JP2008288252A - Process for fabricating functional element, photoelectric conversion element, image sensor - Google Patents

Process for fabricating functional element, photoelectric conversion element, image sensor Download PDF

Info

Publication number
JP2008288252A
JP2008288252A JP2007129113A JP2007129113A JP2008288252A JP 2008288252 A JP2008288252 A JP 2008288252A JP 2007129113 A JP2007129113 A JP 2007129113A JP 2007129113 A JP2007129113 A JP 2007129113A JP 2008288252 A JP2008288252 A JP 2008288252A
Authority
JP
Japan
Prior art keywords
functional element
film
photoelectric conversion
producing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129113A
Other languages
Japanese (ja)
Other versions
JP5124172B2 (en
Inventor
Masayuki Hayashi
誠之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007129113A priority Critical patent/JP5124172B2/en
Publication of JP2008288252A publication Critical patent/JP2008288252A/en
Application granted granted Critical
Publication of JP5124172B2 publication Critical patent/JP5124172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for fabricating a functional element in which deterioration in characteristics of the whole functional element can be prevented at a low cost while enhancing the characteristics of the functional film in the functional element. <P>SOLUTION: The process for fabricating a photoelectric conversion element having a pair of opposing electrodes 7 and 9, and a photoelectric conversion film 8 sandwiched between the electrodes 7 and 9 comprises a step for forming the photoelectric conversion film 8 on the electrode 7 (fig.2(a)), a step for forming the electrode 9 on the photoelectric conversion film 8 (fig.2(b)), a step for forming a deterioration prevention film 11 which prevents deterioration of the electrode 9 due to annealing for enhancing the characteristics of the photoelectric conversion film 8 on the electrode 9 (fig.2(c)), and an annealing step to be performed after formation of the deterioration prevention film 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、互いに対向する一対の電極と、前記一対の電極間に挟まれた機能膜とを有する機能性素子の製造方法に関する。   The present invention relates to a method for manufacturing a functional element having a pair of electrodes facing each other and a functional film sandwiched between the pair of electrodes.

太陽電池等に用いられる光電変換素子は、基板上に透明電極、光電変換膜、及び電極を積層し、基板側から光を入射することで、光電変換膜で発生した電荷に応じた信号を外部に取り出す構成となっている。又、有機EL素子等に用いられる発光素子は、基板上に透明電極、発光膜、及び電極を積層し、透明電極に電圧を加えて発光膜でこれを光に変換して発光させる構成となっている。   A photoelectric conversion element used for a solar cell or the like is formed by laminating a transparent electrode, a photoelectric conversion film, and an electrode on a substrate, and by inputting light from the substrate side, a signal corresponding to the charge generated in the photoelectric conversion film is externally transmitted. It is configured to take out. In addition, a light-emitting element used for an organic EL element or the like has a structure in which a transparent electrode, a light-emitting film, and an electrode are stacked on a substrate, and a voltage is applied to the transparent electrode to convert the light into a light and emit light. ing.

このような光電変換素子や発光素子において、光電変換膜や発光膜等の機能膜をアニール処理することにより、光電変換効率又は発光効率の向上や耐久性の向上等の機能膜の特性向上が見られることが報告されている。このようなアニール処理において、機能膜のより高い特性向上を得るために、アニール温度を上げようとすると、機能膜表面が変質してしまい、逆に性能の悪化を引き起こしてしまう。そのため、アニール温度を低くする必要があるが、これでは十分なアニール効果が得られないばかりか、長時間のアニール処理が必要となってしまい、製造時のコストアップの要因ともなる。   In such photoelectric conversion elements and light emitting elements, functional film such as photoelectric conversion film or light emitting film is annealed to improve the characteristics of the functional film such as improvement of photoelectric conversion efficiency or light emission efficiency and durability. Has been reported. In such an annealing process, if the annealing temperature is increased in order to obtain higher performance improvement of the functional film, the surface of the functional film is altered, and conversely, the performance is deteriorated. Therefore, it is necessary to lower the annealing temperature. However, this does not provide a sufficient annealing effect, but also requires a long annealing process, which causes an increase in manufacturing costs.

非特許文献1には、光電変換素子を製造する際、基板上に透明電極、光電変換膜、電極をこの順に形成後、光電変換膜上の電極を光電変換膜の保護膜としてアニール処理を行うことで、光電変換膜表面の変質を防止することが提案されている。   In Non-Patent Document 1, when manufacturing a photoelectric conversion element, a transparent electrode, a photoelectric conversion film, and an electrode are formed on a substrate in this order, and then an annealing process is performed using the electrode on the photoelectric conversion film as a protective film for the photoelectric conversion film. Thus, it has been proposed to prevent alteration of the surface of the photoelectric conversion film.

S.R.Forrest et all,Nature(vol.425,p158,2003)S.R.Forrest et all, Nature (vol.425, p158,2003)

非特許文献1の方法は、太陽電池に適用する光電変換素子の製造方法であるため、光電変換膜上の電極がアニール処理によって変質してしまうことによる素子全体の特性の劣化については考慮がなされていない。この光電変換素子を撮像素子に適用する場合は、光電変換膜上の電極を透明電極とし、この透明電極上方から光を入射することになるが、この透明電極の表面がアニール処理によって変質している(例えば表面に凹凸が形成されている)と、入射光がその表面で散乱してしまい、光利用効率が低下してしまう。このため、非特許文献1の方法は、撮像素子に適用する光電変換素子の製造方法としては適していない。   Since the method of Non-Patent Document 1 is a method for manufacturing a photoelectric conversion element applied to a solar cell, consideration is given to deterioration of the characteristics of the entire element due to the electrode on the photoelectric conversion film being altered by annealing. Not. When this photoelectric conversion element is applied to an imaging element, the electrode on the photoelectric conversion film is a transparent electrode, and light enters from above the transparent electrode. However, the surface of the transparent electrode is altered by the annealing process. If it is present (for example, unevenness is formed on the surface), incident light is scattered on the surface, and the light use efficiency is lowered. For this reason, the method of nonpatent literature 1 is not suitable as a manufacturing method of a photoelectric conversion element applied to an image sensor.

又、非特許文献1の方法では、光電変換素子を撮像素子に適用する場合、アニール温度を十分に上げて光電変換膜の特性を向上させようとすると、光電変換膜上に形成された透明電極が変質して平滑性が悪くなってしまう。光電変換素子を太陽電池として用いる場合には、この平滑性はあまり問題にならないが、撮像素子として用いる場合は、光電変換膜全体に均一にバイアスをかけられない、光電変換膜を挟む電極同士が導通してしまう等の問題が画質に影響するため、解決すべき重要な課題となる。アニール温度を下げればこのような課題はなくなるが、逆に特性向上効果が弱くなると共に製造コストが増大してしまう。   Further, in the method of Non-Patent Document 1, when a photoelectric conversion element is applied to an imaging element, a transparent electrode formed on the photoelectric conversion film can be obtained by sufficiently increasing the annealing temperature to improve the characteristics of the photoelectric conversion film. Will deteriorate and the smoothness will deteriorate. When the photoelectric conversion element is used as a solar cell, this smoothness is not a problem. However, when the photoelectric conversion element is used as an image pickup element, the entire photoelectric conversion film cannot be biased uniformly. Since problems such as conduction affect the image quality, this is an important issue to be solved. If the annealing temperature is lowered, such a problem is eliminated, but conversely, the effect of improving the characteristics is weakened and the manufacturing cost is increased.

