JP2008294476A - Development processing method and equipment of substrate - Google Patents

Development processing method and equipment of substrate Download PDF

Info

Publication number
JP2008294476A
JP2008294476A JP2008215009A JP2008215009A JP2008294476A JP 2008294476 A JP2008294476 A JP 2008294476A JP 2008215009 A JP2008215009 A JP 2008215009A JP 2008215009 A JP2008215009 A JP 2008215009A JP 2008294476 A JP2008294476 A JP 2008294476A
Authority
JP
Japan
Prior art keywords
developer
substrate
developing
resist film
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008215009A
Other languages
Japanese (ja)
Inventor
Momoko Shizukuishi
桃子 雫石
Hidetami Yaegashi
英民 八重樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008215009A priority Critical patent/JP2008294476A/en
Publication of JP2008294476A publication Critical patent/JP2008294476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove an antireflection film formed on an underlayer of a resist film so as not to influence the resist film, in a photolithography step of a wafer. <P>SOLUTION: In a photolithography step of a wafer W, an antireflection film B having solubility in a developer solution is formed, and thereafter a resist film R is formed. At the time of development processing after exposure processing, a developer solution H1 is fed to the surface of the wafer W, to develop the resist film R. At the time of finishing the development of the resist film R, a developer solution H2 having lower concentration than that of the developer solution H1 is fed to the surface of the wafer W. Only the antireflection film B is dissolved and removed by feeding of this developer solution H2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板の現像処理方法及び現像処理装置に関する。   The present invention relates to a substrate developing method and a developing apparatus.

半導体デバイスの製造プロセスにおけるフォトリソグラフィー工程では、例えばウェハ表面の被エッチング膜上にレジスト液が塗布されてレジスト膜が形成されるレジスト塗布処理、ウェハ上の前記レジスト膜を所定のパターンで露光する露光処理、露光されたウェハ上に現像液を供給して前記レジスト膜を現像する現像処理、所定のパターンのレジスト膜をマスクにして被エッチング膜をエッチングするエッチング処理等が順に行われている。   In a photolithography process in a semiconductor device manufacturing process, for example, a resist coating process in which a resist solution is applied to a film to be etched on the wafer surface to form a resist film, and the resist film on the wafer is exposed in a predetermined pattern. Processing, development processing for supplying a developer onto the exposed wafer to develop the resist film, etching processing for etching the film to be etched using a resist film having a predetermined pattern as a mask, and the like are sequentially performed.

また、フォトリソグラフィー工程では、例えば露光処理時にレジスト膜中を透過した光が被エッチング膜に反射してレジスト膜が余分に露光されることを防止するために、レジスト塗布処理前にレジスト膜の下地膜として反射防止膜を形成することがある。   In addition, in the photolithography process, for example, in order to prevent light transmitted through the resist film during the exposure process from being reflected on the film to be etched and being exposed excessively, the resist film is exposed before the resist coating process. An antireflection film may be formed as a ground film.

このように、例えば被エッチング膜とレジスト膜との間に下地膜を形成した場合には、被エッチング膜をエッチングする前に、被エッチング膜の上層の下地膜を別途エッチングする必要がある。この下地膜のエッチング処理は、一般的に、ウェハを収容するチャンバー内でエッチングガスをプラズマ化し、そのプラズマ粒子によって下地膜の表面を化学反応させることにより行われていた(例えば、特許文献1参照。)。しかしながら、この下地膜のエッチング処理の際には、高エネルギのプラズマ粒子が用いられるので、レジスト膜へのダメージが大きく、例えば図14に示すように上層にあるレジスト膜Rの表面が削られ、本来矩形であるべきレジスト膜Rの側面が大きく傾斜することがあった。   Thus, for example, when a base film is formed between the film to be etched and the resist film, it is necessary to separately etch the base film on the upper layer of the film to be etched before etching the film to be etched. This etching process of the base film is generally performed by converting the etching gas into a plasma in a chamber that accommodates the wafer and chemically reacting the surface of the base film with the plasma particles (see, for example, Patent Document 1). .) However, since the high energy plasma particles are used in the etching process of the base film, the damage to the resist film is large, and the surface of the resist film R in the upper layer is shaved, for example, as shown in FIG. In some cases, the side surface of the resist film R that should originally be rectangular is greatly inclined.

このようにレジスト膜Rの側面が傾斜すると、被エッチング膜のエッチングの際に、予め定められている寸法以上に被エッチング膜がエッチングされ、ウェハ上に所望の線幅・寸法のパターンが形成されなくなる。特に、半導体デバイスの高集積化、微細化が進む近年において、寸法精度の高いフォトリソ工程を実現することは重要な課題になっている。   When the side surface of the resist film R is inclined as described above, the etched film is etched to a size larger than a predetermined dimension when the etched film is etched, and a pattern having a desired line width / dimension is formed on the wafer. Disappear. In particular, in recent years when semiconductor devices are highly integrated and miniaturized, it is an important issue to realize a photolithography process with high dimensional accuracy.

また、従来の下地膜のエッチング処理の際には、レジスト膜Rの上面も縦方向に大きく削られることがあった。このため、レジスト膜Rと下地膜を合わせた膜厚が薄くなり、レジスト膜Rが被エッチング膜に対するマスクとしての機能を十分に果たすことができなくなることがあった。   In addition, during the conventional etching process of the base film, the upper surface of the resist film R may be greatly shaved in the vertical direction. For this reason, the total film thickness of the resist film R and the base film becomes thin, and the resist film R may not sufficiently function as a mask for the film to be etched.

特開平8−97191号公報JP-A-8-97191

本発明は、かかる点に鑑みてなされたものであり、ウェハ等の基板のフォトリソグラフィー工程において、レジスト膜の下層に形成された下地膜を、レジスト膜に影響を与えないように除去することのできる基板の現像処理方法及びその現像処理方法で用いられる現像処理装置を提供することをその目的とする。   The present invention has been made in view of the above points, and in the photolithography process of a substrate such as a wafer, the underlayer formed on the lower layer of the resist film is removed so as not to affect the resist film. It is an object of the present invention to provide a development processing method for a substrate and a development processing apparatus used in the development processing method.

上記目的を達成するために、請求項1の発明は、レジスト膜の下層に所定の下地膜が形成されている基板の現像処理において、基板上に現像液を供給して基板上のレジスト膜を現像する工程と、その後、基板上に所定の処理液を供給して、前記レジスト膜の現像によって露出した部分の下地膜を溶解する工程と、を有し、前記基板上への所定の処理液の供給は、基板の特定方向の寸法より長い領域に渡って形成された吐出口を有するノズルを用いて、前記ノズルから前記所定の処理液を吐出しながら、前記ノズルを基板上で移動させることによって行われることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is directed to a developing process for a substrate in which a predetermined base film is formed under the resist film, and a developer is supplied onto the substrate to form a resist film on the substrate. And a step of supplying a predetermined processing liquid onto the substrate and then dissolving a portion of the base film exposed by the development of the resist film, the predetermined processing liquid on the substrate The supply is performed by moving the nozzle on the substrate while discharging the predetermined processing liquid from the nozzle using a nozzle having a discharge port formed over a region longer than the dimension in a specific direction of the substrate. It is characterized by being performed by.

この発明によれば、従来のように高エネルギのプラズマ粒子によって下地膜がエッチングされることがないので、上層のレジスト膜へのダメージが少なく、下地膜の除去処理時にレジスト膜の表面が削られることを抑制できる。この結果、例えば下地膜の除去後に行われる下層の被エッチング膜のエッチング処理時に、レジスト膜が正確な寸法のマスクとして機能し、基板上に寸法精度の高いパターンを形成できる。また、従来のように下地膜のエッチング処理を行う必要がないので、パターン形成までの時間が短縮され、基板処理のスループットが向上される。さらに、基板上への所定の処理液の供給は、基板の特定方向の寸法より長い領域に渡って形成された吐出口を有するノズルを用いて、ノズルから所定の処理液を吐出しながら、ノズルを基板上で移動させることによって行われるので、基板全面への所定の処理液の供給を短時間でかつ適正に行うことができる。   According to the present invention, since the base film is not etched by high energy plasma particles as in the prior art, there is little damage to the upper resist film, and the surface of the resist film is shaved during the base film removal process. This can be suppressed. As a result, the resist film functions as a mask with an accurate dimension during, for example, an etching process of the underlying etching target film after the removal of the base film, and a pattern with high dimensional accuracy can be formed on the substrate. In addition, since it is not necessary to perform the etching process of the base film as in the prior art, the time until pattern formation is shortened and the throughput of the substrate processing is improved. Further, the supply of the predetermined processing liquid onto the substrate is performed by discharging a predetermined processing liquid from the nozzle using a nozzle having an ejection port formed over a region longer than the dimension in a specific direction of the substrate. Therefore, the predetermined processing liquid can be supplied to the entire surface of the substrate in a short time and appropriately.

前記現像液による前記レジスト膜の現像が進行して当該レジスト膜の溶解が前記下地膜の表面まで到達したときに、前記基板上に所定の処理液が供給されて前記下地膜の溶解が開始されるようにしてもよい。かかる場合、レジスト膜の現像から下地膜の溶解への切り替えを適切に行うことができる。   When the development of the resist film by the developer progresses and the dissolution of the resist film reaches the surface of the base film, a predetermined processing liquid is supplied onto the substrate to start the dissolution of the base film. You may make it do. In such a case, switching from development of the resist film to dissolution of the base film can be appropriately performed.

前記基板上のレジスト膜を現像した後、当該基板上の現像液を除去し、その後、前記所定の処理液を基板上に供給するようにしてもよい。この場合、レジスト膜の現像を一旦完全に停止させ、その後新たに下地膜の除去を行うことができるので、レジスト膜の過度の現像をより確実に防止できる。   After developing the resist film on the substrate, the developer on the substrate may be removed, and then the predetermined processing solution may be supplied onto the substrate. In this case, since the development of the resist film can be stopped once and then the base film can be newly removed, excessive development of the resist film can be prevented more reliably.

前記所定の処理液の供給と前記レジスト膜の現像時の現像液の供給は、同じノズルを用いて行われてもよい。   The supply of the predetermined processing solution and the supply of the developing solution at the time of developing the resist film may be performed using the same nozzle.

前記下地膜には、前記現像液に対し溶解性を有するものが用いられ、前記所定の処理液は、前記現像液よりも前記レジスト膜に対する溶解性の低い現像液であってもよい。かかる場合、現像液によりレジスト膜を現像した後に、当該現像液よりも溶解性の低い現像液によって下地膜を溶解して、下地膜を除去することができる。この場合、下地膜を溶解する処理液に現像液が用いられるので、レジスト膜を変質させることはない。また、レジスト膜に対して溶解性が低い現像液が用いられるので、レジスト膜が過剰に現像することはない。ところで、現像時のレジスト膜に溶解部分の疎密がある場合、レジスト膜を溶解した後では、密の部分にある現像液は疎の部分にある現像液よりも現像能力が低くなっている。したがって、例えばレジスト膜の現像に使用した現像液をそのまま用いて下地膜を溶解させると、レジスト膜の疎の部分と密の部分とで下地膜の溶解度が異なってくる。本発明によれば、レジスト膜の現像が終わった後、下地膜の溶解に適した新鮮な現像液を供給するので、下地膜の溶解を、レジスト膜の溶解部分の疎密に関係なく基板面内で均等に行うことができる。なお、前記レジスト膜の現像に用いられた前記現像液は、当該現像液の原液と純水を混合したものであり、前記所定の処理液は、少なくとも前記現像液よりも温度を低くした、又は前記原液と純水を混合して前記現像液よりも濃度を低くした現像液であってもよい。   The base film may be one that is soluble in the developer, and the predetermined processing solution may be a developer that is less soluble in the resist film than the developer. In this case, after developing the resist film with the developer, the base film can be removed by dissolving the base film with a developer having lower solubility than the developer. In this case, since the developing solution is used as a processing solution for dissolving the base film, the resist film is not altered. In addition, since a developer having low solubility in the resist film is used, the resist film is not excessively developed. By the way, when the resist film at the time of development has a density of the dissolved portion, after the resist film is dissolved, the developing solution in the dense portion has a lower developing ability than the developer in the sparse portion. Therefore, for example, when the base film is dissolved using the developer used for developing the resist film as it is, the solubility of the base film differs between a sparse part and a dense part of the resist film. According to the present invention, after the development of the resist film is finished, a fresh developer suitable for dissolving the base film is supplied, so that the dissolution of the base film can be performed within the substrate plane regardless of the density of the dissolved portion of the resist film. Can be done evenly. The developer used for developing the resist film is a mixture of a stock solution of the developer and pure water, and the predetermined processing solution has a temperature lower than at least the developer, or A developer having a lower concentration than the developer by mixing the stock solution and pure water may be used.

なお、以上で記載した発明における前記下地膜は、露光処理時の光の反射を防止する反射防止膜であってもよい。   In the invention described above, the base film may be an antireflection film that prevents reflection of light during exposure processing.

別の観点によれば、本発明は、レジスト膜の下層に所定の下地膜が形成されている基板を現像処理する現像処理装置であって、基板上に現像液を供給して基板上のレジスト膜を現像した後、前記レジスト膜の現像によって露出した部分の下地膜を溶解させるための所定の処理液を供給するノズルと、前記ノズルから前記所定の処理液を吐出しながら、前記ノズルを基板上で移動させる駆動機構と、を備え、前記ノズルは、基板の特定方向の寸法より長い領域に渡って形成された吐出孔を有することを特徴とする。なお、前記ノズルは、前記レジスト膜の現像時の現像液も供給するようにしてもよい。   According to another aspect, the present invention provides a development processing apparatus for developing a substrate on which a predetermined base film is formed below a resist film, and supplying a developer onto the substrate to provide a resist on the substrate. After developing the film, the nozzle is supplied to the substrate while supplying a predetermined processing liquid for dissolving the underlying film of the portion exposed by the development of the resist film, and discharging the predetermined processing liquid from the nozzle A nozzle that has a discharge hole formed over an area longer than a dimension in a specific direction of the substrate. The nozzle may also supply a developing solution for developing the resist film.

本発明によれば、基板上に寸法精度の高い回路パターンを形成することができる。   According to the present invention, a circuit pattern with high dimensional accuracy can be formed on a substrate.

以下、本発明の好ましい実施の形態について説明する。図1は、基板処理のフォトリソグラフィー工程が行われる塗布現像処理システム1の構成の概略を示す平面図であり、図2は、塗布現像処理システム1の正面図であり、図3は、塗布現像処理システム1の背面図である。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a plan view showing an outline of the configuration of a coating and developing processing system 1 in which a substrate processing photolithography process is performed, FIG. 2 is a front view of the coating and developing processing system 1, and FIG. 2 is a rear view of the processing system 1. FIG.

塗布現像処理システム1は、図1に示すように例えば25枚のウェハWをカセット単位で外部から塗布現像処理システム1に対して搬入出したり、カセットCに対してウェハWを搬入出したりするカセットステーション2と、塗布現像処理工程の中で枚葉式に所定の処理を施す各種処理装置を多段配置してなる処理ステーション3と、この処理ステーション3に隣接して設けられている図示しない露光装置との間でウェハWの受け渡しをするインターフェイス部4とを一体に接続した構成を有している。   As shown in FIG. 1, the coating and developing treatment system 1 is a cassette that carries, for example, 25 wafers W from the outside to the coating and developing treatment system 1 in a cassette unit, and carries a wafer W into and out of the cassette C. A station 2, a processing station 3 in which various processing apparatuses that perform predetermined processing in a single-wafer type in the coating and developing processing step are arranged in multiple stages, and an exposure apparatus (not shown) provided adjacent to the processing station 3 And the interface unit 4 that transfers the wafer W between the two.

カセットステーション2では、載置部となるカセット載置台5上の所定の位置に、複数のカセットCをX方向(図1中の上下方向)に一列に載置自在となっている。カセットステーション2には、搬送路6上をX方向に向かって移動可能なウェハ搬送体7が設けられている。ウェハ搬送体7は、カセットCに収容されたウェハWのウェハ配列方向(Z方向;鉛直方向)にも移動自在であり、X方向に配列された各カセットC内のウェハWに対して選択的にアクセスできる。   In the cassette station 2, a plurality of cassettes C can be placed in a line in a X direction (vertical direction in FIG. 1) at a predetermined position on the cassette placing table 5 serving as a placing portion. The cassette station 2 is provided with a wafer transfer body 7 that can move in the X direction on the transfer path 6. The wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and is selective to the wafers W in each cassette C arranged in the X direction. Can be accessed.

ウェハ搬送体7は、Z軸周りのθ方向に回転可能であり、後述する処理ステーション3側の第3の処理装置群G3に属する温調装置50やトランジション装置51に対してもアクセスできる。   The wafer carrier 7 is rotatable in the θ direction around the Z axis, and can also access a temperature control device 50 and a transition device 51 belonging to a third processing device group G3 on the processing station 3 side described later.

カセットステーション2に隣接する処理ステーション3は、複数の処理装置が多段に配置された、例えば5つの処理装置群G1〜G5を備えている。処理ステーション3のX方向負方向(図1中の下方向)側には、カセットステーション2側から第1の処理装置群G1、第2の処理装置群G2が順に配置されている。処理ステーション3のX方向正方向(図1中の上方向)側には、カセットステーション2側から第3の処理装置群G3、第4の処理装置群G4及び第5の処理装置群G5が順に配置されている。第3の処理装置群G3と第4の処理装置群G4の間には、第1の搬送装置10が設けられている。第1の搬送装置10は、第1の処理装置群G1、第3の処理装置群G3及び第4の処理装置群G4に対して選択的にアクセスしてウェハWを搬送できる。第4の処理装置群G4と第5の処理装置群G5の間には、第2の搬送装置11が設けられている。第2の搬送装置11は、第2の処理装置群G2、第4の処理装置群G4及び第5の処理装置群G5に対して選択的にアクセスしてウェハWを搬送できる。   The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. A first processing device group G1 and a second processing device group G2 are arranged in this order from the cassette station 2 side on the X direction negative direction (downward direction in FIG. 1) side of the processing station 3. A third processing device group G3, a fourth processing device group G4, and a fifth processing device group G5 are sequentially arranged from the cassette station 2 side on the X direction positive direction (upward direction in FIG. 1) side of the processing station 3. Has been placed. A first transfer device 10 is provided between the third processing device group G3 and the fourth processing device group G4. The first transfer device 10 can selectively access the first processing device group G1, the third processing device group G3, and the fourth processing device group G4 to transfer the wafer W. A second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.

図2に示すように第1の処理装置群G1には、ウェハWに所定の液体を供給して処理を行う液処理装置、例えばウェハWにレジスト液を塗布するレジスト塗布装置20、21、22、露光処理時の光の反射を防止する下地膜としての反射防止膜を形成するボトムコーティング装置23、24が下から順に5段に重ねられている。第2の処理装置群G2には、液処理装置、例えば本実施の形態にかかる現像処理が行われる現像処理装置30〜34が下から順に5段に重ねられている。また、第1の処理装置群G1及び第2の処理装置群G2の最下段には、各処理装置群G1及びG2内の前記液処理装置に各種処理液を供給するためのケミカル室40、41がそれぞれ設けられている。   As shown in FIG. 2, in the first processing unit group G1, a liquid processing apparatus that performs processing by supplying a predetermined liquid to the wafer W, for example, resist coating apparatuses 20, 21, and 22 that apply a resist solution to the wafer W. Bottom coating devices 23 and 24 for forming an antireflection film as a base film for preventing reflection of light during the exposure process are stacked in five stages in order from the bottom. In the second processing unit group G2, liquid processing units, for example, development processing units 30 to 34 for performing the development processing according to this embodiment are stacked in five stages in order from the bottom. In addition, chemical chambers 40 and 41 for supplying various processing liquids to the liquid processing apparatuses in the processing apparatus groups G1 and G2 are provided at the bottom of the first processing apparatus group G1 and the second processing apparatus group G2. Are provided.

例えば図3に示すように第3の処理装置群G3には、温調装置50、ウェハWの受け渡しを行うためのトランジション装置51、精度の高い温度管理下でウェハWを加熱処理する高精度温調装置52〜54及びウェハWを高温で加熱処理する高温度熱処理装置55〜58が下から順に9段に重ねられている。   For example, as shown in FIG. 3, the third processing device group G3 includes a temperature control device 50, a transition device 51 for delivering the wafer W, and a high-precision temperature for heat-treating the wafer W under high-precision temperature control. The high-temperature heat treatment apparatuses 55 to 58 that heat-treat the preparation apparatuses 52 to 54 and the wafer W at a high temperature are stacked in nine stages in order from the bottom.

第4の処理装置群G4では、例えば高精度温調装置60、レジスト塗布処理後のウェハWを加熱処理するプリベーキング装置61〜64及び現像処理後のウェハWを加熱処理するポストベーキング装置65〜69が下から順に10段に重ねられている。   In the fourth processing unit group G4, for example, a high-precision temperature control device 60, pre-baking devices 61 to 64 that heat-treat the resist-coated wafer W, and post-baking devices 65 to 65 that heat-process the developed wafer W. 69 are stacked in 10 steps from the bottom.

第5の処理装置群G5では、ウェハWを熱処理する複数の熱処理装置、例えば高精度温調装置70〜73、露光後のウェハWを加熱処理するポストエクスポージャーベーキング装置74〜79が下から順に10段に重ねられている。   In the fifth processing apparatus group G5, there are a plurality of heat treatment apparatuses that heat-treat the wafer W, such as high-precision temperature control apparatuses 70 to 73, and post-exposure baking apparatuses 74 to 79 that heat-treat the exposed wafer W in order from the bottom. It is stacked on the stage.

図1に示すように第1の搬送装置10のX方向正方向側には、複数の処理装置が配置されており、例えば図3に示すようにウェハWを疎水化処理するためのアドヒージョン装置80、81、ウェハWを加熱する加熱装置82、83が下から順に4段に重ねられている。図1に示すように第2の搬送装置11のX方向正方向側には、例えばウェハWのエッジ部のみを選択的に露光する周辺露光装置84が配置されている。   As shown in FIG. 1, a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10. For example, as shown in FIG. 3, an adhesion device 80 for hydrophobizing the wafer W. 81, heating devices 82 and 83 for heating the wafer W are stacked in four stages in order from the bottom. As shown in FIG. 1, for example, a peripheral exposure device 84 that selectively exposes only the edge portion of the wafer W is arranged on the positive side in the X direction of the second transfer device 11.

インターフェイス部4は、図1に示すように処理ステーション3側から順に第1のインターフェイス部100と、第2のインターフェイス部101を備えている。第1のインターフェイス部100には、ウェハ搬送体102が第5の処理装置群G5に対応する位置に設けられている。ウェハ搬送体102のX方向の両側には、例えばバッファカセット103、104が設置されている。ウェハ搬送体102は、第5の処理装置群G5内の処理装置とバッファカセット103、104に対してアクセスできる。第2のインターフェイス部101には、X方向に向けて設けられた搬送路105上を移動するウェハ搬送体106が設けられている。ウェハ搬送体106は、Z方向に移動可能でかつθ方向にも回転可能であり、第2のインターフェイス部101に隣接した図示しない露光装置と、バッファカセット104に対してアクセスできる。したがって、処理ステーション3内のウェハWは、ウェハ搬送体102、バッファカセット103、104及びウェハ搬送体106を介して露光装置に搬送でき、また、露光処理の終了したウェハWは、ウェハ搬送体106、バッファカセット104、ウェハ搬送体102を介して処理ステーション3内に搬送できる。   As shown in FIG. 1, the interface unit 4 includes a first interface unit 100 and a second interface unit 101 in order from the processing station 3 side. In the first interface unit 100, a wafer carrier 102 is provided at a position corresponding to the fifth processing unit group G5. For example, buffer cassettes 103 and 104 are installed on both sides in the X direction of the wafer carrier 102. The wafer carrier 102 can access the processing apparatus and the buffer cassettes 103 and 104 in the fifth processing apparatus group G5. The second interface unit 101 is provided with a wafer transfer body 106 that moves on a transfer path 105 provided in the X direction. The wafer carrier 106 can move in the Z direction and can also rotate in the θ direction, and can access the exposure apparatus (not shown) adjacent to the second interface unit 101 and the buffer cassette 104. Therefore, the wafer W in the processing station 3 can be transferred to the exposure apparatus via the wafer transfer body 102, the buffer cassettes 103 and 104, and the wafer transfer body 106, and the wafer W after the exposure process is transferred to the wafer transfer body 106. , And can be transferred into the processing station 3 via the buffer cassette 104 and the wafer transfer body 102.

次に、上述した現像処理装置30の構成について詳しく説明する。なお、現像処理装置31〜34については、現像処理装置30と構成が同じであるので説明を省略する。図4は、現像処理装置30の構成の概略を示す縦断面の説明図であり、図5は、現像処理装置30の横断面の説明図である。   Next, the configuration of the development processing apparatus 30 described above will be described in detail. Since the development processing apparatuses 31 to 34 have the same configuration as the development processing apparatus 30, the description thereof will be omitted. FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the development processing apparatus 30, and FIG. 5 is an explanatory view of a transverse section of the development processing apparatus 30.

図4に示すように現像処理装置30は、ケーシング30aを有し、当該ケーシング30a内の中央部には、ウェハWを保持するスピンチャック120が設けられている。スピンチャック120は、水平な上面を有し、当該上面には、例えばウェハWを吸引する吸引口(図示せず)が設けられている。この吸引口からの吸引により、ウェハWをスピンチャック120上に吸着できる。   As shown in FIG. 4, the development processing apparatus 30 includes a casing 30 a, and a spin chuck 120 that holds the wafer W is provided in the center of the casing 30 a. The spin chuck 120 has a horizontal upper surface, and a suction port (not shown) for sucking the wafer W, for example, is provided on the upper surface. The wafer W can be sucked onto the spin chuck 120 by suction from the suction port.

スピンチャック120には、例えばスピンチャック120を回転及び昇降させるためのチャック駆動機構121が設けられている。チャック駆動機構121は、例えばスピンチャック120を鉛直方向の軸周りに所定速度で回転させるモータなどの回転駆動部(図示せず)や、スピンチャック120を昇降させるモータ又はシリンダなどの昇降駆動部(図示せず)を備えている。このチャック駆動機構121により、スピンチャック60上のウェハWを所定のタイミングで昇降させたり、所定の速度で回転させることができる。   The spin chuck 120 is provided with a chuck drive mechanism 121 for rotating and lifting the spin chuck 120, for example. The chuck drive mechanism 121 includes, for example, a rotation drive unit (not shown) such as a motor that rotates the spin chuck 120 around a vertical axis at a predetermined speed, and a lift drive unit such as a motor or cylinder that moves the spin chuck 120 up and down ( (Not shown). With this chuck drive mechanism 121, the wafer W on the spin chuck 60 can be moved up and down at a predetermined timing or rotated at a predetermined speed.

スピンチャック120の周囲には、ウェハWから飛散又は落下する液体を受け止め、回収するためのカップ122が設けられている。カップ122は、例えばスピンチャック120の周囲を囲む内カップ123と、当該内カップ123の外方を覆う外カップ124と、内カップ123と外カップ124の下面を覆う底部125とを別個に有している。内カップ123と外カップ124により、主にウェハWの外方に飛散する液体を受け止めることができ、底部125により、内カップ123と外カップ124の内壁やウェハWから落下する液体を回収することができる。   Around the spin chuck 120, there is provided a cup 122 for receiving and collecting the liquid scattered or dropped from the wafer W. The cup 122 has, for example, an inner cup 123 that surrounds the periphery of the spin chuck 120, an outer cup 124 that covers the outside of the inner cup 123, and a bottom 125 that covers the lower surface of the inner cup 123 and the outer cup 124. ing. The inner cup 123 and the outer cup 124 can catch mainly the liquid splashing outward of the wafer W, and the bottom 125 collects the liquid falling from the inner walls of the inner cup 123 and the outer cup 124 and the wafer W. Can do.

内カップ123は、例えば略円筒状に形成され、その上端部は内側上方に向けて傾斜している。内カップ123は、例えばシリンダなどの昇降駆動部126によって上下動できる。外カップ124は、例えば図5に示すように平面から見て四角形の略筒状に形成されている。外カップ124は、図4に示すように例えばシリンダなどの昇降駆動部127によって上下動できる。底部125の中央部には、スピンチャック120が貫通している。スピンチャック120の周囲には、例えばウェハWの表面から裏面に回り込んだ液体の流れを遮断する環状部材128が設けられている。環状部材128は、例えばウェハWの裏面に近接する頂上部を備えており、その頂上部でウェハWの裏面を伝う液体を遮断できる。底部125には、例えば工場の排液部に連通した排出管129が接続されており、カップ122において回収した液体は、排出管129から現像処理装置30の外部に排出できる。   The inner cup 123 is formed, for example, in a substantially cylindrical shape, and its upper end portion is inclined toward the upper side inside. The inner cup 123 can be moved up and down by an elevating drive unit 126 such as a cylinder. For example, as shown in FIG. 5, the outer cup 124 is formed in a substantially cylindrical shape that is square when viewed from the top. As shown in FIG. 4, the outer cup 124 can be moved up and down by an elevating drive unit 127 such as a cylinder. The spin chuck 120 passes through the center of the bottom 125. Around the spin chuck 120, for example, an annular member 128 that blocks the flow of the liquid that has flowed from the front surface to the back surface of the wafer W is provided. The annular member 128 includes, for example, a top portion that is close to the back surface of the wafer W, and liquid that travels on the back surface of the wafer W can be blocked by the top portion. For example, the bottom 125 is connected to a discharge pipe 129 that communicates with a drainage section of a factory, for example, and the liquid recovered in the cup 122 can be discharged from the development pipe 30 to the outside.

図5に示すようにカップ122のX方向負方向(図5の下方向)側には、Y方向に沿って延伸するレール140が形成されている。レール140は、例えばカップ122のY方向負方向(図5の左方向)側の外方からカップ122のY方向正方向(図5の右方向)側の外方まで形成されている。レール140には、二本のアーム141、142が取り付けられている。第1のアーム141には、現像液供給ノズル143が支持されている。第1のアーム141は、駆動機構144によってレール140上をY方向に移動自在であり、現像液供給ノズル143をカップ122の外方に設置された待機部145からカップ122の内側にまで移送することができる。また、第1のアーム141は、例えば前記駆動機構144によって上下方向にも移動自在であり、現像液供給ノズル143を昇降させることができる。   As shown in FIG. 5, a rail 140 extending along the Y direction is formed on the negative side of the cup 122 in the X direction (downward in FIG. 5). For example, the rail 140 is formed from the outside of the cup 122 in the Y direction negative direction (left direction in FIG. 5) to the outside of the cup 122 in the Y direction positive direction (right direction in FIG. 5). Two arms 141 and 142 are attached to the rail 140. A developer supply nozzle 143 is supported on the first arm 141. The first arm 141 is movable in the Y direction on the rail 140 by the drive mechanism 144, and transfers the developer supply nozzle 143 from the standby unit 145 installed outside the cup 122 to the inside of the cup 122. be able to. The first arm 141 can also be moved in the vertical direction by the drive mechanism 144, for example, and can move the developer supply nozzle 143 up and down.

現像液供給ノズル143は、図4に示すように現像液供給管150によって、例えばケーシング30aの外部に設置された現像液供給源151に連通している。現像液供給源151には、所定濃度の現像液が予め貯留されている。現像液供給源151は、例えば温度調整部152を有しており、現像液供給ノズル143に対し所定の温度の現像液を供給することができる。また、現像液供給ノズル143は、液体供給管153によって、例えば所定の液体の貯留されている液体供給源154にも連通している。本実施の形態においては、液体供給源154には、純水が貯留されている。液体供給源154は、例えば温度調整部155を有し、現像液供給ノズル143に対し所定の温度の純水を供給することができる。現像液供給管150と液体供給管153には、流量が調整可能なバルブ156、157がそれぞれ取り付けられており、これらのバルブ156、157により、現像液供給ノズル143に所定流量の現像液と純水を供給できる。   As shown in FIG. 4, the developer supply nozzle 143 communicates with a developer supply source 151, for example, installed outside the casing 30a by a developer supply pipe 150. A developer having a predetermined concentration is stored in advance in the developer supply source 151. The developer supply source 151 includes, for example, a temperature adjustment unit 152 and can supply a developer having a predetermined temperature to the developer supply nozzle 143. Further, the developer supply nozzle 143 communicates with a liquid supply source 154 that stores, for example, a predetermined liquid by a liquid supply pipe 153. In the present embodiment, pure water is stored in the liquid supply source 154. The liquid supply source 154 includes, for example, a temperature adjustment unit 155 and can supply pure water having a predetermined temperature to the developer supply nozzle 143. The developer supply pipe 150 and the liquid supply pipe 153 are respectively provided with valves 156 and 157 whose flow rates can be adjusted. The valves 156 and 157 allow the developer supply nozzle 143 to supply a predetermined flow rate of developer and pure liquid. Can supply water.

ここで現像液供給ノズル143の構成について詳しく説明する。現像液供給ノズル143の本体143aは、図4、図5に示すように例えばウェハWの直径寸法よりも長く、X方向に沿った細長形状を有している。本体143aの内部には、図6に示すように本体143a内に導入される現像液を貯留する現像液貯留室160と、純水を貯留する液体貯留室161が形成されている。現像液貯留室160と液体貯留室161は、図7に示すように本体143aの長手方向に沿って一端部から他端部まで形成されている。図6に示すように本体143aの上部には、上面から現像液貯留室160に連通する現像液導入路162が形成されている。この現像液導入路162は、現像液供給管150に接続されている。また、本体143aの上部には、上面から液体貯留室161に連通する液体導入路163が形成されている。液体導入路163は、液体供給管153に接続されている。かかる構成により、現像液供給管150を通じて現像液供給ノズル143内に供給された現像液は、現像液導入路162を通じて現像液貯留室160に貯留され、液体供給管153を通じて供給された純水は、液体導入路163を通じて液体貯留室161に貯留される。   Here, the configuration of the developer supply nozzle 143 will be described in detail. As shown in FIGS. 4 and 5, the main body 143 a of the developer supply nozzle 143 has an elongated shape along the X direction that is longer than the diameter of the wafer W, for example. As shown in FIG. 6, a developer storage chamber 160 that stores a developer introduced into the main body 143 a and a liquid storage chamber 161 that stores pure water are formed in the main body 143 a. As shown in FIG. 7, the developer storage chamber 160 and the liquid storage chamber 161 are formed from one end to the other end along the longitudinal direction of the main body 143a. As shown in FIG. 6, a developer introduction path 162 that communicates with the developer storage chamber 160 from the upper surface is formed in the upper portion of the main body 143a. The developer introduction path 162 is connected to the developer supply pipe 150. In addition, a liquid introduction path 163 communicating with the liquid storage chamber 161 from the upper surface is formed in the upper portion of the main body 143a. The liquid introduction path 163 is connected to the liquid supply pipe 153. With this configuration, the developer supplied into the developer supply nozzle 143 through the developer supply pipe 150 is stored in the developer storage chamber 160 through the developer introduction path 162, and the pure water supplied through the liquid supply pipe 153 is The liquid is stored in the liquid storage chamber 161 through the liquid introduction path 163.

本体143a内の現像液貯留室160と液体貯留室161の下方には、混合室164が形成されている。混合室164は、例えば図7に示すように本体143aの長手方向に沿って一端部から他端部に渡って形成されている。混合室164は、例えば図6に示すようにX方向から見た縦断面が略円形になるように形成されている。混合室164は、図7に示すように長手方向に沿って等間隔に配置された複数の第1の連通路165によって現像液貯留室160に連通している。また、混合室164は、長手方向の沿って等間隔に配置された複数の第2の連通路166によって液体貯留室161にも連通している。したがって、現像液貯留室160の現像液と液体貯留室161の純水は、各連通路165、166を通って混合室164で混合される。   A mixing chamber 164 is formed below the developer storage chamber 160 and the liquid storage chamber 161 in the main body 143a. For example, as shown in FIG. 7, the mixing chamber 164 is formed from one end to the other end along the longitudinal direction of the main body 143a. For example, as shown in FIG. 6, the mixing chamber 164 is formed so that the longitudinal section viewed from the X direction is substantially circular. As shown in FIG. 7, the mixing chamber 164 communicates with the developer storage chamber 160 through a plurality of first communication passages 165 arranged at equal intervals along the longitudinal direction. In addition, the mixing chamber 164 communicates with the liquid storage chamber 161 through a plurality of second communication paths 166 arranged at equal intervals along the longitudinal direction. Therefore, the developer in the developer storage chamber 160 and the pure water in the liquid storage chamber 161 are mixed in the mixing chamber 164 through the communication paths 165 and 166.

混合室164内には、図7に示すように混合室164より径が小さい攪拌棒167が設けられている。攪拌棒167は、その表面に螺旋状の羽根167aが形成されており、スパイラル形状を有している。攪拌棒167は、例えば混合室164の両端部間に渡って延伸しており、その一端部は、例えば本体143aの側面に取り付けられた回転駆動部168に接続されている。回転駆動部168には、例えばモータなどの原動機が設けられており、攪拌棒167を軸周りに回転できる。したがって、混合室164内に現像液と純水が流入した際に、攪拌棒167を回転させて当該現像液と純水とを攪拌することができる。   In the mixing chamber 164, as shown in FIG. 7, a stirring rod 167 having a diameter smaller than that of the mixing chamber 164 is provided. The stirring bar 167 has a spiral blade 167a formed on the surface thereof, and has a spiral shape. The stirring rod 167 extends, for example, between both end portions of the mixing chamber 164, and one end portion thereof is connected to, for example, a rotation driving unit 168 attached to a side surface of the main body 143a. The rotation drive unit 168 is provided with a prime mover such as a motor, for example, and can rotate the stirring rod 167 around the axis. Accordingly, when the developing solution and pure water flow into the mixing chamber 164, the stirring rod 167 can be rotated to stir the developing solution and pure water.

混合室164の下部には、本体143aの下面に開口する複数の吐出口169が連通している。吐出口169は、本体143aの長手方向に沿って本体143aの両端部間に一列に等間隔で形成されている。図6に示すように吐出口169の径は、混合室164の径よりも小さく、混合室164から吐出口169に流れ込む際に流路が狭くなっている。   A plurality of discharge ports 169 that open to the lower surface of the main body 143 a communicate with the lower portion of the mixing chamber 164. The discharge ports 169 are formed at equal intervals in a line between both ends of the main body 143a along the longitudinal direction of the main body 143a. As shown in FIG. 6, the diameter of the discharge port 169 is smaller than the diameter of the mixing chamber 164, and the flow path is narrow when flowing from the mixing chamber 164 to the discharge port 169.

以上のように構成された現像液供給ノズル143によれば、現像液貯留室160に導入された現像液と液体貯留室161に導入された純水とを混合室164において所定の割合で混合し攪拌して、所定の濃度で所定の温度の現像液を生成し、当該生成された現像液を各吐出口169から均等に吐出することができる。   According to the developer supply nozzle 143 configured as described above, the developer introduced into the developer storage chamber 160 and the pure water introduced into the liquid storage chamber 161 are mixed in the mixing chamber 164 at a predetermined ratio. By stirring, a developing solution having a predetermined concentration and a predetermined temperature can be generated, and the generated developing solution can be uniformly discharged from each discharge port 169.

ところで、上述したレール140に取り付けられたもう一方の第2のアーム142には、図5に示すようにリンス液供給ノズル180が支持されている。第2のアーム142は、例えば駆動機構181によってレール140上をY方向に移動自在である。また、第2のアーム142は、上記駆動機構181によって上下方向にも移動自在である。この第2のアーム142によって、リンス液供給ノズル180は、カップ122のY方向正方向側の外方に設けられた待機部182からカップ122内のウェハWの中心部上方まで移動できる。なお、リンス液供給ノズル180は、現像処理装置30の外部に設置された図示しないリンス液供給源に連通しており、当該リンス液供給源から供給されたリンス液を下方に向けて吐出できる。   Incidentally, a rinse liquid supply nozzle 180 is supported by the other second arm 142 attached to the rail 140 described above, as shown in FIG. The second arm 142 is movable in the Y direction on the rail 140 by, for example, a drive mechanism 181. The second arm 142 is also movable in the vertical direction by the drive mechanism 181. With this second arm 142, the rinsing liquid supply nozzle 180 can move from the standby part 182 provided outside the cup 122 on the positive side in the Y direction to above the center part of the wafer W in the cup 122. The rinsing liquid supply nozzle 180 communicates with a rinsing liquid supply source (not shown) installed outside the development processing apparatus 30 and can discharge the rinsing liquid supplied from the rinsing liquid supply source downward.

次に、以上のように構成された塗布現像処理システム1で行われる、ウェハWに対するフォトリソグラフィー工程について説明する。先ず、未処理のウェハWが複数枚収容されたカセットCが載置台5上に載置されると、カセットCからウェハWが一枚取り出され、ウェハ搬送体7によって第3の処理装置群G3の温調装置50に搬送される。温調装置50に搬送されたウェハWは、所定温度に温度調節され、その後第1の搬送装置10によってボトムコーティング装置23に搬送される。ボトムコーティング装置23に搬送されたウェハWには、反射防止膜液体材料が塗布され、図8(a)に示すようにウェハWの表面に反射防止膜Bが形成される。この反射防止膜Bは、後工程の現像処理時に使用される現像液に可溶になるような液体材料を用いて形成される。   Next, a photolithography process for the wafer W performed in the coating and developing treatment system 1 configured as described above will be described. First, when a cassette C containing a plurality of unprocessed wafers W is placed on the mounting table 5, one wafer W is taken out from the cassette C, and a third processing unit group G3 is taken by the wafer carrier 7. It is conveyed to the temperature control device 50. The wafer W transferred to the temperature control device 50 is adjusted to a predetermined temperature and then transferred to the bottom coating device 23 by the first transfer device 10. An antireflection film liquid material is applied to the wafer W transferred to the bottom coating apparatus 23, and an antireflection film B is formed on the surface of the wafer W as shown in FIG. This antireflection film B is formed by using a liquid material that is soluble in a developer used in a subsequent development process.

反射防止膜Bが形成されたウェハWは、第1の搬送装置10によって加熱装置82、高温度熱処理装置55、高精度温調装置60に順次搬送され、各装置で所定の処理が施される。その後、ウェハWは、レジスト塗布装置20に搬送され、反射防止膜B上にレジスト膜Rが形成される(図8の(b))。   The wafer W on which the antireflection film B is formed is sequentially transferred by the first transfer device 10 to the heating device 82, the high-temperature heat treatment device 55, and the high-precision temperature control device 60, and is subjected to predetermined processing in each device. . Thereafter, the wafer W is transferred to the resist coating apparatus 20, and a resist film R is formed on the antireflection film B ((b) of FIG. 8).

レジスト膜Rが形成されたウェハWは、第1の搬送装置10によってプリベーキング装置61に搬送され、続いて第2の搬送装置11によって周辺露光装置84、高精度温調装置73に順次搬送されて、各装置において所定の処理が施される。その後、ウェハWは、第1のインターフェイス部100のウェハ搬送体102によってバッファカセット104に搬送され、次いで第2のインターフェイス部101のウェハ搬送体106によって図示しない露光装置に搬送される。この図示しない露光装置において、ウェハWは所定パターンに露光される(図8の(c))。図8(c)中のレジスト膜Rの斜線部は、露光された部分を示す。露光処理の終了したウェハWは、ウェハ搬送体106とウェハ搬送体102によってバッファカセット104を介してバッファカセット103に搬送される。その後ウェハWは、ウェハ搬送体102によって例えばポストエクスポージャーベーキング装置74に搬送され、加熱処理が行われた後、第2の搬送装置11によって高精度温調装置71に搬送され、その後、現像処理装置30に搬送される。   The wafer W on which the resist film R has been formed is transferred to the pre-baking device 61 by the first transfer device 10, and then sequentially transferred to the peripheral exposure device 84 and the high-precision temperature controller 73 by the second transfer device 11. Thus, predetermined processing is performed in each device. Thereafter, the wafer W is transferred to the buffer cassette 104 by the wafer transfer body 102 of the first interface unit 100, and then transferred to an exposure apparatus (not shown) by the wafer transfer body 106 of the second interface unit 101. In this exposure apparatus (not shown), the wafer W is exposed to a predetermined pattern ((c) in FIG. 8). A hatched portion of the resist film R in FIG. 8C indicates an exposed portion. The wafer W after the exposure processing is transferred to the buffer cassette 103 via the buffer cassette 104 by the wafer transfer body 106 and the wafer transfer body 102. Thereafter, the wafer W is transferred to, for example, a post-exposure baking apparatus 74 by the wafer transfer body 102 and subjected to heat treatment, and then transferred to the high-precision temperature control apparatus 71 by the second transfer apparatus 11, and thereafter the development processing apparatus. 30.

ここで、現像処理装置30で行われる現像処理について詳しく説明する。第2の搬送装置11によって現像処理装置30内にウェハWが搬入されると、図4に示すようにウェハWは、スピンチャック120に吸着保持される。続いて図5に示すように待機部145で待機していた現像液供給ノズル143がY方向正方向側に移動し、平面から見てウェハWのY方向負方向側の端部の手前の開始位置P1まで移動する。その後、現像液供給ノズル143が下降し、ウェハWの表面の高さに近づけられる。   Here, the development processing performed in the development processing apparatus 30 will be described in detail. When the wafer W is carried into the development processing apparatus 30 by the second transfer device 11, the wafer W is attracted and held by the spin chuck 120 as shown in FIG. 4. Subsequently, as shown in FIG. 5, the developer supply nozzle 143 that has been waiting in the standby unit 145 moves to the Y direction positive direction side, and starts before the end of the wafer W in the Y direction negative direction as viewed from above. Move to position P1. Thereafter, the developer supply nozzle 143 is lowered and brought close to the height of the surface of the wafer W.

この後、バルブ156とバルブ157が開放され、現像液供給源151の所定濃度の現像液と、液体供給源154の純水が、それぞれ所定の流量で現像液供給ノズル143に供給される。なお、現像液供給源151の現像液と液体供給源154の純水は、温度調節部152、155によって予め同じ温度に調整されていてもよい。また、現像液供給ノズル143に供給される現像液と純水の各流量は、現像液供給ノズル143で混合されて生成される現像液が所望の濃度になるように設定されている。現像液供給ノズル143に供給された現像液は、現像液貯留室160に一旦貯留され、第1の連通路165を通って混合室164に流入する。現像液供給ノズル143に供給された純水は、液体貯留室161に一旦貯留され、第2の連通路166を通って混合室164に流入する。現像液と純水が流入した混合室164では、回転駆動部168によって攪拌棒167が回転しており、混合室164内の現像液と純水とが攪拌・混合され、混合室164内に所定の濃度の現像液H1が生成される。なお、この現像液H1の濃度は、レジスト膜Rの現像に最適な濃度が選択される。   Thereafter, the valve 156 and the valve 157 are opened, and the developer having a predetermined concentration from the developer supply source 151 and the pure water from the liquid supply source 154 are respectively supplied to the developer supply nozzle 143 at a predetermined flow rate. Note that the developer of the developer supply source 151 and the pure water of the liquid supply source 154 may be adjusted in advance to the same temperature by the temperature adjustment units 152 and 155. The flow rates of the developer and pure water supplied to the developer supply nozzle 143 are set so that the developer generated by mixing in the developer supply nozzle 143 has a desired concentration. The developer supplied to the developer supply nozzle 143 is temporarily stored in the developer storage chamber 160 and flows into the mixing chamber 164 through the first communication path 165. The pure water supplied to the developer supply nozzle 143 is temporarily stored in the liquid storage chamber 161 and flows into the mixing chamber 164 through the second communication path 166. In the mixing chamber 164 into which the developer and pure water have flown, the agitation rod 167 is rotated by the rotation drive unit 168, and the developer and pure water in the mixing chamber 164 are agitated and mixed. A developer H1 having a concentration of 1 is generated. The concentration of the developing solution H1 is selected as the optimal concentration for developing the resist film R.

混合室164で生成された現像液H1は、混合室164内で滞留し十分に攪拌された後、下部の吐出口169に流入し、各吐出口169から均等に吐出される。こうして、現像液供給ノズル143からは、現像液H1が本体143aの両端部間に渡る略帯状に吐出される。   The developer H1 generated in the mixing chamber 164 stays in the mixing chamber 164 and is sufficiently stirred, and then flows into the lower discharge port 169 and is discharged from each discharge port 169 evenly. In this way, the developer H1 is discharged from the developer supply nozzle 143 in a substantially strip shape across both ends of the main body 143a.

開始位置P1において現像液H1の吐出が開始されると、現像液供給ノズル143は、Y方向に沿って開始位置P1から図5に示すウェハWのY方向正方向側の端部の外方の停止位置P2まで移動する。この現像液供給ノズル143の移動によって、ウェハW上に現像液H1が供給され、ウェハW上に現像液H1の液膜が形成される(図8の(d))。現像液H1の液膜が形成されたウェハW上では、レジスト膜Rの露光部分が現像液H1に溶解してレジスト膜Rの現像が行われる。現像液供給ノズル143が停止位置P2まで移動すると、例えばバルブ156、157が閉鎖され、現像液供給ノズル143からの現像液H1の吐出が停止される。現像液H1の供給が停止された現像液供給ノズル143は、例えば現像液の吐出が開始された開始位置P1に戻される。   When the discharge of the developer H1 is started at the start position P1, the developer supply nozzle 143 moves from the start position P1 along the Y direction to the outside of the end portion on the Y direction positive side of the wafer W shown in FIG. Move to the stop position P2. By the movement of the developer supply nozzle 143, the developer H1 is supplied onto the wafer W, and a liquid film of the developer H1 is formed on the wafer W ((d) in FIG. 8). On the wafer W on which the liquid film of the developer H1 is formed, the exposed portion of the resist film R is dissolved in the developer H1 and the resist film R is developed. When the developer supply nozzle 143 moves to the stop position P2, for example, the valves 156 and 157 are closed, and the discharge of the developer H1 from the developer supply nozzle 143 is stopped. The developer supply nozzle 143 from which the supply of the developer H1 has been stopped is returned to, for example, the start position P1 where the discharge of the developer is started.

現像液供給ノズル143が開始位置P1に戻され、所定時間経過すると、再びバルブ156と157が開放され、現像液供給ノズル143に現像液と純水が供給される。このときの現像液と純水の流量は、現像液供給ノズル143において現像液H1よりも濃度が低い現像液H2が生成されるように調整される。この現像液H2の濃度は、例えばレジスト膜Rに対する溶解性が極めて低く、反射防止膜Bのみを溶解する濃度、例えば現像液H1の半分以下、例えば現像液H1の20%〜50%程度の濃度に調整される。なお、現像液H1が0.26mol/l程度の場合、現像液H2は、0.06〜0.11mol/l程度に調整されるのが望ましい。   When the developer supply nozzle 143 is returned to the start position P1 and a predetermined time elapses, the valves 156 and 157 are opened again, and the developer and pure water are supplied to the developer supply nozzle 143. The flow rates of the developer and pure water at this time are adjusted so that the developer H2 having a lower concentration than the developer H1 is generated in the developer supply nozzle 143. The concentration of the developer H2 is, for example, extremely low in solubility in the resist film R and dissolves only the antireflection film B, for example, less than half of the developer H1, for example, about 20% to 50% of the developer H1. Adjusted to When the developer H1 is about 0.26 mol / l, the developer H2 is desirably adjusted to about 0.06 to 0.11 mol / l.

現像液供給ノズル143は、開始位置P1において現像液H2を吐出した状態で待機し、そして、現像液H1が液盛りされているウェハW上において、図9(a)に示すようにレジスト膜Rの露光部分の溶解が反射防止膜Bの表面に到達したときに、現像液供給ノズル143は、Y方向正方向側に移動する。現像液供給ノズル143は、現像液H1の供給時と同様に開始位置P1から停止位置P2まで移動し、ウェハW上の現像液H1は、現像液H2に置換され、ウェハW上には現像液H2の液膜が形成される(図9(b))。この現像液H2によって、露出した部分の反射防止膜Bが溶解し除去される(図9(c))。   The developer supply nozzle 143 waits in a state where the developer H2 is discharged at the start position P1, and on the wafer W on which the developer H1 is accumulated, as shown in FIG. 9A, the resist film R When the dissolution of the exposed portion reaches the surface of the antireflection film B, the developer supply nozzle 143 moves to the Y direction positive direction side. The developer supply nozzle 143 moves from the start position P1 to the stop position P2 in the same manner as when the developer H1 is supplied. The developer H1 on the wafer W is replaced with the developer H2, and the developer W is placed on the wafer W. A liquid film of H2 is formed (FIG. 9B). With this developer H2, the exposed antireflection film B is dissolved and removed (FIG. 9C).

停止位置P2で停止した現像液供給ノズル143は、現像液H2の吐出が停止され、待機部145に戻される。現像液供給ノズル143が待機部145に戻されると、例えば待機部182で待機していたリンス液供給ノズル180がウェハWの中心部上方まで移動し、例えば内カップ123がウェハWの周囲を囲むように上昇する。その後スピンチャック120によりウェハWが回転され、ウェハWの中心部に対してリンス液供給ノズル180からリンス液が供給される。これにより、ウェハW上の現像液H2がリンス液により洗い流される。所定時間リンス液が供給されてウェハWの洗浄が終了すると、リンス液の供給が停止され、その後ウェハWは、高速回転されて振り切り乾燥される。   The developer supply nozzle 143 stopped at the stop position P <b> 2 stops the discharge of the developer H <b> 2 and is returned to the standby unit 145. When the developing solution supply nozzle 143 is returned to the standby unit 145, for example, the rinse solution supply nozzle 180 that has been waiting in the standby unit 182 moves to above the center of the wafer W, and the inner cup 123 surrounds the periphery of the wafer W, for example. To rise. Thereafter, the wafer W is rotated by the spin chuck 120, and the rinse liquid is supplied from the rinse liquid supply nozzle 180 to the center of the wafer W. As a result, the developer H2 on the wafer W is washed away by the rinse liquid. When the rinsing liquid is supplied for a predetermined time and the cleaning of the wafer W is finished, the supply of the rinsing liquid is stopped, and then the wafer W is rotated at high speed and shaken and dried.

その後、ウェハWの回転が停止され、ウェハWはスピンチャック120から第2の搬送装置11に受け渡され、現像処理装置30から搬出される。こうして、ウェハWの一連の現像処理が終了する。   Thereafter, the rotation of the wafer W is stopped, and the wafer W is transferred from the spin chuck 120 to the second transfer device 11 and unloaded from the development processing device 30. Thus, a series of development processing of the wafer W is completed.

現像処理が終了したウェハWは、例えばポストベーキング装置65に搬送されて、第1の搬送装置11によってトランジション装置51に搬送され、その後ウェハ搬送体7によりカセットCに戻される。こうして、塗布現像処理システム1における一連のフォトリソグラフィー工程が終了する。   The wafer W that has undergone development processing is transferred to, for example, the post-baking device 65, transferred to the transition device 51 by the first transfer device 11, and then returned to the cassette C by the wafer transfer body 7. Thus, a series of photolithography steps in the coating and developing treatment system 1 are completed.

以上の実施の形態によれば、現像処理時に、ウェハW上に現像液H1を供給してレジスト膜Rを現像した後、ウェハW上に現像液H1よりも濃度の低い現像液H2を供給して反射防止膜Bを溶解したので、従来のようにプラズマを用いたエッチング処理により反射防止膜を除去する必要がなく、レジスト膜Rにダメージを与えずに反射防止膜Bの除去を行うことができる。また、レジスト膜Rの現像が終了した後に、ウェハW上に反射防止膜Bの溶解用の新しい現像液H2を供給したので、反射防止膜Bの溶解がウェハW面内において同じ条件で開始され、反射防止膜Bを除去をウェハW面内において斑なく行うことができる。   According to the above embodiment, after developing the resist film R by supplying the developer H1 onto the wafer W during the development process, the developer H2 having a lower concentration than the developer H1 is supplied onto the wafer W. Since the antireflection film B is dissolved, there is no need to remove the antireflection film by plasma etching as in the prior art, and the antireflection film B can be removed without damaging the resist film R. it can. Further, since the new developer H2 for dissolving the antireflection film B is supplied onto the wafer W after the development of the resist film R is completed, the dissolution of the antireflection film B is started under the same conditions in the wafer W surface. The antireflection film B can be removed without any spots in the wafer W plane.

また、反射防止膜Bを溶解する現像液H2を、現像液H1よりもレジスト膜に対して溶解性が低いものにしたので、反射防止膜Bの溶解時にレジスト膜Rが溶解することを防止できる。さらに、現像液供給ノズル143には、ウェハWの寸法よりも長い領域に渡って吐出口169が形成されており、当該現像液供給ノズル143から現像液H2を吐出しながら、現像液供給ノズル143をウェハW上で移動させることによって反射防止膜B上に現像液H2の液膜を形成したので、ウェハW全面への現像液H2の供給を短時間でかつ適正に行うことができる。   Further, since the developer H2 that dissolves the antireflection film B is made less soluble in the resist film than the developer H1, it is possible to prevent the resist film R from being dissolved when the antireflection film B is dissolved. . Further, a discharge port 169 is formed in the developer supply nozzle 143 over a region longer than the dimension of the wafer W, and the developer supply nozzle 143 is discharged while discharging the developer H2 from the developer supply nozzle 143. Since the liquid film of the developing solution H2 is formed on the antireflection film B by moving the film on the wafer W, the supplying of the developing solution H2 to the entire surface of the wafer W can be appropriately performed in a short time.

現像液供給ノズル143には、現像液貯留室160の現像液と液体貯留室161の純水とを混合する混合室164を設けたので、吐出口169から吐出される現像液の濃度を必要に応じて調整し変更できる。この結果、レジスト膜Rの現像時に現像液H1を吐出し、反射防止膜Bの溶解時に現像液H2を吐出して、上述の現像処理を好適に実施できる。また、混合室164に攪拌棒167を設け、当該攪拌棒167を回転駆動部168によって積極的に回転できるようにしたので、混合室164内に流入した現像液と純水を十分に攪拌し混合させ、濃度に斑のない現像液H1、H2を生成することができる。これにより、ウェハW上には濃度斑のない現像液が供給され、レジスト膜Rと反射防止膜Bの溶解をウェハW面内において斑なく行うことができる。さらに攪拌棒167は、スパイラル形状になっているので、その攪拌効果をさらに向上することができる。   The developer supply nozzle 143 is provided with a mixing chamber 164 that mixes the developer in the developer storage chamber 160 and the pure water in the liquid storage chamber 161, so that the concentration of the developer discharged from the discharge port 169 is required. It can be adjusted and changed accordingly. As a result, the developer H1 is discharged when the resist film R is developed, and the developer H2 is discharged when the antireflection film B is dissolved. In addition, since the mixing rod 167 is provided in the mixing chamber 164 so that the stirring rod 167 can be actively rotated by the rotation drive unit 168, the developer and pure water flowing into the mixing chamber 164 are sufficiently stirred and mixed. Thus, developers H1 and H2 having no unevenness in density can be generated. As a result, a developer having no density unevenness is supplied onto the wafer W, so that the resist film R and the antireflection film B can be dissolved on the wafer W without any spots. Furthermore, since the stirring rod 167 has a spiral shape, the stirring effect can be further improved.

なお、上記実施の形態で記載した攪拌棒167は、表面に取り付けられた螺旋状の羽根167aによってスパイラル形状を構成していたが、図10に示すように攪拌棒200の表面に螺旋状の溝200aを形成することによってスパイラル形状を構成してもよい。また、図11に示すように攪拌棒210は、多孔質材で形成されていてもよく、かかる場合、現像液と純水が多孔質材に浸透し、この浸透の過程において現像液と純水とが混合されて、十分な攪拌効果を得ることができる。このとき、攪拌棒210には、螺旋状の羽根が取り付けられていてもよい。   The stirring rod 167 described in the above embodiment has a spiral shape formed by the spiral blades 167a attached to the surface. However, as shown in FIG. 10, a spiral groove is formed on the surface of the stirring rod 200. A spiral shape may be formed by forming 200a. As shown in FIG. 11, the stirring rod 210 may be formed of a porous material. In such a case, the developer and pure water permeate the porous material, and the developer and pure water are in the process of permeation. Can be mixed to obtain a sufficient stirring effect. At this time, a spiral blade may be attached to the stirring rod 210.

上記実施の形態では、現像液供給ノズル143の吐出口169の径は一定であったが、図12に示すように吐出口220の径が、混合室164から本体143の下面に向けて徐々に大きくなるようにしてもよい。かかる場合、混合室164から吐出口220に流れる流路が、混合室164の下面で一旦狭くなり、その後吐出口220の開口部に向かって徐々に広くなる。こうすることにより、混合室164内において、現像液の滞留時間を十分に確保して現像液と純水の混合を促進させることができる。また、吐出口220内において、吐出される現像液の吐出圧を損失させることができ、この結果、現像液のウェハWへの衝突が緩衝され、その衝撃による現像欠陥を低減できる。   In the above embodiment, the diameter of the discharge port 169 of the developer supply nozzle 143 is constant, but the diameter of the discharge port 220 gradually decreases from the mixing chamber 164 toward the lower surface of the main body 143 as shown in FIG. It may be made larger. In this case, the flow path flowing from the mixing chamber 164 to the discharge port 220 is once narrowed on the lower surface of the mixing chamber 164 and then gradually becomes wider toward the opening of the discharge port 220. By doing so, in the mixing chamber 164, a sufficient residence time of the developer can be ensured and mixing of the developer and pure water can be promoted. Further, the discharge pressure of the discharged developer can be lost in the discharge port 220. As a result, the collision of the developer with the wafer W is buffered, and the development defects due to the impact can be reduced.

以上の実施の形態で記載した現像液貯留室160と混合室164とを接続する第1の連通路165と、液体貯留室161と混合室164とを接続する第2の連通路166は、図13に示すように現像液と純水の流入方向が攪拌棒230の軸中心からずれており、なおかつ流入した現像液と純水が攪拌棒230の表面に衝突するように形成されていてもよい。この場合、攪拌棒230は、回転駆動部を持たず、自由に回転できる状態で混合室164内に配置されていてもよい。かかる場合、混合室164内に流入した現像液と純水が攪拌棒230を回転させるので、混合室164内の攪拌を十分に行うことができる。   The first communication path 165 that connects the developer storage chamber 160 and the mixing chamber 164 described in the above embodiment, and the second communication path 166 that connects the liquid storage chamber 161 and the mixing chamber 164 are illustrated in FIG. 13, the inflow direction of the developer and pure water may be offset from the axial center of the stirring rod 230, and the inflowing developer and pure water may collide with the surface of the stirring rod 230. . In this case, the stirring rod 230 may be disposed in the mixing chamber 164 in a state where the stirring rod 230 does not have a rotation driving unit and can freely rotate. In such a case, since the developer and pure water that have flowed into the mixing chamber 164 rotate the stirring rod 230, the mixing chamber 164 can be sufficiently stirred.

以上の実施の形態で記載した現像処理工程においては、現像液H1を供給してレジスト膜Rを現像した後、直ちに現像液H2を供給して反射防止膜Bを溶解させていたが、レジスト膜Rの現像が終了した後、一旦スピンチャック120によりウェハWを回転させ、現像液H1を振り切った後、現像液H2を供給するようにしてもよい。かかる場合、現像液H1によるレジスト膜Rの過度の現像を防止できる。   In the development process described in the above embodiment, the developing solution H1 is supplied to develop the resist film R, and then the developing solution H2 is supplied immediately to dissolve the antireflection film B. After the development of R is completed, the wafer W may be once rotated by the spin chuck 120, and after the developer H1 is shaken off, the developer H2 may be supplied. In such a case, excessive development of the resist film R by the developer H1 can be prevented.

上記実施の形態では、反射防止膜Bの溶解時に、ウェハW上に現像液H1よりも濃度の低い現像液H2を供給していたが、反射防止膜Bの溶解時に現像液H1よりも温度の低い現像液H2を供給するようにしてもよい。この場合、例えば液体供給源154に純水に代えて現像液を貯留し、現像液供給源151と液体供給源154の各現像液の温度を各温度調整部152、155により互いに異なる温度に設定する。そして、レジスト膜Rの現像時には、現像液供給源151と液体供給源154から現像液供給ノズル143に温度の異なる現像液が供給される。現像液供給ノズル143内の混合室164では、異なる温度の現像液が所定の比率で混合されて、所定温度の現像液H1を生成され、この現像液H1がウェハWに供給される。反射防止膜Bの溶解時には、現像液供給源151と液体供給源154から供給される各現像液の流量の比率が変更される。これにより、現像液供給ノズル143で混合される現像液の混合比率が変更されて、現像液H1よりも低い温度の現像液H2が生成され、この現像液H2がウェハW上に供給される。かかる場合においても、反射防止膜Bの溶解時にレジスト膜Rに対する溶解性の低い現像液H2がウェハW上に供給されるので、反射防止膜Bのみを適切に溶解させることができる。   In the above embodiment, when the antireflection film B is dissolved, the developer H2 having a lower concentration than the developer H1 is supplied onto the wafer W. However, when the antireflection film B is dissolved, the developer H2 has a temperature higher than that of the developer H1. You may make it supply the low developing solution H2. In this case, for example, a developer is stored in the liquid supply source 154 instead of pure water, and the temperatures of the developers in the developer supply source 151 and the liquid supply source 154 are set to different temperatures by the temperature adjustment units 152 and 155. To do. At the time of developing the resist film R, developers having different temperatures are supplied from the developer supply source 151 and the liquid supply source 154 to the developer supply nozzle 143. In the mixing chamber 164 in the developing solution supply nozzle 143, developing solutions having different temperatures are mixed at a predetermined ratio to generate a developing solution H1 having a predetermined temperature, and this developing solution H1 is supplied to the wafer W. When the antireflection film B is dissolved, the ratio of the flow rate of each developer supplied from the developer supply source 151 and the liquid supply source 154 is changed. Thereby, the mixing ratio of the developer mixed by the developer supply nozzle 143 is changed, the developer H2 having a temperature lower than that of the developer H1 is generated, and the developer H2 is supplied onto the wafer W. Even in this case, since the developing solution H2 having low solubility in the resist film R is supplied onto the wafer W when the antireflection film B is dissolved, only the antireflection film B can be appropriately dissolved.

なお、上記実施の形態では、反射防止膜Bの溶解時に供給される現像液H2は、レジスト膜Rの現像時に供給される現像液H1よりも濃度か温度のいずれかが低いものであったが、濃度と温度の両方とも低いものであってもよい。   In the above embodiment, the developer H2 supplied when the antireflection film B is dissolved has a lower concentration or temperature than the developer H1 supplied when the resist film R is developed. Both the concentration and the temperature may be low.

以上の実施の形態は、本発明の一例を示すものであり、本発明はこの例に限らず種々の態様を採りうるものである。例えば、上記実施の形態におけるレジスト膜Rの下地膜は反射防止膜Bであったが、例えば異種レジスト膜などの他の下地膜であってもよい。また、反射防止膜Bの溶解時にウェハW上に供給される液体は、現像液H2であったが、反射防止膜Bのみを溶解する他の処理液であってもよい。さらに、上記実施の形態では、基板としてウェハWが用いられていたが、本発明は、ウェハ以外の基板、例えばFPD(フラットパネルディスプレイ)基板、マスク基板、レクチル基板などの他の基板にも適用できる。   The above embodiment shows an example of the present invention, and the present invention is not limited to this example and can take various forms. For example, the base film of the resist film R in the above embodiment is the antireflection film B, but may be another base film such as a different resist film. Further, the liquid supplied onto the wafer W when the antireflection film B is dissolved is the developer H2, but other processing liquids that dissolve only the antireflection film B may be used. Further, in the above embodiment, the wafer W is used as the substrate. However, the present invention is also applicable to other substrates such as an FPD (flat panel display) substrate, a mask substrate, and a reticle substrate. it can.

本発明は、基板の処理のフォトリソグラフィー工程において、レジスト膜の下地膜を除去する際に有用である。   The present invention is useful for removing a base film of a resist film in a photolithography process for processing a substrate.

本実施の形態における塗布現像処理システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating and developing treatment system in this Embodiment. 図1の塗布現像処理システムの正面図である。FIG. 2 is a front view of the coating and developing treatment system of FIG. 1. 図1の塗布現像処理システムの背面図である。FIG. 2 is a rear view of the coating and developing treatment system of FIG. 1. 現像処理装置の構成の概略を示す縦断面の説明図である。It is explanatory drawing of the longitudinal cross-section which shows the outline of a structure of a development processing apparatus. 現像処理装置の構成の概略を示す横断面の説明図である。It is explanatory drawing of the cross section which shows the outline of a structure of a development processing apparatus. 現像液供給ノズルのX方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the X direction of the developing solution supply nozzle. 現像液供給ノズルのY方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the Y direction of the developing solution supply nozzle. ウェハの処理工程に沿ったウェハの状態の変化を示すための説明図である。It is explanatory drawing for showing the change of the state of a wafer along the processing process of a wafer. ウェハの処理工程に沿ったウェハの状態の変化を示すための説明図である。It is explanatory drawing for showing the change of the state of a wafer along the processing process of a wafer. 溝を形成した攪拌棒の斜視図である。It is a perspective view of the stirring rod which formed the groove | channel. 多孔質の攪拌棒を備えた現像液供給ノズルのX方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the X direction of the developing solution supply nozzle provided with the porous stirring rod. 徐々に広くなる吐出口を備えた現像液供給ノズルのX方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the X direction of the developing solution supply nozzle provided with the discharge port which becomes gradually wide. 第1及び第2の連通路の方向を変更した現像液供給ノズルのX方向から見た縦断面図である。FIG. 5 is a longitudinal sectional view of a developer supply nozzle viewed from the X direction in which the directions of first and second communication paths are changed. 従来の方法で反射防止膜をエッチングしたときのレジスト膜の状態を示す説明図である。It is explanatory drawing which shows the state of a resist film when an antireflection film is etched by the conventional method.

符号の説明Explanation of symbols

1 塗布現像処理システム
30 現像処理装置
143 現像液供給ノズル
160 現像液貯留室
161 液体貯留室
164 混合室
167 攪拌棒
R レジスト膜
B 反射防止膜
H1、H2 現像液
W ウェハ
DESCRIPTION OF SYMBOLS 1 Coating | development processing system 30 Development processing apparatus 143 Developer supply nozzle 160 Developer storage chamber 161 Liquid storage chamber 164 Mixing chamber 167 Stirring rod R Resist film B Antireflection film H1, H2 Developer W Wafer

Claims (9)

レジスト膜の下層に所定の下地膜が形成されている基板の現像処理において、
基板上に現像液を供給して基板上のレジスト膜を現像する工程と、
その後、基板上に所定の処理液を供給して、前記レジスト膜の現像によって露出した部分の下地膜を溶解する工程と、を有し、
前記基板上への所定の処理液の供給は、基板の特定方向の寸法より長い領域に渡って形成された吐出口を有するノズルを用いて、前記ノズルから前記所定の処理液を吐出しながら、前記ノズルを基板上で移動させることによって行われることを特徴とする、基板の現像処理方法。
In development processing of a substrate in which a predetermined base film is formed under the resist film,
Supplying a developer on the substrate and developing the resist film on the substrate;
Thereafter, supplying a predetermined processing solution onto the substrate, and dissolving the underlying film exposed by the development of the resist film,
The supply of the predetermined processing liquid onto the substrate is performed by discharging the predetermined processing liquid from the nozzle using a nozzle having a discharge port formed over a region longer than the dimension in a specific direction of the substrate. A method for developing a substrate, which is performed by moving the nozzle on the substrate.
前記現像液による前記レジスト膜の現像が進行して当該レジスト膜の溶解が前記下地膜の表面まで到達したときに、前記基板上に所定の処理液が供給されて前記下地膜の溶解が開始されることを特徴とする、請求項1に記載の基板の現像処理方法。 When the development of the resist film by the developer progresses and the dissolution of the resist film reaches the surface of the base film, a predetermined processing liquid is supplied onto the substrate to start the dissolution of the base film. The method for developing a substrate according to claim 1, wherein: 前記基板上のレジスト膜を現像した後、当該基板上の現像液を除去し、その後、前記所定の処理液を基板上に供給することを特徴とする、請求項1又は2に記載の基板の現像処理方法。 3. The substrate according to claim 1, wherein after developing the resist film on the substrate, the developer on the substrate is removed, and then the predetermined processing solution is supplied onto the substrate. Development processing method. 前記所定の処理液の供給と前記レジスト膜の現像時の現像液の供給は、同じノズルを用いて行われることを特徴とする、請求項1、2又は3のいずれかに記載の基板の現像処理方法。 4. The substrate development according to claim 1, wherein the supply of the predetermined processing solution and the supply of the developing solution at the time of developing the resist film are performed using the same nozzle. Processing method. 前記下地膜には、前記現像液に対し溶解性を有するものが用いられ、
前記所定の処理液は、前記現像液よりも前記レジスト膜に対する溶解性の低い現像液であることを特徴とする、請求項1、2、3又は4のいずれかに記載の基板の現像処理方法。
For the base film, those having solubility in the developer are used,
5. The method for developing a substrate according to claim 1, wherein the predetermined processing solution is a developing solution having a lower solubility in the resist film than the developing solution. .
前記レジスト膜の現像に用いられた前記現像液は、当該現像液の原液と純水を混合したものであり、
前記所定の処理液は、少なくとも前記現像液よりも温度を低くした、又は前記原液と純水を混合して前記現像液よりも濃度を低くした現像液であることを特徴とする、請求項5に記載の基板の現像処理方法。
The developer used for developing the resist film is a mixture of a stock solution of the developer and pure water,
6. The predetermined processing solution is a developer whose temperature is at least lower than that of the developer or whose concentration is lower than that of the developer by mixing the stock solution and pure water. The substrate development method described in 1.
前記下地膜は、露光処理時の光の反射を防止する反射防止膜であることを特徴とする、請求項1、2、3、4、5又は6のいずれかに記載の基板の現像処理方法。 7. The method for developing a substrate according to claim 1, wherein the base film is an antireflection film for preventing reflection of light during exposure processing. . レジスト膜の下層に所定の下地膜が形成されている基板を現像処理する現像処理装置であって、
基板上に現像液を供給して基板上のレジスト膜を現像した後、前記レジスト膜の現像によって露出した部分の下地膜を溶解させるための所定の処理液を供給するノズルと、
前記ノズルから前記所定の処理液を吐出しながら、前記ノズルを基板上で移動させる駆動機構と、を備え、
前記ノズルは、基板の特定方向の寸法より長い領域に渡って形成された吐出孔を有することを特徴とする、現像処理装置。
A development processing apparatus for developing a substrate on which a predetermined base film is formed under a resist film,
A nozzle for supplying a predetermined processing solution for dissolving a portion of the underlying film exposed by developing the resist film after supplying a developing solution onto the substrate and developing the resist film on the substrate;
A drive mechanism for moving the nozzle on the substrate while discharging the predetermined processing liquid from the nozzle,
The development processing apparatus, wherein the nozzle has a discharge hole formed over a region longer than a dimension in a specific direction of the substrate.
前記ノズルは、前記レジスト膜の現像時の現像液も供給することを特徴とする、請求項8に記載の現像処理装置。 The development processing apparatus according to claim 8, wherein the nozzle also supplies a developing solution for developing the resist film.
JP2008215009A 2008-08-25 2008-08-25 Development processing method and equipment of substrate Pending JP2008294476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215009A JP2008294476A (en) 2008-08-25 2008-08-25 Development processing method and equipment of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215009A JP2008294476A (en) 2008-08-25 2008-08-25 Development processing method and equipment of substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003421329A Division JP4199102B2 (en) 2003-12-18 2003-12-18 Substrate processing method, substrate processing system, and developer supply nozzle

Publications (1)

Publication Number Publication Date
JP2008294476A true JP2008294476A (en) 2008-12-04

Family

ID=40168806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215009A Pending JP2008294476A (en) 2008-08-25 2008-08-25 Development processing method and equipment of substrate

Country Status (1)

Country Link
JP (1) JP2008294476A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276724A (en) * 1985-09-30 1987-04-08 Matsushita Electronics Corp Heat treating method for organic thin film
JPH0990615A (en) * 1995-09-27 1997-04-04 Shin Etsu Chem Co Ltd Reflection preventive film material and pattern forming method
JPH09258453A (en) * 1996-03-26 1997-10-03 Mitsubishi Chem Corp Antireflection composition and resist pattern forming method
JPH09306809A (en) * 1996-05-14 1997-11-28 Fujitsu Ltd Formation of resist pattern and developing apparatus
JP2001228634A (en) * 2000-02-18 2001-08-24 Sumitomo Metal Ind Ltd Resist pattern forming method, etching method, method for producing microstructure, microstructure and liquid crystal display
JP2002367877A (en) * 2001-06-04 2002-12-20 Murata Mfg Co Ltd Method for forming resist pattern, method for forming wiring, and electronic component
JP2003332228A (en) * 2002-03-07 2003-11-21 Tokyo Electron Ltd Method of processing development

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276724A (en) * 1985-09-30 1987-04-08 Matsushita Electronics Corp Heat treating method for organic thin film
JPH0990615A (en) * 1995-09-27 1997-04-04 Shin Etsu Chem Co Ltd Reflection preventive film material and pattern forming method
JPH09258453A (en) * 1996-03-26 1997-10-03 Mitsubishi Chem Corp Antireflection composition and resist pattern forming method
JPH09306809A (en) * 1996-05-14 1997-11-28 Fujitsu Ltd Formation of resist pattern and developing apparatus
JP2001228634A (en) * 2000-02-18 2001-08-24 Sumitomo Metal Ind Ltd Resist pattern forming method, etching method, method for producing microstructure, microstructure and liquid crystal display
JP2002367877A (en) * 2001-06-04 2002-12-20 Murata Mfg Co Ltd Method for forming resist pattern, method for forming wiring, and electronic component
JP2003332228A (en) * 2002-03-07 2003-11-21 Tokyo Electron Ltd Method of processing development

Similar Documents

Publication Publication Date Title
JP4369325B2 (en) Development device and development processing method
JP4464763B2 (en) Developing apparatus and developing method
US8393808B2 (en) Developing method
JP4514224B2 (en) Rinse processing method, development processing method, and development apparatus
KR100959740B1 (en) Substrate processing device
US8415092B2 (en) Substrate developing method, substrate processing method and developing solution supply nozzle
JP4185710B2 (en) Substrate processing apparatus and substrate processing method
JPH11260707A (en) Method and apparatus for development
TWI799290B (en) Substrate processing apparatus and substrate processing method
JP5107329B2 (en) Development processing method
JP4312997B2 (en) Substrate processing apparatus, substrate processing method, and nozzle
JP4343022B2 (en) Substrate processing method and substrate processing apparatus
JP5314723B2 (en) Development device
JP3859549B2 (en) Development processing method and development processing apparatus
JP2008294476A (en) Development processing method and equipment of substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A02