JP2008292258A - Characteristic evaluation device for electrophotography photosensitive element - Google Patents
Characteristic evaluation device for electrophotography photosensitive element Download PDFInfo
- Publication number
- JP2008292258A JP2008292258A JP2007137152A JP2007137152A JP2008292258A JP 2008292258 A JP2008292258 A JP 2008292258A JP 2007137152 A JP2007137152 A JP 2007137152A JP 2007137152 A JP2007137152 A JP 2007137152A JP 2008292258 A JP2008292258 A JP 2008292258A
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive member
- electrophotographic photosensitive
- exposure
- charging
- characteristic evaluation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Cleaning In Electrography (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、レーザープリンタ、複写機等の画像形成装置に使用される電子写真感光体の特性評価装置に関する。 The present invention relates to an apparatus for evaluating characteristics of an electrophotographic photosensitive member used in an image forming apparatus such as a laser printer or a copying machine.
電子写真感光体(以下、「感光体」、「静電潜像担持体」と称することもある)は、複写機、レーザープリンタ等の電子写真プロセスを応用した画像形成装置において、最も重要な構成要素の一つであり、画像形成装置本体の性能を引出すために、様々な特性を満足する必要がある。そのため、感光体は出荷前に電子写真に関る様々な特性の検査が行われている。また、新規の電子写真装置用として、新規の感光体を開発する場合には、開発過程において試作した感光体の電子写真に関る様々な特性についての評価が行われており、電子写真感光体の特性評価装置についても種々提案されている。 An electrophotographic photosensitive member (hereinafter also referred to as a “photosensitive member” or an “electrostatic latent image carrier”) is the most important component in an image forming apparatus using an electrophotographic process such as a copying machine or a laser printer. One of the elements, it is necessary to satisfy various characteristics in order to bring out the performance of the image forming apparatus main body. Therefore, the photoreceptor is inspected for various characteristics relating to electrophotography before shipment. In addition, when developing a new photoconductor for use in a new electrophotographic apparatus, various characteristics relating to electrophotography of the photoconductor prototyped in the development process have been evaluated. Various characteristic evaluation apparatuses have been proposed.
例えば特許文献1には、電子写真感光体の試料片をセットする開口部を持つターンテーブルと、該ターンテーブルを高速回転させるための手段と、ターンテーブルに対向して配置され該感光体試料片を徐々に帯電させるコロナ帯電手段と、ターンテーブルの開口部に装着された感光体試験片表面の平均帯電電位と感光体試料片に流れ込む電流を同時に計測するための手段とを有し、該電流は時間で積分され充電電荷として処理され、Q=C・Vの関係式より感光体試料片の静電容量を非破壊、非接触で測定する装置が提案されている。この提案によれば、感光体試料片の静電容量の測定時に高速回転するターンテーブルの感光体試料片に流れ込む電流に対する真の電流を算出し、静電容量の測定精度が向上するとされている。 For example, in Patent Document 1, a turntable having an opening for setting a sample piece of an electrophotographic photosensitive member, a means for rotating the turntable at a high speed, and the photosensitive sample piece arranged to face the turntable. And a means for simultaneously measuring the average charging potential of the surface of the photoconductor test piece mounted on the opening of the turntable and the current flowing into the photoconductor sample piece. Is integrated with time and processed as a charged charge, and an apparatus for non-destructively and non-contactingly measuring the electrostatic capacity of a photoconductor sample piece from the relational expression of Q = C · V has been proposed. According to this proposal, the true current with respect to the current flowing into the photoconductor sample piece of the turntable that rotates at a high speed when the capacitance of the photoconductor sample piece is measured is calculated to improve the measurement accuracy of the capacitance. .
また、特許文献2は、少なくとも帯電手段、露光手段、及び表面電位測定手段を取り付けた作動ユニットを円筒形の感光体を母線方向に移動させて諸値を測定する感光体の特性評価方法である。前記感光体はアモルファスシリコンを主成分とする光導電層を有し、該帯電手段の有効帯電範囲が2cm〜15cmであり、該露光手段は、露光量、露光波長が可変であり、感光体の諸特性を総合的かつ高精度に評価することが可能となることが記載されている。
また、特許文献3には、電子写真感光体を高速で回転させる工程と、該電子写真感光体の感光面を帯電させる静電気帯電工程と、該電子写真感光体の感光面に光放電させる光放電工程とを有し、該電子写真感光体に流れ込む電流の電流信号を検出してA/D変換し、算出される該電子写真感光体の充電電荷量と、該電子写真感光体の表面電位の電位信号を検出してA/D変換し、求められる電子写真感光体の帯電電位とから該電子写真感光体の静電容量を求める電子写真感光体の静電容量算出方法が提案されている。この提案には、前記電子写真感光体の充電電荷量が、電流値を時間で積分した値に補正値を加えた値として静電容量を算出方法することが記載されている。
また、特許文献4には、光に反応する物体にパルス化した光を照射し、動作指令信号に応じてその光応答性を計測する装置が記載されている。
Patent Document 2 is a method for evaluating characteristics of a photoconductor, in which various values are measured by moving a cylindrical photoconductor in the direction of the generatrix with an operating unit equipped with at least a charging unit, an exposure unit, and a surface potential measuring unit. . The photoreceptor has a photoconductive layer mainly composed of amorphous silicon, the effective charging range of the charging means is 2 cm to 15 cm, the exposure means has a variable exposure amount and exposure wavelength, It is described that various characteristics can be comprehensively and highly accurately evaluated.
Patent Document 3 discloses a process for rotating an electrophotographic photosensitive member at a high speed, an electrostatic charging step for charging the photosensitive surface of the electrophotographic photosensitive member, and a photodischarge for performing photodischarge on the photosensitive surface of the electrophotographic photosensitive member. A step of detecting a current signal of a current flowing into the electrophotographic photosensitive member and performing A / D conversion, and calculating a charge amount of the electrophotographic photosensitive member calculated and a surface potential of the electrophotographic photosensitive member There has been proposed a method for calculating the capacitance of an electrophotographic photosensitive member that detects an electric potential signal, performs A / D conversion, and obtains the electrostatic capacitance of the electrophotographic photosensitive member from the obtained charging potential of the electrophotographic photosensitive member. This proposal describes that the charge amount of the electrophotographic photosensitive member is calculated as a value obtained by adding a correction value to a value obtained by integrating a current value with time.
Patent Document 4 describes an apparatus that irradiates an object that reacts to light with pulsed light and measures its light response in response to an operation command signal.
ここで、前記電子写真感光体に要求される特性としては、帯電能、電荷保持能、感度等が挙げられる。これらの電気的特性及び光学的特性の測定には、電子写真プロセスと同様にコロナ帯電及び露光を行うことによって特性を評価することが多い。例えば前記特性値の一つとして、電子写真感光体をコンデンサと考え、静電容量を求めて評価する方法がある。このように電子写真感光体をコンデンサと考えるモデルでは、暗中にてコロナ帯電により感光体試料に流れる電流と、この時の表面電位を同時計測し、通過電流は時間で積算され、図3中の下段のグラフで示されるように、Q=C・V(ただし、Qは充電電荷量、Vは感光体の帯電電位、Cは感光体の静電容量を表す)の関係より静電容量(C)を求める。
電子写真感光体にコロナ放電を施すとその表面電位は、通常、図3中の上段のグラフで示されるように立ち上がっていく。この間、感光体の充電電荷量は、図3中の中段のグラフで示されるように推移する。つまり、充電電荷量(Q)は、各時間(Δt)あたりの各充電電荷量(q1)、(q2)、(q3)、・・・(qn)の積算値で表され、増大していく。各充電電荷量(q1)、(q2)、(q3)、・・・(qn)は、それぞれ時間(Δt)と電流(I)との積で表される積分値であり、電流(I)は実測の試料充電電流値/S(Sは帯電される試料の面積)で定まる。求められた充電電荷量(Q)とこれに対応する表面電位(V)をプロットして直線を引き、この傾きから静電容量(C)を算出する。先行技術文献に記載されているように、この算出方法では、徐々に帯電する状況を作り出して、測定するため、高速回転させて静電容量を算出する必要がある。
Here, as the characteristics required for the electrophotographic photoreceptor, charging ability, charge retention ability, sensitivity, and the like can be mentioned. In measuring these electrical and optical characteristics, the characteristics are often evaluated by performing corona charging and exposure as in the electrophotographic process. For example, as one of the characteristic values, there is a method in which an electrophotographic photosensitive member is regarded as a capacitor and an electrostatic capacity is obtained and evaluated. Thus, in the model in which the electrophotographic photosensitive member is regarded as a capacitor, the current flowing through the photosensitive member sample by corona charging in the dark and the surface potential at this time are simultaneously measured, and the passing current is integrated over time. As shown in the lower graph, Q = C · V (where Q is the charge amount, V is the charge potential of the photoconductor, and C is the capacitance of the photoconductor). )
When corona discharge is applied to the electrophotographic photosensitive member, its surface potential usually rises as shown in the upper graph in FIG. During this time, the charge amount of the photoreceptor changes as shown by the middle graph in FIG. That is, the charge amount (Q) is represented by an integrated value of each charge amount (q1), (q2), (q3),... (Qn) per each time (Δt) and increases. . Each charge amount (q1), (q2), (q3),... (Qn) is an integral value represented by the product of time (Δt) and current (I), and current (I) Is determined by the measured sample charging current value / S (S is the area of the charged sample). The obtained charge amount (Q) and the corresponding surface potential (V) are plotted, a straight line is drawn, and the capacitance (C) is calculated from this slope. As described in the prior art document, in this calculation method, it is necessary to calculate the capacitance by rotating at a high speed in order to create and measure a gradually charged state.
