右振動励振用圧電素子14および上下振動励振用圧電素子15と、制御部12とを備える。
【0039】
左右振動励振用圧電素子14および上下振動励振用圧電素子15を、振動切削工具1の両端コーナ部にそれぞれ直交する位置関係となるように設置する。そして、左右振動励振用圧電素子14に数Hz〜数十kHz程度の周波数の正弦波電圧を印加し、上下振動励振用圧電素子15にその2倍の周波数の余弦波電圧を印加する。
【0040】
それにより、図5に示すような放物線状の軌跡に沿って切れ刃3を駆動することができ、対象物を切断することができる。
【0041】
なお、上述の例ではアクチュエータの一例として圧電素子を用いたが、工具に2種類の振動を与えることができるものであれば圧電素子以外の任意のアクチュエータを採用可能である。また、各圧電素子に印加する電圧の周波数や位相差を適切に調節することで、放物線以外の軌跡に沿って切れ刃3を駆動することができる。
【0042】
さらに、上述の用途に限らず様々な振動切削工具に本発明は適用可能である。たとえばダイヤモンド工具等を用いた超精密微細加工にも、本発明は適用可能である。
【0043】
次に、被削材の変形を考慮した場合の工具に与える振動周波数について図6を用いて説明する。図6は、工作機械主軸側の動コンプライアンス(変位/加振力の伝達関数)の測定例を示す図である。
【0044】
図6に示すように、静的には約0.05μm/N、約500Hzの共振時には約1μm/Nの変形を生じるが、3kHz以上の高周波領域ではほとんど変形を生じないことがわかる。
【0045】
このことから、工具を高周波振動させながら切削を行うことにより、被削材や工具、加工機械の変形量を低減しながら切削することができる。つまり、被削材と前記工具間の相対的な動コンプライアンス値が静荷重に対するコンプライアンス値よりも低い値となる周波数(高周波)で工具を被削材に対して相対的に振動させながら切削を行うことにより、被削材や工具、加工機械の変形量を低く抑えながら切削を行うことができる。その結果、加工精度や仕上げ面性状を向上することができる。
【0046】
次に、本発明の振動切削手法の拡張例について図7〜図9を用いて説明する。図7と図8は、本拡張例における刃先振動軌跡を示す図である。
【0047】
図7に示すように、放物線振動の面を工具の切れ刃を中心に回転させ、切れ刃が切り屑からはなれる際に仕上げ面からも離れるようにしてもよい。このように切れ刃を切り屑および仕上げ面から離すようにすることにより、切れ刃の欠損を抑制することができる。
【0048】
図7に示す刃先振動軌跡となるように工具を駆動するには、たとえば上述の振動装置自体を刃先方向を中心に若干回転すればよい。
【0049】
図9に本拡張例を適用可能な振動切削例を示す。この図に示す振動切削工具1に上述の各圧電素子を取付けて上述の各電圧を印加することにより、図7および図9に示す刃先振動軌跡にしたがって振動切削工具1を駆動することができ、被削材2を切削することができる。
【0050】
また、図8に示すように、本発明の放物線型の振動切削と、楕円型の振動切削のような他のタイプの振動切削とを組み合わせるようにしてもよい。この場合には、両手法の利点を併せ持つ振動切削を行うことができる。なお、図9に示す振動切削に、本例の手法を適用することも可能である。
【0051】
図8に示す刃先振動軌跡となるように工具を駆動するには、たとえば工具に切削方向振動用、刃先方向振動用および背分力方向振動用の圧電素子を取付け、切削方向振動用圧電素子に余弦波電圧を印加し、刃先方向振動用圧電素子に切削方向の1/2周波数の余弦波電圧を印加し、背分力方向振動用圧電素子に切削方向と同じ周波数の正弦波電圧を印加すればよい。
【0052】
以上のように本発明の実施の形態について説明を行なったが、本発明は上記の実施の形態に限定されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。
【0053】
【発明の効果】
本発明によれば、切削時のせん断、摩擦による温度上昇を低減することができ、常に引きながらあるいは押しながら切削を行うことで切削抵抗を低減することができ、かつ刃先方向分力の平均値を見かけ上ゼロにすることができるので、工具刃先の摩耗や被削材の変質、加工精度を劣化させる各部の変形を抑制することができ、かつ刃先方向の切削抵抗が現れることをも回避することができる。
【図面の簡単な説明】
【図1】 本発明の振動切削方法の原理を説明するための模式図である。
【図2】 (a)〜(c)は、本発明の工具刃先の軌跡例を示す図である。
【図3】 本発明の振動切削装置の概略構成図である。
【図4】 (a)は本発明の他の例における振動切削工具の側面図であり、(b)は本発明の他の例における振動切削装置の概略構成図である。
【図5】 (a)は(b)に示す振動切削工具のA−A線断面図であり、(b)は本発明のさらに他の例における振動切削装置の概略構成図である。
【図6】 工作機械主軸側の動コンプライアンス(変位/加振力の伝達関数)の測定例を示す図である。
【図7】 本発明の振動切削方法の1つの拡張例における刃先振動軌跡を示す図である。
【図8】 本発明の振動切削方法の他の拡張例における刃先振動軌跡を示す図である。
【図9】 図7や図8に示す手法を適用可能な振動切削例を示す斜視図である。
【符号の説明】
1 振動切削工具、2 被削材、3 切れ刃、4 振動子、5 振動軌跡、6刃先方向、7 切削方向、8 支持具、9 支持点、10 たわみ振動励振用圧電素子、11 縦振動励振用圧電素子、12 制御部、13 ねじり振動励振用圧電素子、14 左右振動励振用圧電素子、15 上下振動励振用圧電素子、16 第1点、17 第2点。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration cutting method and a vibration cutting device that perform cutting while vibrating a tool relative to a work material.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a vibration cutting method that applies linear vibration to a tool in a cutting edge direction (a direction along the cutting edge of the tool) has been put to practical use as a technique for reducing the processing force in cutting. In this linear vibration cutting method, cutting resistance is reduced by cutting while pulling or pushing the cutting edge of the tool.
[0003]
[Problems to be solved by the invention]
