JP2008293894A - Manufacturing method of complex conductor, strand conductor, and cable using the same - Google Patents
Manufacturing method of complex conductor, strand conductor, and cable using the same Download PDFInfo
- Publication number
- JP2008293894A JP2008293894A JP2007140424A JP2007140424A JP2008293894A JP 2008293894 A JP2008293894 A JP 2008293894A JP 2007140424 A JP2007140424 A JP 2007140424A JP 2007140424 A JP2007140424 A JP 2007140424A JP 2008293894 A JP2008293894 A JP 2008293894A
- Authority
- JP
- Japan
- Prior art keywords
- core material
- layer
- phase
- outer periphery
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Metal Extraction Processes (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Electroplating Methods And Accessories (AREA)
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
- Communication Cables (AREA)
Abstract
Description
本発明は、複合導体の製造方法及び撚り線導体並びにこれを用いたケーブルに関するものである。 The present invention relates to a method for producing a composite conductor, a stranded conductor, and a cable using the same.
従来、ロボットケーブルに用いられる同軸ケーブルや、医療用プローブケーブル等に使用される極細ケーブルには、導体であるCuまたはCu合金線にめっきを施して心線としたものが用いられてきた。 Conventionally, as a coaxial cable used for a robot cable, an extra fine cable used for a medical probe cable, etc., a conductor made by plating a Cu or Cu alloy wire as a core wire has been used.
近年、これらのケーブルやプローブケーブルに対する多心化、細径化、高導電性化のニーズが高まっている。それらのケーブルに用いられる同軸ケーブルも、より細径で導電性が高く、且つ十分な強度を有するものが求められるようになってきている。この同軸ケーブルに用いる導体には、高い導電性と高い屈曲特性(耐屈曲性)との両方が必要である。 In recent years, there is an increasing need for multi-core, thin diameter, and high conductivity for these cables and probe cables. Coaxial cables used for these cables are also required to have a smaller diameter, higher conductivity, and sufficient strength. The conductor used for the coaxial cable needs to have both high conductivity and high bending characteristics (bending resistance).
しかし、上述したCuまたはCu合金線は、導電性は高いものの耐屈曲性が高くない。
そこで、従来のCuまたはCu合金線を用いた導体に代わって高導電性、高耐屈曲性を持つ導体が望まれている。
However, although the above-described Cu or Cu alloy wire has high conductivity, it does not have high bending resistance.
Therefore, a conductor having high conductivity and high bending resistance is desired in place of the conventional conductor using Cu or Cu alloy wire.
従来からあるそのような高強度、高導電性の導体(材料)として、心材であるCuマトリックス全体中にAg、Nb、Cr、Fe等の金属が繊維状に分散したCu−金属繊維導体(in site合金導体と呼ばれる)が挙げられる。特にCu−Ag合金を用いた導体は、導電性と強度とが高いレベルで両立が可能であることが知られている。 As such a conventional high-strength, high-conductivity conductor (material), a Cu-metal fiber conductor (in) in which metals such as Ag, Nb, Cr, and Fe are dispersed in a fiber form in the entire Cu matrix as a core material. called a site alloy conductor). In particular, it is known that a conductor using a Cu-Ag alloy can be compatible at a high level of conductivity and strength.
また、そのような導体を心材とした高強度、高屈曲性を持つ複合導体として、Cu−Nb系合金、Cu−Fe系合金、Cu−Ag系合金からなる心材の外周にCu及び不可避不純物からなる金属層を被覆したもの(特許文献1参照)や、母相(Cu)−金属繊維導体からなる心材の外周にAu、Ag、Sn、Ni、はんだ等の耐食層を形成したもの(特許文献2参照)がある。 Further, as a composite conductor having high strength and high flexibility with such a conductor as a core material, Cu and inevitable impurities are formed on the outer periphery of the core material made of a Cu-Nb alloy, a Cu-Fe alloy, and a Cu-Ag alloy. A metal layer coated (see Patent Document 1), or a corrosion resistant layer made of Au, Ag, Sn, Ni, solder or the like formed on the outer periphery of a core material made of a parent phase (Cu) -metal fiber conductor (Patent Document) 2).
しかしながら、これらのCu−金属繊維導体や特許文献1、2記載の複合導体は、何れも耐屈曲性は高いが、純銅の代替となり得るほどの導電率を得るのは難しい。 However, these Cu-metal fiber conductors and the composite conductors described in Patent Documents 1 and 2 all have high bending resistance, but it is difficult to obtain conductivity sufficient to replace pure copper.
これに対して、純銅及び銅合金からなる心材の外周に、AgまたはAg合金からなる被覆層を形成し、その被覆心材に熱処理を施した後、伸線加工を施し、被覆心材の外層部に金属繊維が分散した繊維分散層を形成することを特徴とする複合導体の製造方法がある
(特許文献3参照)。
On the other hand, a coating layer made of Ag or an Ag alloy is formed on the outer periphery of a core material made of pure copper and a copper alloy, heat treatment is applied to the coated core material, wire drawing is performed, and an outer layer portion of the coated core material is applied There is a method for producing a composite conductor characterized by forming a fiber dispersion layer in which metal fibers are dispersed (see Patent Document 3).