本発明は、上記事情に鑑みてなされたものであり、機能膜を有する機能性素子の機能膜の特性を十分に向上させながらも、機能性素子全体の特性劣化を低コストで防ぐことが可能な機能性素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to prevent deterioration of characteristics of the entire functional element at low cost while sufficiently improving the characteristics of the functional film of the functional element having the functional film. An object of the present invention is to provide a method for manufacturing a functional element.

本発明の機能性素子の製造方法は、互いに対向する一対の電極と、前記一対の電極間に挟まれた機能膜とを有する機能性素子の製造方法であって、前記一対の電極の一方の上方に前記機能膜を形成する工程と、前記機能膜上方に前記一対の電極の他方を形成する工程と、前記機能膜の特性を向上させるために行うアニール処理による前記他方の電極の変質を防ぐための変質防止膜を前記他方の電極上に形成する工程と、前記変質防止膜形成後に前記アニール処理を施す工程とを備える。   The method for producing a functional element of the present invention is a method for producing a functional element having a pair of electrodes facing each other and a functional film sandwiched between the pair of electrodes, wherein one of the pair of electrodes Preventing alteration of the other electrode due to the step of forming the functional film above, the step of forming the other of the pair of electrodes above the functional film, and an annealing treatment to improve the characteristics of the functional film Forming an alteration preventing film on the other electrode, and performing the annealing treatment after the alteration preventing film is formed.

本発明の機能性素子の製造方法は、前記アニール処理の温度が、前記変質防止膜が前記他方の電極から剥離してしまう温度よりも低い。   In the method for producing a functional element of the present invention, the temperature of the annealing treatment is lower than the temperature at which the alteration preventing film peels from the other electrode.

本発明の機能性素子の製造方法は、前記変質防止膜が、前記アニール処理の前後で実質的に変質しないものである。   In the method for producing a functional element of the present invention, the alteration preventing film is not substantially altered before and after the annealing treatment.

本発明の機能性素子の製造方法は、前記変質防止膜が入射光に対して透明である。   In the method for producing a functional element of the present invention, the alteration preventing film is transparent to incident light.

本発明の機能性素子の製造方法は、前記他方の電極が、透明導電性酸化物であり、前記変質防止膜が、無機ケイ素化合物もしくは無機酸化物である。   In the method for producing a functional element of the present invention, the other electrode is a transparent conductive oxide, and the alteration preventing film is an inorganic silicon compound or an inorganic oxide.

本発明の機能性素子の製造方法は、前記アニール処理後に前記変質防止膜を除去する工程を備える。   The method for producing a functional element of the present invention includes a step of removing the alteration preventing film after the annealing treatment.

本発明の機能性素子の製造方法は、前記機能膜が有機材料を含んで構成される。   In the functional element manufacturing method of the present invention, the functional film includes an organic material.

本発明の機能性素子の製造方法は、前記有機材料が有機半導体である。   In the method for producing a functional element of the present invention, the organic material is an organic semiconductor.

本発明の機能性素子の製造方法は、前記他方の電極の厚みが20nm以下である。   In the method for producing a functional element of the present invention, the thickness of the other electrode is 20 nm or less.

本発明の機能性素子の製造方法は、前記機能膜が、入射光を吸収して吸収した光に応じた電荷を発生する光電変換膜である。   In the method for producing a functional element of the present invention, the functional film is a photoelectric conversion film that generates charges according to light absorbed by absorbing incident light.

本発明の機能性素子の製造方法は、前記機能性素子の前記他方の電極が前記入射光の入射側の電極である。   In the functional element manufacturing method of the present invention, the other electrode of the functional element is an electrode on the incident side of the incident light.

本発明の機能性素子の製造方法は、前記機能膜が、電気エネルギーを光に変換して放出する発光膜である。   In the method for producing a functional element of the present invention, the functional film is a light emitting film that converts electric energy into light and emits it.

本発明の機能性素子の製造方法は、前記機能性素子の前記他方の電極が前記放出された光の取り出し側の電極である。   In the functional element manufacturing method of the present invention, the other electrode of the functional element is an electrode on the extraction side of the emitted light.

本発明の光電変換素子は、基板上方に形成され、前記機能性素子の製造方法で製造された機能性素子と、前記機能性素子の光電変換膜で発生した電荷を蓄積するための電荷蓄積部と、前記一対の電極のいずれかと前記電荷蓄積部とを電気的に接続する接続部とを備える。   The photoelectric conversion element of the present invention is a functional element formed above the substrate and manufactured by the functional element manufacturing method, and a charge storage unit for storing charges generated in the photoelectric conversion film of the functional element And a connection portion that electrically connects one of the pair of electrodes and the charge storage portion.

本発明の撮像素子は、同一面上に複数配列された前記光電変換素子と、前記光電変換素子で発生して前記電荷蓄積部に蓄積された電荷に応じた信号を読み出す信号読み出し部とを備える。   The imaging device of the present invention includes a plurality of the photoelectric conversion elements arranged on the same surface, and a signal reading unit that reads a signal corresponding to the charge generated in the photoelectric conversion element and accumulated in the charge accumulation unit. .

本発明によれば、機能膜を有する機能性素子の機能膜の特性を向上させながらも、機能性素子全体の特性劣化を低コストで防ぐことが可能な機能性素子の製造方法を提供することができる。   According to the present invention, there is provided a method for manufacturing a functional element capable of preventing characteristic deterioration of the entire functional element at low cost while improving the characteristics of the functional film of the functional element having the functional film. Can do.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態である撮像素子の1画素分の断面模式図である。本実施形態の撮像素子は、図1に示す1画素を同一面上に1次元状又は二次元状に複数配列した構成となっている。
図1に示す撮像素子は、n型半導体基板1とこの上に形成されたpウェル層2とからなる半導体基板上方に、下部電極7と、下部電極7上方に形成された光電変換膜8と、光電変換膜8上方に形成された上部電極9とを含む光電変換素子が、下部電極7を半導体基板側に向けて積層された構成となっている。
FIG. 1 is a schematic cross-sectional view of one pixel of an image sensor that is an embodiment of the present invention. The image sensor of this embodiment has a configuration in which a plurality of pixels shown in FIG. 1 are arranged in a one-dimensional or two-dimensional manner on the same surface.
The imaging device shown in FIG. 1 includes a lower electrode 7 and a photoelectric conversion film 8 formed above the lower electrode 7 above a semiconductor substrate including an n-type semiconductor substrate 1 and a p-well layer 2 formed thereon. The photoelectric conversion element including the upper electrode 9 formed above the photoelectric conversion film 8 is laminated with the lower electrode 7 facing the semiconductor substrate side.

下部電極7は、画素毎に分割された導電性材料の薄膜であり、例えばアルミニウムやITOが用いられる。下部電極7はアルミニウムや銀等の反射性の高い導電性材料を用いることが好ましい。反射性の高い材料を用いることで、光電変換膜8を透過して下部電極7に入射した光を反射させて光電変換膜8に再入射させることができ、光電変換膜8で発生させられる電荷量を増やすことができるためである。   The lower electrode 7 is a thin film of a conductive material divided for each pixel, and for example, aluminum or ITO is used. The lower electrode 7 is preferably made of a highly reflective conductive material such as aluminum or silver. By using a highly reflective material, light that has passed through the photoelectric conversion film 8 and entered the lower electrode 7 can be reflected and re-entered into the photoelectric conversion film 8, and charges generated in the photoelectric conversion film 8. This is because the amount can be increased.