However, in the conventional linear vibration cutting method, since the cutting edge of the tool is always in contact with the work material, heat generated by friction increases. Therefore, wear of the cutting edge and alteration of the work material will be caused. In addition, since simple vibration in one direction is performed, the vibration speed becomes zero at the top dead center and the bottom dead center of the blade edge vibration, and the effect of cutting while pulling is lost. For this reason, there is a limit to the extent that cutting resistance can be reduced.
[0004]
Therefore, as a vibration cutting method for solving the above-described problem, there is a method disclosed in Japanese Patent Application No. 2001-097799 by the inventors of the present application. In the vibration cutting method described in the application, elliptical vibration cutting is performed in a plane including the cutting edge direction.
[0005]
In this elliptical vibration cutting, intermittent cutting is performed, so there is time to cool the tool edge away from the work material, and the cutting oil is supplied to the cutting point to reduce the temperature rise of the tool. Can do. Moreover, since cutting can be performed while always pulling, cutting resistance can also be reduced.
[0006]
However, since the above elliptical vibration cutting always performs cutting in the same direction, the cutting force in the cutting edge direction cannot be offset. For this reason, the average value of the component force in the blade edge direction cannot be apparently made zero, resulting in a problem that cutting resistance in the blade edge direction appears.
[0007]
The present invention has been made to solve the above-described problems. The object of the present invention is to suppress wear of the tool edge and deterioration of the work material, to reduce the cutting resistance, and to make the cutting force in the cutting edge direction apparently zero, thereby reducing the cutting resistance in the cutting edge direction. An object of the present invention is to provide a vibration cutting method and a vibration cutting apparatus that can avoid the occurrence of the above.
[0008]
[Means for Solving the Problems]
The vibration cutting method according to the present invention performs cutting in the cutting direction while relatively vibrating the tool with respect to the work material, and is a direction perpendicular to the cutting direction and along the cutting edge of the tool The cutting edge of the tool is reciprocated relative to the work material in the direction of the cutting edge to perform cutting in both the reciprocating directions, and at least at the point where the vibration speed of the cutting edge in the cutting edge direction becomes zero after the cutting. The intermittent cutting is performed by separating the blade from the cutting point. Here, in this specification, “cutting” is defined to include not only the case of cutting a workpiece represented by metal but also the case of cutting an object other than metal. The cutting edge direction refers to the direction along the cutting edge of the tool (it only needs to include a vibration component in the direction along the cutting edge), and the cutting direction refers to cutting or removing the work material. This is the direction in which the tool or work material is fed, and it is the direction averaged over time rather than the instantaneous direction including the vibration component.
