JP2008285706A - Galvannealed steel sheet - Google Patents

Galvannealed steel sheet Download PDF

Info

Publication number
JP2008285706A
JP2008285706A JP2007130055A JP2007130055A JP2008285706A JP 2008285706 A JP2008285706 A JP 2008285706A JP 2007130055 A JP2007130055 A JP 2007130055A JP 2007130055 A JP2007130055 A JP 2007130055A JP 2008285706 A JP2008285706 A JP 2008285706A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide
plating phase
phase
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007130055A
Other languages
Japanese (ja)
Other versions
JP4930182B2 (en
Inventor
Masayasu Nagoshi
正泰 名越
Wataru Tanimoto
亘 谷本
Hiroyuki Masuoka
弘之 増岡
Naoto Yoshimi
直人 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007130055A priority Critical patent/JP4930182B2/en
Publication of JP2008285706A publication Critical patent/JP2008285706A/en
Application granted granted Critical
Publication of JP4930182B2 publication Critical patent/JP4930182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet having excellent press formability. <P>SOLUTION: The galvannealed steel sheet has an Fe-Zn alloy plating phase at least on one side of the steel sheet, also, the Fe-Zn alloy plating phase has a flat part at the plating face, and oxides essentially consisting of Zn are formed on the surface in the flat part at the average thickness of 10 to 200 nm. Further, particulate-shaped oxides with the average particle diameters of 5 to 500 nm are present at the surface of the plating phase other than the flat part. By the existence of the oxides also at the surface of the plating phase other than the flat part, its friction coefficient and sliding resistance can be reduced even under the condition where facial pressure is high. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりを生じやすい材料においても、優れたプレス成形性を有する、合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load, such as a high-strength alloyed hot-dip galvanized steel sheet, which tends to cause mold galling.

合金化溶融亜鉛めっき鋼板は合金化処理を施さない亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている
。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融亜鉛めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
An alloyed hot-dip galvanized steel sheet is widely used in a wide range of fields, mainly for automobile body applications, because it is superior in weldability and paintability compared to a galvanized steel sheet that is not subjected to alloying treatment. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip galvanized steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase. As the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に界面から剥離する現象、いわゆるパウダリングが生じやすい問題を有している。このため特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。   However, a coating film having a high Fe concentration has a problem that a hard and brittle Γ phase is easily formed at the plating-steel plate interface, and a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. For this reason, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the coating process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、加工性を向上させる技術が開示されている。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability and workability by forming a film is disclosed.

特許文献4には亜鉛系めっき鋼板表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性および化成処理性を向上させる技術が開示されている。   Patent Document 4 discloses that by immersing a plated steel sheet in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 on the surface of the zinc-based plated steel sheet, performing electrolytic treatment, or applying the above aqueous solution, P A technique for improving press moldability and chemical conversion treatment by forming an oxide film mainly composed of oxides is disclosed.

特許文献5には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術が開示されている。   In Patent Document 5, the surface of a zinc-based plated steel sheet is improved in press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, dipping treatment, coating treatment, coating oxidation treatment, or heat treatment. Technology is disclosed.

特許文献6には、合金化溶融亜鉛めっき鋼板を酸性溶液に接触させることで鋼板表面にZnを主体とする酸化物を形成させ、めっき層とプレス金型の凝着を抑制し、摺動性を向上させる技術が開示されている。
特許平1−319661号公報 特開昭53-60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特開2003-306781号公報
In Patent Document 6, an alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution to form an oxide mainly composed of Zn on the surface of the steel sheet, suppressing adhesion between the plating layer and the press mold, and slidability. A technique for improving the above is disclosed.
Japanese Patent No. 1-319661 JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 JP2003-306781

しかしながら、特許文献1〜6は、自動車外板に多く使用される比較的強度の低い合金化溶融亜鉛めっき鋼板に対しては有効であるが、プレス成形時の荷重が高いがゆえに金型との接触面圧が上昇する高強度合金化溶融亜鉛めっき鋼板においては、必ずしもプレス成形性の改善効果を安定して得ることはできない。   However, Patent Documents 1 to 6 are effective for a relatively low-strength alloyed hot-dip galvanized steel sheet that is often used for automobile outer plates, but because of the high load during press molding, In a high-strength galvannealed steel sheet with increased contact surface pressure, the effect of improving press formability cannot always be obtained stably.

本発明は、かかる事情に鑑み、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりが生じやすい材料においても優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load such as a high-strength alloyed hot-dip galvanized steel sheet, which is likely to cause die galling. And

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、以下の知見を得た。   The inventors of the present invention made further studies to solve the above problems. As a result, the following knowledge was obtained.