前記特許文献1のように、被測定物となる感光体が平板等のテストピースの場合は、サンプルサイズも小さいため、高速回転させて静電容量を算出する場合に特に問題はなかった。また、前記特許文献3のように、被測定物が感光体ドラムの場合でも、ドラム直径が小さい感光体では、支持体の厚みに不均一な部分があっても、回転時に大きな問題が生じるほど振れが非常に大きくなることは無いため、高速回転させて静電容量を算出することが可能である。
しかし、ドラム直径が大きく、支持体に厚みの不均一な部分がある場合には、重量バランスの悪さにより、回転時に非常に大きな振れとなる。それによって感光体周りに配置された帯電手段、露光手段、及び表面電位検出手段との距離が安定化しないため、正確な計測ができない状況が発生することがある。更に、振れが大きい場合には、感光体周りに配置された帯電手段、露光手段、及び表面電位検出手段に接触してこれらの装置の損傷や感光体へのダメージが生じる。
そのため、振れを抑える方法として、重量バランスの悪い位置を確認し、その位置におもりを付けることで振れ量を抑え計測する方法がある。しかし、バランスの悪い部分を測定するための機構及び装置等が必要となり、また、計測する場合には、測定者の手間になるという問題もあり、低速回転で静電容量を算出することができる電子写真感光体の特性評価装置が要望されていた。
As in Patent Document 1, when the photoconductor to be measured is a test piece such as a flat plate, since the sample size is small, there is no particular problem when the electrostatic capacity is calculated by rotating at high speed. Further, as in Patent Document 3, even when the object to be measured is a photosensitive drum, a photosensitive member with a small drum diameter may cause a large problem during rotation even if there is an uneven portion of the thickness of the support. Since the shake does not become very large, the electrostatic capacity can be calculated by rotating at high speed.
However, when the drum diameter is large and the support has a non-uniform thickness portion, a very large vibration occurs during rotation due to poor weight balance. As a result, the distance from the charging means, the exposure means, and the surface potential detection means arranged around the photosensitive member is not stabilized, and a situation in which accurate measurement cannot be performed may occur. Further, when the shake is large, the charging unit, the exposing unit, and the surface potential detecting unit arranged around the photosensitive member come into contact with each other and damage to these devices and the photosensitive member occur.
Therefore, as a method of suppressing the shake, there is a method of checking and measuring a position with a poor weight balance and attaching a weight to the position to suppress the shake amount. However, a mechanism and a device for measuring an unbalanced part are required, and there is a problem that it takes time for the measurer when measuring, and the capacitance can be calculated at a low speed. There has been a demand for an apparatus for evaluating characteristics of an electrophotographic photosensitive member.
また、前記特許文献2及び特許文献3では、ドラム状の感光体を計測可能であり、かつ露光手段と表面電位プローブが配備されているため、感光特性を評価することが可能であり、露光手段と表面電位プローブ(表面電位センサ)は別の位置に存在しているため、ドラムを高速で回転させて感度を評価することが可能である。しかし、高速回転ができないドラム直径が大きい感光体を測定する場合には、同じようなレイアウトでは露光開始からの電位変動や露光中の電位変動を確認することが困難となるため、低速回転でも感度測定可能な特性評価装置が要望されていた。 In Patent Document 2 and Patent Document 3, a drum-shaped photoconductor can be measured, and since exposure means and a surface potential probe are provided, it is possible to evaluate photosensitive characteristics, and exposure means Since the surface potential probe (surface potential sensor) exists at different positions, it is possible to evaluate the sensitivity by rotating the drum at high speed. However, when measuring a photoconductor with a large drum diameter that cannot be rotated at high speed, it is difficult to check potential fluctuations from the start of exposure or potential fluctuations during exposure with a similar layout. A measurable characteristic evaluation apparatus has been demanded.
また、特許文献4は、表面電位計プローブとして透明プローブを使用し、感光体の感度特性を計測することができ、停止状態で感度測定可能な特性評価装置である。しかし、この装置は、テストピースを対象とした感度測定装置であり、ドラム状の感光体を対象としておらず、また、測定時の帯電条件が一切記載されてなく、感度以外の特性評価を対象としていなかった。更に、透明プローブを使用した場合、透明プローブの位置により、ガラスの重なる枚数が違うため、透過率が違ってくるという問題がある。 Patent Document 4 is a characteristic evaluation apparatus that uses a transparent probe as a surface electrometer probe, can measure the sensitivity characteristic of the photoconductor, and can measure the sensitivity in a stopped state. However, this device is a sensitivity measurement device for test pieces, not for drum-shaped photoconductors, and it does not describe any charging conditions at the time of measurement. I didn't. Furthermore, when a transparent probe is used, there is a problem in that the transmittance is different because the number of overlapping glasses differs depending on the position of the transparent probe.
その他、塗工時に発生した感光体の電荷発生層(CGL)濃淡ムラを確認する場合、ドラム直径が小さい感光体に関しては外観を目視で確認することで容易に確認可能である。しかし、ドラム直径が大きくなるにしたがって、ドラム全体の濃淡ムラを確認することが困難であるため、ドラム直径が大きい感光体に関しては問題がある。そのため、CGL濃淡ムラを確認するのに、実際に複写機に搭載し画像を出して評価する方法が取られているが、時間と手間がかかっており、CGL濃淡ムラも容易に判断可能な電子写真感光体の特性評価装置の提供が要望されていた。 In addition, when confirming the density unevenness of the charge generation layer (CGL) of the photoconductor generated at the time of coating, it can be easily confirmed by visually checking the appearance of the photoconductor having a small drum diameter. However, as the drum diameter increases, it is difficult to check the density unevenness of the entire drum, so there is a problem with a photoconductor having a large drum diameter. For this reason, in order to check the CGL density unevenness, a method of actually mounting it on a copying machine and evaluating it by taking an image is taken. However, it takes time and effort, and an electronic device that can easily determine CGL density unevenness. There has been a demand for an apparatus for evaluating characteristics of a photographic photoreceptor.
以上のように、高速回転による方法では、測定できるドラム直径に制約があり、このため、低速回転で帯電特性、抵抗、感度等のドラム状感光体の様々な特性評価に対応でき、かつ画像出しを実施せずにCGL濃淡ムラ等、画像の欠陥につながる問題を判別可能な電子写真感光体の特性評価装置の提供が要望されているのが現状である。 As described above, the drum diameter that can be measured is limited in the method using the high-speed rotation. Therefore, it is possible to deal with various characteristics evaluation of the drum-shaped photoconductor such as charging characteristics, resistance, and sensitivity at low-speed rotation, and image output. At present, there is a demand for providing an apparatus for evaluating the characteristics of an electrophotographic photosensitive member capable of discriminating problems that lead to image defects, such as CGL density unevenness, without performing the above.
本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、低速回転で帯電特性、抵抗、感度等のドラム状感光体の様々な特性評価に対応でき、かつ画像出しを実施せずに欠陥を判別可能な電子写真感光体の特性評価装置を提供することを目的とする。 An object of the present invention is to solve various problems in the prior art and achieve the following objects. That is, the present invention can respond to various characteristics evaluation of drum-shaped photoconductors such as charging characteristics, resistance, sensitivity, etc. at low speed rotation, and can also evaluate the characteristics of electrophotographic photoconductors that can discriminate defects without performing image output. An object is to provide an apparatus.
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 少なくとも帯電手段、露光手段、及び表面電位検出手段を有する電子写真感光体の特性評価装置であって、
前記表面電位検出手段が、ガラス基材上に導電性材料を塗布してなる透明プローブであり、
前記透明プローブと前記露光手段とが一体化した露光・検出ユニットを有し、
前記露光・検出ユニットが、前記電子写真感光体周りに複数個配置されていることを特徴とする電子写真感光体の特性評価装置である。
<2> 透明プローブと露光手段との間に、透過率分布を補正する機能を持つ補正部材を有する前記<1>に記載の電子写真感光体の特性評価装置である。
<3> 補正部材が、透明プローブと同材質である前記<2>に記載の電子写真感光体の特性評価装置である。
<4> 透明プローブの光の透過方向に、該透明プローブと同材質のガラスが同じ枚数配置されている前記<2>から<3>のいずれかに記載の電子写真感光体の特性評価装置である。
<5> 電子写真感光体を一様に帯電可能な帯電制御機能を持つスコロトロン帯電器を有する前記<1>から<4>のいずれかに記載の電子写真感光体の特性評価装置である。
<6> コロトロン帯電器と、スコロトロン帯電器とを有し、該帯電手段を評価する特性に応じて切り替えて電子写真感光体の特性を評価する前記<1>から<5>のいずれかに記載の電子写真感光体の特性評価装置である。
<7> 複数箇所における電子写真感光体の特性の評価結果に基づき、電子写真感光体の良否を判定する機能を有する前記<1>から<6>のいずれかに記載の電子写真感光体の特性評価装置である。
<8> 電子写真感光体がドラム状であり、200rpm以下の低速回転で評価を行う前記<1>から<7>のいずれかに記載の電子写真感光体の特性評価装置である。
Means for solving the problems are as follows. That is,
<1> An apparatus for evaluating characteristics of an electrophotographic photosensitive member having at least charging means, exposure means, and surface potential detection means,
The surface potential detection means is a transparent probe formed by applying a conductive material on a glass substrate,
An exposure / detection unit in which the transparent probe and the exposure means are integrated,
An apparatus for evaluating characteristics of an electrophotographic photosensitive member, wherein a plurality of the exposure / detection units are arranged around the electrophotographic photosensitive member.
<2> The apparatus for evaluating characteristics of an electrophotographic photosensitive member according to <1>, further including a correction member having a function of correcting the transmittance distribution between the transparent probe and the exposure unit.
<3> The apparatus for evaluating characteristics of an electrophotographic photosensitive member according to <2>, wherein the correction member is made of the same material as the transparent probe.
<4> The apparatus for evaluating characteristics of an electrophotographic photosensitive member according to any one of <2> to <3>, wherein the same number of glasses made of the same material as the transparent probe are arranged in the light transmission direction of the transparent probe. is there.