[0009]
Thus, by cutting the cutting edge away from the cutting point at the point where the vibration speed in the cutting edge direction of the tool becomes zero after cutting, intermittent cutting can be performed and heat generation due to friction can be reduced. Further, by cutting the tool cutting edge relatively back and forth with respect to the work material in the direction of the cutting edge of the tool and performing cutting in both the reciprocating directions, the cutting can be performed while always pulling or pushing. Furthermore, since the cutting edge is reciprocated and cutting is performed in both directions, the cutting force in the direction of the blade edge can be offset between cutting while pulling and cutting while pushing. Thereby, the cutting edge direction component force can be apparently made zero.
[0010]
The relative movement compliance value between the between the workpiece tool Ru is relatively vibrating with respect to the workpiece the tool at frequencies of less than the compliance value for the static load. Thereby, the amount of deformation of a machine system such as a work material and a tool at the time of cutting can be reduced, and the influence of cutting resistance can be substantially reduced.
[0011]
In addition, by moving the cutting edge in the direction of the back component force after the cutting, the cutting edge is moved away from the cutting point at the point where the vibration speed of the cutting edge in the cutting edge direction becomes zero, and the finishing after the cutting in the work material is performed. It may be separated from the surface. In this case, the cutting edge can be separated from the finished surface after cutting, and chipping of the cutting edge can be effectively suppressed.
[0012]
The vibration cutting device according to the present invention is configured to vibrate the tool relative to the work material at a frequency at which the relative dynamic compliance value between the work material and the tool is lower than the compliance value with respect to the static load. A first actuator for cutting the tool in a direction of the cutting edge, which is a direction along the cutting edge of the tool relative to the work material, and the cutting edge of the tool relative to the work material A second actuator that vibrates in a cutting direction that is perpendicular to the direction, and the cutting edge of the tool reciprocally moves in the direction of the blade edge relative to the work material to perform cutting in both directions, and at least the cutting edge after cutting And a controller for performing intermittent cutting by controlling the operations of the first and second actuators so that the cutting edge is separated from the cutting point at a point where the vibration speed of the cutting edge in the direction becomes zero.
[0013]
As described above, the vibration cutting device of the present invention includes the first and second actuators and the control unit, so that the cutting blade is reciprocated in the direction of the blade edge relative to the work material, and cutting is performed in both directions. In addition, the cutting edge can be separated from the cutting point at a point where the vibration velocity in the cutting edge direction of the cutting edge becomes zero after cutting. That is, the vibration cutting method of the present invention described above can be implemented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view for explaining the principle of the vibration cutting method of the present invention.
[0015]
As shown in FIG. 1, a work piece is cut while a blade portion having a cutting edge 3 of a vibration cutting tool 1 is vibrated by a vibrator 4 according to a desired locus. More specifically, the cutting edge 3 and the cutting (cutting) direction 7 are superimposed and applied to the blade portion, and the cutting edge 3 is moved back and forth in the cutting edge direction 6 of the vibration cutting tool 1 to perform cutting in both directions. In addition, the cutting edge 3 is separated from the cutting point at a point where the vibration speed in the cutting edge direction 6 of the vibration cutting tool 1 becomes zero after cutting.
[0016]
By separating the cutting edge 3 from the cutting point at the point where the vibration speed becomes zero as described above, it is possible to cut while always pulling or pushing during cutting. Further, by performing intermittent cutting in this way, cutting oil is supplied to the cutting point, and the cutting force can be reduced by the cooling effect and the lubricating effect, and the temperature rise due to friction can be reduced, and the wear and wear of the tool edge can be reduced. Alteration of the cutting material 2 can be suppressed.
[0017]
In addition, by cutting the blade 3 in the reciprocating direction in the blade edge direction 6 of the vibration cutting tool 1 and performing the cutting in both the reciprocating directions, the cutting can be performed while always pulling or pushing. Thereby, cutting resistance can be reduced.