光電変換膜8は、全画素で共通化された層であり、特定波長域の光を吸収し、この光に応じた信号電荷(電子、正孔)を発生する。光電変換層8は、有機半導体等の有機光電変換材料を含んで構成される。光電変換膜8は、有機光電変換材料単体で構成した膜であっても良いし、複数の光電変換材料を積層した膜であっても良い。本実施形態では、光電変換膜8が、例えば緑色の波長域の光を吸収する有機光電変換材料(例えばキナクリドン)、又は、可視域〜赤外域の間での吸収スペクトルの吸収ピーク波長が赤外域(波長700nm以上)にあるような有機光電変換材料(例えば錫フタロシアニン)を含んで構成されたものとして説明する。尚、光電変換膜8は画素毎に分割してあっても良い。   The photoelectric conversion film 8 is a layer shared by all pixels, absorbs light in a specific wavelength region, and generates signal charges (electrons and holes) corresponding to the light. The photoelectric conversion layer 8 includes an organic photoelectric conversion material such as an organic semiconductor. The photoelectric conversion film 8 may be a film composed of a single organic photoelectric conversion material or may be a film in which a plurality of photoelectric conversion materials are stacked. In the present embodiment, the photoelectric conversion film 8 is, for example, an organic photoelectric conversion material (for example, quinacridone) that absorbs light in the green wavelength range, or an absorption peak wavelength of an absorption spectrum between the visible range and the infrared range is the infrared range. It demonstrates as what was comprised including the organic photoelectric conversion material (for example, tin phthalocyanine) which exists in (wavelength 700nm or more). The photoelectric conversion film 8 may be divided for each pixel.

上部電極9は、全画素で共通化された透明性の高い導電性材料の薄膜である。上部電極9には図示しない配線が接続されて、所定のバイアス電圧が印加されるようになっている。上部電極9上には透明な保護膜10が形成されている。上部電極9は、光電変換膜8に入射光を入射させる必要があるため、入射光に対して透明な導電性材料で構成される。上部電極9の材料としては、可視光及び赤外光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を好ましく用いることができる。Auなどの金属薄膜も用いることができるが、透過率を90%以上得ようとすると抵抗値が極端に増大するため、TCOの方が好ましい。TCOとして、特に、ITO、IZO、AZO、FTO、SnO、TiO、ZnO等を好ましく用いることができる。尚、上部電極9は画素毎に分割してあっても良い。図1の撮像素子は、上部電極9上方から光が入射される構成のため、上部電極9が光入射側の電極となる。 The upper electrode 9 is a thin film of a highly transparent conductive material shared by all pixels. A wiring (not shown) is connected to the upper electrode 9 so that a predetermined bias voltage is applied. A transparent protective film 10 is formed on the upper electrode 9. Since the upper electrode 9 needs to make incident light incident on the photoelectric conversion film 8, it is made of a conductive material that is transparent to the incident light. As a material of the upper electrode 9, a transparent conductive oxide (TCO) having a high transmittance with respect to visible light and infrared light and a small resistance value can be preferably used. A metal thin film such as Au can also be used. However, if an attempt is made to obtain a transmittance of 90% or more, the resistance value increases drastically, so TCO is preferable. In particular, ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like can be preferably used as TCO. The upper electrode 9 may be divided for each pixel. 1 has a configuration in which light is incident from above the upper electrode 9, the upper electrode 9 serves as an electrode on the light incident side.

上部電極9に印加されるバイアス電圧は、光電変換膜8で発生した電荷のうちの電子が下部電極7に移動し、正孔が上部電極9に移動するように、その極性が決められる場合が多いが、その逆にバイアス電圧を印加しても良い。   The polarity of the bias voltage applied to the upper electrode 9 may be determined such that electrons out of the charges generated in the photoelectric conversion film 8 move to the lower electrode 7 and holes move to the upper electrode 9. In many cases, a reverse bias voltage may be applied.

上部電極9と光電変換膜8との間には、上部電極9から光電変換膜8に暗電流の原因となる電荷が注入されるのを抑制する電荷ブロッキング機能及び電荷輸送機能を持つ材料膜や励起子ブロッキング機能及び電荷輸送機能を持つ材料膜を設けてあっても良い。下部電極7と光電変換膜8との間には、下部電極7から光電変換膜8に暗電流の原因となる電荷が注入されるのを抑制する電荷ブロッキング機能及び電荷輸送機能を持つ材料膜や励起子ブロッキング機能及び電荷輸送機能を持つ材料膜を設けてあっても良い。   Between the upper electrode 9 and the photoelectric conversion film 8, a material film having a charge blocking function and a charge transport function that suppresses injection of charges that cause dark current from the upper electrode 9 into the photoelectric conversion film 8. A material film having an exciton blocking function and a charge transport function may be provided. Between the lower electrode 7 and the photoelectric conversion film 8, a material film having a charge blocking function and a charge transport function for suppressing the injection of charges that cause dark current from the lower electrode 7 to the photoelectric conversion film 8 A material film having an exciton blocking function and a charge transport function may be provided.

pウェル層2内には、光電変換膜8で発生して下部電極7に移動した電子を蓄積するための高濃度のn型不純物層(n+層)3が形成されている。n+層3上にはアルミニウム等の導電性材料からなるビアプラグ5が形成され、ビアプラグ5上に下部電極7が形成されている。このビアプラグ5により、下部電極7とn+層3とが電気的に接続されている。尚、ビアプラグ5は、半導体基板上に形成された絶縁膜6内に設けられた開口内に埋設されている。   A high concentration n-type impurity layer (n + layer) 3 for accumulating electrons generated in the photoelectric conversion film 8 and moved to the lower electrode 7 is formed in the p-well layer 2. A via plug 5 made of a conductive material such as aluminum is formed on the n + layer 3, and a lower electrode 7 is formed on the via plug 5. The lower electrode 7 and the n + layer 3 are electrically connected by the via plug 5. The via plug 5 is embedded in an opening provided in an insulating film 6 formed on the semiconductor substrate.

pウェル層2内及びpウェル層2表面上には、n+層3に蓄積された電子を電圧信号に変換して撮像素子外部に出力するための信号読み出し部4が形成されている。信号読み出し部4は、n+層3に蓄積された電子を電圧信号に変換するソースフォロア回路と、n+層3に蓄積された電子をリセットするためのリセットトランジスタとからなる公知のCMOS回路で構成され、n+層3に蓄積された電荷をその量に応じた信号に変換して出力する。信号読み出し部4は、n+層3に蓄積された電荷をCCDによってアンプまで転送し、このアンプで電荷量に応じた信号を出力するような構成であっても良い。   In the p-well layer 2 and on the surface of the p-well layer 2, a signal readout unit 4 is formed for converting electrons accumulated in the n + layer 3 into a voltage signal and outputting the voltage signal to the outside of the imaging device. The signal reading unit 4 is configured by a known CMOS circuit including a source follower circuit that converts electrons accumulated in the n + layer 3 into a voltage signal and a reset transistor that resets electrons accumulated in the n + layer 3. , The charge accumulated in the n + layer 3 is converted into a signal corresponding to the amount and output. The signal reading unit 4 may be configured to transfer the charge accumulated in the n + layer 3 to the amplifier by the CCD and output a signal corresponding to the charge amount by the amplifier.

尚、図1では、下部電極7とn+層3とをビアプラグ5によって接続するものとしたが、上部電極9に印加するバイアス電圧の極性を逆にし、上部電極9とn+層3とをビアプラグ5によって接続した構成としても良い。   In FIG. 1, the lower electrode 7 and the n + layer 3 are connected by the via plug 5. However, the polarity of the bias voltage applied to the upper electrode 9 is reversed, and the upper electrode 9 and the n + layer 3 are connected by the via plug 5. It is good also as a structure connected by.

以上のような構成の撮像素子の動作を説明する。
露光期間が開始されると、入射光のうちの緑色光又は赤外光が光電変換膜8で吸収され、ここで緑色光量又は赤外光量に応じた電荷が発生する。上部電極9と下部電極7間に印加されているバイアス電圧により、光電変換膜8で発生した電子は、下部電極7に移動し、ここからビアプラグ5を介してn+層3に移動し、ここに蓄積される。露光期間終了後、n+層3に蓄積された電子に応じた信号が撮像素子外部に出力され、この撮像素子を搭載する撮像装置の信号処理部によって、緑色信号に応じたモノクロ画像又は赤外信号に応じた赤外画像が生成される。
The operation of the image sensor having the above configuration will be described.
When the exposure period starts, green light or infrared light in the incident light is absorbed by the photoelectric conversion film 8, and charges corresponding to the green light amount or the infrared light amount are generated here. Due to the bias voltage applied between the upper electrode 9 and the lower electrode 7, electrons generated in the photoelectric conversion film 8 move to the lower electrode 7 and then move to the n + layer 3 through the via plug 5, Accumulated. After the exposure period, a signal corresponding to the electrons accumulated in the n + layer 3 is output to the outside of the image sensor, and a monochrome image or an infrared signal corresponding to the green signal is output by the signal processing unit of the image pickup apparatus equipped with this image sensor. An infrared image corresponding to is generated.

次に、図1に示した撮像素子の製造方法について説明する。
図2は、図1に示した撮像素子の半導体基板上方に形成された光電変換素子の製造工程を示す工程図である。
まず、図示しないガラス、石英、シリコン等の基板上にアルミニウム、銀、及びITO等の導電性材料を例えばCVD法やスパッタ法によって成膜して下部電極7を形成し、下部電極7上にキナクリドンや錫フタロシアニン等の有機光電変換材料を例えば抵抗加熱蒸着法によって蒸着して光電変換膜8を形成する。次に、図2(b)に示すように、光電変換膜8上に、TCOをCVD法やスパッタ法により成膜して上部電極9を形成する。
Next, a manufacturing method of the image sensor shown in FIG. 1 will be described.
FIG. 2 is a process diagram showing a manufacturing process of the photoelectric conversion element formed above the semiconductor substrate of the imaging element shown in FIG.
First, a lower electrode 7 is formed by forming a conductive material such as aluminum, silver, and ITO on a substrate such as glass, quartz, or silicon (not shown) by, for example, CVD or sputtering, and quinacridone is formed on the lower electrode 7. An organic photoelectric conversion material such as tin phthalocyanine is deposited by, for example, resistance heating vapor deposition to form the photoelectric conversion film 8. Next, as shown in FIG. 2B, an upper electrode 9 is formed on the photoelectric conversion film 8 by depositing TCO by a CVD method or a sputtering method.

本製造方法では、上部電極9の形成後、光電変換膜8の光電変換効率や耐久性を向上させるために、素子全体を加熱するアニール処理を行うが、上部電極9を露出させたままでアニール処理を行うと、上部電極9が変質(例えば、表面に凹凸ができる)してしまい、上部電極9の平滑性が損なわれてしまう。平滑性を保つためにはアニール温度を下げる必要があるが、これでは光電変換膜8の特性向上があまり期待できず、アニール時間がかかって製造コストも増大してしまう。   In this manufacturing method, after the formation of the upper electrode 9, an annealing process for heating the entire element is performed in order to improve the photoelectric conversion efficiency and durability of the photoelectric conversion film 8, but the annealing process is performed with the upper electrode 9 exposed. If it performs, the upper electrode 9 will change in quality (for example, the surface will be uneven | corrugated), and the smoothness of the upper electrode 9 will be impaired. In order to maintain the smoothness, it is necessary to lower the annealing temperature. However, in this case, the improvement in characteristics of the photoelectric conversion film 8 cannot be expected so much, and it takes an annealing time and increases the manufacturing cost.

そこで、本実施形態では、アニール処理を行う前に、図2(c)に示すように、アニール処理によって上部電極9が変質してしまうのを防ぐための変質防止膜11を上部電極9表面上に密着させて形成し、この状態でアニール処理を行うようにしている。このアニール処理は、上部電極9から変質防止膜11が剥離してしまうような剥離温度よりも低い温度で行われる。これは、アニール処理中に変質防止膜11が剥離されてしまっては、上部電極9の変質防止機能を発揮できないためである。この変質防止膜11を介してアニール処理を行うことで、上部電極9の変質を防止することができ、アニール温度を上げて光電変換膜8の特性を向上させることができると共に、アニール処理にかかる時間を短くして製造コストを削減することができる。又、上部電極9の平滑性を維持できるため、導通や断線といったことがなく、画質向上を図ることができる。   Therefore, in this embodiment, before performing the annealing process, as shown in FIG. 2C, the alteration preventing film 11 for preventing the upper electrode 9 from being altered by the annealing process is provided on the surface of the upper electrode 9. In this state, the annealing process is performed. This annealing process is performed at a temperature lower than the peeling temperature at which the alteration preventing film 11 peels from the upper electrode 9. This is because the alteration preventing function of the upper electrode 9 cannot be exhibited if the alteration preventing film 11 is peeled off during the annealing process. By performing the annealing process through the alteration preventing film 11, the alteration of the upper electrode 9 can be prevented, the annealing temperature can be raised to improve the characteristics of the photoelectric conversion film 8, and the annealing process is performed. The manufacturing cost can be reduced by shortening the time. Further, since the smoothness of the upper electrode 9 can be maintained, there is no conduction or disconnection, and image quality can be improved.

このような効果を得るために必要な変質防止膜11の第1の条件は、上部電極9との密着性が高い材料で構成することである。これは、この密着性が低いと、上部電極9と変質防止膜11との隙間において上部電極9が変質してしまい好ましくないためである。上部電極9と変質防止膜11との密着力は、少なくとも1mN(ミリニュートン)以上は必要であり、これ以上小さいと剥離等が発生し十分な変質防止効果が得られない。   The first condition of the alteration preventing film 11 necessary for obtaining such an effect is that it is made of a material having high adhesion to the upper electrode 9. This is because if the adhesiveness is low, the upper electrode 9 is altered in the gap between the upper electrode 9 and the alteration preventing film 11, which is not preferable. The adhesion force between the upper electrode 9 and the alteration preventing film 11 needs to be at least 1 mN (millinewton), and if it is smaller than this, peeling or the like occurs and a sufficient alteration preventing effect cannot be obtained.

第2の条件は、加熱処理以外の方法、例えばカプトンテープによる引き剥がし方法によって上部電極9から剥離しやすい材料で構成することである。これは、変質防止膜11は、製造工程上必要なものであり、光電変換素子には本来不要なものであることから、変質防止膜11にカプトンテープを貼り付けてこれを引き剥がすことで変質防止膜11を除去する必要があるが、この引き剥がし時に変質防止膜11が上部電極9上に残っていては、上部電極9よりも上層に形成する部材の平滑性を保てなくなるためである。上部電極9と変質防止膜11との密着力は、少なくとも一般的なテープの粘着力より小さい必要があり、10N(ニュートン)以下が好ましく、できれば1N以下となるような上部電極9と変質防止膜11の組み合わせを選択するとよい。   The second condition is that the material is easily peeled from the upper electrode 9 by a method other than heat treatment, for example, a peeling method using a Kapton tape. This is because the alteration preventing film 11 is necessary in the manufacturing process and is essentially unnecessary for the photoelectric conversion element. Therefore, the alteration is prevented by attaching a Kapton tape to the alteration preventing film 11 and peeling it off. The prevention film 11 needs to be removed. If the alteration prevention film 11 remains on the upper electrode 9 at the time of peeling, the smoothness of the member formed in an upper layer than the upper electrode 9 cannot be maintained. . The adhesion between the upper electrode 9 and the alteration preventing film 11 needs to be at least smaller than the adhesive strength of a general tape, and is preferably 10 N (Newton) or less, preferably 1 N or less. Eleven combinations may be selected.

第1,2の条件を満たす変質防止膜11の材料としては、上部電極9の材料との兼ね合いで決まるが、上部電極9をTCOとした場合、アルミなどの金属であれば、ほとんどの場合第1,2の条件を満たすことができる。ただし、インジウムなどのやわらかい金属は完全に剥離することが難しく変質防止膜としては適さない。   The material of the anti-altering film 11 that satisfies the first and second conditions is determined in consideration of the material of the upper electrode 9. However, when the upper electrode 9 is made of TCO, in most cases, if it is a metal such as aluminum. The conditions of 1 and 2 can be satisfied. However, a soft metal such as indium is difficult to completely peel off and is not suitable as an alteration preventing film.

尚、変質防止膜11は光電変換素子にとって不要であるが、これを除去するための工程を追加することも、製造コストの面で好ましくはない。そこで、変質防止膜11を残したままにすることも考えられる。この場合、変質防止膜11には、アニール処理の前後で実質的に変質しない材料を用いること(第3の条件)と、入射光に対して透明な(入射光を約80%以上透過する)絶縁性材料を用いること(第4の条件)と、上記第1の条件とが必要となる。   Although the alteration preventing film 11 is unnecessary for the photoelectric conversion element, it is not preferable in terms of manufacturing cost to add a process for removing the film. Therefore, it may be considered that the alteration preventing film 11 remains. In this case, the alteration preventing film 11 is made of a material that does not substantially change before and after the annealing treatment (third condition) and transparent to incident light (transmits incident light of about 80% or more). It is necessary to use an insulating material (fourth condition) and the first condition.

入射光に対して透明な絶縁性材料を用いる理由は、光電変換膜8に光を入射させる必要があるからである。又、アニール処理の前後で実質的に変質しない材料を用いる理由は、アニール処理によって変質防止膜11が変質してしまうと、上部電極9よりも上層に形成する部材の平滑性を保てなくなったり、変質防止膜11を透過した光の向きが変化して光電変換膜8に到達しにくくなったりするからである。   The reason for using an insulating material transparent to incident light is that light needs to be incident on the photoelectric conversion film 8. Also, the reason for using a material that does not substantially change before and after the annealing treatment is that if the alteration preventing film 11 is altered by the annealing treatment, the smoothness of the member formed above the upper electrode 9 cannot be maintained. This is because the direction of the light transmitted through the alteration preventing film 11 is changed to make it difficult to reach the photoelectric conversion film 8.

第1,3,4の条件を満たす変質防止膜11の材料としては、上部電極9の材料との兼ね合いでも決まるが、上部電極9をTCOとした場合、無機ケイ素化合物(例えばSiN)もしくは無機酸化物(例えばSiO)であれば、ほとんどの場合第1,3,4の条件を満たすことができる。 The material of the alteration preventing film 11 that satisfies the conditions of the first, third, and fourth conditions is determined by the balance with the material of the upper electrode 9, but when the upper electrode 9 is made of TCO, an inorganic silicon compound (for example, SiN) or an inorganic oxide is used. If it is a thing (for example, SiO 2 ), the first, third, and fourth conditions can be satisfied in most cases.

変質防止膜11の厚みは、薄すぎると変質防止の機能が十分発揮されず、さらに変質防止膜自体の変質が起きてしまうので、適度な厚みが必要となる。逆に厚すぎると、変質防止膜が剥離の際に残ってしまったり、成膜時間が長くなったりするため、コストの増加を引き起こしてしまう。以上を考慮すると、変質防止膜11の厚みとしては、50nm以上10μm以下が好ましく、さらに好ましくは100nm以上1μm以下である。   If the thickness of the alteration preventing film 11 is too thin, the function of preventing alteration is not sufficiently exhibited, and further alteration of the alteration preventing film itself occurs, so that an appropriate thickness is required. On the other hand, if the thickness is too thick, the alteration preventing film remains at the time of peeling or the film formation time becomes long, which causes an increase in cost. Considering the above, the thickness of the alteration preventing film 11 is preferably 50 nm or more and 10 μm or less, and more preferably 100 nm or more and 1 μm or less.

次に、図2(c)の状態でアニール処理を行った後、変質防止膜11にカプトンテープを貼り付けてこれを引き剥がすことで、図2(d)に示すように変質防止膜11を除去して、光電変換素子を完成させる。尚、上述したように、この変質防止膜11の除去工程は省略しても良い。   Next, after performing the annealing process in the state of FIG. 2C, the alteration preventing film 11 is formed as shown in FIG. 2D by applying the Kapton tape to the alteration preventing film 11 and peeling it off. This is removed to complete the photoelectric conversion element. As described above, the step of removing the alteration preventing film 11 may be omitted.

このように、この製造方法によれば、上部電極9表面に変質防止膜11を密着形成してからアニール処理を行っているため、上部電極9及び光電変換膜8を変質させることなく、光電変換膜8の特性を向上させることができる。又、上部電極9の変質を防ぐことができるため、上部電極9を平滑にすることができる。したがって、上部電極9表面における光の散乱を防止して光利用効率を上げることができ、光電変換膜8全体に均一にバイアスをかけることができ、下部電極7と上部電極9が導通したり、上部電極9が断線したりするといったことを防ぐことができる。この結果、撮像素子の画質を向上させることができる。   Thus, according to this manufacturing method, since the annealing treatment is performed after the alteration preventing film 11 is formed in close contact with the surface of the upper electrode 9, the photoelectric conversion is performed without altering the upper electrode 9 and the photoelectric conversion film 8. The characteristics of the film 8 can be improved. Moreover, since the upper electrode 9 can be prevented from being altered, the upper electrode 9 can be made smooth. Therefore, scattering of light on the surface of the upper electrode 9 can be prevented to increase the light use efficiency, the entire photoelectric conversion film 8 can be biased uniformly, and the lower electrode 7 and the upper electrode 9 are electrically connected, It is possible to prevent the upper electrode 9 from being disconnected. As a result, the image quality of the image sensor can be improved.

又、この製造方法によれば、変質防止膜11の材料次第では、アニール温度を高温にすることができるため、アニール処理時間を短縮することができ、製造コストを削減することができる。又、この製造方法によれば、アニール処理後に変質防止膜11を簡単に除去することができるため、変質防止膜11を設けたことによる光電変換素子の特性への影響を排除することができる。   Further, according to this manufacturing method, depending on the material of the alteration preventing film 11, the annealing temperature can be increased, so that the annealing time can be shortened and the manufacturing cost can be reduced. Further, according to this manufacturing method, the alteration preventing film 11 can be easily removed after the annealing treatment, so that the influence on the characteristics of the photoelectric conversion element due to the provision of the alteration preventing film 11 can be eliminated.

尚、変質防止膜11を残しておく場合には、この変質防止膜11が光電変換素子を保護する保護膜として機能する。このため、従来必要であった保護膜と変質防止膜11とを同じ材料にすることができれば、従来の製造工程に対してアニール処理工程を追加するのみで様々な効果を得ることができ、実用性が高い。   In the case where the alteration preventing film 11 is left, the alteration preventing film 11 functions as a protective film for protecting the photoelectric conversion element. For this reason, if the protective film and the alteration preventing film 11 that have been conventionally required can be made of the same material, various effects can be obtained only by adding an annealing process to the conventional manufacturing process. High nature.

又、上部電極9が十分に厚みを持っていれば、上述したような導通,断線といった現象は発生しにくい。このため、本製造方法による効果は、上部電極9の厚みが20nm以下といった薄い場合において顕著なものとなる。   Moreover, if the upper electrode 9 has a sufficient thickness, the above-described phenomenon such as conduction and disconnection is unlikely to occur. For this reason, the effect by this manufacturing method becomes remarkable when the thickness of the upper electrode 9 is as thin as 20 nm or less.

以上では、光電変換素子の製造方法を説明したが、図2において光電変換膜8を、下部電極7に印加される電圧に応じて光を発光する発光膜にすれば、本製造方法は発光素子にも適用可能である。この場合、発光膜は、有機半導体等の有機材料を含むものを用いた場合に、アニール処理による特性向上効果が得られるため、特に有効となる。又、光電変換膜8を発光膜にした場合は、上部電極9側に光を放出する構成にした場合に、本製造方法が有効となる。これは、下部電極7側に光を放出する場合、上部電極9は光を透過させる必要がなく、その厚みを厚くすることができるため、導通,断線といった心配がほとんどなく、素子の特性に影響をほとんど与えないためである。又、アニール処理によって上部電極9表面に凹凸ができたとしても、発光される光は上部電極9の形状とは関わりを持たないためである。   The manufacturing method of the photoelectric conversion element has been described above. However, if the photoelectric conversion film 8 in FIG. 2 is a light-emitting film that emits light according to the voltage applied to the lower electrode 7, the present manufacturing method is a light-emitting element. It is also applicable to. In this case, when a light emitting film containing an organic material such as an organic semiconductor is used, the effect of improving the characteristics by the annealing treatment can be obtained, which is particularly effective. In addition, when the photoelectric conversion film 8 is a light emitting film, the present manufacturing method is effective when the photoelectric conversion film 8 is configured to emit light to the upper electrode 9 side. This is because when the light is emitted to the lower electrode 7 side, the upper electrode 9 does not need to transmit light, and the thickness can be increased, so that there is almost no concern about conduction or disconnection, which affects the characteristics of the element. This is to give almost no. Further, even if the surface of the upper electrode 9 is made uneven by the annealing treatment, the emitted light is not related to the shape of the upper electrode 9.

本実施形態で説明したような撮像素子に適用する光電変換素子は、上部電極9を薄くする必要があり、且つ、上部電極9を透過した光が光電変換素子の出力に影響を与えることから、上述したような製造方法が特に有効となる。   The photoelectric conversion element applied to the imaging element as described in the present embodiment needs to make the upper electrode 9 thin, and the light transmitted through the upper electrode 9 affects the output of the photoelectric conversion element. The manufacturing method as described above is particularly effective.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
25mm角のITO電極付ガラス基板を、アセトン、セミコクリーン、イソプロピルアルコール(IPA)でそれぞれ15分超音波洗浄した。最後にIPA煮沸洗浄を行った後、UV/O3洗浄を行った。その基板を有機蒸着室に移動し、室内を1×10-4Pa以下に減圧した。その後、基板ホルダーを回転させながら、ITO電極上に電子ブロッキング層として2-TNATA(tris(-(2-naphthyl)--phenyl-amino)triphenylamine)を抵抗加熱法により蒸着速度0.5〜1Å/secで厚み1000Åとなるように蒸着した。次に、2回以上昇華精製したスズフタロシアニン(アルドリッチジャパン株式会社製)と昇華精製を行ったC60(フロンティアカーボン)を抵抗加熱法によりそれぞれ蒸着速度0.5〜1Å/secに保ちながら合計700Åとなるように蒸着して光電変換層を形成した。このとき、スズフタロシアニンとC60の蒸着速度の比率は1:1とした。
次に、この基板を、真空中を保ちながらスパッタ室に搬送した。その後、室内を1×10−4Pa以下に保ったまま、上部電極としてITOを厚み50Åとなるように成膜した。下部電極と上部電極とが形成する光電変換領域の面積は2mm×2mmとした。次に、この基板を、真空を保ちながらCVD室に搬送し、上部電極上にプラズマCVD装置を用いて変質防止膜としてSiNを約1μm成膜した。この基板を大気に曝すことなく、水分、酸素をそれぞれ1ppm以下に保ったグローブボックスに搬送し、UV硬化性樹脂を用いて、吸湿剤を張ったガラスで封止を行った。このようにして作製した素子をオーブンに入れ、窒素雰囲気下150℃で30分間アニール処理を行った。
(Example 1)
A 25 mm square glass substrate with an ITO electrode was ultrasonically cleaned with acetone, semicoclean, and isopropyl alcohol (IPA) for 15 minutes. Finally, after IPA boiling cleaning, UV / O 3 cleaning was performed. The substrate was moved to the organic vapor deposition chamber, and the pressure in the chamber was reduced to 1 × 10 −4 Pa or less. Then, while rotating the substrate holder, 2-TNATA (tris (-(2-naphthyl) -phenyl-amino) triphenylamine) was deposited on the ITO electrode as an electron blocking layer by a resistance heating method at a rate of 0.5 to 1 mm / min. The vapor deposition was performed so that the thickness became 1000 mm in sec. Next, tin phthalocyanine purified by sublimation twice or more (manufactured by Aldrich Japan Co., Ltd.) and C60 (frontier carbon) subjected to sublimation purification by a resistance heating method while maintaining a deposition rate of 0.5 to 1 kg / sec, respectively, to a total of 700 kg. The photoelectric conversion layer was formed by vapor deposition. At this time, the ratio of the deposition rate of tin phthalocyanine and C60 was 1: 1.
Next, this substrate was transported to the sputtering chamber while maintaining a vacuum. Thereafter, ITO was deposited to a thickness of 50 mm as the upper electrode while keeping the room at 1 × 10 −4 Pa or less. The area of the photoelectric conversion region formed by the lower electrode and the upper electrode was 2 mm × 2 mm. Next, the substrate was transferred to a CVD chamber while maintaining a vacuum, and a SiN 2 film having a thickness of about 1 μm was formed on the upper electrode as an anti-altering film using a plasma CVD apparatus. Without exposing this board | substrate to air | atmosphere, it conveyed to the glove box which kept the water | moisture content and oxygen each 1 ppm or less, and sealed with the glass which put the moisture absorption agent using UV curable resin. The device thus fabricated was placed in an oven and annealed at 150 ° C. for 30 minutes in a nitrogen atmosphere.

アニール処理後の素子を、オプテル製定エネルギー量子効率測定装置(ソースメータはケースレー6430を使用)を用いて、上部電極と下部電極間に対し、上部電極を正バイアスとして5.0×105V/cmの外部電界を与えた場合の、光非照射時に流れる暗電流値と光照射時に流れる光電流値を測定しIPCEを算出した。光電変換領域の面積は2mm×2mmのうち1.5mmφの領域に対して上部電極側から光照射を行った。照射した光量は50μW/cmとした。 The element after annealing was subjected to 5.0 × 10 5 V / cm with the upper electrode being positively biased between the upper electrode and the lower electrode using an Optel constant energy quantum efficiency measurement device (source meter using Keithley 6430). The IPCE was calculated by measuring the dark current value that flows when no light is applied and the photocurrent value that flows when light is applied. The area of the photoelectric conversion region was irradiated with light from the upper electrode side in a region of 1.5 mmφ out of 2 mm × 2 mm. The amount of light irradiated was 50 μW / cm 2 .

(実施例2)
実施例1におけるアニール処理のアニール温度とアニール処理時間を、それぞれ250℃と10分に変更して素子を作製し、実施例1と同様の測定を行った。
(Example 2)
An element was manufactured by changing the annealing temperature and annealing time of the annealing process in Example 1 to 250 ° C. and 10 minutes, respectively, and the same measurement as in Example 1 was performed.

(比較例1)
実施例1と同様に上部電極のITO成膜まで行った後、変質防止膜を形成せずに、グローブボックス中で封止を行った。その素子をオーブンに入れ、窒素雰囲気下150℃で30分間アニール処理を行った。
(Comparative Example 1)
After carrying out to ITO film-forming of an upper electrode similarly to Example 1, it sealed in the glove box, without forming an alteration prevention film. The device was placed in an oven and annealed at 150 ° C. for 30 minutes in a nitrogen atmosphere.

(比較例2)
比較例1におけるアニール処理のアニール温度とアニール処理時間を、それぞれ150℃と10分に変更して素子を作製し、実施例1と同様の測定を行った。
(Comparative Example 2)
An element was fabricated by changing the annealing temperature and annealing time of the annealing process in Comparative Example 1 to 150 ° C. and 10 minutes, respectively, and the same measurement as in Example 1 was performed.

(比較例3)
実施例1と同様に上部電極のITO成膜まで行った後、変質防止膜を形成せずに、グローブボックス中で封止を行った。その後、アニール処理を行わずに実施例1と同様の測定を行った。
(Comparative Example 3)
After carrying out to ITO film-forming of an upper electrode similarly to Example 1, it sealed in the glove box, without forming an alteration prevention film. Thereafter, the same measurement as in Example 1 was performed without annealing.

図3は、実施例と比較例の条件及び結果を示した図である。
実施例1,2と比較例3との比較により、アニール処理を行うことで、素子の特性を向上させられることが分かる。又、実施例1,2と比較例1,2との比較により、変質防止膜を設けてからアニール処理を行うことで、素子の特性劣化を防止できていることが分かる。又、実施例1と実施例2との比較により、変質防止膜を設けておけば、アニール温度を上げてアニール処理時間を短縮しても、実施例1と同等の特性を維持することができることがわかる。
FIG. 3 is a diagram showing the conditions and results of Examples and Comparative Examples.
Comparison between Examples 1 and 2 and Comparative Example 3 reveals that the characteristics of the element can be improved by performing the annealing process. Further, it can be seen from comparison between Examples 1 and 2 and Comparative Examples 1 and 2 that the deterioration of the characteristics of the element can be prevented by performing the annealing treatment after providing the anti-degeneration film. Further, by comparing the first and second embodiments, if the alteration preventing film is provided, even if the annealing temperature is increased and the annealing time is shortened, the same characteristics as those of the first embodiment can be maintained. I understand.

本発明の実施形態である撮像素子の1画素分の断面模式図1 is a schematic cross-sectional view of one pixel of an image sensor according to an embodiment of the present invention. 図1に示した撮像素子の半導体基板上方に形成された光電変換素子の製造工程を示す工程図Process drawing which shows the manufacturing process of the photoelectric conversion element formed above the semiconductor substrate of the image pick-up element shown in FIG. 実施例と比較例の条件及び結果を示した図The figure which showed the conditions and result of an Example and a comparative example

符号の説明Explanation of symbols

7 下部電極
8 光電変換膜
9 上部電極
11 変質防止膜
7 Lower electrode 8 Photoelectric conversion film 9 Upper electrode 11 Anti-alteration film

Claims (15)

互いに対向する一対の電極と、前記一対の電極間に挟まれた機能膜とを有する機能性素子の製造方法であって、
前記一対の電極の一方の上方に前記機能膜を形成する工程と、
前記機能膜上方に前記一対の電極の他方を形成する工程と、
前記機能膜の特性を向上させるために行うアニール処理による前記他方の電極の変質を防ぐための変質防止膜を前記他方の電極上に形成する工程と、
前記変質防止膜形成後に前記アニール処理を施す工程とを備える機能性素子の製造方法。
A method of manufacturing a functional element having a pair of electrodes facing each other and a functional film sandwiched between the pair of electrodes,
Forming the functional film over one of the pair of electrodes;
Forming the other of the pair of electrodes above the functional film;
Forming an alteration preventing film on the other electrode for preventing alteration of the other electrode by annealing performed to improve the characteristics of the functional film;
And a step of performing the annealing treatment after forming the alteration preventing film.
請求項1記載の機能性素子の製造方法であって、
前記アニール処理の温度が、前記変質防止膜が前記他方の電極から剥離してしまう温度よりも低い機能性素子の製造方法。
It is a manufacturing method of the functional element according to claim 1,
A method for producing a functional element, wherein a temperature of the annealing treatment is lower than a temperature at which the alteration preventing film peels off from the other electrode.
請求項1又は2記載の機能性素子の製造方法であって、
前記変質防止膜が、前記アニール処理の前後で実質的に変質しないものである機能性素子の製造方法。
A method for producing a functional element according to claim 1 or 2,
The method for producing a functional element, wherein the alteration preventing film is substantially not altered before and after the annealing treatment.
請求項1〜3のいずれか1項記載の機能性素子の製造方法であって、
前記変質防止膜が入射光に対して透明である機能性素子の製造方法。
A method for producing a functional element according to any one of claims 1 to 3,
A method for producing a functional element, wherein the alteration preventing film is transparent to incident light.
請求項1〜4のいずれか1項記載の機能性素子の製造方法であって、
前記他方の電極が、透明導電性酸化物であり、
前記変質防止膜が、無機ケイ素化合物もしくは無機酸化物である機能性素子の製造方法。
A method for producing a functional element according to any one of claims 1 to 4,
The other electrode is a transparent conductive oxide;
A method for producing a functional element, wherein the alteration preventing film is an inorganic silicon compound or an inorganic oxide.
請求項1又は2記載の機能性素子の製造方法であって、
前記アニール処理後に前記変質防止膜を除去する工程を備える機能性素子の製造方法。
A method for producing a functional element according to claim 1 or 2,
A method for manufacturing a functional element, comprising a step of removing the alteration preventing film after the annealing treatment.
請求項1〜6のいずれか1項記載の機能性素子の製造方法であって、
前記機能膜が有機材料を含んで構成される機能性素子の製造方法。
A method for producing a functional element according to any one of claims 1 to 6,
A method for producing a functional element, wherein the functional film includes an organic material.
請求項7記載の機能性素子の製造方法であって、
前記有機材料が有機半導体である機能性素子の製造方法。
It is a manufacturing method of the functional element according to claim 7,
A method for producing a functional element, wherein the organic material is an organic semiconductor.
請求項1〜8のいずれか1項記載の機能性素子の製造方法であって、
前記他方の電極の厚みが20nm以下である機能性素子の製造方法。
A method for manufacturing a functional element according to any one of claims 1 to 8,
A method for producing a functional element, wherein the thickness of the other electrode is 20 nm or less.
請求項1〜9のいずれか1項記載の機能性素子の製造方法であって、
前記機能膜が、入射光を吸収して吸収した光に応じた電荷を発生する光電変換膜である機能性素子の製造方法。
A method for manufacturing a functional element according to any one of claims 1 to 9,
A method for producing a functional element, wherein the functional film is a photoelectric conversion film that absorbs incident light and generates charges according to the absorbed light.
請求項10記載の機能性素子の製造方法であって、
前記機能性素子の前記他方の電極が前記入射光の入射側の電極である機能性素子の製造方法。
It is a manufacturing method of the functional element according to claim 10,
The method for producing a functional element, wherein the other electrode of the functional element is an electrode on the incident side of the incident light.
請求項1〜9のいずれか1項記載の機能性素子の製造方法であって、
前記機能膜が、電気エネルギーを光に変換して放出する発光膜である機能性素子の製造方法。
A method for manufacturing a functional element according to any one of claims 1 to 9,
A method for producing a functional element, wherein the functional film is a light-emitting film that converts electric energy into light and emits the light.
請求項12記載の機能性素子の製造方法であって、
前記機能性素子の前記他方の電極が前記放出された光の取り出し側の電極である機能性素子の製造方法。
It is a manufacturing method of the functional element according to claim 12,
The method for producing a functional element, wherein the other electrode of the functional element is an electrode on the extraction side of the emitted light.
基板上方に形成され、請求項10又は11記載の機能性素子の製造方法で製造された機能性素子と、
前記機能性素子の光電変換膜で発生した電荷を蓄積するための電荷蓄積部と、
前記一対の電極のいずれかと前記電荷蓄積部とを電気的に接続する接続部とを備える光電変換素子。
A functional element formed above the substrate and manufactured by the method for manufacturing a functional element according to claim 10 or 11,
A charge storage unit for storing charges generated in the photoelectric conversion film of the functional element;
A photoelectric conversion element comprising a connection portion that electrically connects one of the pair of electrodes to the charge storage portion.
同一面上に複数配列された請求項14記載の光電変換素子と、
前記光電変換素子で発生して前記電荷蓄積部に蓄積された電荷に応じた信号を読み出す信号読み出し部とを備える撮像素子。
A plurality of the photoelectric conversion elements according to claim 14 arranged on the same surface;
An image pickup device comprising: a signal reading unit that reads a signal corresponding to the electric charge generated by the photoelectric conversion device and stored in the charge storage unit.
JP2007129113A 2007-05-15 2007-05-15 Method for producing functional element Active JP5124172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129113A JP5124172B2 (en) 2007-05-15 2007-05-15 Method for producing functional element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129113A JP5124172B2 (en) 2007-05-15 2007-05-15 Method for producing functional element

Publications (2)

Publication Number Publication Date
JP2008288252A true JP2008288252A (en) 2008-11-27
JP5124172B2 JP5124172B2 (en) 2013-01-23

Family

ID=40147722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129113A Active JP5124172B2 (en) 2007-05-15 2007-05-15 Method for producing functional element

Country Status (1)

Country Link
JP (1) JP5124172B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105384A (en) * 1979-02-08 1980-08-12 Matsushita Electric Ind Co Ltd Process of photoconductive element
JPH08262466A (en) * 1995-03-22 1996-10-11 Toppan Printing Co Ltd Transparent electrode plate
JP2004179266A (en) * 2002-11-25 2004-06-24 Konica Minolta Holdings Inc Radiation picture detector
JP2006245045A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Solid imaging element of photoelectric conversion film stacked type and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105384A (en) * 1979-02-08 1980-08-12 Matsushita Electric Ind Co Ltd Process of photoconductive element
JPH08262466A (en) * 1995-03-22 1996-10-11 Toppan Printing Co Ltd Transparent electrode plate
JP2004179266A (en) * 2002-11-25 2004-06-24 Konica Minolta Holdings Inc Radiation picture detector
JP2006245045A (en) * 2005-02-28 2006-09-14 Fuji Photo Film Co Ltd Solid imaging element of photoelectric conversion film stacked type and its manufacturing method

Also Published As

Publication number Publication date
JP5124172B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
US7936035B2 (en) Photoelectric conversion element, solid-state image pickup device, and manufacturing method of the photoelectric conversion element
EP2718974B1 (en) Infrared imaging device integrating an ir up-conversion device with a cmos image sensor
CN110246861B (en) Solid-state image pickup element, method of manufacturing the same, and electronic apparatus
CN109360835B (en) Solid-state image sensor, method of manufacturing the same, and electronic apparatus
JP6868780B2 (en) Photoelectric conversion element, image sensor and electronic equipment
US8779281B2 (en) Solar cell
KR20180060166A (en) Optoelectronic diode and electronic device
EP3340305B1 (en) Electronic devices and methods of manufacturing the same
KR20140106768A (en) Photoelectronic device and image sensor
MX2013014316A (en) Transparent infrared-to-visible up-conversion device.
CA2828364A1 (en) Photodetector and upconversion device with gain (ec)
JP5873847B2 (en) Solid-state imaging device and imaging apparatus
US20160197122A1 (en) Organic photoelectronic devices and image sensors including the same
JP2008288253A (en) Process for fabricating functional element, photoelectric conversion element, image sensor
JP6799386B2 (en) Solid-state image sensor and its manufacturing method
JP2009218599A (en) Organic photoelectric conversion film and photoelectric conversion device having the same
JP5124172B2 (en) Method for producing functional element
JP3426211B2 (en) High-speed response photocurrent multiplier
US11757056B2 (en) Optical sensor and thin film photodiode
JP2015225886A (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, laminate type solid-state imaging device, and solar battery
KR101653744B1 (en) Light Detector and Imaging Device Containing the Same
JPWO2020137282A5 (en)
JP2010161269A (en) Organic photoelectric conversion element and method of manufacturing the same, and organic photoelectric conversion imaging element
KR102395050B1 (en) Optoelectronic device and image sensor and electronic device including the same
US20230014108A1 (en) Organic photodetector and electronic device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250