<5> The apparatus for evaluating characteristics of an electrophotographic photosensitive member according to any one of <1> to <4>, further including a scorotron charger having a charge control function capable of uniformly charging the electrophotographic photosensitive member.
<6> The apparatus according to any one of <1> to <5>, including a corotron charger and a scorotron charger, wherein the characteristics of the electrophotographic photosensitive member are evaluated by switching according to the characteristics for evaluating the charging unit. This is an apparatus for evaluating characteristics of an electrophotographic photosensitive member.
<7> The characteristics of the electrophotographic photosensitive member according to any one of <1> to <6>, wherein the characteristic of the electrophotographic photosensitive member is determined based on the evaluation result of the characteristics of the electrophotographic photosensitive member at a plurality of locations. Evaluation device.
<8> The apparatus for evaluating characteristics of an electrophotographic photosensitive member according to any one of <1> to <7>, wherein the electrophotographic photosensitive member has a drum shape, and the evaluation is performed at a low speed of 200 rpm or less.
本発明によると従来における諸問題を解決することができ、電子写真感光体のドラム直径に影響されずに、低速回転でも帯電特性、抵抗、感度等の様々な特性評価に対応できる。特に、感光体ドラムの直径が大きい場合に、電荷発生層(CGL)濃淡ムラ等の画像欠陥を評価するには、実機での画像評価が必要であったが、この画像評価せずに精度良く容易に判定可能な電子写真感光体の特性評価装置を提供することができる。 According to the present invention, conventional problems can be solved, and various characteristics evaluations such as charging characteristics, resistance, and sensitivity can be performed even at low speed rotation without being affected by the drum diameter of the electrophotographic photosensitive member. In particular, in order to evaluate image defects such as charge generation layer (CGL) density unevenness when the diameter of the photosensitive drum is large, image evaluation with an actual machine is necessary. An apparatus for evaluating characteristics of an electrophotographic photosensitive member that can be easily determined can be provided.
本発明の電子写真感光体の特性評価装置は、少なくとも帯電手段、露光手段、及び表面電位検出手段を有してなり、更に必要に応じてその他の構成を有してなる。
本願明細書において、「放電電流」とは、帯電手段の放電条件を決めるための値であり、測定する感光体と同形状(直径、全長、肉厚が同じ)のアルミニウム素管(感光層を塗布していない)に放電させ、その際にアルミニウム素管側に流れる電流を意味する。この放電電流によって帯電手段の出力を予め設定する。
また、本願明細書において、「高速」とは1,000rpm以上の速度を意味し、「低速」とは200rpm以下の速度を意味する。
The electrophotographic photosensitive member characteristic evaluation apparatus of the present invention includes at least a charging unit, an exposure unit, and a surface potential detection unit, and further includes other configurations as necessary.
In the present specification, the “discharge current” is a value for determining the discharge conditions of the charging means, and is an aluminum tube (the photosensitive layer is made of the same shape (diameter, overall length, thickness)) as the photoconductor to be measured. It means a current that flows to the aluminum base tube side at that time. The output of the charging means is set in advance by this discharge current.
In the present specification, “high speed” means a speed of 1,000 rpm or more, and “low speed” means a speed of 200 rpm or less.
−帯電手段−
前記帯電手段としては、前記電子写真感光体の表面に電圧を印加して帯電させることができるものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、導電性又は半導電性のロール、ブラシ、フィルム、ゴムブレード等を備えた接触帯電手段;コロトロン帯電器、スコロトロン帯電器等のコロナ放電を利用した非接触帯電手段、などが挙げられる。
これらの中でも、感光体を一様に帯電可能な帯電制御機能を持つスコロトロン帯電器が好ましい。
また、前記帯電手段として、コロトロン帯電器と、スコロトロン帯電器とを有しており、これら帯電手段を容易に切り替えることができるので、例えば静電容量算出時にはコロトロン帯電器を使用し、抵抗測定時にはスコロトロン帯電器を使用することが可能となり、評価する特性に応じて、適した帯電手段を使用することが可能になる。
-Charging means-
The charging means is not particularly limited as long as it can be charged by applying a voltage to the surface of the electrophotographic photosensitive member, and can be appropriately selected according to the purpose. Examples thereof include contact charging means provided with a conductive roll, brush, film, rubber blade, etc .; non-contact charging means using corona discharge such as a corotron charger and a scorotron charger.
Among these, a scorotron charger having a charge control function capable of uniformly charging the photoreceptor is preferable.
In addition, the charging means includes a corotron charger and a scorotron charger, and these charging means can be easily switched. For example, a corotron charger is used when calculating the capacitance, and a resistance is measured. A scorotron charger can be used, and a suitable charging means can be used according to the characteristics to be evaluated.
−露光手段−
前記露光手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザ(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するため、例えばシャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもでき、照度を下げるために、ニュートラルデンシティフィルターを用いることもできる。
-Exposure means-
The exposure means is not particularly limited and may be appropriately selected according to the purpose. For example, a fluorescent lamp, a tungsten lamp, a halogen lamp, a mercury lamp, a sodium lamp, a light emitting diode (LED), a semiconductor laser (LD), an electro All luminescent materials such as luminescence (EL) can be used. In order to irradiate only light in a desired wavelength range, various filters such as a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, and a color temperature conversion filter can be used. A neutral density filter can also be used to lower the value.
−表面電位検出手段−
前記表面電位検出手段は、ガラス基材と、該ガラス基材上に導電性材料を塗布した透明プローブが用いられる。
前記ガラス基材は、その形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、例えば円板状、平板状などが挙げられる。また、前記構造としては、単層構造であってもよいし、積層構造であってもよい。
前記導電性材料としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばIndium−Tin−Oxide(ITO)、酸化スズ、などが挙げられる。
-Surface potential detection means-
As the surface potential detecting means, a glass substrate and a transparent probe in which a conductive material is applied on the glass substrate are used.
The shape, structure, size and the like of the glass substrate are not particularly limited and can be appropriately selected depending on the purpose. Examples of the shape include a disk shape and a flat plate shape. . Further, the structure may be a single layer structure or a laminated structure.
There is no restriction | limiting in particular as said electroconductive material, Although it can select suitably according to the objective, For example, Indium-Tin-Oxide (ITO), a tin oxide, etc. are mentioned.
本発明においては、前記透明プローブと前記露光手段とが一体化した露光・検出ユニットを形成している。
前記透明プローブと前記露光手段との一体化の方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば露光ガイドボックスを介して露光手段と透明プローブとを結合させる方法、などが挙げられる。
前記透明プローブと前記露光手段との間に、透過率分布を補正する機能を持つ補正部材を有することが好ましい。
前記補正部材としては、透明プローブと同材質であることが好ましく、前記透明プローブの光の透過方向に、該透明プローブと同材質のガラスが同じ枚数配置されていることが好ましい。
前記露光・検出ユニットは、前記電子写真感光体周りに複数個配置されており、2個以上配置することが好ましく、2〜4個がより好ましい。
これにより、複数箇所における電子写真感光体の特性の結果を得ることができ、これらの結果に基づき、電子写真感光体の良否を判定することができる。
In the present invention, an exposure / detection unit in which the transparent probe and the exposure means are integrated is formed.
The method for integrating the transparent probe and the exposure means is not particularly limited and may be appropriately selected according to the purpose. For example, a method of combining the exposure means and the transparent probe via an exposure guide box , Etc.
It is preferable that a correction member having a function of correcting a transmittance distribution is provided between the transparent probe and the exposure unit.
The correction member is preferably made of the same material as the transparent probe, and the same number of glasses made of the same material as the transparent probe are preferably arranged in the light transmission direction of the transparent probe.
A plurality of the exposure / detection units are arranged around the electrophotographic photosensitive member, preferably two or more, more preferably 2 to 4.
Thereby, the result of the characteristic of the electrophotographic photosensitive member in a plurality of places can be obtained, and the quality of the electrophotographic photosensitive member can be determined based on these results.
前記その他の手段として、被試験試料の表面を帯電処理するための帯電手段用電源回路の制御手段、該被試験試料を光照射するための光源用電源回路の制御手段としては、特に制限はなく、従来公知のものをそのまま用いることができる。 As the other means, there is no particular limitation on the control means of the power circuit for charging means for charging the surface of the sample to be tested and the control means of the power circuit for light source for irradiating the sample to be tested with light. Conventionally known ones can be used as they are.
−電子写真感光体−
本発明の電子写真感光体の特性評価装置に用いる電子写真感光体としては、その材質、形状、構造、大きさ等については、特に制限はなく、目的に応じて適宜選択することができ、前記形状としては、例えば、ドラム状、シート状、エンドレスベルト状などが挙げられる。前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記画像形成装置の大きさ、仕様等に応じて適宜選択することができる。前記材質としては、例えばアモルファスシリコン、セレン、CdS、ZnO等の無機感光体;ポリシラン、フタロポリメチン等の有機感光体(OPC)、などが挙げられる。
-Electrophotographic photoreceptor-
The electrophotographic photosensitive member used in the electrophotographic photosensitive member characteristic evaluation apparatus of the present invention is not particularly limited as to the material, shape, structure, size, etc., and can be appropriately selected according to the purpose. Examples of the shape include a drum shape, a sheet shape, and an endless belt shape. The structure may be a single layer structure or a laminated structure, and the size can be appropriately selected according to the size, specifications, etc. of the image forming apparatus. Examples of the material include inorganic photoreceptors such as amorphous silicon, selenium, CdS, and ZnO; organic photoreceptors (OPC) such as polysilane and phthalopolymethine, and the like.