[0018]
Furthermore, since the cutting edge 3 is reciprocated and cutting is performed in both directions, the cutting force in the cutting edge direction 6 can be offset between the case of cutting while pulling and the case of cutting while pushing. As a result, the component force in the cutting edge direction can be apparently zero, and the occurrence of cutting resistance in the cutting edge direction 6 can also be avoided.
[0019]
In the above example, the blade portion of the vibration cutting tool 1 is vibrated. However, as long as the blade portion of the vibration cutting tool 1 can be vibrated relative to the work material 2 according to a desired locus. The work material 2 side may be vibrated.
[0020]
Next, an example of a specific vibration locus of the cutting edge (tool edge) 3 of the vibration cutting tool 1 according to the present invention will be described.
[0021]
In the example shown in FIG. 1, cutting is performed while the cutting edge 3 is driven according to an ∞-shaped locus. That is, after cutting in the left direction in FIG. 1, the blade portion is moved upward away from the work material 2 (cutting point), and the cutting edge 3 is cut at the first point 16 where the vibration speed in the blade edge direction 6 becomes zero. 1 is moved away from the work material 2, and then the cutting is performed in the right direction in FIG. 1 while moving the blade portion downward again toward the work material 2. After the cutting, the blade portion is again cut into the work material 2 ( The cutting edge 3 is moved away from the cutting point), and the cutting edge 3 is moved away from the workpiece 2 at the second point 17 where the vibration speed in the cutting edge direction 6 becomes zero. By performing cutting while driving the cutting edge 3 according to such a trajectory, the above-described effects can be obtained.
[0022]
2A to 2C show other examples of the locus of the cutting edge (tool edge) 3. FIG. As shown in FIG. 2A, the cutting edge 3 may be reciprocated along a parabolic trajectory. In this case, cutting is performed while alternately moving the cutting edges 3 in the left-right direction, which is the cutting edge direction 6 in FIG. 2A, and the first and first vibration speeds in the cutting edge direction 6 and the cutting direction 7 become zero after cutting. The cutting edge 3 is separated from the work material 2 (cutting point) at two points (top dead center and bottom dead center) 16 and 17.
[0023]
Further, as shown in FIGS. 2B and 2C, the cutting edge 3 may be reciprocated along a locus having a complicated shape. In any case, the cutting edge 3 is reciprocated in the cutting edge direction 6 of the vibration cutting tool 1 to perform cutting in both the reciprocating directions, and the vibration speed in the cutting edge direction 6 of the vibration cutting tool 1 becomes zero after cutting. Then, the cutting edge 3 can be separated from the work material 2 (cutting point) at the second points 16 and 17.
[0024]
The trajectory of the ∞ shape or parabolic shape can be obtained by doubling the vibration frequency in the cutting direction 7 to the vibration frequency in the cutting edge direction 6 and setting the initial phase difference to 0 and π / 2, respectively. The trajectory shown in FIG. 2B is obtained by setting the vibration frequency in the cutting direction 7 to 2/3 times the vibration frequency in the cutting edge direction 6 and setting the phase difference to zero. The trajectory shown in FIG. Is obtained by setting the vibration frequency in the cutting direction 7 to four times the vibration frequency in the cutting edge direction 6 and making the phase difference zero.
[0025]
Next, the structural example of the vibration cutting apparatus which can implement the vibration cutting method of this invention mentioned above is demonstrated using FIGS. In the following example, a case will be described in which the cutting edge of the tool is vibrated according to a parabolic trajectory.
[0026]
In the example shown in FIG. 3, the vibration cutting device includes a vibration cutting tool 1 such as a cutter or a knife, a flexural vibration exciting piezoelectric element 10 and a longitudinal vibration exciting piezoelectric element 11 that function as an actuator, and a control unit 12. .
[0027]
The vibration cutting tool 1 includes a blade portion having a cutting edge 3, a support tool 8 that supports a tool body via a support point 9, a flexural vibration excitation piezoelectric element 10 and a longitudinal vibration excitation piezoelectric element that are attached to the tool body. Element 11.
[0028]
The piezoelectric element 10 for flexural vibration excitation is composed of a set of piezoelectric elements, and is installed in the vicinity of the antinode of the flexural vibration where the maximum flexure is obtained. The longitudinal vibration exciting piezoelectric element 11 is also composed of a set of piezoelectric elements, and is installed near the position of the longitudinal vibration node where the longitudinal strain is maximized.
[0029]
The reason why the piezoelectric elements are used in pairs is to insert an electrode between them, and the other electrode is the vibrator itself. The vibrator is fixed locally at a position where the vibrations in both directions become nodes so that the vibrations are not hindered. In the present embodiment, a secondary resonance mode of longitudinal vibration and a fifth resonance mode of flexural vibration are used.
[0030]
When matching these vibrations, adjusting the diameter of the vibrator makes it possible to change only the frequency of the flexural vibration with little effect on the resonant frequency of the longitudinal vibration. Can be matched.
[0031]
The control unit 12 is connected to the flexural vibration exciting piezoelectric element 10 and the longitudinal vibration exciting piezoelectric element 11 and controls their operations. For example, a sine wave voltage having a frequency of about several Hz to several tens of kHz is applied from the control unit 12 to the longitudinal vibration exciting piezoelectric element 11 and a cosine wave voltage having a frequency twice that of the piezoelectric vibration exciting piezoelectric element 10 is applied. To do. However, since the phase difference between the applied voltage and the vibration displacement changes abruptly in the vicinity of the resonance frequency, the phase difference between the two voltages is actually set so that the phase difference between the displacements in the two directions becomes a desired value. Correct.
[0032]
3 can be simultaneously applied to the vibration cutting tool 1 as shown in FIG. 3, and the cutting edge 3 can be driven along a parabolic locus by superimposing these vibrations. In this way, the object such as paper, food, plastic, and each part of the human body is cut while driving the cutting edge 3.
[0033]
4A and 4B, the vibration cutting apparatus includes a vibration cutting tool 1 that performs turning and engraving, a torsional vibration excitation piezoelectric element 13 and a longitudinal vibration excitation piezoelectric element 11 that function as actuators. And a control unit 12.
[0034]
The vibration cutting tool 1 has an arcuate cutting edge 3. The radius of the arc is preferably equal to or larger than the radius of the arc (torsional vibration component) when the blade edge vibration is viewed from the axial direction of the vibration cutting tool 1. Note that the cutting edge and the vibration trajectory do not necessarily have an arc shape. In the case where the cutting edge is not a circular arc, the cutting edge curvature of the vibration cutting tool 1 should always be greater than or equal to the curvature of vibration. This is to prevent the flank face of the blade edge from being pressed against the finished surface by vibration.
[0035]
The torsional vibration exciting piezoelectric element 13 is composed of a set of piezoelectric elements, and is installed in the vicinity of the position of the torsional vibration node where the strain due to torsion is maximized. The longitudinal vibration exciting piezoelectric element 11 is also composed of a set of piezoelectric elements, and is installed near the position of the longitudinal vibration node where the longitudinal strain is maximized.
[0036]
In the case of this example, a sine wave voltage having a frequency of about several Hz to several tens of kHz is applied to the torsional vibration exciting piezoelectric element 13, and a cosine wave voltage having a frequency twice that of the longitudinal vibration exciting piezoelectric element 11 is applied. .
[0037]
Thereby, the torsional vibration and the longitudinal vibration as shown in FIG. 4 can be simultaneously applied to the vibration cutting tool 1, and by superposing these, the cutting edge 3 has a parabolic trajectory (more precisely, a trajectory in a cylindrical plane). Can be driven along. In this way, turning or engraving of an object such as a metal material is performed while driving the cutting edge 3.
[0038]
In the example shown in FIGS. 5A and 5B, the vibration cutting apparatus includes a vibration cutting tool 1 that cuts an object, a left and right vibration excitation piezoelectric element 14 that functions as an actuator, and a vertical vibration excitation piezoelectric element 15. And a control unit 12.
[0039]
The left and right vibration excitation piezoelectric element 14 and the vertical vibration excitation piezoelectric element 15 are installed so as to be in a positional relationship orthogonal to both corner portions of the vibration cutting tool 1. Then, a sine wave voltage having a frequency of about several Hz to several tens of kHz is applied to the left and right vibration excitation piezoelectric element 14, and a cosine wave voltage having a frequency twice that of the vertical vibration excitation piezoelectric element 15 is applied.
[0040]
Thereby, the cutting edge 3 can be driven along a parabolic trajectory as shown in FIG. 5, and the object can be cut.
[0041]
In the above-described example, a piezoelectric element is used as an example of the actuator. However, any actuator other than the piezoelectric element can be used as long as it can apply two types of vibrations to the tool. Moreover, the cutting blade 3 can be driven along a locus other than a parabola by appropriately adjusting the frequency and phase difference of the voltage applied to each piezoelectric element.
[0042]
Furthermore, the present invention is not limited to the above-described applications, and can be applied to various vibration cutting tools. For example, the present invention can also be applied to ultra-precision fine processing using a diamond tool or the like.
[0043]
Next, the vibration frequency given to the tool in consideration of deformation of the work material will be described with reference to FIG. FIG. 6 is a diagram illustrating a measurement example of the dynamic compliance (displacement / excitation force transfer function) on the machine tool spindle side.
[0044]
As shown in FIG. 6, it is found that the deformation is about 0.05 μm / N statically and about 1 μm / N at resonance of about 500 Hz, but hardly deforms in the high frequency region of 3 kHz or higher.
[0045]
From this, it is possible to perform cutting while reducing the amount of deformation of the work material, tool, and processing machine by performing cutting while vibrating the tool at high frequency. That is, cutting is performed while the tool is vibrated relative to the work material at a frequency (high frequency) at which the relative dynamic compliance value between the work material and the tool is lower than the compliance value with respect to the static load. Accordingly, it is possible to perform cutting while keeping the deformation amount of the work material, tool, and processing machine low. As a result, processing accuracy and finished surface properties can be improved.
[0046]
Next, an extended example of the vibration cutting method of the present invention will be described with reference to FIGS. 7 and 8 are diagrams showing the blade tip vibration locus in this extended example.
[0047]
As shown in FIG. 7, the surface of the parabolic vibration may be rotated around the cutting edge of the tool so that the cutting edge is separated from the finished surface when the cutting edge is separated from the chips. By thus separating the cutting edge from the chips and the finished surface, it is possible to suppress chipping of the cutting edge.
[0048]
In order to drive the tool so that the blade edge vibration locus shown in FIG. 7 is obtained, for example, the above-described vibration device itself may be slightly rotated around the blade edge direction.
[0049]
FIG. 9 shows an example of vibration cutting to which this extended example can be applied. By attaching the piezoelectric elements described above to the vibration cutting tool 1 shown in this figure and applying the voltages described above, the vibration cutting tool 1 can be driven according to the blade tip vibration locus shown in FIGS. The work material 2 can be cut.
[0050]
Also, as shown in FIG. 8, the parabolic vibration cutting of the present invention may be combined with other types of vibration cutting such as elliptical vibration cutting. In this case, vibration cutting having the advantages of both methods can be performed. The technique of this example can also be applied to the vibration cutting shown in FIG.
[0051]
In order to drive the tool so that the cutting edge vibration locus shown in FIG. 8 is obtained, for example, a cutting direction vibration piezoelectric element, a cutting edge direction vibration piezoelectric element and a back component force direction vibration piezoelectric element are attached to the tool, and the cutting direction vibration piezoelectric element is attached to the tool. Apply a cosine wave voltage, apply a cosine wave voltage of 1/2 frequency in the cutting direction to the piezoelectric element for vibration in the cutting edge direction, and apply a sine wave voltage of the same frequency in the cutting direction to the piezoelectric element for vibration in the back force direction. That's fine.
[0052]
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all modifications within the scope.
[0053]
【The invention's effect】
According to the present invention, temperature rise due to shearing and friction during cutting can be reduced, cutting resistance can be reduced by cutting while always pulling or pushing, and the average value of the component force in the blade edge direction Since the appearance can be made to be zero, it is possible to suppress the wear of the tool edge, the deterioration of the work material, the deformation of each part that deteriorates the machining accuracy, and avoid the occurrence of cutting resistance in the direction of the edge. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the principle of a vibration cutting method of the present invention.
FIGS. 2A to 2C are diagrams showing examples of trajectories of the tool cutting edge of the present invention.
FIG. 3 is a schematic configuration diagram of a vibration cutting apparatus of the present invention.
4A is a side view of a vibration cutting tool in another example of the present invention, and FIG. 4B is a schematic configuration diagram of a vibration cutting apparatus in another example of the present invention.
5A is a cross-sectional view taken along line AA of the vibration cutting tool shown in FIG. 5B, and FIG. 5B is a schematic configuration diagram of a vibration cutting apparatus in still another example of the present invention.
FIG. 6 is a diagram showing a measurement example of dynamic compliance (displacement / excitation force transfer function) on the machine tool spindle side;
FIG. 7 is a diagram showing a blade edge vibration locus in one extension example of the vibration cutting method of the present invention.
FIG. 8 is a diagram showing a blade edge vibration locus in another example of expansion of the vibration cutting method of the present invention.
FIG. 9 is a perspective view showing an example of vibration cutting to which the method shown in FIGS. 7 and 8 can be applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration cutting tool, 2 Work material, 3 Cutting blade, 4 Vibrator, 5 Vibration locus, 6 Cutting edge direction, 7 Cutting direction, 8 Support tool, 9 Supporting point, 10 Piezoelectric element for bending vibration excitation, 11 Longitudinal vibration excitation Piezoelectric element, 12 control unit, 13 piezoelectric element for torsional vibration excitation, 14 piezoelectric element for left-right vibration excitation, 15 piezoelectric element for vertical vibration excitation, 16 first point, 17 second point.

Claims (3)

被削材と工具間の相対的な動コンプライアンス値が静荷重に対するコンプライアンス値よりも低い値となる周波数で前記被削材に対して前記工具を相対的に振動させながら切削方向に切削を行う振動切削方法であって、
前記切削方向と直交する方向であって前記工具の切れ刃に沿う方向である刃先方向に前記工具の切れ刃を前記被削材に対し往復移動させ往復の両方向で切削を行うとともに、少なくとも該切削後に前記刃先方向における前記切れ刃の振動速度がゼロとなる点で前記切れ刃を切削点から離すことで間欠切削を行なうことを特徴とする、振動切削方法。
Vibrations performing relative movement compliance value is the cutting in the cutting direction while relatively vibrating the tool at frequencies of less than the compliance value for the workpiece with respect to a static load of between workpiece and tool A cutting method,
The cutting edge of the tool is reciprocated with respect to the work material in a direction perpendicular to the cutting direction and along the cutting edge of the tool to perform cutting in both reciprocating directions, and at least the cutting A vibration cutting method comprising performing intermittent cutting by separating the cutting edge from a cutting point at a point where the vibration speed of the cutting edge in the direction of the cutting edge becomes zero later.
前記切削後に前記切れ刃を背分力方向にも移動させることにより、前記刃先方向における前記切れ刃の振動速度がゼロとなる点で前記切れ刃を切削点から離すとともに前記被削材における前記切削後の仕上げ面からも離すようにする、請求項1に記載の振動切削方法。The cutting edge is moved away from the cutting point at the point where the vibration speed of the cutting edge in the cutting edge direction becomes zero by moving the cutting edge also in the direction of the back component force after the cutting, and the cutting in the work material The vibration cutting method according to claim 1, wherein the vibration cutting method is separated from a later finished surface. 被削材と工具間の相対的な動コンプライアンス値が静荷重に対するコンプライアンス値よりも低い値となる周波数で前記被削材に対して前記工具を相対的に振動させながら切削を行う振動切削装置であって、
前記工具を前記被削材に対して相対的に前記工具の切れ刃に沿う方向である刃先方向に振動させる第1アクチュエータと、
前記工具を前記被削材に対して相対的に前記刃先方向と直交する方向である切削方向に振動させる第2アクチュエータと、
前記工具の切れ刃を前記被削材に対して相対的に前記刃先方向に往復移動させ往復の両方向で切削を行うとともに、少なくとも該切削後に前記刃先方向における前記切れ刃の振動速度がゼロとなる点で前記切れ刃を切削点から離すように前記第1と第2アクチュエータの動作を制御することで間欠切削を行なうための制御部と、
を備えた振動切削装置。
Vibration cutting device for performing cutting while relatively oscillating the tool relative to the workpiece at a frequency relative movement compliance value between the work material and the tool is lower than the compliance value for static load There,
A first actuator that vibrates the tool in a cutting edge direction that is a direction along the cutting edge of the tool relative to the work material;
A second actuator for causing the tool to vibrate in a cutting direction which is a direction perpendicular to the cutting edge direction relative to the work material;
The cutting edge of the tool is reciprocated relative to the work material in the direction of the cutting edge to perform cutting in both directions, and at least after the cutting, the vibration speed of the cutting edge in the cutting edge direction becomes zero. A control unit for performing intermittent cutting by controlling the operations of the first and second actuators so that the cutting edge is separated from the cutting point at a point;
A vibration cutting device comprising:
JP2001338085A 2001-11-02 2001-11-02 Vibration cutting method and vibration cutting apparatus Expired - Lifetime JP4088061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001338085A JP4088061B2 (en) 2001-11-02 2001-11-02 Vibration cutting method and vibration cutting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001338085A JP4088061B2 (en) 2001-11-02 2001-11-02 Vibration cutting method and vibration cutting apparatus

Publications (2)

Publication Number Publication Date
JP2003136359A JP2003136359A (en) 2003-05-14
JP4088061B2 true JP4088061B2 (en) 2008-05-21

Family

ID=19152629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001338085A Expired - Lifetime JP4088061B2 (en) 2001-11-02 2001-11-02 Vibration cutting method and vibration cutting apparatus

Country Status (1)

Country Link
JP (1) JP4088061B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803347B2 (en) * 2005-04-21 2011-10-26 コニカミノルタオプト株式会社 Vibration cutting equipment
US7587965B2 (en) * 2005-05-03 2009-09-15 Purdue Research Foundation Tool holder assembly and method for modulation-assisted machining
JP2007307632A (en) * 2006-05-16 2007-11-29 Saitama Univ Ultrasonic cutter
US7687975B2 (en) * 2007-03-27 2010-03-30 Panasonic Corporation Vibration assisted machining system with stacked actuators
JP4507006B2 (en) * 2007-11-15 2010-07-21 セイコーエプソン株式会社 Driving method of vibration cutter
JP6554698B2 (en) * 2015-05-15 2019-08-07 学校法人日本大学 Ultrasonic composite vibrator
DE102016214697A1 (en) * 2016-08-08 2018-02-08 Sauer Gmbh Method and device for applying a surface structuring on a workpiece to a machine tool
JP7308173B2 (en) * 2020-05-07 2023-07-13 株式会社ジェイテクトマシンシステム Ultrasonic cutting blade and ultrasonic cutting device

Also Published As

Publication number Publication date
JP2003136359A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP2007069344A (en) Method and device for oscillating work process based on use of two independent shafts
JP2686000B2 (en) Vibration cutting method and cutting device
JP4088061B2 (en) Vibration cutting method and vibration cutting apparatus
EP1234627A3 (en) Method of controlling elliptical vibrator
JP3754881B2 (en) Cutting method, cutting device, and tool holding device
JP2000052101A (en) Elliptical vibration cutting method and its device
JP4343879B2 (en) Cutting method
US20020152851A1 (en) Elliptical vibration cutting method and elliptical vibration cutting apparatus
JP4996826B2 (en) Elliptical vibration cutting machine
JP7049729B2 (en) Cutting equipment and cutting method
JP3823286B2 (en) Method of involuntarily grinding a cylindrical workpiece and the same grinding apparatus
KR20110015155A (en) Elliptical vibrating cutting tool
JP7311098B2 (en) Vibration cutting device, vibration device and cutting method
JP6793912B2 (en) Vibration processing equipment and vibration processing method
JP2002301601A (en) Work device and work method
JP2005001042A (en) Cutting method and cutting device
JP3676769B2 (en) Machining tools
WO2024043192A1 (en) Horn tip and ultrasonic bonding device
JPS6362659A (en) Precise finishing method with complex vibration grinding wheel
JPH0753263B2 (en) Method of driving composite vibration of ultrasonic transducer
KR100516807B1 (en) Micro machining apparatus using ultrasonic vibration
JP2001138105A (en) Vibrating cutting tool and manufacturing method thereof
JP4585343B2 (en) Driving method of ultrasonic motor
JPH02167601A (en) Flexible vibrator
JP2003080442A (en) Dicing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060925

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4088061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term