特許文献6の方法により製造される合金化溶融亜鉛めっき鋼板表面には、Znを主体とする酸化物層が形成されており、このZnを主体とする酸化物層がプレス時に金型との凝着を抑制し摺動抵抗を低減している。Zn主体の酸化物(以下、Zn系酸化物と称することもある)は、主に、調質圧延等により形成される平坦部表面に形成される。実際のプレス成形において、金型と優先的に接触する面はこの平坦部であり、接触面圧が低い場合は、平坦部表面のZn系酸化物が、金型とめっき層表面の直接接触を抑制することでプレス成形性の向上効果が得られる。しかし、めっきの下地鋼板として高強度鋼を使用する場合は、軟質鋼よりも成形荷重が高く型かじりや割れを生じやすく、特許文献6に記載されるZn系酸化物層では効果が不十分であることがわかった。   An oxide layer mainly composed of Zn is formed on the surface of the alloyed hot-dip galvanized steel sheet manufactured by the method of Patent Document 6, and this oxide layer mainly composed of Zn is condensed with the mold during pressing. Wear resistance is reduced and sliding resistance is reduced. A Zn-based oxide (hereinafter also referred to as a Zn-based oxide) is mainly formed on the surface of a flat portion formed by temper rolling or the like. In actual press molding, the surface that preferentially contacts the mold is this flat part, and when the contact surface pressure is low, the Zn-based oxide on the surface of the flat part makes direct contact between the mold and the plating layer surface. By suppressing it, the effect of improving press formability can be obtained. However, when using high-strength steel as the base steel sheet for plating, the forming load is higher than that of soft steel, and galling and cracking are likely to occur, and the effect of the Zn-based oxide layer described in Patent Document 6 is insufficient. I found out.

そして、さらに研究を進めた結果、本発明者らは、プレス成形時の成形荷重が高くなるほど、平坦部以外のめっき相表面が金型と接触する割合が高くなり凝着が進行すること、そしてその結果として摺動抵抗を増大させていることを突き止めた。平坦部以外のめっき相表面には合金化の際に形成されるAlを含む酸化物層が薄く、(合金化溶融亜鉛めっき鋼板で、厚さ5nm程度)、その酸化物表面が平滑で不活性なため潤滑油を保持する能力が低い、ゆえに、凝着を抑制する効果は酸化物が形成された調質圧延部よりも小さいと考えられる。   And as a result of further research, the present inventors, the higher the molding load at the time of press molding, the higher the proportion of the plating phase surface other than the flat part in contact with the mold, and the adhesion proceeds, and As a result, it was found that the sliding resistance was increased. On the surface of the plating phase other than the flat part, the oxide layer containing Al formed during alloying is thin (alloyed hot-dip galvanized steel sheet, about 5 nm thick), and the oxide surface is smooth and inert. Therefore, the ability to hold the lubricating oil is low, and therefore, the effect of suppressing adhesion is considered to be smaller than that of the temper rolled portion where the oxide is formed.

そこで、我々は、上記知見を踏まえて、平坦部以外のめっき相表面の凝着抑制能力を向上させることのできる物質の検討を行った。その結果、平坦部以外のめっき相表面に粒子状の酸化物を付与することが凝着抑制能力向上の点で有効であることを発見するに至った。さらに、その粒子状の酸化物としてZrやTiを含むもので効果を確認した。
本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、かつ、該Fe-Zn合金めっき相の表面には調質圧延により形成される平坦部を有し、該平坦部表面には、Znを必須成分とする酸化物が平均厚さ10nm以上200nm以下形成されており、さらに、前記平坦部以外のめっき相表面には、平均粒径が5 nm以上500 nm以下の微粒子状の酸化物が存在することを特徴とする合金化溶融亜鉛めっき鋼板。
[2]前期[1]において、前記微粒子状の酸化物は、Znと5原子%以上40原子%以下のZrを含むことを特徴とする合金化溶融亜鉛めっき鋼板。
[3]前期[1]または[2]において、前記微粒子状の酸化物は、Znと5原子%以上30原子%以下のTiを含むことを特徴とする合金化溶融亜鉛めっき鋼板。
Therefore, based on the above findings, we investigated a substance that can improve the ability to suppress adhesion on the surface of the plating phase other than the flat part. As a result, it has been discovered that it is effective in terms of improving the ability to suppress adhesion to impart particulate oxide to the surface of the plating phase other than the flat portion. Furthermore, the effect was confirmed by using Zr or Ti as the particulate oxide.
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] The Fe—Zn alloy plating phase has at least one surface of a steel plate, and the surface of the Fe—Zn alloy plating phase has a flat portion formed by temper rolling, and the flat portion surface has In addition, an oxide containing Zn as an essential component is formed with an average thickness of 10 nm or more and 200 nm or less, and further on the surface of the plating phase other than the flat portion, a fine particle-shaped oxide having an average particle diameter of 5 nm or more and 500 nm or less An alloyed hot-dip galvanized steel sheet characterized by the presence of an object.
[2] The alloyed hot-dip galvanized steel sheet according to [1], wherein the particulate oxide contains Zn and 5 to 40 atomic% of Zr.
[3] The alloyed hot-dip galvanized steel sheet according to [1] or [2], wherein the particulate oxide contains Zn and 5 atomic% to 30 atomic% Ti.

本発明によれば、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板が得られる。   According to the present invention, an alloyed hot-dip galvanized steel sheet having a low sliding resistance during press forming and excellent press formability can be obtained.