前記アモルファスシリコン感光体は、例えば、支持体を50℃〜400℃に加熱し、該支持体上に真空蒸着法、スパッタリング法、イオンプレーティング法、熱CVD法、光CVD法、プラズマCVD法等の成膜法により、a−Siからなる感光層を形成したものである。これらの中でも、プラズマCVD法が特に好ましく、具体的には、原料ガスを直流、高周波又はマイクロ波グロー放電によって分解し、支持体上にa−Siからなる感光層を形成する方法が好適である。 For example, the amorphous silicon photosensitive member is heated at 50 ° C. to 400 ° C., and a vacuum deposition method, a sputtering method, an ion plating method, a thermal CVD method, a photo CVD method, a plasma CVD method, or the like is applied on the support. A photosensitive layer made of a-Si is formed by the film forming method. Among these, the plasma CVD method is particularly preferable, and specifically, a method in which the source gas is decomposed by direct current, high frequency, or microwave glow discharge to form a photosensitive layer made of a-Si on the support is preferable. .
前記有機感光体(OPC)は、(1)光吸収波長域の広さ、光吸収量の大きさ等の光学特性、(2)高感度、安定な帯電特性等の電気的特性、(3)材料の選択範囲の広さ、(4)製造の容易さ、(5)低コスト、(6)無毒性、等の理由から一般に広く応用されている。このような有機感光体の層構成としては、単層構造と、積層構造とに大別される。
前記単層構造の感光体は、支持体と、該支持体上に単層型感光層を設けてなり、更に必要に応じて、保護層、中間層、その他の層を有してなる。
前記積層構造の感光体は、支持体と、該支持体上に電荷発生層、及び電荷輸送層を少なくともこの順に有する積層型感光層を設けてなり、更に必要に応じて、保護層、中間層、の他の層を有してなる。
The organic photoreceptor (OPC) has (1) optical characteristics such as a wide light absorption wavelength range and a large amount of light absorption, (2) electrical characteristics such as high sensitivity and stable charging characteristics, (3) In general, it is widely applied because of the wide selection range of materials, (4) ease of production, (5) low cost, and (6) non-toxicity. The layer structure of such an organic photoreceptor is roughly divided into a single layer structure and a laminated structure.
The single-layered photoreceptor has a support and a single-layer type photosensitive layer provided on the support, and further includes a protective layer, an intermediate layer, and other layers as necessary.
The laminated structure of the photoreceptor comprises a support, and a laminate type photosensitive layer having at least a charge generation layer and a charge transport layer in this order on the support, and further includes a protective layer and an intermediate layer as necessary. And other layers.
前記電子写真感光体における特性としては、帯電特性(静電容量)、抵抗、感度(光減衰特性)等が挙げられる。これらの特性は、例えば以下のようにして測定することができる。 The characteristics of the electrophotographic photosensitive member include charging characteristics (capacitance), resistance, sensitivity (light attenuation characteristics), and the like. These characteristics can be measured, for example, as follows.
−静電容量の測定−
静電容量を算出する方法に関しては、上述した図3で示したように電子写真感光体をコンデンサと考えるモデルで、コロナ帯電により感光体試料に流れる電流と、この時の表面電位を計測し、通過電流は時間で積算され図3中の下段のグラフで示されるように、Q=C・V(ただし、Qは充電電荷量、Vは感光体の帯電電位、Cは感光体の静電容量をそれぞれ表す)の関係より静電容量(C)を求める。ただし、電子写真感光体の特性評価装置では、低速回転で測定するため、帯電手段と電位計測の場所の違いが影響を受ける。
ここで、図4に電位の推移グラフ、図5に電流の推移グラフを示す。その影響で、電位と電荷量の対応が一致するタイミングは、回転周期のタイミングしかなく、1回転周期でしか充電電荷量(Q)とこれに対応する表面電位をプロットすることができない。例えば、200rpmであれば、0.3sec間隔となる。更に、電位や電流は信号経路中の、ノイズフィルタ、アンプ等で信号の遅れが生じることもあり、それを補正する必要がある。その補正方法は、プロットするタイミングでの電流値に補正係数を乗じた物を充電電荷量へ足し合わせることで可能となる。これらによって求めた充電電荷量(Q)と、これに対応する表面電位(V)をプロットして直線を引き、この傾きから静電容量(C)を算出する。図6に充電電荷量と表面電位の対応結果のグラフを示す。
この静電容量の算出自体は、コントローラの記憶領域に記憶された、表面電位と電流のデータを使用して、コントローラで処理が実施され、静電容量が算出できる。
-Measurement of capacitance-
Regarding the method for calculating the capacitance, as shown in FIG. 3 described above, the electrophotographic photosensitive member is considered as a capacitor, and the current flowing through the photosensitive member sample by corona charging and the surface potential at this time are measured. As shown in the lower graph of FIG. 3, Q = C · V (where Q is the charge charge amount, V is the charge potential of the photoconductor, and C is the electrostatic capacity of the photoconductor. The capacitance (C) is obtained from the relationship of However, since the apparatus for evaluating characteristics of an electrophotographic photoreceptor measures at a low speed, the difference between the charging means and the location of potential measurement is affected.
Here, FIG. 4 shows a potential transition graph, and FIG. 5 shows a current transition graph. As a result, the timing at which the correspondence between the potential and the charge amount coincides only with the timing of the rotation cycle, and the charge amount (Q) and the surface potential corresponding thereto can be plotted only at one rotation cycle. For example, at 200 rpm, the interval is 0.3 sec. Furthermore, the potential and current may be delayed by a noise filter, an amplifier or the like in the signal path, and it is necessary to correct it. The correction method can be achieved by adding a product obtained by multiplying the current value at the timing of plotting by a correction coefficient to the charge amount. The charge amount (Q) obtained from these and the surface potential (V) corresponding thereto are plotted, a straight line is drawn, and the capacitance (C) is calculated from this slope. FIG. 6 shows a graph of the correspondence result between the charge amount and the surface potential.
This capacitance calculation itself is processed by the controller using the surface potential and current data stored in the storage area of the controller, and the capacitance can be calculated.
−抵抗の測定−
前記電子写真感光体の抵抗を算出する方法については、帯電手段で感光体を所定の電位に帯電にさせ、その後の自然放電により減衰する電位(暗減衰)を一定時間サンプリングする。この帯電手段による帯電を停止してから暗減衰する電子写真感光体の帯電電位は、感光体を抵抗Rと、静電容量Cで並列した等価回路とに置き換え、暗減衰開始電位をV0とすると、V=V0e−t/RCとなる。
そこで、コントローラにより暗減衰開始電位V0と一定時間経過後の帯電電位Vより1/RCを算出し、先に算出した静電容量Cから感光体の単位面積あたりの暗抵抗Rを算出することができる。
-Measurement of resistance-
With respect to the method for calculating the resistance of the electrophotographic photosensitive member, the charging member is charged to a predetermined potential by a charging means, and a potential (dark decay) attenuated by subsequent natural discharge is sampled for a certain period of time. The charging potential of the electrophotographic photosensitive member that is darkly attenuated after the charging by the charging means is stopped is replaced by an equivalent circuit in which the photosensitive member is paralleled by a resistor R and a capacitance C, and the dark decay start potential is V0. V = V0e− t / RC .
Therefore, the controller calculates 1 / RC from the dark decay start potential V0 and the charging potential V after a predetermined time has elapsed, and calculates the dark resistance R per unit area of the photoreceptor from the previously calculated capacitance C. it can.
−光減衰特性の測定−
前記光減衰特性を調べるための感度は、電位が予め意図した所定の電位レベルに減衰するまでに要した時間(s)と、露光光量(単色光:μW/cm2、白色光:lx)を乗じて算出した露光量(単色光:μJ/cm2、白色光:lx・s)で評価する。
前記電子写真感光体の特性評価装置は、光を透過しない暗箱、又は暗幕等で覆われている、暗箱又は暗幕で覆われていないと、試験時に外部環境(風、光、温度)の影響を受け、正確な特性評価が困難となる。ただし、コントローラ及び信号処理回路等、感光体ドラムの評価に影響の無い物に関しては、暗箱又は暗幕で覆う必要はない。
-Measurement of optical attenuation characteristics-
The sensitivity for investigating the light attenuation characteristics includes the time (s) required for the potential to attenuate to a predetermined intended potential level and the exposure light amount (monochromatic light: μW / cm 2 , white light: lx). Evaluation is performed by the exposure amount (monochromatic light: μJ / cm 2 , white light: lx · s) calculated by multiplication.
When the electrophotographic photosensitive member characteristic evaluation apparatus is covered with a dark box that does not transmit light, or with a dark curtain, etc., and is not covered with a dark box or dark curtain, the influence of the external environment (wind, light, temperature) during testing is affected. As a result, accurate characteristic evaluation becomes difficult. However, objects that do not affect the evaluation of the photosensitive drum, such as a controller and a signal processing circuit, do not need to be covered with a dark box or a black curtain.
ここで、図1は、本発明の電子写真感光体の特性評価装置の一例を示す概略図である。この図1の電子写真感光体の特性評価装置は、電子写真感光体(感光体ドラム)1を露光する露光手段10、感光体ドラム1の電位を計測する表面電位計プローブ3、感光体ドラム1を帯電するコロナ帯電手段6、該コロナ帯電手段6へ電圧を供給するための電源7、該電源7のスイッチ11、感光体ドラム1を除電する除電用光源8、露光した光を電子写真感光体の照射面までガイドする露光ガイドボックス2を有している。
また、コロナ帯電手段6とは別に、スコロトロン帯電器16を使用しており、スコロトロンへ電圧を供給する電源17、電源17のスイッチ18を有しており、グリッドには電源14と電源14のスイッチ15を有している。
Here, FIG. 1 is a schematic view showing an example of the apparatus for evaluating the characteristics of the electrophotographic photosensitive member of the present invention. The electrophotographic photosensitive member characteristic evaluation apparatus of FIG. 1 includes an exposure means 10 for exposing an electrophotographic photosensitive member (photosensitive drum) 1, a surface potential meter probe 3 for measuring the potential of the photosensitive drum 1, and a photosensitive drum 1. A corona charging means 6 for charging the battery, a power supply 7 for supplying a voltage to the corona charging means 6, a switch 11 of the power supply 7, a light source 8 for discharging the photosensitive drum 1, and an electrophotographic photosensitive member for exposing the exposed light. The exposure guide box 2 guides to the irradiation surface.
In addition to the corona charging means 6, a scorotron charger 16 is used, and has a power source 17 for supplying a voltage to the scorotron and a switch 18 for the power source 17. The power source 14 and the switch for the power source 14 are provided on the grid. 15.
露光手段10と露光ガイドボックス2と表面電位計プローブ(透明プローブ)3は一体化された露光・検出ユニットを構成しており、該露光・検出ユニットは感光体周りに複数個配置されている(図1では4個)。また、透明プローブ3の背面には、図11に示す形状の透明プローブと同材質のガラスが貼り付けられている。
図1では、感光体を一様に帯電可能な帯電制御装置として、スコロトロン帯電器を用いているが、帯電制御装置として、接触方式の帯電ローラを用いることもできるが、非接触帯電手段として、スコロトロン帯電器の方が好ましい。
The exposure means 10, the exposure guide box 2, and the surface electrometer probe (transparent probe) 3 constitute an integrated exposure / detection unit, and a plurality of the exposure / detection units are arranged around the photosensitive member ( 4 in FIG. 1). Further, glass made of the same material as that of the transparent probe having the shape shown in FIG.
In FIG. 1, a scorotron charger is used as a charge control device capable of uniformly charging the photoconductor, but a contact-type charging roller can be used as the charge control device, but as a non-contact charging means, A scorotron charger is preferred.
この図1の電子写真感光体の特性評価装置では、感光体ドラム1はモーター12によって回転する機構となっており、図1中矢印の方向に回転する。電源7から高電圧が出力され、コロナ帯電手段6によって感光体ドラム1が帯電される。帯電時に感光体ドラム1中を通過する電流が計測され、5の信号処理回路に送られる。なお、信号処理回路の中には図示されていない平滑化回路が組み込まれており、平滑化回路によって通過電流の平滑化が行われる。
その後、A/D変換器によってデジタル信号に変換されコントローラ13に送られデジタル信号が演算処理される。
In the electrophotographic photosensitive member characteristic evaluation apparatus of FIG. 1, the photosensitive drum 1 has a mechanism that is rotated by a motor 12, and rotates in the direction of the arrow in FIG. A high voltage is output from the power source 7 and the photosensitive drum 1 is charged by the corona charging means 6. The current passing through the photosensitive drum 1 at the time of charging is measured and sent to 5 signal processing circuits. Note that a smoothing circuit (not shown) is incorporated in the signal processing circuit, and the smoothing circuit smoothes the passing current.
Thereafter, the digital signal is converted into a digital signal by the A / D converter and sent to the controller 13 where the digital signal is processed.
また、感光体ドラム1の表面電位は、各表面電位計プローブ3からモニター部である表面電位計4にそれぞれ送られモニターされ、信号処理回路9に送られる。その後、A/D変換器によって変換され、次に、コントローラ13に送られ演算処理される。コントローラ13には、感光体ドラム1を回転させるモーター12内のモータードライバが接続されている。このモータードライバでは、回転数を出力する機能、回転数をリモート制御可能な機能、位置検出機能も付加されているため、回転数制御と回転数の認識と測定位置の確認も可能である。 Further, the surface potential of the photosensitive drum 1 is sent from each surface potential meter probe 3 to the surface potential meter 4 as a monitor unit, monitored, and sent to the signal processing circuit 9. After that, it is converted by the A / D converter, and then sent to the controller 13 for arithmetic processing. A motor driver in a motor 12 that rotates the photosensitive drum 1 is connected to the controller 13. In this motor driver, a function for outputting the number of revolutions, a function for remotely controlling the number of revolutions, and a position detection function are also added, so that the number of revolutions can be controlled, the number of revolutions can be recognized, and the measurement position can be confirmed.
感光体ドラム1周りの各露光・検出ユニットは、デジタルリレー出力によってON/OFF制御されている。また、感光体の露光後電位は、露光手段10を使用することによって、測定ができ、感光体の表面電位を取り除く場合は、除電用光源8を使用して取り除くことが可能であり、感光体ドラム1の帯電特性、光減衰特性等の特性評価が可能である。更に、コントローラ13では、特性評価した結果を更に演算すること、演算結果から感光体の良否を判定させることも可能である。 Each exposure / detection unit around the photosensitive drum 1 is ON / OFF controlled by a digital relay output. Further, the post-exposure potential of the photoconductor can be measured by using the exposure means 10, and when the surface potential of the photoconductor is removed, it can be removed using the light source 8 for static elimination. It is possible to evaluate characteristics such as charging characteristics and light attenuation characteristics of the drum 1. Further, the controller 13 can further calculate the result of the characteristic evaluation and determine the quality of the photosensitive member from the calculation result.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により、何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
(実験例1)
ドラム直径の違う4種類(30mm、100mm、178mm、262mm)のドラム状基体を用いて、以下のようにして各電子写真感光体を作製した。
<電子写真感光体の作製>
まず、前記ドラム状基体上に下記組成の下引き層用塗工液を用いて浸漬塗布した後、130℃にて20分間乾燥を行い、厚み3.5μmの下引き層を形成した。
次に、下記組成の電荷発生層用塗工液を用いて浸漬塗布した後、130℃にて20分間乾燥を行い、厚み0.2μmの電荷発生層を形成した。
次に、下記組成の電荷輸送層用塗工液を用いて浸漬塗布した後、130℃にて20分間乾燥を行い、厚み27μmの電荷輸送層を形成した。以上により、電子写真感光体を作製した。
(Experimental example 1)
Each type of electrophotographic photosensitive member was produced as follows using four types (30 mm, 100 mm, 178 mm, 262 mm) of drum-shaped substrates having different drum diameters.
<Production of electrophotographic photoreceptor>
First, an undercoat layer coating solution having the following composition was dip-coated on the drum-shaped substrate, followed by drying at 130 ° C. for 20 minutes to form an undercoat layer having a thickness of 3.5 μm.
Next, after dip-coating using a coating solution for charge generation layer having the following composition, drying was performed at 130 ° C. for 20 minutes to form a charge generation layer having a thickness of 0.2 μm.
Next, after dip-coating using a charge transport layer coating solution having the following composition, drying was performed at 130 ° C. for 20 minutes to form a charge transport layer having a thickness of 27 μm. Thus, an electrophotographic photosensitive member was produced.
−下引き層用塗工液−
・酸化チタン(CR−EL、石原産業株式会社製)・・・50質量部
・アルキッド樹脂(ベッコライトM6401−50、固形分50質量%、大日本インキ化学工業株式会社製)・・・15質量部
・メラミン樹脂(L−145−60、固形分60質量%、大日本インキ化学工業株式会社製)・・・8質量部
・2−ブタノン・・・120質量部
-Undercoat layer coating solution-
-Titanium oxide (CR-EL, manufactured by Ishihara Sangyo Co., Ltd.) ... 50 parts by mass-Alkyd resin (Beckolite M6401-50, solid content 50% by mass, manufactured by Dainippon Ink & Chemicals, Inc.) ... 15 masses Parts Melamine resin (L-145-60, solid content 60% by mass, manufactured by Dainippon Ink & Chemicals, Inc.) 8 parts by mass 2-butanone 120 parts by mass
−電荷発生層用塗工液−
・下記構造式で表される非対称ビスアゾ顔料・・・2.5質量部
・メチルエチルケトン・・・110質量部
・シクロヘキサノン・・・260質量部
-Coating solution for charge generation layer-
・ Asymmetric bisazo pigment represented by the following structural formula: 2.5 parts by mass
−電荷輸送層用塗工液−
・ポリカーボネート(Zポリカ、帝人化成株式会社製)・・・10質量部
・下記構造式で示される電荷輸送物質・・・7質量部
・下記構造式で示される硫黄系酸化防止剤・・・0.5質量部
・ Polycarbonate (Z Polyca, manufactured by Teijin Chemicals Ltd.): 10 parts by mass ・ Charge transport material represented by the following structural formula: 7 parts by mass
得られた各電子写真感光体の外観を目視で確認し、電荷発生層(CGL)濃淡ムラが確認された本数と、複写機に搭載させて出力画像で判断した濃淡ムラの発生本数を評価した。結果を表1に示す。
なお、画像はハーフトーン画像を出力した際に、目視で濃淡ムラが許容範囲内であるか否かについて判断した。
The appearance of each electrophotographic photoreceptor thus obtained was confirmed visually, and the number of confirmed charge generation layer (CGL) density irregularities and the number of density irregularities determined by an output image mounted on a copying machine were evaluated. . The results are shown in Table 1.
When the halftone image was output, it was determined whether or not the unevenness in density was within an allowable range.
表1の結果から、画像検査で発覚する濃淡ムラは、ドラム直径が大きいほど目視の外観検査で検出することが困難となっていることが分かった。そのため、感光体のドラム直径が大きい場合に、濃淡ムラを画像出力無しで確認可能な評価装置が必要であることが分かった。
From the results shown in Table 1, it was found that the unevenness in density detected by the image inspection becomes more difficult to detect by visual appearance inspection as the drum diameter increases. For this reason, it has been found that there is a need for an evaluation device that can check density unevenness without image output when the drum diameter of the photosensitive member is large.
次に、作製した感光体の内、各ドラム直径で4本を、図1に示す電子写真感光体の特性評価装置を使用し、高速回転可能の可否について、下記判断基準で評価した。結果を表2に示す。
〔判断基準〕
1,000rpmで高速回転させた時の振れが0.4mm以下を「OK」とし、振れが0.4mmを超える場合を「NG」とした。
なお、振れ計測には、非接触の変位センサ(渦電流式変位センサ)を使用した。センサ部は、キーエンス社製、ANLOG SENSOR AH−416(アルミニウム仕様)を使用した。
Next, of the produced photoreceptors, four drums with each drum diameter were evaluated by using the electrophotographic photoreceptor characteristic evaluation apparatus shown in FIG. The results are shown in Table 2.
〔Judgment criteria〕
“OK” was defined as “OK” when the deflection was 0.4 mm or less when rotated at a high speed of 1,000 rpm, and “NG” was defined when the deflection exceeded 0.4 mm.
Note that a non-contact displacement sensor (eddy current displacement sensor) was used for shake measurement. As the sensor unit, ANLOG SENSOR AH-416 (aluminum specification) manufactured by Keyence Corporation was used.
(実施例1)
−感度の測定−
ドラム直径262mm、ドラム全長530mm、ドラムの肉厚5mmのドラムに、株式会社リコー製IPSIO CX8000用感光体と同じ材料、及び処方構成の感光層を形成した感光体ドラムを使用して、下記の条件で感度測定を行った。
・ドラム回転数:200rpm
・表面電位・通過電流サンプリング間隔:0.01sec
・図1に示す電子写真感光体の特性評価装置(自社で設計製作した評価装置を使用)を使用し、感度測定を実施した。
・測定方法は、まず、低速回転(200rpm)で、スコロトロン帯電器により、感光体を均一に−800Vまで帯電させ、ドラムの回転を停止した。ドラム停止後に露光し、感度測定を実施した。
・特性評価装置としては、露光手段にはシャープ社製のGH06550B2BのLDを使用し、スコロトロン帯電器に使用する電源は、グリッド及びワイヤともTREK社製の高圧電源Model1610E、表面電位計はTREK社製のModel370、表面電位計プローブ(透明プローブ)はTREK社製のModel3629A、コロトロン帯電器に使用する電源は、TREK社製の高圧電源Model610E、帯電手段はスコロトロン帯電器及びコロトロン帯電器とも内製品、除電用光源には林時計工業株式会社製の特注ラインLED(波長660nm)、モーターはオリエンタル社製のモーターユニットDX6150SD、コントローラは、デル社製のPC(Optiplex GX270)、A/D変換はナショナルインスツルメンツ社製のPCI−6025E、デジタル出力はナショナルインスツルメンツ社製のPCI−6503、それ以外の信号処理回路等は全て内製した電子写真感光体の特性評価装置を使用した。
なお、表面電位計プローブ(透明プローブ)は、露光ガイドボックスを介して露光手段と一体化されている。
Example 1
-Measurement of sensitivity-
Using a photosensitive drum in which a photosensitive layer having the same material and composition as the IPSIO CX8000 photosensitive drum manufactured by Ricoh Co., Ltd. was formed on a drum having a drum diameter of 262 mm, a drum total length of 530 mm, and a drum thickness of 5 mm, the following conditions were used. The sensitivity was measured at
・ Drum rotation speed: 200rpm
・ Surface potential / passing current sampling interval: 0.01 sec
Sensitivity measurement was performed using the electrophotographic photosensitive member characteristic evaluation apparatus shown in FIG. 1 (using an evaluation apparatus designed and manufactured in-house).
The measurement method was as follows. First, the photoreceptor was uniformly charged to −800 V with a scorotron charger at low speed (200 rpm), and the rotation of the drum was stopped. Exposure was performed after the drum was stopped, and sensitivity measurement was performed.
As a characteristic evaluation apparatus, a GH06550B2B LD manufactured by Sharp is used as an exposure means, a power source used for the scorotron charger is a grid and wire high voltage power supply Model 1610E manufactured by TREK, and a surface potential meter is manufactured by TREK. Model 370, surface potentiometer probe (transparent probe) is Model 3629A manufactured by TREK, the power source used for the corotron charger is a high voltage power model Model 610E manufactured by TREK, and the charging means is an internal product for both the scorotron charger and the corotron charger. The light source is a custom-made LED (wavelength 660 nm) manufactured by Hayashi Watch Industry Co., Ltd., the motor is a motor unit DX6150SD manufactured by Oriental, the controller is a PC manufactured by Dell (Optiplex GX270), and A / D conversion is performed by National Instruments. PCI-6025E manufactured by Luments Co., PCI-6503 manufactured by National Instruments Co., Ltd. were used for digital output, and other in-house electrophotographic photosensitive member characteristic evaluation devices were used for other signal processing circuits.
The surface electrometer probe (transparent probe) is integrated with the exposure means via an exposure guide box.
(比較例1)
−感度の測定−
実施例1において、図2に示す従来の電子写真感光体の特性評価装置(自社で設計製作した評価装置)を使用した以外は、実施例1と同様にして、以下のようにして感度測定を実施した。
なお、図2の特性評価装置は、図1の特性評価装置と違い、スコロトロン帯電器は配置しておらず、露光手段はコロトロン帯電器6が1つしか配置されていない。また、表面電位プローブ3は露光部先端には配置しておらず、感光体1の真下に取り付けられている。更に表面電位プローブ3としては通常のプローブ(透明プローブではない)を使用している。
・測定方法は、まず、低速回転(200rpm)で、コロトロン帯電器により、感光体を複数回回転させ−800Vになるまで帯電させる。その後、低速回転のまま露光し、感度測定を実施した。
・特性評価装置としては、露光手段にはシャープ社製のGH06550B2BのLDを使用し、コロトロン帯電器に使用する電源は、グリッド及びワイヤともTREK社製の高圧電源Model 1610E、表面電位計はTREK社製のModel344、表面電位計プローブはTREK社製のModel6000B−7C、帯電手段は内製したコロトロン帯電器とも内製品、除電用光源には林時計工業株式会社製の特注ラインLED(波長660nm)、モーターはオリエンタル社製のモーターユニットDX6150SD、コントローラは、デル社製のPC(Optiplex GX270)、A/D変換には、ナショナルインスツルメンツ社製のPCI−6025E、デジタル出力はナショナルインスツルメンツ社製のPCI−6503、それ以外の信号処理回路等は全て内製して製作した特性評価装置を使用した。
(Comparative Example 1)
-Measurement of sensitivity-
In Example 1, sensitivity measurement was performed as follows in the same manner as in Example 1 except that the conventional electrophotographic photosensitive member characteristic evaluation apparatus (evaluation apparatus designed and manufactured in-house) shown in FIG. 2 was used. Carried out.
2 is different from the characteristic evaluation apparatus of FIG. 1 in that no scorotron charger is provided and only one corotron charger 6 is provided as the exposure means. Further, the surface potential probe 3 is not disposed at the tip of the exposure unit, but is attached directly below the photoreceptor 1. Furthermore, a normal probe (not a transparent probe) is used as the surface potential probe 3.
In the measurement method, first, the photosensitive member is rotated a plurality of times by a corotron charger at a low speed rotation (200 rpm) and charged to −800V. Thereafter, exposure was performed while rotating at low speed, and sensitivity measurement was performed.
As a characteristic evaluation apparatus, a GH06550B2B LD manufactured by Sharp is used as the exposure means, the power source used for the corotron charger is a grid and wire high voltage power supply Model 1610E manufactured by TREK, and the surface potential meter is manufactured by TREK. Model 344 made by TREK, Model 6000B-7C made by TREK, the charging means is an in-house manufactured corotron charger, and the static elimination light source is a custom-made LED (wavelength 660 nm) made by Hayashi Watch Industry Co., Ltd. The motor is a motor unit DX6150SD manufactured by Oriental, the controller is a PC manufactured by Dell (Optiplex GX270), the A / D conversion is PCI-6025E manufactured by National Instruments, and the digital output is PCI-6503 manufactured by National Instruments. Otherwise the signal processing circuit and the like of using the characteristic evaluation apparatus manufactured by made in all.
実施例1で測定した表面電位推移グラフを図7、比較例1で測定した表面電位推移グラフを図8に示す。ただし、図7の結果は、1つの露光・検出ユニットの結果である。
図7及び図8の結果から、図7のように時間と共に電位が徐々に低下する状況を正確に把握できているため、感度が正確に計算できる。一方、図8では、電位の時間変化は階段状となっており、正確に把握できておらず、感度を正確に計算できない。
したがって、露光手段と表面電位プローブの位置が離れている状態で、低速回転で計測を実施する方法(比較例1)では、感度を正確に計測できないことが分かった。これに対し、露光手段と表面電位プローブの位置が同じ位置であり、かつ停止状態で感度測定を実施する方法(実施例1)では、感度を精度良く測定可能であることが分かった。実施例1では、露光・検出ユニットが複数個配置されているため、複数箇所の感度測定も可能となることが分かった。
The surface potential transition graph measured in Example 1 is shown in FIG. 7, and the surface potential transition graph measured in Comparative Example 1 is shown in FIG. However, the result of FIG. 7 is a result of one exposure / detection unit.
From the results of FIGS. 7 and 8, since the situation in which the potential gradually decreases with time as shown in FIG. 7 can be accurately grasped, the sensitivity can be accurately calculated. On the other hand, in FIG. 8, the time change of the electric potential is stepped, and cannot be accurately grasped, and the sensitivity cannot be calculated accurately.
Therefore, it was found that the sensitivity cannot be accurately measured by the method (Comparative Example 1) in which the measurement is performed at a low speed while the exposure unit and the surface potential probe are separated from each other. On the other hand, it was found that the sensitivity can be measured with high accuracy by the method (Example 1) in which the exposure means and the surface potential probe are at the same position and the sensitivity measurement is performed in the stopped state. In Example 1, since a plurality of exposure / detection units are arranged, it has been found that sensitivity measurement at a plurality of locations is possible.
次に、図1の電子写真感光体の特性評価装置で使用する透明プローブの透過率について調査した。図9は透明プローブの正面概略図、図10は透明プローブの上面概略図であり、19は振動電極、20は導電性材料でコーティングされたガラス、21は開口部、22はガラス基材を示し、位置によってガラスの枚数が違っていることが分かった。 Next, the transmittance of the transparent probe used in the electrophotographic photosensitive member characteristic evaluation apparatus of FIG. 1 was investigated. 9 is a schematic front view of the transparent probe, FIG. 10 is a schematic top view of the transparent probe, 19 is a vibrating electrode, 20 is glass coated with a conductive material, 21 is an opening, and 22 is a glass substrate. I found out that the number of glasses differs depending on the position.
(実施例2)
−照度の測定−
実施例1と同じ電子写真感光体の特性評価装置を使用し、透明プローブの背面には、図11に示す形状の透明プローブと同材質のガラスを貼り付けた。その状態で照度分布を計測した。
図11のガラスは、ガラス全体のサイズはプローブと同サイズ(21.89mm×21.89mm)であり、振動電極19と同サイズ分カットされているが、開口部21サイズ領域分(直径4.978mm)はガラスが残された形状となっている。また、2枚の振動電極の間で、かつ開口部領域と重なる部分には、ガラスをもう1枚貼り付けた構造となっている。
(Example 2)
-Measurement of illuminance-
The same electrophotographic photosensitive member characteristic evaluation apparatus as that of Example 1 was used, and glass of the same material as the transparent probe having the shape shown in FIG. 11 was attached to the back surface of the transparent probe. The illuminance distribution was measured in that state.
The glass of FIG. 11 has the same size as the probe (21.89 mm × 21.89 mm) and is cut by the same size as the vibrating electrode 19, but the opening 21 size region (diameter 4. 978 mm) is a shape in which glass is left. In addition, another glass is attached to a portion between the two vibrating electrodes and overlapping the opening region.
(実施例2a)
−照度の測定−
実施例1と同じ電子写真感光体の特性評価装置を使用して照度分布を計測した。ただし、追加のガラス貼り付けは無かった。
Example 2a
-Measurement of illuminance-
The illuminance distribution was measured using the same electrophotographic photosensitive member characteristic evaluation apparatus as in Example 1. However, there was no additional glass sticking.
実施例2及び実施例2aとも、照度分布の測定は、透明プローブを通過した光(655nmLD光)を光パワーメーター(YOKOGAWA社製、Model3292)で計測し、透明プローブを通過しない状態の結果との比率から照度分布を確認した。照度分布の測定は、図12に示すように、A地点からB地点までの透過光を計測した。
実施例2での照度分布の結果を図14、実施例2aでの照度分布の結果を図13にそれぞれ示す。
図13及び図14の結果から、精度の良い計測を行うためには透明プローブを使用して計測する場合は、透明プローブと露光手段との間に透明プローブの透過分をカバーするように同材質の補正部材を取り付ける必要があることが分かった。
In both Example 2 and Example 2a, the illuminance distribution was measured by measuring the light (655 nm LD light) that passed through the transparent probe with an optical power meter (Model 3292, manufactured by YOKOGAWA), and the result of not passing through the transparent probe. The illuminance distribution was confirmed from the ratio. The illuminance distribution was measured by measuring transmitted light from point A to point B as shown in FIG.
FIG. 14 shows the result of illuminance distribution in Example 2, and FIG. 13 shows the result of illuminance distribution in Example 2a.
From the results of FIGS. 13 and 14, in order to perform measurement with high accuracy, when using a transparent probe, the same material is used so as to cover the transmission of the transparent probe between the transparent probe and the exposure means. It was found that it was necessary to attach a correction member.
次に、画像形成装置(株式会社リコー製、imagio MF7070)に搭載された感光体ドラム(ドラム直径100mm、ドラム全長360mm、ドラムの肉厚1.2mm)を3本使用して、−800Vにおける抵抗測定を行った(ドラム回転数は200rpm、表面電位・通過電流サンプリング間隔:0.01sec)。 Next, a resistance at −800 V is obtained using three photosensitive drums (drum diameter 100 mm, drum overall length 360 mm, drum thickness 1.2 mm) mounted on an image forming apparatus (manufactured by Ricoh Co., Ltd., imgio MF7070). Measurement was performed (drum rotation speed was 200 rpm, surface potential / passing current sampling interval: 0.01 sec).
(実施例3)
−抵抗の測定−
実施例2と同じ電子写真感光体の特性評価装置を使用し、以下のようにして抵抗測定を実施した。感光体の帯電は、スコロトロン帯電器を使用した(グリッド電圧:−810V、ワイヤ印可電圧:−5.7kV)。
(Example 3)
-Measurement of resistance-
Using the same electrophotographic photosensitive member characteristic evaluation apparatus as in Example 2, resistance measurement was performed as follows. The photoreceptor was charged using a scorotron charger (grid voltage: -810 V, wire applied voltage: -5.7 kV).
(実施例3a)
実施例2と同じ電子写真感光体の特性評価装置を使用し、以下のようにして抵抗測定を実施した。ただし、スコロトロン帯電器は配置されておらず、感光体の帯電は、コロトロン帯電器を使用した(ワイヤ印可電圧:−5.2kV)。
Example 3a
Using the same electrophotographic photosensitive member characteristic evaluation apparatus as in Example 2, resistance measurement was performed as follows. However, a scorotron charger was not provided, and a corotron charger was used for charging the photosensitive member (wire applied voltage: -5.2 kV).
<抵抗の測定>
抵抗の測定は、低速(200rpm)で回転し、所定の電位に到達するまで帯電を実施した。その後、回転を停止させ、下記の抵抗測定方法で抵抗を算出した。実施例3及び実施例3aとも、−810Vから−790Vに減衰するまでの時間から、抵抗を算出するため、−810Vを超えた時点で帯電を切り測定した。抵抗測定開始電圧と、抵抗算出結果を表4に示す。
−抵抗測定方法−
帯電手段で感光体を所定の電位に帯電にさせ、その後の自然放電により減衰する電位(暗減衰)を一定時間サンプリングした。この帯電手段による帯電を停止してから暗減衰する電子写真感光体の帯電電位は、感光体を抵抗Rと、静電容量Cで並列した等価回路とに置き換え、暗減衰開始電位をV0とすると、V=V0e−t/RCとなる。そこで、コントローラにより暗減衰開始電位V0と一定時間経過後の帯電電位Vより1/RCを算出し、先に算出した静電容量Cから感光体の単位面積あたりの暗抵抗Rを算出した。
<Measurement of resistance>
The resistance was measured by rotating at a low speed (200 rpm) and charging until a predetermined potential was reached. Then, rotation was stopped and resistance was computed with the following resistance measuring method. In both Example 3 and Example 3a, in order to calculate the resistance from the time until it decays from -810V to -790V, the charge was cut off when the voltage exceeded -810V. Table 4 shows the resistance measurement start voltage and the resistance calculation result.
-Resistance measurement method-
The photosensitive member was charged to a predetermined potential by the charging means, and the potential (dark decay) attenuated by the subsequent natural discharge was sampled for a certain period of time. The charging potential of the electrophotographic photosensitive member that is darkly attenuated after the charging by the charging means is stopped is replaced by an equivalent circuit in which the photosensitive member is paralleled by a resistor R and a capacitance C, and the dark decay start potential is V0. V = V0e− t / RC . Therefore, the controller calculated 1 / RC from the dark decay start potential V0 and the charging potential V after a predetermined time, and the dark resistance R per unit area of the photoconductor was calculated from the previously calculated capacitance C.
(実施例4)
−感度の測定−
実験例1の表1のドラム直径262mmの感光体ドラム20本の内、画像検査でムラが判明した4本と、画像検査でムラが判明しなかった4本について図1の電子写真感光体の特性評価装置を使用し、以下のようにして感度を計測した。結果を表5に示す。
<感度の測定方法>
感度の測定は、低速(200rpm)で回転させた状態で、スコロトロン帯電器16で感光体を−800Vに帯電した。その後、回転を停止させ、感光体周りに配置された4つの露光・検出ユニットで感度を計測した。なお、感度は、−800Vから−150Vまで光減衰させたときの感度を算出した。
Example 4
-Measurement of sensitivity-
Among the 20 photosensitive drums having a drum diameter of 262 mm shown in Table 1 of Experimental Example 1, four of which the unevenness was found by the image inspection and four of which the unevenness was not found by the image inspection are shown in FIG. The sensitivity was measured as follows using a characteristic evaluation apparatus. The results are shown in Table 5.
<Measurement method of sensitivity>
The sensitivity was measured by charging the photosensitive member to −800 V with the scorotron charger 16 while rotating at a low speed (200 rpm). Thereafter, the rotation was stopped, and the sensitivity was measured by four exposure / detection units arranged around the photoconductor. The sensitivity was calculated when the light was attenuated from −800V to −150V.
次に、株式会社リコー製のimagio MF7070に搭載された感光体ドラム(ドラム直径100mm、ドラム全長360mm、ドラムの肉厚1.2mm)を使用して評価に費やす時間を計測した。ドラム回転数は200rpm、表面電位・通過電流サンプリング間隔:0.01secであった。計測結果を表6に示す。 Next, the time spent for evaluation was measured using a photosensitive drum (drum diameter 100 mm, drum overall length 360 mm, drum wall thickness 1.2 mm) mounted on IMAIO MF7070 manufactured by Ricoh Co., Ltd. The drum rotation speed was 200 rpm, and the surface potential / passing current sampling interval was 0.01 sec. Table 6 shows the measurement results.
(実施例5)
実施例4の電子写真感光体の特性評価装置を使用した。この特性評価装置は、露光・検出ユニット間の感度バラツキを計測可能な機能と、露光・検出ユニット間のバラツキをコントローラに接続されたモニターへ表示させて、電子写真感光体の良否を判定する機能とを有している。
(Example 5)
The electrophotographic photosensitive member property evaluation apparatus of Example 4 was used. This characteristic evaluation device has a function that can measure the sensitivity variation between exposure and detection units, and a function that displays the variation between exposure and detection units on a monitor connected to the controller to judge the quality of the electrophotographic photosensitive member. And have.
(実施例5a)
実施例4の電子写真感光体の特性評価装置を使用した。この特性評価装置は、各露光・検出ユニットの感度結果を出力する機能のみを有している。
(Example 5a)
The electrophotographic photosensitive member property evaluation apparatus of Example 4 was used. This characteristic evaluation apparatus has only a function of outputting the sensitivity result of each exposure / detection unit.
(比較例5b)
電子写真感光体について、実験例1と同様にして画像検査を行い評価した。結果を表6に示す。
(Comparative Example 5b)
The electrophotographic photoreceptor was evaluated by performing image inspection in the same manner as in Experimental Example 1. The results are shown in Table 6.
本発明の電子写真感光体の特性評価装置は、低速回転で帯電特性、抵抗、感度等のドラム状感光体の様々な特性評価に対応でき、かつ画像出しを実施せずに欠陥を判別可能であり、実機での画像評価をせずに精度良く容易に電子写真感光体の特性を評価可能である。 The electrophotographic photosensitive member characteristic evaluation apparatus of the present invention can cope with various characteristic evaluations of a drum-shaped photosensitive member such as charging characteristics, resistance, and sensitivity at low speed rotation, and can determine defects without performing image output. In addition, the characteristics of the electrophotographic photosensitive member can be evaluated easily and accurately without image evaluation using an actual machine.
1 電子写真感光体(感光体ドラム)
2 露光ガイドボックス
3 表面電位計プローブ(透明プローブ)
4 表面電位計
5 信号処理回路
6 コロナ帯電手段
7 電源
8 除電用光源
9 信号処理回路
10 露光手段
11 電源スイッチ
12 モーター
13 コントローラ
14 電源
15 電源スイッチ
16 スコロトロン帯電器
17 電源
18 電源スイッチ
19 振動電極
20 導電性材料でコーティングされたガラス
21 開口部
22 ガラス基材
1 Electrophotographic photoreceptor (photoreceptor drum)
2 Exposure guide box 3 Surface electrometer probe (transparent probe)
DESCRIPTION OF SYMBOLS 4 Surface potential meter 5 Signal processing circuit 6 Corona charging means 7 Power supply 8 Light source for static elimination 9 Signal processing circuit 10 Exposure means 11 Power switch 12 Motor 13 Controller 14 Power supply 15 Power switch 16 Scorotron charger 17 Power supply 18 Power switch 19 Vibrating electrode 20 Glass coated with conductive material 21 Opening 22 Glass substrate
Claims (8)
前記表面電位検出手段が、ガラス基材上に導電性材料を塗布してなる透明プローブであり、
前記透明プローブと前記露光手段とが一体化した露光・検出ユニットを有し、
前記露光・検出ユニットが、前記電子写真感光体周りに複数個配置されていることを特徴とする電子写真感光体の特性評価装置。 An apparatus for evaluating characteristics of an electrophotographic photosensitive member having at least a charging unit, an exposure unit, and a surface potential detection unit,
The surface potential detection means is a transparent probe formed by applying a conductive material on a glass substrate,
An exposure / detection unit in which the transparent probe and the exposure means are integrated,
An apparatus for evaluating characteristics of an electrophotographic photosensitive member, wherein a plurality of the exposure / detection units are arranged around the electrophotographic photosensitive member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137152A JP4922067B2 (en) | 2007-05-23 | 2007-05-23 | Device for evaluating characteristics of electrophotographic photosensitive member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007137152A JP4922067B2 (en) | 2007-05-23 | 2007-05-23 | Device for evaluating characteristics of electrophotographic photosensitive member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008292258A true JP2008292258A (en) | 2008-12-04 |
JP4922067B2 JP4922067B2 (en) | 2012-04-25 |
Family
ID=40167142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007137152A Expired - Fee Related JP4922067B2 (en) | 2007-05-23 | 2007-05-23 | Device for evaluating characteristics of electrophotographic photosensitive member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4922067B2 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238852A (en) * | 1988-07-28 | 1990-02-08 | Fujitsu Ltd | Deterioration measuring apparatus for photosensitive body |
JPH0440335A (en) * | 1990-06-05 | 1992-02-10 | Matsushita Electric Ind Co Ltd | Optical response measuring instrument |
JPH0588524A (en) * | 1991-09-30 | 1993-04-09 | Mita Ind Co Ltd | Exposure device for electrostatic charging characteristic inspection of photosensitive body |
JPH07128291A (en) * | 1993-11-04 | 1995-05-19 | Fuji Xerox Co Ltd | Inspection device of photosensitive drum |
JPH09211044A (en) * | 1996-02-05 | 1997-08-15 | Hitachi Ltd | Electrostatic discharge monitoring device |
JPH10282057A (en) * | 1997-04-04 | 1998-10-23 | Ricoh Co Ltd | Capacitance measuring device of photoreceptor for electronic photograph |
JP2002082572A (en) * | 2000-09-08 | 2002-03-22 | Canon Inc | Method for evaluating characteristic of photoreceptor |
JP2003005389A (en) * | 2001-06-21 | 2003-01-08 | Canon Inc | Method and apparatus for evaluating characteristic of photoreceptor |
JP2003029572A (en) * | 2001-07-12 | 2003-01-31 | Canon Inc | Method for evaluating characteristics of photoreceptor |
JP2003035735A (en) * | 2001-07-24 | 2003-02-07 | Toshiba Corp | Method and apparatus for measuring charging amount as well as method and apparatus for measuring displacing amount of charged beam |
JP2003279608A (en) * | 2002-03-22 | 2003-10-02 | Ricoh Co Ltd | Capacitance calculation method and characteristic evaluation device for electrophotography photosensitive body |
-
2007
- 2007-05-23 JP JP2007137152A patent/JP4922067B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238852A (en) * | 1988-07-28 | 1990-02-08 | Fujitsu Ltd | Deterioration measuring apparatus for photosensitive body |
JPH0440335A (en) * | 1990-06-05 | 1992-02-10 | Matsushita Electric Ind Co Ltd | Optical response measuring instrument |
JPH0588524A (en) * | 1991-09-30 | 1993-04-09 | Mita Ind Co Ltd | Exposure device for electrostatic charging characteristic inspection of photosensitive body |
JPH07128291A (en) * | 1993-11-04 | 1995-05-19 | Fuji Xerox Co Ltd | Inspection device of photosensitive drum |
JPH09211044A (en) * | 1996-02-05 | 1997-08-15 | Hitachi Ltd | Electrostatic discharge monitoring device |
JPH10282057A (en) * | 1997-04-04 | 1998-10-23 | Ricoh Co Ltd | Capacitance measuring device of photoreceptor for electronic photograph |
JP2002082572A (en) * | 2000-09-08 | 2002-03-22 | Canon Inc | Method for evaluating characteristic of photoreceptor |
JP2003005389A (en) * | 2001-06-21 | 2003-01-08 | Canon Inc | Method and apparatus for evaluating characteristic of photoreceptor |
JP2003029572A (en) * | 2001-07-12 | 2003-01-31 | Canon Inc | Method for evaluating characteristics of photoreceptor |
JP2003035735A (en) * | 2001-07-24 | 2003-02-07 | Toshiba Corp | Method and apparatus for measuring charging amount as well as method and apparatus for measuring displacing amount of charged beam |
JP2003279608A (en) * | 2002-03-22 | 2003-10-02 | Ricoh Co Ltd | Capacitance calculation method and characteristic evaluation device for electrophotography photosensitive body |
Also Published As
Publication number | Publication date |
---|---|
JP4922067B2 (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09196893A (en) | Detection method for electric charge shortage spot generation in electrophotographic image forming member | |
US8019239B2 (en) | Device and method for detecting life of organic photoreceptor and image forming apparatus | |
JP4922067B2 (en) | Device for evaluating characteristics of electrophotographic photosensitive member | |
JP4914250B2 (en) | Method and apparatus for evaluating characteristics of electrophotographic photoreceptor | |
JP2003029572A (en) | Method for evaluating characteristics of photoreceptor | |
JP4726738B2 (en) | Device for evaluating characteristics of electrophotographic photoreceptors | |
JP2010117580A (en) | Method and device for evaluating characteristic of electrophotographic photoreceptor | |
JP4964702B2 (en) | Device for evaluating characteristics of electrophotographic photosensitive member | |
JP5821224B2 (en) | Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method | |
JP2003005389A (en) | Method and apparatus for evaluating characteristic of photoreceptor | |
JP2008070789A (en) | Instrument for evaluating characteristics of electrophotographic photoreceptor | |
JP2003005578A (en) | Characteristic evaluation device and characteristic evaluation method for photoreceptor | |
JP2010286612A (en) | Device for evaluating characteristic of electrophotographic photoreceptor | |
US5929640A (en) | Automated stationary/portable test system for photoconductive drums | |
JP5967476B2 (en) | Apparatus and method for evaluating characteristics of latent image carrier | |
US6469513B1 (en) | Automated stationary/portable test system for applying a current signal to a dielectric material being tested | |
JP2012098659A (en) | Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor | |
JP2014026160A (en) | Evaluation device for photoreceptor and evaluation method for photoreceptor | |
JP5447838B2 (en) | Electrophotographic photoconductor characteristic evaluation device | |
JP2009115701A (en) | Electrometer probe, and instrument for measuring photoreceptor sensitivity | |
JP2005352176A (en) | Photoreceptor deterioration acceleration test method and acceleration test equipment | |
JP2013064909A (en) | Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor | |
JP4057448B2 (en) | Electrophotographic photoreceptor test equipment | |
JP6020966B2 (en) | Apparatus and method for evaluating characteristics of latent image carrier | |
JP5078465B2 (en) | Inspection method of electrophotographic photosensitive member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4922067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150210 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |