JP2008291332A - Method for producing molten iron using vertical-type scrap-melting furnace - Google Patents

Method for producing molten iron using vertical-type scrap-melting furnace Download PDF

Info

Publication number
JP2008291332A
JP2008291332A JP2007139792A JP2007139792A JP2008291332A JP 2008291332 A JP2008291332 A JP 2008291332A JP 2007139792 A JP2007139792 A JP 2007139792A JP 2007139792 A JP2007139792 A JP 2007139792A JP 2008291332 A JP2008291332 A JP 2008291332A
Authority
JP
Japan
Prior art keywords
dust
melting furnace
furnace
hot metal
agglomerate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139792A
Other languages
Japanese (ja)
Other versions
JP4992549B2 (en
Inventor
Yoshitaka Sawa
義孝 澤
Eiju Matsuno
英寿 松野
Ryota Murai
亮太 村井
Yukio Takahashi
幸雄 高橋
Mutsumi Tada
睦 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007139792A priority Critical patent/JP4992549B2/en
Publication of JP2008291332A publication Critical patent/JP2008291332A/en
Application granted granted Critical
Publication of JP4992549B2 publication Critical patent/JP4992549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably perform the operation without developing such problems as to increase the blasting pressure and drop the molten iron tapping temperature and slag temperature, when the molten iron is produced by using dust-agglomerate as a part of the charging material into a vertical-type scrap-melting furnace. <P>SOLUTION: In the method for producing the molten iron by charging iron-based scrap, the dust-agglomerate for agglomerating the dust containing metallic oxide, and coke into the vertical-type scrap-melting furnace and blasting hot blast from a plurality of tuyeres arranged at the lower part of the furnace; the operation is performed so that a typical length R(m) of the dust-agglomerate charged into the vertical-type scrap-melting furnace and the molten iron producing speed W(t/m<SP>2</SP>×hr), satisfy formula (1), 0.018≤R≤0.090-0.00333×W, or desirably, formula (2), 0.018≤R≤0.065-0.00233×W. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、竪型スクラップ溶解炉を用い、コークスの燃焼熱により鉄系スクラップを溶解して溶銑を製造する方法において、炉装入物の一部として金属酸化物を含有するダストを塊成化したダスト塊成化物を用いる溶銑製造方法に関する。   The present invention uses a vertical scrap melting furnace to agglomerate dust containing metal oxide as part of the furnace charge in a method for producing hot metal by melting iron scrap by the combustion heat of coke. The present invention relates to a hot metal manufacturing method using a dust agglomerated product.

従来、竪型溶解炉を用いて鉄系スクラップを溶解するプロセスが知られており(例えば、特許文献1)、このプロセスでは、竪型溶解炉の炉頂部から鉄系スクラップとコークスを装入し、炉下部に設けられた複数の羽口(送風羽口)から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑が得られる。
一般に、鉄系スクラップには亜鉛めっき材などに由来する亜鉛が相当量含まれており、上記プロセスでは、鉄系スクラップに含まれる亜鉛が炉内を降下する過程で加熱されて金属蒸気となる。この亜鉛の金属蒸気は炉内ガス流に随伴して上昇し、温度が低い炉頂付近に達すると酸化されて微細な酸化亜鉛になり、ダストの一部として炉排ガスとともに排出される。このため炉排ガスから回収されるダストには、亜鉛が20〜30mass%程度含まれている。
Conventionally, a process for melting iron-based scrap using a vertical melting furnace is known (for example, Patent Document 1). In this process, iron-based scrap and coke are charged from the top of the vertical melting furnace. Hot metal is blown from a plurality of tuyere (blower tuyere) provided at the lower part of the furnace, and iron scrap is melted by the combustion heat of coke to obtain hot metal.
In general, iron-based scrap contains a considerable amount of zinc derived from a galvanized material and the like, and in the above process, zinc contained in the iron-based scrap is heated in the process of descending in the furnace to become metal vapor. The zinc metal vapor rises along with the gas flow in the furnace, and when it reaches the vicinity of the top of the furnace where the temperature is low, it is oxidized to become fine zinc oxide and discharged together with the furnace exhaust gas as a part of dust. For this reason, about 20-30 mass% of zinc is contained in the dust recovered from the furnace exhaust gas.

このようなダストに含まれる亜鉛は、資源として再利用される必要があるが、亜鉛含有ダストをそのまま精錬用の亜鉛原料として利用するには、少なくとも50mass%程度の亜鉛濃度が必要である。したがって、上記プロセスで回収されるような亜鉛濃度のダストは、精錬用の亜鉛原料とするためには亜鉛を濃縮するための特別な処理が必要であり、処理コストがかかる。
このような問題に対して、製鉄用の竪型溶解炉で発生する亜鉛含有ダストを塊成化し、このダスト塊成化物を竪型溶解炉でリサイクル装入することで、2次ダスト(炉にダスト塊成化物を装入して操業した際に生成するダスト)中に亜鉛を濃化させ、亜鉛濃度が高められたダストを回収する方法が知られている(例えば、特許文献2)。
特開昭56−156709号公報 特開昭55−125211号公報
Zinc contained in such dust needs to be reused as a resource, but in order to use zinc-containing dust as a raw material for refining zinc as it is, a zinc concentration of at least about 50 mass% is required. Therefore, the dust having the zinc concentration recovered by the above process needs a special treatment for concentrating zinc in order to use it as a zinc raw material for refining, and the processing cost is high.
To solve this problem, the zinc-containing dust generated in the vertical melting furnace for iron making is agglomerated, and this dust agglomerated material is recycled and charged in the vertical melting furnace, so that the secondary dust (into the furnace) is obtained. There is known a method in which zinc is concentrated in dust that is generated when a dust agglomerated material is charged and operated (see, for example, Patent Document 2).
JP-A-56-156709 Japanese Patent Laid-Open No. 55-125211

しかし、本発明者らが検討した結果、このようにダスト塊成化物を竪型溶解炉でリサイクル装入するプロセスでは、ガス通気性が阻害されて送風圧力が増大する、出銑温度やスラグ温度が低下する、スラグ温度の低下によりスラグの排出性も低下する、などの問題を生じやすく、必ずしも安定的な操業を行えないことが判った。
したがって本発明の目的は、竪型スクラップ溶解炉で炉装入物の一部としてダスト塊成化物を用いて溶銑を製造する方法において、送風圧力の増大、出銑温度やスラグ温度の低下などの問題を生じることなく、安定した操業を行うことができる溶銑製造方法を提供することにある。
However, as a result of the study by the present inventors, in the process of recycling the dust agglomerate in the vertical melting furnace as described above, the gas blowing performance is hindered and the blowing pressure is increased, and the output temperature and slag temperature are increased. It has been found that problems such as lowering of slag and slag discharge due to lowering of slag temperature are likely to occur, and stable operation cannot always be performed.
Therefore, the object of the present invention is to increase the blast pressure, lower the tapping temperature and the slag temperature, etc. in the method of producing hot metal using dust agglomerates as part of the furnace charge in a vertical scrap melting furnace. An object of the present invention is to provide a hot metal production method capable of performing stable operation without causing problems.

本発明者らは、上記課題を解決すべく検討を重ねた結果、竪型スクラップ溶解炉に炉装入物の一部としてダスト塊成化物を装入して溶銑を製造するプロセスでは、溶銑生産速度に応じてダスト塊成化物の粒径を最適化することが重要であり、上記のような諸問題は使用するダスト塊成化物の粒径が不適切であることに起因したものであることが判明した。
本発明はこのような知見に基づきなされたもので、その要旨は以下とおりである。
[1]竪型スクラップ溶解炉において、炉頂部から鉄系スクラップと、金属酸化物を含有するダストを塊成化したダスト塊成化物と、コークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込んで溶銑を製造する方法であって、
竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(1)式を満足するように操業を行うことを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
0.018≦R≦0.090−0.00333×W …(1)
但し ダスト塊成化物の代表長さR:ダスト塊成化物内部の任意点から塊成化物表面までの最も短い距離を求める。この距離をダスト塊成化物内部すべての点において求め、その最大値をダスト塊成化物の代表長さRとする。
As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention, in the process of manufacturing hot metal by charging dust agglomerates as part of the furnace charge into a vertical scrap melting furnace, It is important to optimize the particle size of the dust agglomerate according to the speed, and the above problems are caused by the inappropriate particle size of the dust agglomerate used. There was found.
The present invention has been made based on such findings, and the gist thereof is as follows.
[1] In a vertical scrap melting furnace, iron scrap from the top of the furnace, dust agglomerates agglomerated dust containing metal oxide, and coke are charged, and a plurality of A method for producing hot metal by blowing hot air from a tuyere,
Operation is performed so that the representative length R (m) of the dust agglomerate charged into the vertical scrap melting furnace and the hot metal production rate W (t / m 2 · hr) satisfy the following formula (1): A hot metal production method using a vertical scrap melting furnace.
0.018 ≦ R ≦ 0.090−0.00333 × W (1)
However, the representative length R of the dust agglomerated material: the shortest distance from an arbitrary point inside the dust agglomerated material to the surface of the agglomerated material is obtained. This distance is obtained at all points inside the dust agglomerate, and the maximum value is taken as the representative length R of the dust agglomerate.

[2]上記[1]の製造方法において、竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(2)式を満足するように操業を行うことを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
0.018≦R≦0.065−0.00233×W …(2)
[3]上記[1]または[2]の製造方法において、竪型スクラップ溶解炉に装入するダスト塊成化物として、当該竪型スクラップ溶解炉において発生する亜鉛含有ダストまたはこれを含むダストを塊成化したダスト塊成化物を用いることを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、ダスト塊成化物は、金属酸化物を含有するダストと水硬性バインダーとを主体とし、水分添加された原料混合物を圧縮成型した後、水和硬化させたダスト塊成化物であることを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
[2] In the production method of [1] above, the representative length R (m) of the dust agglomerate charged into the vertical scrap melting furnace and the hot metal production rate W (t / m 2 · hr) are as follows (2 ) A hot metal production method using a vertical scrap melting furnace characterized in that the operation is performed so as to satisfy the formula.
0.018 ≦ R ≦ 0.065−0.00233 × W (2)
[3] In the manufacturing method according to [1] or [2] above, as the dust agglomerate charged into the vertical scrap melting furnace, the zinc-containing dust generated in the vertical scrap melting furnace or dust containing the same is agglomerated. A method for producing hot metal using a vertical scrap melting furnace, characterized by using an agglomerated dust agglomerated material.
[4] In the production method according to any one of [1] to [3] above, the dust agglomerated product is compression molded from a moisture-added raw material mixture mainly composed of a dust containing a metal oxide and a hydraulic binder. After that, a hot metal manufacturing method using a vertical scrap melting furnace, which is a hydrated and hardened dust agglomerate.

本発明の溶銑製造方法によれば、竪型スクラップ溶解炉において炉装入物の一部としてダスト塊成化物を用いて溶銑を製造する際に、送風圧力の増大、出銑温度やスラグ温度の低下などの問題を生じることなく、安定した操業を行うことができる。   According to the hot metal production method of the present invention, when producing hot metal using a dust agglomerate as part of the furnace charge in a vertical scrap melting furnace, the increase of the blowing pressure, the hot metal temperature and the slag temperature Stable operation can be performed without causing problems such as lowering.

本発明は、竪型スクラップ溶解炉において、炉頂部から鉄系スクラップと、金属酸化物を含有するダストを塊成化したダスト塊成化物と、コークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込み、コークスの燃焼熱で鉄系スクラップを溶解することにより溶銑を製造する方法である。
図1は、竪型スクラップ溶解炉の一例を模式的に示すもので、1は炉頂に設けられる原料装入部、2は炉下部の周方向において適当な間隔で設けられる複数の羽口(送風羽口)、3はこの羽口2に熱風を供給する熱風管、4は排ガス出口、5は出銑口である。この溶解炉の大きさ等に本質的な制限はないが、実質的に操業可能若しくは操業上有利なサイズとして、通常は、羽口位置での炉内径が2〜4m程度、炉高が6〜10m程度である。
In the vertical scrap melting furnace, the present invention is a steel scrap, a dust agglomerate obtained by agglomerating dust containing metal oxide from the top of the furnace, a plurality of coke and charged at the bottom of the furnace. This is a method for producing hot metal by blowing hot air from the tuyere and melting iron scrap with the combustion heat of coke.
FIG. 1 schematically shows an example of a vertical scrap melting furnace, where 1 is a raw material charging portion provided at the top of the furnace, and 2 is a plurality of tuyere provided at appropriate intervals in the circumferential direction of the lower portion of the furnace ( 3 is a hot air pipe for supplying hot air to the tuyere 2, 4 is an exhaust gas outlet, and 5 is an outlet. Although there is no essential limitation on the size of the melting furnace or the like, the furnace inner diameter at the tuyere position is usually about 2 to 4 m and the furnace height is 6 to 6 as a size that is substantially operable or advantageous in operation. It is about 10m.

このような竪型スクラップ溶解炉では、鉄系スクラップ、ダスト塊成化物、コークスなどの原料は、炉頂の原料装入部1から炉内に装入される。複数の羽口2からは熱風が吹き込まれ、コークスの燃焼ガスの熱で鉄系スクラップなどが溶解する。生成した溶銑は炉底部の出銑口5から炉外に取り出される。
主原料である鉄系スクラップとコークスは、炉内に同時に装入してもよいし、交互に装入してもよい。また、鉄系スクラップ、ダスト塊成化物およびコークス以外に、例えば、銑鉄、還元鉄、他のダストやスラッジ類の塊成物、鉄鉱石等の鉄源、木炭や無煙炭等の炭材などを装入してもよい。
本発明で使用するダスト塊成化物は、鉄酸化物や亜鉛酸化物などの金属酸化物を含有するダストを塊成化したダスト塊成化物であればよい。なお、特に好ましいダスト塊成化物については、後に詳述する。
In such a vertical scrap melting furnace, raw materials such as iron scrap, dust agglomerates, and coke are charged into the furnace from the raw material charging section 1 at the top of the furnace. Hot air is blown from the plurality of tuyere 2, and iron-based scrap or the like is melted by the heat of the combustion gas of coke. The produced hot metal is taken out of the furnace through the outlet 5 at the bottom of the furnace.
Iron-based scrap and coke, which are the main raw materials, may be charged into the furnace simultaneously or alternately. In addition to iron-based scrap, dust agglomerates and coke, for example, pig iron, reduced iron, agglomerates of other dust and sludges, iron sources such as iron ore, charcoal materials such as charcoal and anthracite You may enter.
The dust agglomerated material used in the present invention may be a dust agglomerated material obtained by agglomerating dust containing a metal oxide such as iron oxide or zinc oxide. A particularly preferable dust agglomerated product will be described in detail later.

本発明では、竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(1)式、好ましくは下記(2)を満足するように操業を行い、溶銑を製造する。
0.018≦R≦0.090−0.00333×W …(1)
0.018≦R≦0.065−0.00233×W …(2)
ここで、ダスト塊成化物の代表長さRは、以下のように定義される。すなわち、ダスト塊成化物内部の任意点から塊成化物表面までの最も短い距離を求める。この距離をダスト塊成化物内部すべての点において求め、その最大値をダスト塊成化物の代表長さRとする。図2(イ)〜(ハ)に、種々の形状を有するダスト塊成化物の代表長さRを示すが、例えば、ダスト塊成化物が球であれば球の半径が代表長さRとなり、楕円球であれば短径の1/2が代表長さRとなる。本発明において、ダスト塊成化物の粒径をこのような代表長さRで規定するのは、このRが規定されるダスト塊成化物の中心部が、ダスト塊成化物を炉内装入した際に最も昇温しにくい部分だからである。
In the present invention, the representative length R (m) of the dust agglomerate charged into the vertical scrap melting furnace and the hot metal production rate W (t / m 2 · hr) are expressed by the following formula (1), preferably the following (2 ) To produce hot metal.
0.018 ≦ R ≦ 0.090−0.00333 × W (1)
0.018 ≦ R ≦ 0.065−0.00233 × W (2)
Here, the representative length R of the dust agglomerate is defined as follows. That is, the shortest distance from any point inside the dust agglomerate to the agglomerate surface is determined. This distance is obtained at all points inside the dust agglomerate, and the maximum value is taken as the representative length R of the dust agglomerate. 2 (a) to 2 (c) show the representative length R of dust agglomerates having various shapes. For example, if the dust agglomerate is a sphere, the radius of the sphere becomes the representative length R. In the case of an elliptic sphere, ½ of the minor axis is the representative length R. In the present invention, the particle size of the dust agglomerated material is defined by such a representative length R when the center of the dust agglomerated material in which R is defined enters the furnace into the furnace. This is because it is the most difficult part of the temperature to rise.

一般に、製鉄プロセスで発生するダストは多量の金属酸化物(Fe,Znなどの酸化物)を含有している。このような金属酸化物を含有するダストを塊成化したダスト塊成化物が竪型スクラップ溶解炉に装入され、炉内で適切に加熱された場合には、金属酸化物のうち鉄酸化物はダスト中の炭素と反応して還元され、さらに加熱されて温度が上昇すると溶けて溶銑になる。亜鉛酸化物は還元・気化した後、気流中で再酸化して微粒の酸化亜鉛になり、炉排ガスに随伴するダストの一部として炉頂から排出される。   Generally, dust generated in the iron making process contains a large amount of metal oxides (oxides such as Fe and Zn). When the dust agglomerate obtained by agglomerating dust containing such metal oxide is charged into a vertical scrap melting furnace and appropriately heated in the furnace, iron oxide among the metal oxides Reacts with carbon in the dust and is reduced, and when heated, the temperature rises and melts to form molten iron. After the zinc oxide is reduced and vaporized, it is re-oxidized in the air stream to form fine zinc oxide, which is discharged from the top of the furnace as part of the dust accompanying the furnace exhaust gas.

しかし、ダスト塊成化物の粒径が大きすぎると、ダスト塊成化物の内部の温度上昇が遅れ、金属酸化物が十分に還元されないまま溶解する。溶解した金属酸化物は、スラグ状に溶けた状態で炉内を滴下しながら溶融還元される。亜鉛酸化物は鉄酸化物に比べると還元されやすいので、通常は十分に還元される。一方、鉄酸化物の溶融還元は、竪型スクラップ溶解炉の条件では十分還元が完了するほどではなく、特に初期のスラグ中の鉄酸化物があまりに多い場合は十分還元されず、出滓時のスラグ中FeO濃度が高くなる。このように出滓時のスラグ中FeO濃度が高い状況は、炉下部での溶融還元量が多いことを意味し、この反応が吸熱であることから、出銑温度およびスラグ温度が低下し、さらにスラグの排出も難しくなる。したがって、竪型スクラップ溶解炉の操業では、装入されたダスト塊成化物の内部まで十分に温度上昇→還元が進行するようにすることで、スラグ中FeO濃度の上昇を抑えるという観点から、装入するダスト塊成化物の粒径を制限する(上限を設ける)ことが好ましい。   However, if the particle size of the dust agglomerated material is too large, the temperature rise inside the dust agglomerated material is delayed, and the metal oxide is dissolved without being sufficiently reduced. The dissolved metal oxide is melted and reduced while dripping inside the furnace in a state of being dissolved in a slag shape. Since zinc oxide is more easily reduced than iron oxide, it is usually sufficiently reduced. On the other hand, the smelting reduction of iron oxide is not enough to complete the reduction under the conditions of the vertical scrap melting furnace, especially when there is too much iron oxide in the initial slag, it is not fully reduced, The FeO concentration in the slag increases. Thus, the situation where the FeO concentration in the slag at the time of tapping is high means that the amount of smelting reduction at the lower part of the furnace is large, and since this reaction is endothermic, the tapping temperature and the slag temperature are lowered, Slag discharge is also difficult. Therefore, in the operation of the vertical scrap melting furnace, from the viewpoint of suppressing the increase in the FeO concentration in the slag by sufficiently increasing the temperature up to the inside of the dust agglomerated charged material, so that the reduction proceeds. It is preferable to limit the particle size of the dust agglomerated material (provide an upper limit).

また、上述したように、ダスト塊成化物の粒径が大きすぎると、ダスト塊成化物の内部の温度上昇が遅れ、金属酸化物が十分に還元されないまま溶解する。この結果、ダスト塊成化物の溶融時において、溶融物の量としてはメタル(金属鉄)よりもスラグの方が多く発生する。一般にスラグはメタルよりも粘度が高く、炉内ホールドアップ量が多い。このため、スラグ発生量が多いと炉下部でのコークス空隙を埋める量が多くなってガス通気性が阻害され、送風圧力が上昇する。送風圧力が上昇すると、送風機電力が上昇するだけでなく、炉内ガスが偏流しやすくなってガス利用率が低下し、その結果、出銑温度やスラグ温度が低下する。したがって、竪型スクラップ溶解炉の操業では、装入されたダスト塊成化物の内部まで十分に温度上昇→還元が進行するようにしてスラグの生成量を抑え、炉内ガス通気性を確保するという観点からも、装入するダスト塊成化物の粒径を制限する(上限を設ける)ことが好ましい。   As described above, if the particle size of the dust agglomerated material is too large, the temperature rise inside the dust agglomerated material is delayed, and the metal oxide is dissolved without being sufficiently reduced. As a result, when the dust agglomerated material is melted, more slag is generated than the metal (metal iron) as the amount of the melt. In general, slag has a higher viscosity than metal and has a higher hold-up amount in the furnace. For this reason, if there is much slag generation amount, the quantity which fills the coke space | gap in a furnace lower part will increase, gas permeability will be inhibited, and ventilation pressure will rise. When the blowing pressure rises, not only the blower power rises, but the gas in the furnace tends to drift and the gas utilization rate decreases, and as a result, the tapping temperature and slag temperature fall. Therefore, in the operation of the vertical scrap melting furnace, the temperature rises sufficiently to the inside of the charged dust agglomerate → the reduction proceeds so that the amount of slag generated is suppressed and the gas permeability in the furnace is secured. Also from the viewpoint, it is preferable to limit the particle size of the dust agglomerates to be charged (set an upper limit).

ここで、ダスト塊成化物の内部温度の上昇は、ダスト塊成化物の炉内滞留時間にも影響される。すなわち、ダスト塊成化物の炉内滞留時間が長ければ、大塊のダスト塊成化物であっても内部まで温度が十分に上昇し、塊内部まで十分に還元される。当然、ダスト塊成化物の炉内滞留時間が短いと逆の結果になる。ダスト塊成化物の炉内滞留時間は溶銑生産速度に反比例する関係にあり、したがって、ダスト塊成化物の粒径の好適範囲の上限は溶銑生産速度で変化する。
一方、ダスト塊成化物の粒径が小さすぎると、同時に装入されるコークスによるコークス層空隙をダスト塊成化物が塞ぎ、炉内ガスの流れを妨げ、送風圧力が上昇する。さきに述べたように、送風圧力が上昇すると、送風機電力が上昇するだけでなく、炉内ガスが偏流しやすくなってガス利用率が低下し、その結果、出銑温度やスラグ温度が低下する。したがって、竪型スクラップ溶解炉の操業では、ダスト塊成化物がコークス層空隙を塞ぎ、炉内ガスの流れを妨げないようするという観点から、装入するダスト塊成化物の粒径を制限する(下限を設ける)ことが好ましい。
Here, the rise in the internal temperature of the dust agglomerate is also affected by the residence time of the dust agglomerate in the furnace. That is, if the residence time of the dust agglomerated material in the furnace is long, the temperature is sufficiently increased to the inside even if it is a large agglomerated dust agglomerated material and is sufficiently reduced to the inside of the agglomerate. Naturally, if the residence time of the dust agglomerate in the furnace is short, the opposite result is obtained. The residence time of the dust agglomerate in the furnace is inversely proportional to the hot metal production rate, and therefore the upper limit of the preferred range of the particle size of the dust agglomerate varies with the hot metal production rate.
On the other hand, if the particle size of the dust agglomerated material is too small, the dust agglomerated material blocks the coke layer voids formed by coke charged at the same time, impedes the flow of the gas in the furnace, and the blowing pressure increases. As described above, when the air blowing pressure increases, not only the blower power increases, but the gas in the furnace tends to drift and the gas utilization rate decreases, and as a result, the tapping temperature and slag temperature decrease. . Therefore, in the operation of the vertical scrap melting furnace, the particle size of the dust agglomerate to be charged is limited from the viewpoint that the dust agglomerate blocks the coke layer gap and does not hinder the flow of gas in the furnace ( It is preferable to provide a lower limit.

図1に示すような竪型スクラップ溶解炉(炉径2.1m,羽口数6本)において、鉄系スクラップ、コークスとともにダスト塊成化物を装入して溶銑を製造した。その際、異なる3水準の溶銑生産速度の下で、使用するダスト塊成化物の代表長さRを変化させ、ダスト塊成化物の代表長さRとスラグ中のFeO濃度および送風圧力との関係を調べた。その結果を図3〜図5に示す。図3は溶銑生産速度W:4t/m・hrの操業例、図4は溶銑生産速度W:8t/m・hrの操業例、図5は溶銑生産速度W:12t/m・hrの操業例の場合をそれぞれ示している。 In a vertical scrap melting furnace (furnace diameter 2.1 m, number of tuyere 6) as shown in FIG. 1, iron agglomerate was charged together with iron-based scrap and coke to produce hot metal. At that time, the representative length R of the dust agglomerate to be used is changed under different three levels of hot metal production rate, and the relationship between the representative length R of the dust agglomerate, the FeO concentration in the slag, and the blowing pressure I investigated. The results are shown in FIGS. FIG. 3 shows an operation example of hot metal production speed W: 4 t / m 2 · hr, FIG. 4 shows an operation example of hot metal production speed W: 8 t / m 2 · hr, and FIG. 5 shows hot metal production speed W: 12 t / m 2 · hr. Each of the operation examples is shown.

使用したダスト塊成化物は、当該竪型スクラップ溶解炉の排ガスから回収された亜鉛含有ダストを塊成化したものであり、亜鉛含有ダスト:90mass%、ポルトランドセメント:10mass%からなる原料に、ポルトランドセメントの質量の1.4倍の水分を加え、混合機で十分に混合した後、振動成型法により直方体形状(100mm×100mm×60mm)に圧縮成型し、この成型物を1週間養生し、ダスト塊成化物としたものである。
炉に装入した鉄源は、鉄系スクラップ:60mass%、銑鉄:40mass%とし、同じくコークスは、粒径190mmのものを50mass%、粒径65mmのものを50mass%とした。羽口からは550℃の熱風を送風し、溶銑生産速度が目標となるように送風量を調整した。また、熱風に対して酸素富化(常温、酸素富化率3%)を行った。操業は立上げ、吹き降ろしを含め14〜16時間実施し、同一操業条件で5時間以上連続して操業したときのデータを用いた。
The used dust agglomerated material is agglomerated zinc-containing dust recovered from the exhaust gas of the vertical scrap melting furnace. The raw material consisting of zinc-containing dust: 90 mass%, Portland cement: 10 mass%, After adding water 1.4 times the mass of the container and mixing it thoroughly with a mixer, it is compression-molded into a rectangular parallelepiped shape (100 mm x 100 mm x 60 mm) by a vibration molding method. It is an agglomerated product.
The iron source charged in the furnace was iron scrap: 60 mass% and pig iron: 40 mass%. Similarly, the coke was 50 mass% when the particle size was 190 mm and 50 mass% when the particle size was 65 mm. Hot air at 550 ° C. was blown from the tuyere, and the blown air volume was adjusted so that the hot metal production rate was the target. Further, oxygen enrichment (normal temperature, oxygen enrichment rate 3%) was performed on the hot air. The operation was carried out for 14 to 16 hours including start-up and blow-down, and data obtained when operating continuously for 5 hours or more under the same operation conditions was used.

図3〜図5によれば、溶銑生産速度Wに関わりなく、ダスト塊成化物の代表長さRが0.018m未満では送風圧力が大幅に上昇している。これは、ダスト塊成化物の粒径が小さすぎるため、ダスト塊成化物がコークス層空隙を塞ぎ、炉内ガスの流れを妨げたためであると考えられる。したがって、ダスト塊成化物の代表長さRは0.018m以上とする必要がある。   According to FIGS. 3 to 5, regardless of the hot metal production speed W, the blowing pressure is significantly increased when the representative length R of the dust agglomerated material is less than 0.018 m. This is presumably because the dust agglomerated material blocked the coke layer voids and prevented the flow of the gas in the furnace because the particle size of the dust agglomerated material was too small. Therefore, the representative length R of the dust agglomerated product needs to be 0.018 m or more.

一方、ダスト塊成化物の代表長さRの上限側については、次のような結果が得られている。すなわち、図3に示す溶銑生産速度W:4t/m・hrの操業例では、ダスト塊成化物の代表長さRが0.0767mを超えるとスラグ中のFeO濃度が急増している。また、ダスト塊成化物の代表長さRが0.0767m以下であっても、0.0557mを超えると送風圧力が若干上昇している。また、図4に示す溶銑生産速度W:8t/m・hrの操業例では、ダスト塊成化物の代表長さRが0.0634mを超えるとスラグ中のFeO濃度が急増している。また、ダスト塊成化物の代表長さRが0.0634m以下であっても、0.0464mを超えると送風圧力が若干上昇している。さらに、図5に示す溶銑生産速度W:12t/m・hrの操業例では、ダスト塊成化物の代表長さRが0.0500mを超えるとスラグ中のFeO濃度が急増している。また、ダスト塊成化物の代表長さRが0.0500m以下であっても、0.0370mを超えると送風圧力が若干上昇している。 On the other hand, the following results are obtained for the upper limit side of the representative length R of the dust agglomerates. That is, in the operation example of the hot metal production rate W: 4 t / m 2 · hr shown in FIG. 3, when the representative length R of the dust agglomerated product exceeds 0.0767 m, the FeO concentration in the slag increases rapidly. Further, even if the representative length R of the dust agglomerated material is 0.0767 m or less, the blowing pressure slightly increases when it exceeds 0.0557 m. Moreover, in the operation example of the hot metal production speed W: 8 t / m 2 · hr shown in FIG. 4, when the representative length R of the dust agglomerate exceeds 0.0634 m, the FeO concentration in the slag increases rapidly. Moreover, even if the representative length R of the dust agglomerated material is 0.0634 m or less, the blowing pressure slightly increases when it exceeds 0.0464 m. Furthermore, in the operation example of the hot metal production rate W: 12 t / m 2 · hr shown in FIG. 5, when the representative length R of the dust agglomerate exceeds 0.0500 m, the FeO concentration in the slag increases rapidly. Moreover, even if the representative length R of the dust agglomerated material is 0.0500 m or less, the blowing pressure slightly increases when it exceeds 0.0370 m.

以上の結果のうち、ダスト塊成化物の代表長さRが或るレベル以上になるとスラグ中のFeO濃度が急増したのは、ダスト塊成化物の粒径が大き過ぎるために、塊内部まで十分に温度上昇せず、還元が遅れたためであると考えられ、溶銑生産速度が大きいほどダスト塊成化物の炉内滞留時間は少なくなるため、溶銑生産速度が大きくなるほど(図3→図5)、スラグ中のFeO濃度を適正範囲に維持できるダスト塊成化物の代表長さRの上限値は小さくなるものと考えられる。   Among the above results, when the representative length R of the dust agglomerate exceeds a certain level, the concentration of FeO in the slag increased rapidly because the particle size of the dust agglomerate was too large, It is thought that this is because the reduction of the hot metal was not delayed, and the reduction was delayed. The larger the hot metal production rate, the shorter the residence time of the dust agglomerate in the furnace. Therefore, the higher the hot metal production rate (FIG. 3 → FIG. 5), It is considered that the upper limit value of the representative length R of the dust agglomerated product that can maintain the FeO concentration in the slag within an appropriate range is small.

また、ダスト塊成化物の代表長さRが或るレベル以上になると送風圧力が若干増加したのは、ダスト塊成化物の粒径が大き過ぎるために、塊内部まで十分に温度上昇せず、還元が遅れ、その結果スラグ量が増加してガス通気性が阻害されたためであると考えられ、溶銑生産速度が大きいほどダスト塊成化物の炉内滞留時間は少なくなるため、溶銑生産速度が大きくなるほど(図3→図5)、送風圧力を最適範囲に維持できるダスト塊成化物の代表長さRの上限値は小さくなるものと考えられる。   In addition, when the representative length R of the dust agglomerated material exceeds a certain level, the blowing pressure slightly increased because the particle size of the dust agglomerated material was too large, and the temperature did not rise sufficiently to the inside of the agglomerate, The reduction was delayed, and as a result, the amount of slag was increased and the gas permeability was hindered.The higher the hot metal production rate, the shorter the residence time of the dust agglomerate in the furnace, and the higher the hot metal production rate. The upper limit of the representative length R of the dust agglomerated product that can maintain the blowing pressure in the optimum range is considered to be smaller (FIG. 3 → FIG. 5).

図6は、図3〜図5の結果に基づき、ダスト塊成化物の代表長さRが0.018m以上であって、且つ溶銑生産速度Wとの関係でスラグ中のFeO濃度を適正範囲に維持できるダスト塊成化物の代表長さRの範囲を整理して示したものであり、ダスト塊成化物の粒径が小さすぎることによる送風圧力の悪化を抑え、且つスラグ中のFeO濃度を適正範囲に維持するには、竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(1)式を満足するように操業を行えばよいことが判る。
0.018≦R≦0.090−0.00333×W …(1)
FIG. 6 is based on the results of FIGS. 3 to 5, the representative length R of the dust agglomerate is 0.018 m or more, and the FeO concentration in the slag is within an appropriate range in relation to the hot metal production rate W. The range of the typical length R of the dust agglomerated material that can be maintained is shown in order to suppress the deterioration of the blowing pressure due to the particle size of the dust agglomerated material being too small, and the FeO concentration in the slag is appropriate. In order to maintain the range, the representative length R (m) of the dust agglomerate charged in the vertical scrap melting furnace and the hot metal production rate W (t / m 2 · hr) satisfy the following formula (1): It can be seen that the operation should be carried out.
0.018 ≦ R ≦ 0.090−0.00333 × W (1)

また、図7は、図3〜図5の結果に基づき、ダスト塊成化物の代表長さRが0.018m以上であって、且つ溶銑生産速度Wとの関係で送風圧力を好適範囲に維持できるダスト塊成化物の代表長さRの範囲を整理して示したものであり、ダスト塊成化物の粒径が小さすぎることによる送風圧力の悪化を抑え、且つスラグ中のFeO濃度を適正範囲に維持するとともに、ダスト塊成化物の粒径が大きすぎることによる送風圧力の上昇を抑えるには、竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(2)式を満足するように操業を行えばよいことが判る。
0.018≦R≦0.065−0.00233×W …(2)
なお、溶銑生産速度Wに特別な制限はないが、あまりに低い溶銑生産速度Wで操業してもダスト塊成化物の処理量が少なくなり、実質的な意味がなくなる。一方、溶銑生産速度Wがあまりに高すぎると、スクラップの溶解不良や溶銑品質の低下が問題となる。このため、一般的には溶銑生産速度Wは、図6および図7に示すように3〜12t/m・hr程度の範囲とすることが好ましい。
7 is based on the results of FIGS. 3 to 5, and the representative length R of the dust agglomerate is 0.018 m or more, and the blowing pressure is maintained in a preferable range in relation to the hot metal production speed W. The range of the representative length R of the dust agglomerated material that can be produced is shown in order, the deterioration of the blowing pressure due to the particle size of the dust agglomerated material being too small is suppressed, and the FeO concentration in the slag is within the appropriate range In order to suppress the increase in the blowing pressure due to the particle size of the dust agglomerate being too large, the representative length R (m) of the dust agglomerate charged into the vertical scrap melting furnace and the hot metal production It can be seen that the operation may be performed so that the speed W (t / m 2 · hr) satisfies the following expression (2).
0.018 ≦ R ≦ 0.065−0.00233 × W (2)
Although there is no particular limitation on the hot metal production speed W, even if the hot metal production speed W is operated too low, the processing amount of the dust agglomerate is reduced and the substantial meaning is lost. On the other hand, if the hot metal production speed W is too high, there will be problems such as poor melting of the scrap and deterioration of the hot metal quality. Therefore, generally, the hot metal production rate W is preferably in the range of about 3 to 12 t / m 2 · hr as shown in FIGS.

次に、本発明の特に好ましい実施形態について説明する。
さきに述べたように、竪型スクラップ溶解炉で発生する亜鉛含有ダストをそのまま精錬用の亜鉛原料として利用するには、十分に高い亜鉛濃度(少なくとも50mass%程度)であることが必要であり、亜鉛含有ダストの亜鉛濃度を高めるには、竪型スクラップ溶解炉で発生する亜鉛含有ダストを塊成化して、このダスト塊成化物を竪型スクラップ溶解炉でリサイクル装入し、2次ダスト(炉にダスト塊成化物を装入して操業した際に生成するダスト)中に亜鉛を濃化させ、亜鉛濃度が高められたダストを回収する方法が有効である。
したがって、本発明において竪型スクラップ溶解炉に装入するダスト塊成化物は、当該竪型スクラップ溶解炉において発生する亜鉛含有ダストまたはこれを含むダストを塊成化したものであることが好ましい。そして、このダスト塊成化物を、竪型スクラップ溶解炉に装入して操業を行い、この操業時の炉排ガスから亜鉛が濃化した亜鉛含有ダストを回収するものである。
Next, a particularly preferred embodiment of the present invention will be described.
As described above, in order to use the zinc-containing dust generated in the vertical scrap melting furnace as it is as a zinc raw material for refining, it is necessary to have a sufficiently high zinc concentration (at least about 50 mass%), In order to increase the zinc concentration of the zinc-containing dust, the zinc-containing dust generated in the vertical scrap melting furnace is agglomerated, and this dust agglomerate is recycled and charged in the vertical scrap melting furnace. It is effective to concentrate zinc in the dust that is produced when the dust agglomerated material is charged and operate and collect the dust with an increased zinc concentration.
Therefore, in the present invention, the dust agglomerate charged into the vertical scrap melting furnace is preferably an agglomeration of zinc-containing dust generated in the vertical scrap melting furnace or dust containing the same. Then, the dust agglomerated material is charged into a vertical scrap melting furnace for operation, and zinc-containing dust enriched with zinc is recovered from the furnace exhaust gas during the operation.

通常、塊成化の対象となるダストは、亜鉛を50mass%未満含有するダストである。ダストの亜鉛含有量が50mass%以上であれば、亜鉛は十分に高濃度であると言え、塊成化して竪型スクラップ溶解炉でリサイクル装入して亜鉛を濃縮する工程を経ることなく、直接亜鉛の精錬工程に送った方がコストや環境負荷の面から有利である。塊成化する亜鉛含有ダストは、亜鉛を50mass%未満含有するものであれば、竪型スクラップ溶解炉で発生するダストのみからなるものでもよいし、竪型スクラップ溶解炉で発生するダストに対して他のダスト、例えば、転炉ダストなどを混合したものでもよい。   Usually, the dust to be agglomerated is dust containing less than 50 mass% of zinc. If the zinc content of the dust is 50 mass% or more, it can be said that the zinc is sufficiently high in concentration, and directly passes through the agglomeration and recycle charging in a vertical scrap melting furnace to concentrate the zinc. Sending to the zinc refining process is more advantageous in terms of cost and environmental impact. The zinc-containing dust to be agglomerated may be composed only of dust generated in a vertical scrap melting furnace as long as it contains less than 50 mass% of zinc, or against dust generated in a vertical scrap melting furnace. Other dusts, for example, converter dusts may be mixed.

亜鉛含有ダストを塊成化したダスト塊成化物を竪型スクラップ溶解炉にリサイクル装入するプロセスにおいて、なるべく高い亜鉛濃度の2次ダストを回収するには、炉内で粉化しにくい高強度のダスト塊成化物を用いることが有効である。これは、ダスト塊成化物が炉内で粉化するとダストになるため、炉内でのダスト塊成化物の粉化が抑えられれば、2次ダスト中の亜鉛量は一定でも亜鉛以外のダスト分が減少し、2次ダスト中の亜鉛濃度が上昇することになるからである。しかし、酸化亜鉛を多く含むダストは、酸化亜鉛自体が微粒で且つ粒度分布が狭いため高強度の塊成化物が得られにくく、しかも嵩密度が小さい(通常、嵩密度0.8以下)ために成型性も悪い。   In the process of recycling the dust agglomerated material containing agglomerated zinc-containing dust into the vertical scrap melting furnace, in order to recover secondary dust with as high a zinc concentration as possible, high-strength dust that is difficult to be pulverized in the furnace It is effective to use an agglomerated product. This is because dust agglomerates become dust when pulverized in the furnace. Therefore, if the dust agglomerates in the furnace are prevented from being pulverized, the amount of zinc in the secondary dust is constant but the amount of dust other than zinc is constant. This is because the zinc concentration in the secondary dust increases. However, the dust containing a large amount of zinc oxide is difficult to obtain a high-strength agglomerate because the zinc oxide itself is fine and has a narrow particle size distribution, and the bulk density is low (usually a bulk density of 0.8 or less). Moldability is also poor.

したがって、ダスト塊成化物を製造する方法は任意であるが、なるべく高強度のダスト塊成化物を安定して製造するという観点からは、以下のような圧縮成型法で製造することが好ましい。
すなわち、圧縮成型法では、亜鉛含有ダストと水硬性バインダーとを主体とする原料に適量の水を加えて混合した後、圧縮成型し、この圧縮成型物を水和硬化させてダスト塊成化物とする。水硬性バインダーとしては、ポルトランドセメントが一般的であるが、それ以外に、例えば、高炉セメント、高炉水砕スラグ微粉末、生石灰、アルミナセメントなどを用いてもよく、これら水硬性バインダーの1種以上を用いることができる。なお、石膏(硫酸カルシウム)などのように硫黄を含有する水硬性バインダーは、溶銑中の硫黄濃度を上昇させるため、あまり好ましくないが、溶銑中から不純物である硫黄を除去する工程に余裕がある場合には使用してもよい。また、硬化速度の調整のために、必要に応じて硬化促進剤を使用してもよい。
Accordingly, the method for producing the dust agglomerated material is arbitrary, but from the viewpoint of stably producing the dust agglomerated material having as high a strength as possible, it is preferably produced by the following compression molding method.
That is, in the compression molding method, an appropriate amount of water is added to and mixed with a raw material mainly composed of zinc-containing dust and a hydraulic binder, and then compression molding is performed. To do. As the hydraulic binder, Portland cement is generally used. In addition, for example, blast furnace cement, granulated blast furnace slag powder, quicklime, alumina cement, and the like may be used, and one or more of these hydraulic binders may be used. Can be used. In addition, hydraulic binders containing sulfur such as gypsum (calcium sulfate) increase the sulfur concentration in the hot metal, which is not so preferable, but there is a margin in the process of removing sulfur as an impurity from the hot metal. May be used in some cases. Moreover, you may use a hardening accelerator as needed for adjustment of a cure rate.

通常、原料中での水硬性バインダーの配合量は4〜15mass%、好ましくは7〜12mass%程度が適当であり、また、水分量は原料100質量部に対して10〜20質量部程度が適当である。
また、原料として亜鉛含有ダスト、水硬性バインダー以外の粉粒物を適宜配合してもよい。例えば、原料に適度な粒度分布を与えて成型性を高めるために、亜鉛含有ダストよりも粒度が大きい粉粒物(例えば、焼結篩下粉などのような鉄酸化物を含む粉粒物)を配合することができる。
Usually, the blending amount of the hydraulic binder in the raw material is 4 to 15 mass%, preferably about 7 to 12 mass%, and the water content is about 10 to 20 parts by mass with respect to 100 parts by mass of the raw material. It is.
Moreover, you may mix | blend suitably the granular material other than zinc containing dust and a hydraulic binder as a raw material. For example, in order to give an appropriate particle size distribution to the raw material and improve the moldability, it is possible to increase the particle size of particles (for example, particles containing iron oxides such as sintered sieve powder). Can be blended.

水分が添加された原料は混合機(例えば、撹拌羽根を備えた混合機)で十分に混合した後、圧縮成型する。この圧縮成型工程は、型枠を用いた成型、押し出し成型、ロールプレス成型など任意の方式で行うことができるが、亜鉛含有ダストは成型性が極めて悪い粉体であるため、適切に圧縮成型して安定した品質の成型物を得るという観点からは、型枠を用いた成型が好ましく、そのなかでも型枠を振動させながら圧縮成型を行う振動成型が特に好ましい。この振動成型は、嵩密度が小さい亜鉛含有ダストを型枠内に高密度に充填するのに適している。成型物の形状は任意であるが、炉に装入した際の粉化をなるべく抑えるために角部が少ない方が好ましい。   The raw material to which moisture has been added is sufficiently mixed with a mixer (for example, a mixer equipped with stirring blades) and then compression molded. This compression molding process can be performed by any method such as molding using a mold, extrusion molding, roll press molding, etc. However, since zinc-containing dust is a powder with extremely poor moldability, it can be appropriately compressed and molded. From the viewpoint of obtaining a molded product having stable and stable quality, molding using a mold is preferable, and vibration molding in which compression molding is performed while vibrating the mold is particularly preferable. This vibration molding is suitable for packing a zinc-containing dust having a small bulk density into a mold at high density. The shape of the molded product is arbitrary, but it is preferable that there are few corners in order to suppress pulverization when charged into the furnace as much as possible.

原料を圧縮成型して得られた成型物は、水硬性バインダーにより水和硬化させるため、一定期間養生させる。この養生の方法や期間は任意であり、例えば、蒸気による一次養生を行った後、大気下での二次養生を行ってもよい。養生期間は、養生スペースや生産性などの面からはなるべく短い方が好ましいが、養生後の必要強度に応じて適宜選択すればよい。一般には、1週間以上が好ましい。なお、養生期間が長ければ成型物の保管すべき量が増加するので、十分な置き場が確保できない場合は、硬化促進剤などを用いて、期間を短縮するなどの対応をすることが好ましい。   Since the molded product obtained by compression molding the raw material is hydrated and cured with a hydraulic binder, it is cured for a certain period. The curing method and period may be arbitrary. For example, after performing primary curing with steam, secondary curing in the atmosphere may be performed. The curing period is preferably as short as possible from the aspects of curing space and productivity, but may be appropriately selected according to the required strength after curing. In general, one week or more is preferable. If the curing period is long, the amount of the molded product to be stored increases. Therefore, when a sufficient storage space cannot be secured, it is preferable to use a curing accelerator or the like to shorten the period.

以上のような亜鉛含有ダスト塊成化物を、竪型スクラップ溶解炉に装入して操業を行うと、同炉の炉排ガス中のダストには亜鉛が濃縮され、そのまま精錬用の亜鉛原料として使用できる高い亜鉛濃度の2次ダストを回収することができる。
亜鉛含有ダスト塊成化物の炉内への装入は、常時行ってもよいが、短期間に大量に装入した方がダスト中の亜鉛の濃化を促進でき、高い亜鉛濃度のダストを回収できる。このため、操業期間を通じてダスト塊成化物の装入期間を間隔的に設け、それ以外の操業期間(ダスト塊成化物を装入しない期間)で発生した亜鉛含有ダストから製造したダスト塊成化物を、その装入期間に集中して装入し、その装入期間の炉排ガスから高い亜鉛濃度の2次ダストを回収するようにすることが好ましい。
When the above zinc-containing dust agglomerates are charged into a vertical scrap melting furnace and operated, zinc is concentrated in the dust in the furnace exhaust gas of the furnace and used as it is as a zinc raw material for refining. Secondary dust having a high zinc concentration can be recovered.
Zinc-containing dust agglomerates may be charged into the furnace at any time, but if a large amount is charged in a short period of time, the concentration of zinc in the dust can be promoted, and dust with a high zinc concentration can be recovered. it can. For this reason, a dust agglomerate produced from zinc-containing dust generated during other operation periods (a period during which no dust agglomerate is charged) is provided throughout the operation period. It is preferable to concentrate the charging during the charging period and recover secondary dust having a high zinc concentration from the furnace exhaust gas during the charging period.

なお、炉内装入されたダスト塊成化物は、粉化して炉排ガス中に飛散する部分を除き、亜鉛分が金属蒸気となって最終的にダストの一部となり、鉄分が溶解して溶銑の一部となり、残部の大部分(例えば、SiO,Alなど)が溶解してスラグの一部となる。そして、上述したような高強度のダスト塊成化物は、炉内で粉化しにくい(飛散率が低い)ため、結果的にダスト発生量が少なくなり、その分、ダスト中の亜鉛濃度が高まることになる。 Note that the dust agglomerate contained in the furnace interior is pulverized and scattered in the furnace exhaust gas, except that the zinc content becomes metal vapor and eventually becomes a part of the dust, and the iron content dissolves and the molten metal becomes molten. It becomes a part, and most of the remainder (for example, SiO 2 , Al 2 O 3, etc.) dissolves and becomes a part of the slag. And since the high-intensity dust agglomerates as described above are difficult to be pulverized in the furnace (low scattering rate), the amount of dust generated is reduced as a result, and the zinc concentration in the dust is increased accordingly. become.

図1に示すような竪型スクラップ溶解炉(炉径2.1m,羽口数6本)において、鉄系スクラップ、コークスとともにダスト塊成化物を装入して溶銑を製造した。
使用したダスト塊成化物は、当該竪型スクラップ溶解炉の排ガスから回収された亜鉛含有ダストを塊成化したものであり、亜鉛含有ダスト:90mass%、ポルトランドセメント:10mass%からなる原料に、ポルトランドセメントの質量の1.4倍の水分を加え、混合機で十分に混合した後、振動成型法により直方体形状(100mm×100mm×60mm)に圧縮成型し、この成型物を1週間養生し、ダスト塊成化物としたものである。
In a vertical scrap melting furnace (furnace diameter 2.1 m, number of tuyere 6) as shown in FIG. 1, iron agglomerate was charged together with iron-based scrap and coke to produce hot metal.
The used dust agglomerated material is agglomerated zinc-containing dust recovered from the exhaust gas of the vertical scrap melting furnace. The raw material consisting of zinc-containing dust: 90 mass%, Portland cement: 10 mass%, After adding water 1.4 times the mass of the container and mixing it thoroughly with a mixer, it is compression-molded into a rectangular parallelepiped shape (100 mm x 100 mm x 60 mm) by a vibration molding method. It is an agglomerated product.

炉に装入した鉄源は、鉄系スクラップ:60mass%、銑鉄:40mass%とし、同じくコークスは、粒径190mmのものを50mass%、粒径65mmのものを50mass%とした。羽口からは550℃の熱風を送風し、溶銑生産速度が目標となるように送風量を調整した。また、熱風に対して酸素富化(常温、酸素富化率3%)を行った。操業は立上げ、吹き降ろしを含め14〜16時間実施し、同一操業条件で5時間以上連続して操業したときのデータを用いた。   The iron source charged in the furnace was iron scrap: 60 mass% and pig iron: 40 mass%. Similarly, the coke was 50 mass% when the particle size was 190 mm and 50 mass% when the particle size was 65 mm. Hot air at 550 ° C. was blown from the tuyere, and the blown air volume was adjusted so that the hot metal production rate was the target. Further, oxygen enrichment (normal temperature, oxygen enrichment rate 3%) was performed on the hot air. The operation was carried out for 14 to 16 hours including start-up and blowing down, and data obtained when operating continuously for 5 hours or more under the same operation conditions was used.

各実施例で使用したダスト塊成化物の代表長さR、竪型スクラップ溶解炉の操業条件および操業成績などを表1に示す。これによれば、発明例では、スラグ中FeO濃度は0.11〜0.23mass%と低く、送風圧力も1120〜1380mmHOと低い。これに対して、ダスト塊成化物の代表長さRが本発明の(1)式の上限を超える比較例4〜6は、スラグ中のFeO濃度が1.6mass%以上であり、また、炉床での直接反応の増加により溶銑温度(出銑温度)は1510℃を下回っている。また、ダスト塊成化物の代表長さRが本発明の(1)式の下限を下回る比較例1〜3は、送風圧力が1800mmHO以上であり、ガス流れが悪化し、ガス利用率が低下している。また、このガス利用率の低下に伴い、溶銑温度も低下している。
なお、発明例の中でもダスト塊成化物の代表長さRが(2)式の上限を超えるもの(発明例4,5,9,10,13,14)は、送風圧力が若干高め(1320〜1380mmHO)であり、ガス利用率および溶銑温度が若干低めになっている。
Table 1 shows the representative length R of the dust agglomerates used in each Example, the operating conditions and operating results of the vertical scrap melting furnace, and the like. According to this, in the inventive example, the FeO concentration in the slag is as low as 0.11 to 0.23 mass%, and the blowing pressure is also as low as 1120 to 1380 mmH 2 O. On the other hand, in Comparative Examples 4 to 6 in which the representative length R of the dust agglomerate exceeds the upper limit of the expression (1) of the present invention, the FeO concentration in the slag is 1.6 mass% or more, and the furnace The hot metal temperature (steaming temperature) is below 1510 ° C. due to the increase of direct reaction in the bed. Further, in Comparative Examples 1 to 3 in which the representative length R of the dust agglomerate is lower than the lower limit of the formula (1) of the present invention, the blowing pressure is 1800 mmH 2 O or more, the gas flow is deteriorated, and the gas utilization rate is increased. It is falling. Moreover, the hot metal temperature is also decreasing with the decrease in the gas utilization rate.
Of the invention examples, those in which the representative length R of the dust agglomerate exceeds the upper limit of the formula (2) (Invention Examples 4, 5, 9, 10, 13, 14) have a slightly higher blowing pressure (1320 to 1202). 1380 mmH 2 O), and the gas utilization factor and the hot metal temperature are slightly lower.

Figure 2008291332
Figure 2008291332

竪型スクラップ溶解炉の一例を模式的に示す説明図Explanatory drawing schematically showing an example of vertical scrap melting furnace ダスト塊成化物の代表長さRを示す説明図Explanatory drawing showing representative length R of dust agglomerates 竪型スクラップ溶解炉に鉄系スクラップ、コークスとともにダスト塊成化物を装入し、溶銑生産速度:4t/m・hrで溶銑を製造した場合における、ダスト塊成化物の代表長さRとスラグ中のFeO濃度および送風圧力との関係を示すグラフTypical length R and slag of dust agglomerate when molten agglomerate is charged into a vertical scrap melting furnace together with iron scrap and coke, and hot metal is produced at a hot metal production rate of 4 t / m 2 · hr. Showing the relationship between the FeO concentration and the blowing pressure 竪型スクラップ溶解炉に鉄系スクラップ、コークスとともにダスト塊成化物を装入し、溶銑生産速度:8t/m・hrで溶銑を製造した場合における、ダスト塊成化物の代表長さRとスラグ中のFeO濃度および送風圧力との関係を示すグラフTypical length R and slag of dust agglomerated material when iron agglomerate and iron agglomerated material are charged into a vertical scrap melting furnace and hot metal is produced at a hot metal production rate of 8 t / m 2 · hr. Showing the relationship between the FeO concentration and the blowing pressure 竪型スクラップ溶解炉に鉄系スクラップ、コークスとともにダスト塊成化物を装入し、溶銑生産速度:12t/m・hrで溶銑を製造した場合における、ダスト塊成化物の代表長さRとスラグ中のFeO濃度および送風圧力との関係を示すグラフTypical length R and slag of dust agglomerates when molten agglomerate is charged together with iron scrap and coke into a vertical scrap melting furnace and hot metal is produced at a hot metal production rate of 12 t / m 2 · hr. Showing the relationship between the FeO concentration and the blowing pressure 図3〜図5の結果に基づき、ダスト塊成化物の代表長さRが0.018m以上であって、且つ溶銑生産速度Wとの関係でスラグ中のFeO濃度を適正範囲に維持できるダスト塊成化物の代表長さRの範囲を整理して示したグラフBased on the results of FIGS. 3 to 5, the dust agglomerate has a representative length R of 0.018 m or more and can maintain the FeO concentration in the slag within an appropriate range in relation to the hot metal production rate W. Graph showing the range of the representative length R of the compound 図3〜図5の結果に基づき、ダスト塊成化物の代表長さRが0.018m以上であって、且つ溶銑生産速度Wとの関係で送風圧力を最適範囲に維持できるダスト塊成化物の代表長さRの範囲を整理して示したグラフBased on the results shown in FIGS. 3 to 5, the dust agglomerated material has a representative length R of 0.018 m or more and can maintain the blowing pressure within the optimum range in relation to the hot metal production speed W. Graph showing the range of the representative length R

符号の説明Explanation of symbols

1 原料装入部
2 羽口
3 熱風管
4 排ガス出口
5 出銑口
DESCRIPTION OF SYMBOLS 1 Raw material charging part 2 Tuyere 3 Hot air pipe 4 Exhaust gas outlet 5 Outlet

Claims (4)

竪型スクラップ溶解炉において、炉頂部から鉄系スクラップと、金属酸化物を含有するダストを塊成化したダスト塊成化物と、コークスを装入し、炉下部に設けられた複数の羽口から熱風を吹き込んで溶銑を製造する方法であって、
竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(1)式を満足するように操業を行うことを特徴とする竪型スクラップ溶解炉を用いた溶銑製造方法。
0.018≦R≦0.090−0.00333×W …(1)
但し ダスト塊成化物の代表長さR:ダスト塊成化物内部の任意点から塊成化物表面までの最も短い距離を求める。この距離をダスト塊成化物内部すべての点において求め、その最大値をダスト塊成化物の代表長さRとする。
In a vertical scrap melting furnace, iron scrap from the top of the furnace, dust agglomerates agglomerated dust containing metal oxides, and coke are charged from a plurality of tuyere provided at the bottom of the furnace. A method for producing hot metal by blowing hot air,
Operation is performed so that the representative length R (m) of the dust agglomerate charged into the vertical scrap melting furnace and the hot metal production rate W (t / m 2 · hr) satisfy the following formula (1): A hot metal production method using a vertical scrap melting furnace.
0.018 ≦ R ≦ 0.090−0.00333 × W (1)
However, the representative length R of the dust agglomerated material: the shortest distance from an arbitrary point inside the dust agglomerated material to the surface of the agglomerated material is obtained. This distance is obtained at all points inside the dust agglomerate, and the maximum value is taken as the representative length R of the dust agglomerate.
竪型スクラップ溶解炉に装入するダスト塊成化物の代表長さR(m)と溶銑生産速度W(t/m・hr)が下記(2)式を満足するように操業を行うことを特徴とする請求項1に記載の竪型スクラップ溶解炉を用いた溶銑製造方法。
0.018≦R≦0.065−0.00233×W …(2)
Operation is performed so that the representative length R (m) of the dust agglomerate charged into the vertical scrap melting furnace and the hot metal production rate W (t / m 2 · hr) satisfy the following formula (2): The hot metal manufacturing method using the vertical scrap melting furnace of Claim 1 characterized by the above-mentioned.
0.018 ≦ R ≦ 0.065−0.00233 × W (2)
竪型スクラップ溶解炉に装入するダスト塊成化物として、当該竪型スクラップ溶解炉において発生する亜鉛含有ダストまたはこれを含むダストを塊成化したダスト塊成化物を用いることを特徴とする請求項1または2に記載の竪型スクラップ溶解炉を用いた溶銑製造方法。   The dust agglomerate charged in the vertical scrap melting furnace is a zinc agglomerated product obtained by agglomerating zinc-containing dust generated in the vertical scrap melting furnace or dust containing the same. A hot metal production method using the vertical scrap melting furnace according to 1 or 2. ダスト塊成化物は、金属酸化物を含有するダストと水硬性バインダーとを主体とし、水分添加された原料混合物を圧縮成型した後、水和硬化させたダスト塊成化物であることを特徴とする請求項1〜3のいずれかに記載の竪型スクラップ溶解炉を用いた溶銑製造方法。   The dust agglomerated product is a dust agglomerated product mainly composed of a dust containing a metal oxide and a hydraulic binder, compression-molded with a moisture-added raw material mixture, and then hydrated and hardened. A hot metal production method using the vertical scrap melting furnace according to claim 1.
JP2007139792A 2007-05-26 2007-05-26 Hot metal production method using vertical scrap melting furnace Active JP4992549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139792A JP4992549B2 (en) 2007-05-26 2007-05-26 Hot metal production method using vertical scrap melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139792A JP4992549B2 (en) 2007-05-26 2007-05-26 Hot metal production method using vertical scrap melting furnace

Publications (2)

Publication Number Publication Date
JP2008291332A true JP2008291332A (en) 2008-12-04
JP4992549B2 JP4992549B2 (en) 2012-08-08

Family

ID=40166366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139792A Active JP4992549B2 (en) 2007-05-26 2007-05-26 Hot metal production method using vertical scrap melting furnace

Country Status (1)

Country Link
JP (1) JP4992549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167608A (en) * 2018-03-26 2019-10-03 Jfeスチール株式会社 Lightweight refuse-removing device and metal-melting facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125211A (en) * 1979-03-20 1980-09-26 Nakayama Seikosho:Kk Processing method of steel-making dust containing zinc and blast furnace gas ash
JPH05320779A (en) * 1992-01-17 1993-12-03 Yasuo Kaneko Method for recovering available matal from iron-making dust using vertical reduction melting furnace
JP2000204409A (en) * 1999-01-13 2000-07-25 Nippon Steel Corp Operation of vertical furnace
JP2001208317A (en) * 2000-01-27 2001-08-03 Nippon Steel Corp Operation method for dust reduction treatment furnace
JP2003027150A (en) * 2001-07-10 2003-01-29 Nippon Steel Corp Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore
JP2008291333A (en) * 2007-05-26 2008-12-04 Jfe Steel Kk Method for producing molten iron by using vertical scrap-melting furnace
JP2008291334A (en) * 2007-05-26 2008-12-04 Jfe Steel Kk Method for producing molten iron using vertical-type scrap-melting furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125211A (en) * 1979-03-20 1980-09-26 Nakayama Seikosho:Kk Processing method of steel-making dust containing zinc and blast furnace gas ash
JPH05320779A (en) * 1992-01-17 1993-12-03 Yasuo Kaneko Method for recovering available matal from iron-making dust using vertical reduction melting furnace
JP2000204409A (en) * 1999-01-13 2000-07-25 Nippon Steel Corp Operation of vertical furnace
JP2001208317A (en) * 2000-01-27 2001-08-03 Nippon Steel Corp Operation method for dust reduction treatment furnace
JP2003027150A (en) * 2001-07-10 2003-01-29 Nippon Steel Corp Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore
JP2008291333A (en) * 2007-05-26 2008-12-04 Jfe Steel Kk Method for producing molten iron by using vertical scrap-melting furnace
JP2008291334A (en) * 2007-05-26 2008-12-04 Jfe Steel Kk Method for producing molten iron using vertical-type scrap-melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167608A (en) * 2018-03-26 2019-10-03 Jfeスチール株式会社 Lightweight refuse-removing device and metal-melting facility

Also Published As

Publication number Publication date
JP4992549B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
KR101145603B1 (en) Process for producing reduced iron pellets, and process for producing pig iron
JP2009270198A (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JP6686974B2 (en) Sintered ore manufacturing method
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP2013245377A (en) Method for producing sintered ore
RU2669653C2 (en) Method of producing granular metallic iron
JP4992549B2 (en) Hot metal production method using vertical scrap melting furnace
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP2007169707A (en) Method for producing dephosphorizing agent for steelmaking using sintering machine
JP2008291333A (en) Method for producing molten iron by using vertical scrap-melting furnace
JP2007056306A (en) Method for producing sintered ore, and pseudo particle for producing sintered ore
JP6020840B2 (en) Sintering raw material manufacturing method
JP5439756B2 (en) Hot metal production method using vertical melting furnace
JP5200422B2 (en) Hot metal production method using vertical scrap melting furnace
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP5082678B2 (en) Hot metal production method using vertical scrap melting furnace
JP5200561B2 (en) Method for producing iron agglomerated dust
JP4415690B2 (en) Method for producing sintered ore
JP5251296B2 (en) Hot metal production method using vertical melting furnace
JP2008088533A (en) Method for manufacturing sintered ore
JP6295796B2 (en) Sinter ore manufacturing method
JP5910182B2 (en) Hot metal manufacturing method using vertical melting furnace
JP5251297B2 (en) Hot metal production method using vertical melting furnace
JP4816119B2 (en) Method for producing sintered ore
JP2010008030A (en) Molten-metal production method using vertical melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250