合金化溶融亜鉛めっき鋼板は、合金化処理時の鋼板−めっき界面の反応性の差およびFe-Zn合金の角張った形状により、めっき相表面にマクロな凹凸が存在する。しかしながら、合金化処理後には、通常、調質圧延が施されるため、この調質圧延時のロールとの接触によりめっき相表面のこのマクロな凹凸は緩和され、表面が平滑化されると同時にめっき相表面の凸部が平坦になる(以下、平坦化された凸部を平坦部と称す)。このようにして形成された平坦部は、プレス成形時に金型が直接接触する部分であるため、この平坦部の摺動抵抗を小さくすることが、プレス成形性を安定して改善することにつながり重要となる。平坦部の摺動抵抗を小さくする方法としては、金型との凝着を防止する硬質かつ高融点の物質が存在させる方法が挙げられる。この点で、平坦部表面にZn系の酸化物層を存在させることは、酸化物層が金型との凝着を防止することになり、摺動特性の向上に有効な方法である。   The alloyed hot-dip galvanized steel sheet has macro unevenness on the surface of the plating phase due to the difference in reactivity between the steel sheet and the plating interface during the alloying treatment and the angular shape of the Fe-Zn alloy. However, after the alloying treatment, temper rolling is usually performed, so that the macro unevenness of the plating phase surface is alleviated by the contact with the roll during the temper rolling, and the surface is smoothed at the same time. The convex portion on the surface of the plating phase becomes flat (hereinafter, the flattened convex portion is referred to as a flat portion). Since the flat part formed in this way is a part where the mold comes into direct contact during press molding, reducing the sliding resistance of the flat part leads to stable improvement of press moldability. It becomes important. As a method for reducing the sliding resistance of the flat portion, there is a method in which a hard and high melting point substance that prevents adhesion with a mold is present. In this respect, the presence of a Zn-based oxide layer on the surface of the flat portion prevents the adhesion of the oxide layer to the mold, and is an effective method for improving the sliding characteristics.

プレス成形時の荷重が高い場合は、めっき相表面と金型との高面圧で接触し、高面圧で摺動を受けるため、平坦部以外のめっき相表面部分も多く金型と接触するようになる。この平坦部以外のめっき相表面部分は、上述したように、合金化処理時に形成されるマクロな凹凸部分であり、その表面にはAlを主成分の一つとする酸化物層が存在する。しかし、その厚さが薄いため、金型と接触し凝着抑制効果は低い。また、その酸化層表面は平滑であるので、潤滑油の保持効果も期待できない。   When the load during press molding is high, the plating phase surface and the mold come into contact with each other at high surface pressure, and sliding is caused by high surface pressure. It becomes like this. As described above, the plating phase surface portion other than the flat portion is a macro uneven portion formed during the alloying process, and an oxide layer containing Al as one of the main components exists on the surface. However, since the thickness is small, it is in contact with the mold and has a low adhesion suppression effect. In addition, since the surface of the oxide layer is smooth, no lubricating oil retention effect can be expected.

そこで、このような平坦部以外のめっき相表面に粒子状の酸化物を存在させると、面圧が高い状態でも摺動性が向上する。この理由として、次の2つの効果を推定している。
1)粒子状酸化物自体がめっき合金相と金型との直接接触を抑制し凝着を抑制する効果.
2)粒子状の形状を有することで従来は平滑であった表面に潤滑油を保持する効果。
Therefore, when the particulate oxide is present on the surface of the plating phase other than the flat portion, the slidability is improved even in a state where the surface pressure is high. For this reason, the following two effects are estimated.
1) The particulate oxide itself suppresses the direct contact between the plating alloy phase and the mold, thereby suppressing adhesion.
2) The effect of retaining the lubricating oil on the surface which has been smooth in the past by having a particulate shape.

そして、粒子状酸化物の平均サイズは、粒子の断面を円と見なしたときに 5 nm以上500 nm以下とする。平均粒子径が5 nm未満であると凝着の抑制効果が不足し適当でない。また、平均粒子径が500 nm超えであるとプレスの後行程における除去が困難になり欠陥の原因となることがある。粒子状酸化物の数は、1 μm四方当り1個以上が好ましい。   The average size of the particulate oxide is 5 nm or more and 500 nm or less when the cross section of the particle is regarded as a circle. If the average particle size is less than 5 nm, the effect of suppressing adhesion is insufficient, which is not suitable. If the average particle size exceeds 500 nm, removal in the post-press process becomes difficult, which may cause defects. The number of particulate oxides is preferably 1 or more per 1 μm square.

以上より、本発明においては、平坦部以外のめっき相表面に、平均粒径が5 nm以上500 nm以下の微粒子状の酸化物が存在することとする。   As described above, in the present invention, fine particle oxides having an average particle diameter of 5 nm or more and 500 nm or less exist on the surface of the plating phase other than the flat portion.

なお、本発明において、このような粒子状の酸化物は、含まれる金属元素を限定しない。しかし、プレス成形性向上効果の点から、Znと、Zrおよび/またはTiを含むことが好ましい。また、Zrおよび/またはTiを含有する場合、その含有量はそれぞれ、5原子%以上であることが好ましい。5原子%未満だと粒子状として形成されにくくなる。濃度の上限はさだかではないがZrで40原子%以下、Tiで30原子%以下において効果を確認した。また、TiとZrの両方を同時に含有する場合は、ZrとTiの合計量で5原子%以上40原子%以下が好ましい。   In the present invention, such a particulate oxide does not limit the contained metal element. However, it is preferable to contain Zn and Zr and / or Ti from the viewpoint of the effect of improving press formability. Further, when Zr and / or Ti are contained, the content is preferably 5 atomic% or more. If it is less than 5 atomic%, it is difficult to form particles. Although the upper limit of the concentration was not obvious, the effect was confirmed at 40 atomic% or less for Zr and 30 atomic% or less for Ti. When both Ti and Zr are contained simultaneously, the total amount of Zr and Ti is preferably 5 atomic percent or more and 40 atomic percent or less.