これは、熱処理によって被覆層のAgと心材のCuが相互拡散により、Ag相とCu相の2相組織が被覆心材の外層部に形成されることを狙っている。 This is intended to form a two-phase structure of Ag phase and Cu phase in the outer layer portion of the coated core material by mutual diffusion of Ag of the coated layer and Cu of the core material by heat treatment.
しかしながら、特許文献3の複合導体の製造方法において、600℃、60secの走行式熱処理では、被覆層のAgと心材のCuの相互拡散が不十分であり、2相組織は形成されず、また、1500℃、60secの走行式熱処理では、被覆層のAgと心材のCuの相互拡散により被覆層が剥れてしまう懸念がある。
However, in the composite conductor manufacturing method of
そこで、本発明の目的は、上記課題を解決し、純銅と略同等の導電率を有し、純銅よりも優れた耐屈曲性を有する複合導体の製造方法及び撚り線導体並びにこれを用いたケーブルを提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems, a method of manufacturing a composite conductor having a conductivity substantially equal to that of pure copper and having a bending resistance superior to that of pure copper, a stranded wire conductor, and a cable using the same Is to provide.
上記目的を達成するために本発明は、純銅または銅合金からなる心材の外周に、AgまたはAg合金からなる被覆層を形成して被覆心材を形成し、その被覆心材に所定の条件でバッチ式熱処理を施して上記被覆層をCu相からなる連続相とAg相からなる分散相から構成される分散組織とした後、その熱処理が施された被覆心材に伸線加工を施して上記被覆心材の外層部に母相中に金属繊維が分散した繊維分散層を形成することを特徴とする複合導体の製造方法を提供するものである。 In order to achieve the above object, the present invention forms a coated core material by forming a coating layer made of Ag or an Ag alloy on the outer periphery of a core material made of pure copper or a copper alloy, and batch-types the coated core material under predetermined conditions. After the heat treatment is performed to make the coating layer into a dispersed structure composed of a continuous phase composed of a Cu phase and a dispersed phase composed of an Ag phase, the coated core material subjected to the heat treatment is subjected to wire drawing to form the coated core material. The present invention provides a method for producing a composite conductor, wherein a fiber dispersion layer in which metal fibers are dispersed in a matrix phase is formed in an outer layer portion.
本発明は、純銅または銅合金からなる心材の外周に、AgまたはAg合金からなる被覆層を形成して被覆心材を形成し、その被覆心材に600℃以上700℃未満の温度で30min〜5hrのバッチ式熱処理を施して上記被覆層をCu相からなる連続相とAg相からなる分散相から構成される分散組織とした後、その熱処理が施された被覆心材に伸線加工を施して、上記被覆心材の外層部に母相中に金属繊維が分散した繊維分散層を形成することを特徴とする複合導体の製造方法を提供するものである。 The present invention forms a coated core material by forming a coating layer made of Ag or an Ag alloy on the outer periphery of a core material made of pure copper or a copper alloy, and the coated core material has a temperature of 600 ° C. or more and less than 700 ° C. for 30 minutes to 5 hours. After performing batch-type heat treatment to make the coating layer a dispersed structure composed of a continuous phase composed of a Cu phase and a dispersed phase composed of an Ag phase, the coated core material subjected to the heat treatment is subjected to wire drawing, The present invention provides a method for producing a composite conductor, wherein a fiber dispersion layer in which metal fibers are dispersed in a matrix phase is formed on an outer layer portion of a coated core material.
また、本発明は、純銅または銅合金からなる心材の外周に、AgまたはAg合金からなる被覆層を形成して被覆心材を形成し、その被覆心材に700℃以上800℃未満の温度で5min〜1hrのバッチ式熱処理を施して上記被覆層をCu相からなる連続相とAg相からなる分散相から構成される分散組織とした後、その熱処理が施された被覆心材に伸線加工を施して、被覆心材の外層部に母相中に金属繊維が分散した繊維分散層を形成することを特徴とする複合導体の製造方法を提供するものである。 In the present invention, a coated layer made of Ag or an Ag alloy is formed on the outer periphery of a core made of pure copper or a copper alloy to form a coated core, and the coated core is formed at a temperature of 700 ° C. or higher and lower than 800 ° C. for 5 minutes to After applying a 1 hr batch-type heat treatment to make the coating layer into a dispersed structure composed of a continuous phase composed of a Cu phase and a dispersed phase composed of an Ag phase, the coated core material subjected to the heat treatment is subjected to wire drawing. The present invention also provides a method for producing a composite conductor, wherein a fiber dispersion layer in which metal fibers are dispersed in a matrix phase is formed on an outer layer portion of a coated core material.
本発明は、上記銅合金が、1.0mass%以下の微量添加物を含有し、その残りがCuである請求項1から3いずれかに記載の複合導体の製造方法を提供するものである。 This invention provides the manufacturing method of the composite conductor in any one of Claim 1 to 3 whose said copper alloy contains a trace amount additive of 1.0 mass% or less, and the remainder is Cu.
本発明は、上記銅合金が、上記微量添加物として、Ag、Sn、In、Nb、Cr、Fe、PまたはBから選択される1種或いは2種以上を、総計1.0mass%以下の濃度で含有し、その残りがCuである請求項4記載の複合導体の製造方法を提供するものである。
In the present invention, the copper alloy contains one or more selected from Ag, Sn, In, Nb, Cr, Fe, P or B as the trace additive, and has a total concentration of 1.0 mass% or less. The composite conductor manufacturing method according to
本発明は、上記AgまたはAg合金からなる被覆層を、めっきにより形成する請求項1から5いずれかに記載の複合導体の製造方法を提供するものである。 This invention provides the manufacturing method of the composite conductor in any one of Claim 1 to 5 which forms the coating layer which consists of said Ag or Ag alloy by plating.
本発明は、請求項1から請求項6のいずれかに記載の製造方法により得られた複合導体の外周にSn、Ag、Niのいずれかからなるめっき層を形成し、このめっき層が形成された複合導体を複数本撚り合わせたことを特徴とする撚り線導体を提供するものである。 In the present invention, a plating layer made of Sn, Ag, or Ni is formed on the outer periphery of the composite conductor obtained by the manufacturing method according to any one of claims 1 to 6, and the plating layer is formed. The present invention provides a stranded wire conductor characterized in that a plurality of composite conductors are twisted together.
本発明は、請求項7記載の撚り線導体を心線とし、その心線の周りに外部導体を配置し、該外部導体を覆うジャケット層を設けたことを特徴とするケーブルを提供するものである。 The present invention provides a cable characterized in that the stranded wire conductor according to claim 7 is a core wire, an outer conductor is disposed around the core wire, and a jacket layer is provided to cover the outer conductor. is there.
本発明は、請求項1から請求項6のいずれかに記載の製造方法により得られた複合導体の外周に樹脂層を形成して心線とし、その心線の周りに外部導体を配置し、該外部導体を覆うジャケット層を設けたことを特徴とするケーブルを提供するものである。 In the present invention, a resin layer is formed on the outer periphery of the composite conductor obtained by the manufacturing method according to any one of claims 1 to 6 to form a core wire, and an outer conductor is disposed around the core wire. The present invention provides a cable characterized in that a jacket layer covering the outer conductor is provided.
本発明によれば、純銅と略同等の導電率を有し、純銅よりも優れた耐屈曲性を有する複合導体が製造可能となるという優れた効果を発揮するものである。 According to the present invention, it is possible to produce an excellent effect that it is possible to produce a composite conductor having a conductivity substantially equal to that of pure copper and having bending resistance superior to that of pure copper.
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
本発明の要旨は、純銅及び銅合金からなる心材の外周に、AgまたはAg合金からなる被覆層を形成した被覆心材において、バッチ式熱処理により、被覆層のAgと心材のCuとを相互拡散させ、かつ繊維分散層の元となる2相組織を作り出すことにある。 The gist of the present invention is that, in a coated core material in which a coating layer made of Ag or an Ag alloy is formed on the outer periphery of a core material made of pure copper and a copper alloy, Ag of the coating layer and Cu of the core material are mutually diffused by batch-type heat treatment. And creating a two-phase structure that is the basis of the fiber dispersion layer.
ここで、熱処理による相互拡散で形成される2相組織には、熱処理条件により、図4に示すAg相とCu相が層状に形成される層状組織と、図5に示すAg相とCu相が細かく分離して形成される2相分離組織(2相分散組織)とがある。 Here, the two-phase structure formed by interdiffusion by heat treatment includes a layered structure in which the Ag phase and the Cu phase shown in FIG. 4 are formed in layers, and the Ag phase and the Cu phase shown in FIG. There is a two-phase separated structure (two-phase dispersed structure) formed by fine separation.
図4および図5は、バッチ式熱処理により形成された2相組織のSEM像(倍率5000倍)であり、図4の熱処理条件は500℃の温度で1h、図5の熱処理条件は600℃の温度で5hrである。 4 and 5 are SEM images (5000 magnifications) of the two-phase structure formed by batch heat treatment. The heat treatment conditions in FIG. 4 are 1 hour at a temperature of 500 ° C., and the heat treatment conditions in FIG. The temperature is 5 hr.
本願発明者等は、上記の繊維分散層の元となる得る2相組織が、図5に示す後者の2相分離組織であることを見出し、その2相分離組織を形成するためには、被覆心材に所定の条件でバッチ式熱処理を施す必要があることを見出した。 The inventors of the present application have found that the two-phase structure that can be the basis of the fiber dispersion layer is the latter two-phase separated structure shown in FIG. 5, and in order to form the two-phase separated structure, It has been found that the core material needs to be subjected to batch heat treatment under predetermined conditions.
2相分離組織は、特にこれに限定されるわけではないが、例えば、2相分離組織におけるCu相とAg相の比率は、Cu相の体積率が73%〜77%、Agの体積率が23%〜27%である。 The two-phase separated structure is not particularly limited to this. For example, the ratio of the Cu phase and the Ag phase in the two-phase separated structure is such that the volume ratio of the Cu phase is 73% to 77% and the volume ratio of Ag is 23% to 27%.
本実施形態の複合導体の製造方法を説明する。 The manufacturing method of the composite conductor of this embodiment is demonstrated.
まず、心材として、純銅(または銅合金)からなる線材を形成する。 First, a wire made of pure copper (or a copper alloy) is formed as a core material.
ここで、銅合金としては、1.0mass%以下の微量添加物を含有し、その残りがCuであるものが考えられる。また、微量添加物としては、Ag、Sn、In、Nb、Cr、Fe、PまたはBから選択される1種或いは2種以上が考えられる。 Here, as a copper alloy, what contains 1.0 mass% or less of trace additives and the remainder is Cu can be considered. Moreover, as a trace additive, 1 type, or 2 or more types selected from Ag, Sn, In, Nb, Cr, Fe, P, or B can be considered.
次に、その心材(線材)の外周に、Ag(またはAg合金)からなる被覆層を、最終的に形成する繊維分散層よりも厚い層厚で形成する。被覆層の形成方法としては、電気めっき法、溶解めっき法などが挙げられる。 Next, a coating layer made of Ag (or an Ag alloy) is formed on the outer periphery of the core material (wire material) with a thickness thicker than the fiber dispersion layer to be finally formed. Examples of the method for forming the coating layer include an electroplating method and a solution plating method.
次に、その被覆された心材(以下、被覆心材)に熱処理を施す。熱処理としては、600℃以上700℃未満の温度で30min〜5hrのバッチ式熱処理、或いは700℃以上800℃未満の温度で5min〜1hrのバッチ式熱処理が挙げられる。 Next, the coated core material (hereinafter referred to as the coated core material) is subjected to heat treatment. Examples of the heat treatment include batch-type heat treatment for 30 min to 5 hr at a temperature of 600 ° C. to less than 700 ° C., and batch-type heat treatment for 5 min to 1 hr at a temperature of 700 ° C. to less than 800 ° C.
ここで、バッチ式熱処理の処理条件を、600℃以上700℃未満の温度で30min〜5hr或いは700℃以上800℃未満の温度で5min〜1hrとしたのは、この処理条件から外れると、入熱量が不足して相互拡散が不十分となるか、もしくは相互拡散したとしても、図4に示すAg相とCu相が層状に形成される層状組織が形成されてしまうためである。 Here, the processing conditions of the batch type heat treatment were set to 30 min to 5 hr at a temperature of 600 ° C. or more and less than 700 ° C. or 5 min to 1 hr at a temperature of 700 ° C. or more to less than 800 ° C. This is because even if the diffusion is insufficient and mutual diffusion becomes insufficient, or even if mutual diffusion occurs, a layered structure in which the Ag phase and the Cu phase shown in FIG. 4 are formed in layers is formed.
この熱処理により、被覆層Agと心材Cuが相互に拡散する。被覆層と心材との境界面付近では、Ag原子と比べてCu原子の方が圧倒的に多いため、Cu相中にAg原子が拡散するようになる。その後、過飽和固溶体となったCu相からAg相が析出される。一方、表面付近では、Cu原子と比べてAg原子の方が多いため、Ag相中にCu原子が拡散し、過飽和固溶体となったAg相からCu相が析出される。以上により、繊維分散層の元となるAg相とCu相が細かく分離した2相組織が被覆心材の外層部に形成される。 By this heat treatment, the coating layer Ag and the core material Cu diffuse to each other. In the vicinity of the boundary surface between the coating layer and the core material, the number of Cu atoms is overwhelmingly larger than that of Ag atoms, so that Ag atoms diffuse into the Cu phase. Thereafter, an Ag phase is precipitated from the Cu phase that has become a supersaturated solid solution. On the other hand, since there are more Ag atoms near the surface than Cu atoms, Cu atoms diffuse into the Ag phase, and the Cu phase is precipitated from the Ag phase that has become a supersaturated solid solution. As described above, a two-phase structure in which the Ag phase and the Cu phase that are the basis of the fiber dispersion layer are finely separated is formed in the outer layer portion of the coated core material.
次に、熱処理後の被覆心材に伸線加工を施す。この伸線加工により、Cu相中に析出したAgが、被覆心材の長手方向に繊維状に延伸され、Cu母相(マトリックス)中に金属繊維(強化材)として分散される。 Next, the coated core material after the heat treatment is drawn. By this wire drawing, Ag precipitated in the Cu phase is stretched in the form of fibers in the longitudinal direction of the coated core material and dispersed as metal fibers (reinforcing material) in the Cu matrix (matrix).
以上により、被覆心材の外層部に、Cu母相中にAg繊維が分散した繊維分散層が形成された複合導体を得ることができる。 By the above, the composite conductor by which the fiber dispersion layer in which Ag fiber was disperse | distributed in Cu mother phase was formed in the outer layer part of a covering core material can be obtained.
次に、図1に基づき本実施形態の製造方法により得られた複合導体を説明する。 Next, the composite conductor obtained by the manufacturing method of this embodiment will be described based on FIG.
図1に本実施形態の複合導体の横断面図を示す。 FIG. 1 shows a cross-sectional view of the composite conductor of this embodiment.
図1に示すように、本発明の製造方法により得られた複合導体1は、純銅(或いは銅合金)からなる心材2の外周に、母相中に金属繊維が分散した繊維分散層3を形成したものである。
As shown in FIG. 1, the composite conductor 1 obtained by the manufacturing method of the present invention forms a
本発明の製造方法により得られた複合導体1の好ましい線径は、0.2mm以下である。本発明の製造方法により得られた複合導体1の繊維分散層3の層厚は、複合導体の直径の0.3%以上、好ましくは、0.5%〜8%、より好ましくは1%〜5%の層厚を有する。
The preferable wire diameter of the composite conductor 1 obtained by the manufacturing method of the present invention is 0.2 mm or less. The layer thickness of the
また、被覆心材の好ましい線径は、3.0mm以下である。被覆層の層厚は、被覆心材の直径の0.3%以上、好ましくは、0.5%〜8%、より好ましくは1%〜5%の層厚を有する。 Moreover, the preferable wire diameter of a covering core material is 3.0 mm or less. The layer thickness of the covering layer is 0.3% or more of the diameter of the covering core material, preferably 0.5% to 8%, more preferably 1% to 5%.
本実施形態の複合導体1の作用を説明する。 The effect | action of the composite conductor 1 of this embodiment is demonstrated.
複合導体1が屈曲された場合、屈曲による歪みは径方向外側ほど大きく、複合導体1の外層部には、中心部に比べ大きな負荷がかかる。本実施形態では、その大きな負荷が屈曲特性は高いものの導電率に劣る繊維分散層3にかかり、導電率は高いものの屈曲特性に劣る心材2にはほとんど負荷がかからない。
When the composite conductor 1 is bent, the distortion caused by the bending is larger toward the outer side in the radial direction, and a larger load is applied to the outer layer portion of the composite conductor 1 as compared to the center portion. In this embodiment, the large load is applied to the
また、繊維分散層3は層厚が薄く、複合導体1の断面積中に占める繊維分散層3の割合は心材2に比べるとごく僅かである。そのため、繊維分散層3による複合導体1の導電性の低下はほとんどない。
Further, the
このように、本発明により得られた複合導体1は、心材2の外層部に繊維分散層3を形成することで、高い屈曲性と高い導電率とを得ることができる。
Thus, the composite conductor 1 obtained by the present invention can obtain high flexibility and high electrical conductivity by forming the
つまり、本発明により得られた複合導体1は、外層部の強度を繊維分散層3により高めることで、純銅と略同等の導電率を保ちつつ、純銅(心材)のみで導体を構成する場合に比べ大幅に高い耐屈曲性を実現することができる。
In other words, the composite conductor 1 obtained by the present invention has a structure in which the strength of the outer layer portion is increased by the
次に、図2に基づき、心線の周りに外部導体が配置されたケーブルにおいて、心線が本実施形態の複合導体からなるケーブルを説明する。 Next, a cable in which the outer conductor is arranged around the core wire and the core wire is composed of the composite conductor of the present embodiment will be described with reference to FIG.
図2に示すように、ケーブル21は、図1に示した複合導体1で形成された心線(以下、図2において符号1を付す)と、その心線1の周りに配置された外部導体23とを備える。さらに、ケーブル21は、心線1の外周に形成された樹脂層24と、外部導体23の外周に形成されたジャケット層25とを備える。
As shown in FIG. 2, the
外部導体23は、心線1を中心としてより合わされた複数本(図2中では15本)の線材23aからなる。その線材23aの構成材としては、Cu合金(例えばCu−0.15mass%Sn合金)などが挙げられ、図1に示す複合導体1を用いることも考えられる。
The
本実施形態のケーブル21は、心線を図1に示した複合導体1で形成しているため、細径でありながら高い導電率と高い耐屈曲性とを得ることができる。外部導体に本発明を適用した場合においても上記と同等の効果を得ることができる。
Since the
次に、図3に基づき本実施形態の複合導体を用いた撚り線導体及びその撚り線導体を用いたケーブルを説明する。 Next, a stranded wire conductor using the composite conductor of the present embodiment and a cable using the stranded wire conductor will be described with reference to FIG.
図3のケーブルは、図2のケーブル21とは心線の構成が異なり、その他は実質的に同じである。そこで、図2のケーブル21と同一の要素については、図中同一符号を付すに止め、詳細な説明は省略する。
The cable of FIG. 3 is different from the
上述の図2では、単線からなる心線を用いた例を掲げて説明したが、図3に示すように、ケーブル31の耐屈曲特性向上の観点から、心線32としては、複合導体1の外周にSn、Ag、Niのいずれかからなるめっき層36を形成し、このめっき層36が形成された複合導体1を複数本(例えば7本)撚り合わせた撚り線構造(撚り線導体)を採用することも可能である(図3(b))。
In FIG. 2 described above, an example using a single core wire has been described. However, as shown in FIG. 3, from the viewpoint of improving the bending resistance of the
図3(a)に示すように、ケーブル31は、撚り線導体を心線32とし、その心線32の周りに外部導体23を配置して形成される。
As shown in FIG. 3A, the
この図3のケーブル31によれば、図2のケーブル21と同様に高い導電率を得ることができ、さらに、図2のケーブル21よりも高い耐屈曲特性を得ることができる。
According to the
以上のように、本発明の複合導体1は、パソコン用内部配線、携帯電話用内部配線、医療用信号線、又は移動体通信などの伝送分野における信号送受信システム内の信号送受信用線等の導体として適用することができる。 As described above, the composite conductor 1 of the present invention is a conductor such as a signal transmission / reception line in a signal transmission / reception system in a transmission field such as an internal wiring for a personal computer, an internal wiring for a mobile phone, a medical signal line, or mobile communication. Can be applied as
また、本発明の複合導体1を用いたケーブル21、31は、超音波診断用プローブケーブル等の高精度画像を得るための多心ケーブル等に適用することができる。
Further, the
なお、本発明は、上述の実施形態に限定されず、様々な変形例や応用例が考えられるものである。 In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.
上述の複合導体を得るために、以下のように実施例、比較例、従来例を用いて必要な熱処理条件を究明した。 In order to obtain the above-mentioned composite conductor, necessary heat treatment conditions were investigated using Examples, Comparative Examples, and Conventional Examples as follows.
なお、従来例の熱処理は走行式熱処理とし、本発明及び比較例の熱処理はバッチ式熱処理とした。また、実施例、比較例の熱処理は、500℃〜800℃の温度範囲で、5min〜24hrの時間範囲の条件で実施した。
(実施例1)
心材としてOFC(無酸素銅)からなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で30minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例2)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で1hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例3)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で2hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例4)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で5hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例5)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に650℃で15minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例6)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に650℃で45minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例7)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に650℃で90minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例8)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に650℃で3hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例9)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で10minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例10)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で30minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例11)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で1hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例12)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に750℃で5minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例13)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に750℃で15minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(実施例14)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に750℃で45minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(比較例1)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で10minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例2)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で30minの条件でバッチ式熱処理を施した後、冷問伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例3)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で1hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例4)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で2hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例5)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で5hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの繊維分散層を有するφ0.1mmの複合導体を作製した。
(比較例6)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で10hrの条件でバッチ式熱処理を施した後、冷問伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例7)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に500℃で24hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例8)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で10minの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例9)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で10hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例10)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で24hrの条件でバッチ式熱処理を施した後、冷間伸線加工して、外周に層厚0.5μmの外層を有するφ0.1mmの複合導体を作製した。
(比較例11)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で2hrの条件でバッチ式熱処理を施した。
(比較例12)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で5hrの条件でバッチ式熱処理を施した。
(比較例13)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で10hrの条件でバッチ式熱処理を施した。
(比較例14)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に700℃で24hrの条件でバッチ式熱処理を施した。
(比較例15)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に800℃で10minの条件でバッチ式熱処理を施した。
(従来例1)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に600℃で60secの条件で走行式熱処理を施した。
(従来例2)
心材としてOFCからなるφ2.6mmの線材の外周に、電気Agめっきを施し、心材の外周にAgの被覆層(めっき層)を13μmの層厚で形成した。この被覆心材に1500℃で60secの条件で走行式熱処理を施した。
The heat treatment of the conventional example was a traveling heat treatment, and the heat treatment of the present invention and the comparative example was a batch heat treatment. Moreover, the heat processing of an Example and a comparative example was implemented on the conditions of the temperature range of 5 min-24 hr in the temperature range of 500 to 800 degreeC.
Example 1
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC (oxygen-free copper) as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core material was subjected to batch heat treatment at 600 ° C. for 30 minutes, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 2)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 600 ° C. for 1 hour, and then cold-drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 3)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 600 ° C. for 2 hours, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
Example 4
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch-type heat treatment at 600 ° C. for 5 hours, and then cold-drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 5)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 650 ° C. for 15 min, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 6)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch-type heat treatment at 650 ° C. for 45 min and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 7)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 650 ° C. for 90 minutes, and then cold-drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 8)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 650 ° C. for 3 hours, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
Example 9
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch-type heat treatment at 700 ° C. for 10 minutes, and then cold-drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 10)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 700 ° C. for 30 min, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 11)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core material was subjected to batch heat treatment at 700 ° C. for 1 hr, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 12)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch-type heat treatment at 750 ° C. for 5 minutes, and then cold-drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 13)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core material was subjected to batch heat treatment at 750 ° C. for 15 min, and then cold-drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Example 14)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch-type heat treatment at 750 ° C. for 45 min and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 1)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 500 ° C. for 10 minutes, and then cold-drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 2)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core material was subjected to batch heat treatment at 500 ° C. for 30 min, and then cold drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 3)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 500 ° C. for 1 hr, and then cold drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 4)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 500 ° C. for 2 hours, and then cold-drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 5)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 500 ° C. for 5 hours, and then cold drawn to produce a φ0.1 mm composite conductor having a fiber dispersion layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 6)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch-type heat treatment at 500 ° C. for 10 hours and then cold drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 7)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 500 ° C. for 24 hours, and then cold drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 8)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to batch heat treatment at 600 ° C. for 10 minutes, and then cold-drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 9)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 600 ° C. for 10 hours, and then cold-drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 10)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 600 ° C. for 24 hours, and then cold drawn to produce a φ0.1 mm composite conductor having an outer layer with a layer thickness of 0.5 μm on the outer periphery.
(Comparative Example 11)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 700 ° C. for 2 hours.
(Comparative Example 12)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 700 ° C. for 5 hours.
(Comparative Example 13)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 700 ° C. for 10 hours.
(Comparative Example 14)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 700 ° C. for 24 hours.
(Comparative Example 15)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. This coated core was subjected to batch heat treatment at 800 ° C. for 10 minutes.
(Conventional example 1)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to traveling heat treatment at 600 ° C. for 60 seconds.
(Conventional example 2)
Electric Ag plating was applied to the outer periphery of a φ2.6 mm wire made of OFC as a core material, and an Ag coating layer (plating layer) was formed to a thickness of 13 μm on the outer periphery of the core material. The coated core material was subjected to traveling heat treatment at 1500 ° C. for 60 seconds.
表1に実施例1〜14、比較例1〜15、及び従来例1、2の熱処理温度及び熱処理時間、また、相互拡散の有無、形成された2相組織、被覆層の剥れの有無、及び総合評価を示す。 In Table 1, the heat treatment temperature and heat treatment time of Examples 1 to 14, Comparative Examples 1 to 15, and Conventional Examples 1 and 2, the presence or absence of mutual diffusion, the formed two-phase structure, the presence or absence of peeling of the coating layer, And overall evaluation.
表1に示す2相組織について、繊維分散層の元となるAg相とCu相が細かく分離した2相分離組織(分散組織)が形成されたものを○、それ以外を×とした。総合評価は、上記の2相分離組織が形成されたものを◎、2相分離組織は形成されたが、被覆層Agと心材Cuとの間に起きた相互拡散により、界面に微小な隙間(ボイド)が生じたものを○、それ以外を×とした。 Regarding the two-phase structure shown in Table 1, the one in which a two-phase separated structure (dispersed structure) in which the Ag phase and the Cu phase as the basis of the fiber dispersion layer were finely separated was formed, and the others were evaluated as x. Comprehensive evaluation is that the above two-phase separated structure is formed. ◎ Although the two-phase separated structure is formed, a minute gap (at the interface) due to the interdiffusion occurring between the coating layer Ag and the core material Cu. The case where a void was generated was marked with ◯, and the others were marked with x.
表1に示すように、実施例1〜14の熱処理条件において、被覆層Agと心材Cuとの間に相互拡散が起こり、伸線加工後の繊維分散層の元となるAg相とCu相が細かく分離された2相分離組織が被覆心材の外層部に形成された。ただし実施例3、4、7、8、11、14の熱処理条件において、被覆材Agと心材Cuとの間に起きた相互拡散により、界面に微小な隙間(ボイド)が生じた。 As shown in Table 1, in the heat treatment conditions of Examples 1 to 14, mutual diffusion occurs between the coating layer Ag and the core material Cu, and the Ag phase and the Cu phase that are the basis of the fiber dispersion layer after the wire drawing process are A finely separated two-phase separated structure was formed in the outer layer portion of the coated core material. However, under the heat treatment conditions of Examples 3, 4, 7, 8, 11, and 14, minute gaps (voids) were generated at the interface due to interdiffusion that occurred between the coating material Ag and the core material Cu.
これに対し、比較例1、2、8及び従来例1の熱処理条件において、被覆層Agと心材Cuとの間に相互拡散は起こったが、被覆層Agと心材Cuの拡散が不十分であり、被覆心材の外層部にAg相とCu相の2相分離組織が形成されず、伸線加工していっても外周に繊維分散層を形成させることは難しい。また、従来例1では、被覆層Agと心材Cuが剥れてしまった。 On the other hand, in the heat treatment conditions of Comparative Examples 1, 2, 8 and Conventional Example 1, mutual diffusion occurred between the coating layer Ag and the core material Cu, but the diffusion of the coating layer Ag and the core material Cu was insufficient. In addition, a two-phase separated structure of Ag phase and Cu phase is not formed in the outer layer portion of the coated core material, and it is difficult to form a fiber dispersion layer on the outer periphery even when wire drawing is performed. Moreover, in the prior art example 1, the coating layer Ag and the core material Cu were peeled off.
比較例3〜7の熱処理条件において、被覆層Agと心材Cuとの間に相互拡散は起こったが、Ag相とCu相が層状に形成される層状組織が形成されたため、伸線加工していっても、外周に繊維分散層は得られない。 In the heat treatment conditions of Comparative Examples 3 to 7, interdiffusion occurred between the coating layer Ag and the core material Cu. However, since a layered structure in which the Ag phase and the Cu phase were formed in layers was formed, the wire drawing was performed. However, a fiber dispersion layer cannot be obtained on the outer periphery.
比較例9、10の熱処理条件において、被覆層Agと心材Cuとの間に相互拡散は起こったが、この熱処理条件では、外層部までCuの拡散が進行しており、伸線加工していっても、外周に繊維分散層は得られない。 Under the heat treatment conditions of Comparative Examples 9 and 10, interdiffusion occurred between the coating layer Ag and the core material Cu. However, under this heat treatment condition, the diffusion of Cu progressed to the outer layer portion, and the wire drawing was performed. However, a fiber dispersion layer cannot be obtained on the outer periphery.
比較例11〜15及び従来例2の熱処理条件において、被覆層Agと心材Cuとの間に相互拡散は起こったが、被覆層Agと心材Cuが剥れてしまった。 In the heat treatment conditions of Comparative Examples 11 to 15 and Conventional Example 2, interdiffusion occurred between the coating layer Ag and the core material Cu, but the coating layer Ag and the core material Cu were peeled off.
次に、表2に実施例1及び比較例5について、導電率(%IACS)、屈曲寿命(回)及び総合評価を示す。 Next, Table 2 shows the conductivity (% IACS), flex life (times), and overall evaluation for Example 1 and Comparative Example 5.
屈曲試験は、実施例1及び比較例5の線材に左右90°の屈曲を曲げr=5mm(曲げ歪1%)で繰り返し、破断に至るまでの屈曲回数を屈曲寿命とし、実施例1と同一線径によりなる軟質TPC線の屈曲寿命の3倍以上を合格、3倍以下を不合格として表2中にそれぞれ○×表記した。総合評価は、優良を○、良くないものを×とした。 The bending test is the same as in Example 1, with the wire rod of Example 1 and Comparative Example 5 repeated bending at 90 ° to the left and right at a bending r = 5 mm (bending strain 1%), and the number of bendings until breakage is defined as the bending life. In Table 2, ◯ is indicated as “good” when 3 times or more of the bending life of the soft TPC wire composed of the wire diameter is passed and 3 times or less is rejected. In the comprehensive evaluation, “Excellent” was evaluated as “Good”, and “No” was evaluated as “Poor”.
表2に示すように、実施例1の線材は、心材が含有する添加物の濃度が低いため、導電率が98%IACSと良好であり、また、繊維分散層が設けられているため、屈曲寿命は合格レベルであり、良好であった。以上から総合評価は優良であった。つまり、純銅と略同等の導電率と、十分な屈曲寿命とを備えていた。 As shown in Table 2, the wire of Example 1 has a low electrical conductivity of 98% IACS because the concentration of the additive contained in the core material is low, and the fiber dispersion layer is provided. The lifetime was acceptable and good. From the above, the overall evaluation was excellent. That is, it had substantially the same conductivity as pure copper and a sufficient bending life.
これに対して、比較例5の線材は、導電率は98%IACSと良好であったが、繊維分散層が設けられていないため、屈曲寿命が合格レベルに到達しなかった。その結果、総合評価も良くない。 On the other hand, although the electrical conductivity of the wire of Comparative Example 5 was as good as 98% IACS, the flex life did not reach the acceptable level because the fiber dispersion layer was not provided. As a result, overall evaluation is not good.
1 複合導体
2 心材
3 繊維分散層
21、32 ケーブル
23 外部導体
24 樹脂層
25 ジャケット層
32 心線
DESCRIPTION OF SYMBOLS 1 Composite conductor 2
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007140424A JP2008293894A (en) | 2007-05-28 | 2007-05-28 | Manufacturing method of complex conductor, strand conductor, and cable using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007140424A JP2008293894A (en) | 2007-05-28 | 2007-05-28 | Manufacturing method of complex conductor, strand conductor, and cable using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008293894A true JP2008293894A (en) | 2008-12-04 |
Family
ID=40168403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007140424A Pending JP2008293894A (en) | 2007-05-28 | 2007-05-28 | Manufacturing method of complex conductor, strand conductor, and cable using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008293894A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9564255B2 (en) | 2013-01-30 | 2017-02-07 | Hitachi Metals, Ltd. | High-speed transmission cable conductor, and producing method thereof, and high-speed transmission cable |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006127786A (en) * | 2004-10-26 | 2006-05-18 | Hitachi Cable Ltd | Composite conductor, its manufacturing method and cable using it |
-
2007
- 2007-05-28 JP JP2007140424A patent/JP2008293894A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006127786A (en) * | 2004-10-26 | 2006-05-18 | Hitachi Cable Ltd | Composite conductor, its manufacturing method and cable using it |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9564255B2 (en) | 2013-01-30 | 2017-02-07 | Hitachi Metals, Ltd. | High-speed transmission cable conductor, and producing method thereof, and high-speed transmission cable |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4143086B2 (en) | Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof | |
JP4143087B2 (en) | Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same | |
JP4000729B2 (en) | Coaxial cable and manufacturing method thereof | |
JP2002352630A (en) | Strand conductor for movable part wiring material and cable using it | |
JP2006019080A (en) | Differential signal transmission cable | |
KR20120004910A (en) | Electronic wire and method of manufacturing the same | |
JP5344151B2 (en) | Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire | |
JP2011146352A (en) | Cu-Ag ALLOY WIRE | |
WO2006022117A1 (en) | Coaxial cable | |
CN109791815B (en) | Wire strand for wire harness and wire harness | |
JP4143088B2 (en) | Coaxial cable, manufacturing method thereof, and multicore cable using the same | |
JP2004014337A (en) | Extrafine multicore coaxial cable | |
JP2008293894A (en) | Manufacturing method of complex conductor, strand conductor, and cable using the same | |
JP4973437B2 (en) | Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method | |
JP2014150022A (en) | Insulated wire | |
JP2001295011A (en) | Bending resistant copper alloy wire and cable using the same | |
JP2020021620A (en) | Insulated wire and cable | |
JP5744649B2 (en) | Conductor wire | |
JP2010027491A (en) | Extra-fine coaxial cable, and manufacturing method thereof | |
JP4686931B2 (en) | Ultra-fine coaxial cable | |
JP4501922B2 (en) | Cu-Ag alloy wire for coaxial cable | |
JP4462004B2 (en) | Composite conductor, method for manufacturing the same, and cable using the same | |
JP2005093300A (en) | Electric wire for automobile | |
JP7533141B2 (en) | Coaxial Cables and Cable Assemblies | |
JP2001256839A (en) | Small-diameter coaxial cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090717 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121002 |