なお、平坦部表面には、Znを必須成分とする酸化物を平均厚さ10nm以上200nm以下で形成するものとする。前述した通り、平坦部表面にZn系酸化物を存在させることにより酸化物層が金型と凝着を防止し摺動性が向上する。そして、このような酸化物層の平均厚さは平坦部において、10nm以上200nm以下とする。酸化物層の平均厚さが10nm未満になるとZrやTiを含有させても摺動抵抗を低下させる効果が不十分となる。一方、酸化物層の平均厚さが200nmを越えると、プレス加工中に皮膜が破壊し摺動抵抗が上昇し、また溶接性が低下する傾向にある。なお、ここでいうZnを必須成分とする酸化物層とは、少なくともZnとOを含んでいればよく、水酸化物や処理液に含まれる成分など、その他の元素が結合している場合も含まれる。   Note that an oxide containing Zn as an essential component is formed on the surface of the flat portion with an average thickness of 10 nm to 200 nm. As described above, the presence of the Zn-based oxide on the surface of the flat portion prevents the oxide layer from adhering to the mold and improves the slidability. And the average thickness of such an oxide layer shall be 10 nm or more and 200 nm or less in a flat part. When the average thickness of the oxide layer is less than 10 nm, the effect of reducing the sliding resistance is insufficient even if Zr or Ti is contained. On the other hand, when the average thickness of the oxide layer exceeds 200 nm, the coating is destroyed during press working, the sliding resistance increases, and the weldability tends to decrease. The oxide layer containing Zn as an essential component here may contain at least Zn and O, and other elements such as hydroxide and components contained in the treatment liquid may be bonded. included.

ここで、平坦部表面にZn系酸化物を、平坦部以外のめっき相表面に微粒子状の酸化物を形成させる方法としては、例えば、ZrやTiを含む酸性溶液に合金化溶融亜鉛めっき鋼板を接触させ、乾燥させる方法が挙げられる。使用する酸性溶液としては、pH2.0〜5.0の領域においてpH緩衝作用を有するものが好ましい。このような酸性溶液とめっき相表面が接触すると、接触から乾燥過程において、調質圧延を施され活性になった平坦部表面にはZnが溶解するとともにZn主体の酸化物が析出する。一方、平坦部以外のめっき相表面部分は不活性であるため反応性は低いが、ZrやTiを添加することで、これらを含む微粒子が形成される。そのメカニズムは必ずしも明確になっていないが、添加したZrやTiイオンが酸化物の形成核になっていると推定している。微粒子の数やサイズおよび含まれるZrやTiの濃度は、溶液中のZrやTi濃度(典型的には0.01mol/l〜30mol/l)および反応時間(1 sec〜120 sec程度の範囲)で変化する。ZrやTi濃度を高くすると微粒子数が増加し、ZrやTiの含有量も増加する傾向にある。微粒子サイズは、反応時間が長いと大きくなる傾向がある。なお、処理液温度としては25℃〜70℃の範囲が望ましい。   Here, as a method of forming a Zn-based oxide on the surface of the flat part and forming a fine particle oxide on the surface of the plating phase other than the flat part, for example, an alloyed hot dip galvanized steel sheet is added to an acidic solution containing Zr and Ti. The method of making it contact and drying is mentioned. The acidic solution used preferably has a pH buffering action in the pH range of 2.0 to 5.0. When such an acidic solution comes into contact with the surface of the plating phase, Zn is dissolved and Zn-based oxide precipitates on the surface of the flat portion that has been subjected to temper rolling and becomes active during the drying process from contact. On the other hand, the surface portion of the plating phase other than the flat portion is inactive and thus has low reactivity, but by adding Zr or Ti, fine particles containing these are formed. Although the mechanism is not necessarily clear, it is estimated that the added Zr and Ti ions are the nuclei of oxide formation. The number and size of the fine particles and the concentration of Zr and Ti contained are determined by the Zr and Ti concentration in the solution (typically 0.01 mol / l to 30 mol / l) and the reaction time (in the range of about 1 sec to 120 sec). Change. When the Zr and Ti concentrations are increased, the number of fine particles increases, and the Zr and Ti contents tend to increase. The fine particle size tends to increase as the reaction time increases. In addition, as a process liquid temperature, the range of 25 to 70 degreeC is desirable.

また、これらの製品を製造するにあたっては、溶融金属と素地鋼板との界面に硬くて脆い合金層が成長するのを抑制しめっき密着性を向上させるために、主成分(ZnやAl等)である溶融金属中に主成分以外の成分(例えば主成分Znに対するAl等)が少量添加されることが多い。   Moreover, when manufacturing these products, in order to suppress the growth of hard and brittle alloy layers at the interface between the molten metal and the base steel plate and to improve the plating adhesion, the main component (Zn, Al, etc.) A component other than the main component (for example, Al with respect to the main component Zn) is often added to a molten metal in a small amount.

また本発明に係る合金化溶融亜鉛めっき鋼板への添加元素成分は特に限定されるものではなく、通常添加されるAl以外にも、例えば、Fe、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   Further, the additive element component to the galvannealed steel sheet according to the present invention is not particularly limited, and in addition to Al that is usually added, for example, Fe, Pb, Sb, Si, Sn, Mg, Mn, Even if Ni, Ti, Li, Cu or the like is contained or added, the effect of the present invention is not impaired.

さらに、酸化処理などに使用する処理液中に不純物が含まれることによりS、N、Pb、Cl、Na、Mn、Ca、Mg、Ba、Sr、Si、Pなどが酸化物層中に取り込まれても、本発明の効果が損なわれるものではない。   Furthermore, S, N, Pb, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, P, etc. are taken into the oxide layer due to impurities contained in the treatment solution used for oxidation treatment, etc. However, the effect of the present invention is not impaired.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行い、めっき相表面に平坦部を形成した。引き続き、酸化物形成処理として、酢酸ナトリウム40g/lの酸性水溶液に、ZrもしくはTiを、イオン濃度を適宜変えて添加した酸性溶液を35℃とし、3秒浸漬した。その後、ロール絞りを行い、液量を調整した後、大気中に一定時間放置して反応させ、十分水洗を行った後、乾燥を実施した。大気中への放置時間(反応時間)を、表1に示すように10〜60secの間で変化させた。
比較材として、ZrおよびTiを添加しないで上記と同様の処理を行った材料を作製した。なお、ZrおよびTiイオン源としてはZr(SO4)2・4H2OおよびTi2(SO4)3をそれぞれ用いた。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further subjected to temper rolling to form a flat portion on the surface of the plated phase. Subsequently, as an oxide formation treatment, an acidic solution in which Zr or Ti was added to an acidic aqueous solution of sodium acetate 40 g / l while appropriately changing the ion concentration was set to 35 ° C. and immersed for 3 seconds. Thereafter, roll squeezing was performed to adjust the liquid volume, and the reaction was allowed to stand in the atmosphere for a certain period of time, followed by sufficient water washing, followed by drying. As shown in Table 1, the standing time in the atmosphere (reaction time) was changed between 10 and 60 seconds.
As a comparative material, a material which was processed in the same manner as described above without adding Zr and Ti was produced. Note that Zr (SO 4 ) 2 .4H 2 O and Ti 2 (SO 4 ) 3 were used as the Zr and Ti ion sources, respectively.

以上のように作製した鋼板について、めっき相表面の平坦部における酸化物層の厚さ、および平坦部以外のめっき相表面部分の微粒子状酸化物層の有無を調査し、プレス成形性を簡易的に評価する手法として摩擦係数の測定を行った。なお、測定方法は以下の通りである。   For the steel sheet produced as described above, the thickness of the oxide layer in the flat part of the plating phase surface and the presence or absence of the fine oxide layer on the plating phase surface part other than the flat part are investigated, and the press formability is simplified. The friction coefficient was measured as a method to evaluate the above. The measuring method is as follows.

(1)摺動性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることにより、ビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するために第2ロードセル8が、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。
図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が摩擦係数測定用試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。
摩擦係数の測定に対しては、成形荷重が高く型かじりが生じやすい高強度合金化溶融亜鉛めっき鋼板での過酷なプレス環境を想定して、室温(25℃)において、押し付け荷重Nを400kgfおよび1500kgfに変化させて行った。なお試料の引抜き速度(スライドテーブル3の水平移動速度)は100cm/min。これらの条件で、押し付け荷重Nと引抜き荷重Fを測定し、供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
(1) Slidability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.
FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact therewith and capable of moving up and down, and by pushing it up, a pressing load N applied to the friction coefficient measuring sample 1 by the bead 6 is applied. A first load cell 7 for measurement is attached to the slide table support 5. A second load cell 8 is attached to one end of the slide table 3 in order to measure a sliding resistance force F for moving the slide table 3 in the horizontal direction with the pressing force applied. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the friction coefficient measurement sample 1 as a lubricant, and the test was performed.
FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the friction coefficient measurement sample 1. The shape of the bead 6 shown in FIG. 2 is 10 mm wide, 12 mm long in the sliding direction of the sample, the lower part of both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR, and the bottom surface of the bead against which the sample is pressed is 10 mm wide and in the sliding direction It has a 3mm long plane.
For the measurement of the friction coefficient, assuming a severe press environment with high strength alloyed hot dip galvanized steel sheet with high forming load and high galling, press load N is 400kgf at room temperature (25 ° C). Changed to 1500 kgf. The sample drawing speed (the horizontal movement speed of the slide table 3) is 100 cm / min. Under these conditions, the pressing load N and the pulling load F were measured, and the coefficient of friction μ between the test material and the bead was calculated by the formula: μ = F / N.

(2)酸化物層厚さの測定
オージェ電子分光(AES)によりめっき表層の調圧部および未調圧部について、各元素の含有率(at.%)を測定し、引き続いて所定の深さまで、Arスパッタリングした後、AESによりめっき皮膜中の各元素の含有率の測定を行い、これを繰り返すことにより、深さ方向の各元素の組成分布を測定した。酸化物、水酸化物に起因するOの含有率が、最大値より深い位置で、最大値と一定値との和の1/2となる深さを酸化物の厚さとし、調圧部に対してそれぞれ3箇所づつ酸化物の厚さを測定し、これらの平均値をそれぞれ調圧部および未調圧部の酸化物の厚さとした。
(2) Measurement of oxide layer thickness The content (at.%) Of each element is measured for the pressure-regulating part and the non-pressure-regulating part of the plating surface layer by Auger electron spectroscopy (AES). After Ar sputtering, the content of each element in the plating film was measured by AES, and the composition distribution of each element in the depth direction was measured by repeating this. The depth at which the O content due to oxides and hydroxides is at a depth deeper than the maximum value, which is half the sum of the maximum value and the constant value, is the oxide thickness. The thicknesses of the oxides were measured at three points each, and the average values of these were taken as the thicknesses of the oxides in the pressure-regulating part and the unregulated part, respectively.

(3)平坦部以外のめっき相表面の微粒子状物質の評価
微粒子状物質のサイズは、低加速高分解能走査電子顕微鏡で実施した。LEO1530(LEO社)を用い、加速電圧 0.5 kVで1万倍以上の倍率で観察した。酸化物粒子が暗いコントラストで現れる条件で観察を行い。粒子のサイズを複数の粒子に対して実施し平均した。
微粒子状物質の組成評価は、レプリカ法を用いて採取した微粒子について実施した。合金化溶融亜鉛めっき鋼板の表面に、アセチルセルロースフィルムを、アセトンを介して試料表面に30秒間圧着し、剥離した。剥離面にカーボンを蒸着したのちアセチルセルロースを溶解して透過電子顕微鏡(TEM)用の試料とした。TEM(フィリップス社製 CM30)を用い加速電圧200kVで、平坦部以外の領域から採取された微粒子について、エネルギー分散型X線分光器(EDS)を用いてスタンダードレス定量(薄膜近似法)を行い、得られた結果からZrあるいはTiと、Znの濃度を計算した。測定は、1試料あたり5個以上の粒子状物質について実施し平均した。
(3) Evaluation of the particulate matter on the surface of the plating phase other than the flat portion The size of the particulate matter was measured with a low-acceleration high-resolution scanning electron microscope. Using LEO1530 (LEO), observation was performed at an acceleration voltage of 0.5 kV at a magnification of 10,000 times or more. Observe under conditions where oxide particles appear in dark contrast. Particle sizes were run and averaged over multiple particles.
The composition evaluation of the particulate material was carried out on the fine particles collected using the replica method. An acetylcellulose film was pressure-bonded to the sample surface for 30 seconds via acetone on the surface of the alloyed hot-dip galvanized steel sheet and peeled off. After depositing carbon on the peeled surface, acetylcellulose was dissolved to prepare a sample for a transmission electron microscope (TEM). Using TEM (Philips CM30) at an acceleration voltage of 200 kV, fine particles collected from areas other than the flat area are subjected to standardless quantification (thin film approximation) using an energy dispersive X-ray spectrometer (EDS). The concentration of Zr or Ti and Zn was calculated from the obtained results. The measurement was performed on five or more particulate materials per sample and averaged.

以上より得られた試験結果を表1に示す。なお、表1において条件1は、押付荷重400kgf、試料温度25℃(室温)を、条件2は押付荷重1500kgf、試料温度25℃(室温)をそれぞれ指す。   The test results obtained from the above are shown in Table 1. In Table 1, condition 1 indicates a pressing load of 400 kgf and a sample temperature of 25 ° C. (room temperature), and condition 2 indicates a pressing load of 1500 kgf and a sample temperature of 25 ° C. (room temperature).

Figure 2008285706
Figure 2008285706

表1に示す試験結果から下記事項が明らかとなった。   From the test results shown in Table 1, the following matters were clarified.

まず、No.3〜8(本発明例1〜6)では、Zrを含む微粒子が1μm四方に1個以上存在することが認められた。
No.3〜8の本発明例は、Zrイオンを含む酸性溶液を用いた例であり、Znを主体とする酸化物層がめっき相表面の平坦部に形成されていることに加えて、Zrを含有する微粒子状の酸化物が平坦部以外のめっき相表面に存在する。そのため、面圧の低い条件1に加えて、面圧の高い条件2においても、摩擦係数がより低位で安定している。これより、平坦部以外のめっき相表面にZrを含有する微粒子状の酸化物が存在することで、面圧の高い条件でも摺動抵抗を小さくできることがわかる。
No.9〜14(本発明例7〜12)では、Tiを含む微粒子が1μm四方に1個以上存在することが認められた。
No.9〜14の本発明例では、Tiイオンを含む酸性溶液を用いた例であり、Znを主体とする酸化物層がめっき相表面の平坦部に形成されていることに加えて、Tiを含有する微粒子状の酸化物が平坦部以外のめっき相表面に存在する。その結果、面圧の低い条件1に加えて、面圧の高い条件2においても、摩擦係数がより低位で安定している。これより、平坦部以外のめっき相表面にTiを含有する微粒子状の酸化物が存在することで、面圧の高い条件でも摺動抵抗を小さくできることがわかる。
一方、No.15の比較例3は酸性溶液による処理を行っていないため、平坦部に酸化物層は形成されず、平坦部以外のめっき相表面には本発明例の要項を満たす微粒子状酸化物が存在していなかった。そのため、面圧の低い条件1において摩擦係数が高く、面圧の高い条件2ではさらに摩擦係数が上昇しており、型かじりを生じていた。
No.1、2の比較例1、2は、酸性溶液での処理を行っているもののZrを含まない酸性溶液を用いた比較例である。この場合、Znを主体とする酸化物層が主にめっき相表面の平坦部に形成されているため、摩擦係数の改善効果が見られるが、面圧の高い条件2において、本発明例と比べると摩擦係数が高い。
First, in Nos. 3 to 8 (Invention Examples 1 to 6), it was confirmed that one or more fine particles containing Zr were present in 1 μm square.
Inventive examples Nos. 3 to 8 are examples using an acidic solution containing Zr ions. In addition to the fact that an oxide layer mainly composed of Zn is formed on the flat portion of the plating phase surface, The fine particle-like oxide containing is present on the plating phase surface other than the flat portion. Therefore, in addition to the condition 1 with a low surface pressure, the condition 2 with a high surface pressure also stabilizes the friction coefficient at a lower level. From this, it can be seen that the presence of fine oxides containing Zr on the surface of the plating phase other than the flat portion can reduce the sliding resistance even under high surface pressure conditions.
In Nos. 9 to 14 (Invention Examples 7 to 12), it was confirmed that one or more fine particles containing Ti exist in a 1 μm square.
In the present invention examples of Nos. 9-14, an acidic solution containing Ti ions is used, and in addition to the fact that an oxide layer mainly composed of Zn is formed on the flat portion of the plating phase surface, Ti The fine particle-like oxide containing is present on the plating phase surface other than the flat portion. As a result, in addition to condition 1 where the surface pressure is low, condition 2 where the surface pressure is high also stabilizes the friction coefficient at a lower level. From this, it can be seen that the presence of fine oxides containing Ti on the surface of the plating phase other than the flat portion can reduce the sliding resistance even under high surface pressure conditions.
On the other hand, since Comparative Example 3 of No. 15 was not treated with an acidic solution, an oxide layer was not formed on the flat part, and the surface of the plating phase other than the flat part was subjected to fine particle oxidation satisfying the essential points of the present invention example. The thing did not exist. For this reason, the friction coefficient was high under condition 1 where the surface pressure was low, and the friction coefficient further increased under condition 2 where the surface pressure was high, resulting in mold galling.
Comparative Examples 1 and 2 of Nos. 1 and 2 are comparative examples using an acidic solution that is treated with an acidic solution but does not contain Zr. In this case, since the oxide layer mainly composed of Zn is formed mainly on the flat portion of the surface of the plating phase, an effect of improving the friction coefficient can be seen, but in the condition 2 where the surface pressure is high, it is compared with the example of the present invention. And the coefficient of friction is high.

摺動性に優れることから、優れたプレス成形性を有しており、自動車車体用途を中心に広範な分野で適用できる。   Since it has excellent slidability, it has excellent press formability and can be applied in a wide range of fields, mainly for automobile body applications.

摩擦係数測定装置を示す概略正面図Schematic front view showing friction coefficient measuring device 図1中のビード形状・寸法を示す概略斜視図Schematic perspective view showing bead shape and dimensions in FIG.

符号の説明Explanation of symbols

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第一ロードセル
8 第二ロードセル
N 押付荷重
F 摺動抵抗力
1 Sample for friction coefficient measurement
2 Sample stage
3 Slide table
4 Roller
5 Slide table support
6 beads
7 First load cell
8 Second load cell
N Push load
F Sliding resistance force

Claims (3)

Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、かつ、該Fe-Zn合金めっき相の表面には調質圧延により形成される平坦部を有し、該平坦部表面には、Znを必須成分とする酸化物が平均厚さ10nm以上200nm以下形成されており、さらに、前記平坦部以外のめっき相表面には、平均粒径が5nm以上500 nm以下の微粒子状の酸化物が存在することを特徴とする合金化溶融亜鉛めっき鋼板。   The Fe-Zn alloy plating phase has at least one surface of the steel plate, and the surface of the Fe-Zn alloy plating phase has a flat portion formed by temper rolling, and the surface of the flat portion has Zn. An oxide as an essential component is formed with an average thickness of 10 nm to 200 nm, and a fine particle oxide having an average particle diameter of 5 nm to 500 nm is present on the surface of the plating phase other than the flat portion. An alloyed hot-dip galvanized steel sheet. 前記微粒子状の酸化物は、Znと5原子%以上40原子%以下のZrを含むことを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板。   2. The alloyed hot-dip galvanized steel sheet according to claim 1, wherein the particulate oxide contains Zn and 5 to 40 atomic% of Zr. 前記微粒子状の酸化物は、Znと5原子%以上30原子%以下のTiを含むことを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板。   3. The alloyed hot-dip galvanized steel sheet according to claim 1, wherein the fine particle oxide contains Zn and 5 atomic% or more and 30 atomic% or less of Ti.
JP2007130055A 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet Expired - Fee Related JP4930182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130055A JP4930182B2 (en) 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130055A JP4930182B2 (en) 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008285706A true JP2008285706A (en) 2008-11-27
JP4930182B2 JP4930182B2 (en) 2012-05-16

Family

ID=40145727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130055A Expired - Fee Related JP4930182B2 (en) 2007-05-16 2007-05-16 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4930182B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242188A (en) * 2009-04-08 2010-10-28 Jfe Steel Corp Galvanized steel sheet
JP2016037620A (en) * 2014-08-06 2016-03-22 Jfeスチール株式会社 Surface treated galvanized steel plate having excellent corrosion resistance
EP3009526A4 (en) * 2013-06-11 2017-03-08 Nippon Steel & Sumitomo Metal Corporation Hot-stamped product and process for producing hot-stamped product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274285A (en) * 1990-03-23 1991-12-05 Nippon Steel Corp Galvannealed steel sheet excellent in press formability
JPH04176877A (en) * 1990-11-10 1992-06-24 Nippon Steel Corp Production of galvanized steel sheet having excellent press formability and chemical conversion treatability
JPH0565623A (en) * 1991-09-04 1993-03-19 Nkk Corp Hot-dip galvanized steel sheet excellent in press formability and spot weidability
JPH11335863A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JP2001247948A (en) * 2000-03-07 2001-09-14 Nkk Corp Hot dip galvannealed steel sheet excellent in press formability
JP2004003004A (en) * 2002-04-18 2004-01-08 Jfe Steel Kk Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process
JP2004256838A (en) * 2003-02-24 2004-09-16 Jfe Steel Kk Hot-dip galvannealed steel sheet of excellent press formability
JP2005113263A (en) * 2003-09-17 2005-04-28 Jfe Steel Kk Galvannealed steel sheet
JP2006233280A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Hot dip galvanized steel sheet-manufacturing method, and hot dip galvanized steel sheet
JP2007016267A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274285A (en) * 1990-03-23 1991-12-05 Nippon Steel Corp Galvannealed steel sheet excellent in press formability
JPH04176877A (en) * 1990-11-10 1992-06-24 Nippon Steel Corp Production of galvanized steel sheet having excellent press formability and chemical conversion treatability
JPH0565623A (en) * 1991-09-04 1993-03-19 Nkk Corp Hot-dip galvanized steel sheet excellent in press formability and spot weidability
JPH11335863A (en) * 1998-05-20 1999-12-07 Nkk Corp Production of surface treated steel plate having excellent corrosion resistance
JP2001247948A (en) * 2000-03-07 2001-09-14 Nkk Corp Hot dip galvannealed steel sheet excellent in press formability
JP2004003004A (en) * 2002-04-18 2004-01-08 Jfe Steel Kk Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process
JP2004256838A (en) * 2003-02-24 2004-09-16 Jfe Steel Kk Hot-dip galvannealed steel sheet of excellent press formability
JP2005113263A (en) * 2003-09-17 2005-04-28 Jfe Steel Kk Galvannealed steel sheet
JP2006233280A (en) * 2005-02-25 2006-09-07 Jfe Steel Kk Hot dip galvanized steel sheet-manufacturing method, and hot dip galvanized steel sheet
JP2007016267A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242188A (en) * 2009-04-08 2010-10-28 Jfe Steel Corp Galvanized steel sheet
EP3009526A4 (en) * 2013-06-11 2017-03-08 Nippon Steel & Sumitomo Metal Corporation Hot-stamped product and process for producing hot-stamped product
KR101772308B1 (en) * 2013-06-11 2017-08-28 신닛테츠스미킨 카부시키카이샤 Hot-stamped product and process for producing hot-stamped product
US10358687B2 (en) 2013-06-11 2019-07-23 Nippon Steel Corporation Hot stamp molded body, and method for producing hot stamp molded body
JP2016037620A (en) * 2014-08-06 2016-03-22 Jfeスチール株式会社 Surface treated galvanized steel plate having excellent corrosion resistance

Also Published As

Publication number Publication date
JP4930182B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5522185B2 (en) Galvanized steel sheet
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
WO2007129678A1 (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP3613195B2 (en) Alloy hot-dip galvanized steel sheet
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP2007231375A (en) Galvannealed steel sheet
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2005139557A (en) Hot dip galvannealed steel sheet, and its production method
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet
JP5045231B2 (en) Alloy hot-dip galvanized steel sheet
JP5045120B2 (en) Alloy hot-dip galvanized steel sheet
JP4539255B2 (en) Alloy hot-dip galvanized steel sheet
JP4826017B2 (en) Alloy hot-dip galvanized steel sheet
JP4826078B2 (en) Alloy hot-dip galvanized steel sheet
JP2004256838A (en) Hot-dip galvannealed steel sheet of excellent press formability
JP3575390B2 (en) Galvannealed steel sheet with excellent press formability
JP2005002477A (en) Galvannealed steel sheet
JP5119734B2 (en) Galvanized steel sheet
JP2024001900A (en) Steel sheet and method for producing the same
JP2003138362A (en) Galvannealed steel sheet
JP2005226159A (en) Galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4930182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees