JP2010242188A - Galvanized steel sheet - Google Patents

Galvanized steel sheet Download PDF

Info

Publication number
JP2010242188A
JP2010242188A JP2009093595A JP2009093595A JP2010242188A JP 2010242188 A JP2010242188 A JP 2010242188A JP 2009093595 A JP2009093595 A JP 2009093595A JP 2009093595 A JP2009093595 A JP 2009093595A JP 2010242188 A JP2010242188 A JP 2010242188A
Authority
JP
Japan
Prior art keywords
steel sheet
galvanized steel
film
friction
sufficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009093595A
Other languages
Japanese (ja)
Other versions
JP5771890B2 (en
Inventor
Katsuya Hoshino
克弥 星野
Takahiro Kubota
隆広 窪田
Masahiko Tada
雅彦 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009093595A priority Critical patent/JP5771890B2/en
Publication of JP2010242188A publication Critical patent/JP2010242188A/en
Application granted granted Critical
Publication of JP5771890B2 publication Critical patent/JP5771890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel sheet having excellent press-forming property. <P>SOLUTION: The steel sheet has a coating having an average film thickness of 10 nm to 2,000 nm and containing crystalline lamellar material on the surface of the sheet. The crystalline lamellar material is, for example, a lamellar double hydroxide expressed by [M<SP>2+</SP><SB>1-x</SB>M<SP>3+</SP><SB>x</SB>(OH)<SB>2</SB>][A<SP>n-</SP>]<SB>x/n</SB>zH<SB>2</SB>O, wherein preferably M<SP>2+</SP>represents at least one of Mg<SP>2+</SP>, Ca<SP>2+</SP>, Fe<SP>2+</SP>, Ni<SP>2+</SP>and Zn<SP>2+</SP>; M<SP>3+</SP>represents at least one of Al<SP>3+</SP>, Fe<SP>3+</SP>and Cr<SP>3+</SP>; and A<SP>n-</SP>represents at least one of CO<SB>3</SB><SP>2-</SP>, Cl<SP>-</SP>and (SO<SB>4</SB>)<SP>2-</SP>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プレス成形時の摺動抵抗が小さく優れたプレス成形性を有する亜鉛系めっき鋼板に関するものである。   The present invention relates to a galvanized steel sheet having a small sliding resistance during press forming and having excellent press formability.

亜鉛系めっき鋼板は自動車車体用途を中心に広範な分野で広く利用され、そのような用途では、プレス成形を施されて使用に供される。しかし、亜鉛系めっき鋼板は冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での表面処理鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で表面処理鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。特に純亜鉛系めっき鋼板では、金型にめっきが付着することにより、更に摺動抵抗が増加する現象があり(型カジリ)、連続プレス成形の途中から割れが発生するなど、自動車の生産性に深刻な悪影響を及ぼす。更に、近年のCO2排出規制強化の観点から、車体軽量化の目的で高強度鋼板の使用比率が増加する傾向にある。高強度鋼板を使用すると、プレス成形時の面圧が上昇し、金型へのめっき付着は更に深刻な課題となる。 Zinc-based galvanized steel sheets are widely used in a wide range of fields centering on automobile body applications, and in such applications, they are subjected to press forming and used. However, galvanized steel sheets have the disadvantage that they are inferior in press formability compared to cold rolled steel sheets. This is because the sliding resistance of the surface-treated steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, it becomes difficult for the surface-treated steel sheet to flow into the press mold at a portion where the sliding resistance between the mold and the bead is large, and the steel sheet is easily broken. Especially in the case of pure galvanized steel sheets, there is a phenomenon in which sliding resistance increases due to the adhesion of the plating to the mold (mold galling), and cracking occurs during the continuous press forming, which increases automobile productivity. Serious adverse effects. Furthermore, from the viewpoint of strengthening CO 2 emission regulations in recent years, the usage ratio of high-strength steel sheets tends to increase for the purpose of reducing vehicle body weight. When a high-strength steel plate is used, the surface pressure during press forming increases, and plating adhesion to the mold becomes a more serious problem.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生する。また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, in this method, a coating defect due to poor degreasing occurs in the coating process due to the high viscosity of the lubricating oil. In addition, there is a problem that the press performance becomes unstable due to oil shortage during pressing. Accordingly, there is a strong demand for improving the press formability of the galvanized steel sheet itself.

上記の問題を解決する方法として、特許文献1および特許文献2には、亜鉛めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、亜鉛Oを主体とする酸化膜を形成させて溶接性、加工性を向上させる技術を開示している。   As a method for solving the above problem, Patent Document 1 and Patent Document 2 describe that an oxidation mainly composed of zinc O is performed by subjecting the surface of a galvanized steel sheet to electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment. A technique for improving weldability and workability by forming a film is disclosed.

特許文献3は亜鉛系めっき鋼板表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性および化成処理性を向上させる技術を開示している。   Patent Document 3 discloses that P oxidation is performed by immersing a plated steel sheet in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6, performing electrolytic treatment, or applying the aqueous solution. A technique for improving press moldability and chemical conversion property by forming an oxide film mainly composed of an object is disclosed.

特許文献4は、亜鉛めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術を開示している。   Patent Document 4 discloses a technique for improving press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment on the surface of a galvanized steel sheet. Yes.

特開昭53-60332号公報JP-A-53-60332 特開平2−190483号公報Japanese Patent Laid-Open No. 2-190483 特開平4−88196号公報JP-A-4-88196 特開平3−191093号公報Japanese Patent Laid-Open No. 3-191093

しかしながら、上記の先行技術は自動車外板に多く使用される比較的強度の低い亜鉛めっき鋼板に対しては有効であるが、プレス成形時の面圧が上昇する高強度亜鉛めっき鋼板の場合には、必ずしもプレス成形性の改善効果を十分に得ることはできない。   However, the above prior art is effective for a galvanized steel sheet having a relatively low strength, which is often used for an automobile outer plate, but in the case of a high strength galvanized steel sheet in which the surface pressure during press forming increases. However, the effect of improving the press formability cannot always be obtained sufficiently.

本発明は上記の問題点を改善し、プレス成形時の面圧が上昇する高強度亜鉛めっき鋼板などの難成形材料においても優れたプレス成形性を有する亜鉛系めっき鋼板を提供することを目的とする。   An object of the present invention is to improve the above-mentioned problems and to provide a zinc-based plated steel sheet having excellent press formability even in difficult-to-form materials such as a high-strength galvanized steel sheet that increases the surface pressure during press forming. To do.

従来の皮膜では、亜鉛めっき層と金型の接触を抑制することで摩擦抵抗を減少させていた。しかし、高強度鋼板のプレス成形における高面圧条件においては、皮膜の磨耗量が増加するため、摺動距離が一定量を超えるとは十分な効果を得ることはできない。
本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、摺動性を飛躍的に改善するためには、亜鉛系めっき鋼板の表層に結晶性層状物を含有させ、結晶性層状物を含有した皮膜を形成することが有効であることを見出した。
In the conventional film, the frictional resistance is reduced by suppressing the contact between the galvanized layer and the mold. However, under high surface pressure conditions in press forming of high-strength steel plates, the amount of wear of the film increases, so that a sufficient effect cannot be obtained if the sliding distance exceeds a certain amount.
The inventors of the present invention made further studies to solve the above problems. As a result, in order to dramatically improve the slidability, it has been found that it is effective to include a crystalline layered material in the surface layer of a zinc-based plated steel sheet and form a film containing the crystalline layered material. It was.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1] 表層に結晶性層状物を含有する皮膜を有し、該皮膜の平均膜厚が10nm〜2000nmであることを特徴とする亜鉛系めっき鋼板。
[2]前記[1]において、前記結晶性層状物は [M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで示される層状複水酸化物であり、前記M2+はMg2+、Ca2+、Fe2+、Ni2+、亜鉛2+、Pb2+、Sn2+の1種または2種以上であり、前記M3+はAl3+、Fe3+、Cr3+、3/4Zr4+、Mo3+の1種または2種以上であり、前記An-は OH-、F-、CO3 2-、Cl-、Br-、(C2O4)2-、I-、(NO3)-、(SO4)2-、(BrO3)-、(IO3)-、(V10O28)6-、(Si2O5)2-、(ClO4)-、(CH3COO)-、[C6H4(CO2)22-、(C6H5COO)-、[C8H16(CO222-、n(C8H17SO4)-、TPPC、n(C12H25SO4)-、n(C18H37SO4)-、SiO4 4-の1種または2種以上であることを特徴とする亜鉛系めっき鋼板。
[3]前記[1]において、前記結晶性層状物は [M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで示される層状複水酸化物であり、前記M2+はMg2+、Ca2+、Fe2+、Ni2+、亜鉛2+の1種または2種以上であり、前記M3+はAl3+、Fe3+、Cr3+の1種または2種以上であり、An-が OH-、 CO3 2-、Cl-、 (SO4)2-の1種または2種以上であることを特徴とする亜鉛系めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A zinc-based galvanized steel sheet having a film containing a crystalline layered material on a surface layer, wherein the average film thickness of the film is 10 nm to 2000 nm.
[2] In the above [1], the crystalline layered product is a layered double hydroxide represented by [M 2 + 1-X M 3+ X (OH) 2 ] [A n− ] x / n · zH 2 O The M 2+ is Mg 2+ , Ca 2+ , Fe 2+ , Ni 2+ , zinc 2+ , Pb 2+ , Sn 2+ , and the M 3+ is Al 3+, Fe 3+, Cr 3+ , and a 3 / 4Zr 4+, 1 or more kinds of Mo 3+, wherein a n- is OH -, F -, CO 3 2-, Cl - , Br -, (C 2 O 4) 2-, I -, (NO 3) -, (SO 4) 2-, (BrO 3) -, (IO 3) -, (V 10 O 28) 6-, (Si 2 O 5 ) 2- , (ClO 4 ) , (CH 3 COO) , [C 6 H 4 (CO 2 ) 2 ] 2- , (C 6 H 5 COO) , [C 8 H 16 (CO 2 ) 2 ] 2- , n (C 8 H 17 SO 4 ) - , TPPC, n (C 12 H 25 SO 4 ) - , n (C 18 H 37 SO 4 ) - , SiO 4 4- A galvanized steel sheet characterized by having two or more seeds.
[3] In the above [1], the crystalline layered product is a layered double hydroxide represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n− ] x / n · zH 2 O And the M 2+ is one or more of Mg 2+ , Ca 2+ , Fe 2+ , Ni 2+ , and zinc 2+ , and the M 3+ is Al 3+ , Fe 3+ , is one or more of Cr 3+, a n-is OH -, CO 3 2-, Cl -, zinc, characterized in that it (SO 4) 2-one or more Plated steel sheet.

なお、本発明においては、例えば溶融めっき法、電気めっき法、蒸着めっき法、溶射法などの各種の製造方法により鋼板上に亜鉛をめっきした鋼板を総称して亜鉛系めっき鋼板と呼称する。また、合金化処理処理を施していない溶融亜鉛めっき鋼板、合金化処理を施す合金化溶融亜鉛めっき鋼板のいずれも亜鉛系めっき鋼板に含まれる。   In the present invention, for example, a steel sheet obtained by plating zinc on a steel sheet by various manufacturing methods such as a hot dipping method, an electroplating method, a vapor deposition method, and a thermal spraying method is collectively referred to as a zinc-based plated steel plate. Moreover, both the hot-dip galvanized steel sheet not subjected to the alloying treatment and the alloyed hot-dip galvanized steel sheet subjected to the alloying treatment are included in the zinc-based plated steel sheet.

本発明によれば、プレス成形時の面圧が上昇する高強度亜鉛めっき鋼板においても、プレス成形時の割れ危険部位での摺動抵抗が小さく、更に面圧が高く金型へのめっき付着が想定される部位においても優れたプレス成形性を有する亜鉛系めっき鋼板が得られる。   According to the present invention, even in a high-strength galvanized steel sheet in which the surface pressure at the time of press forming increases, the sliding resistance at the cracking risk portion at the time of press forming is small, and the surface pressure is high and the plating adheres to the mold. A zinc-based galvanized steel sheet having excellent press formability can be obtained even in assumed parts.

動摩擦係数測定装置を示す概略正面図Schematic front view showing the dynamic friction coefficient measuring device 図1中のビード形状・寸法を示す概略斜視図Schematic perspective view showing bead shape and dimensions in FIG. 図1中のビード形状・寸法を示す概略斜視図Schematic perspective view showing bead shape and dimensions in FIG.

従来の皮膜では、亜鉛めっき層と金型の接触を抑制することで、摩擦抵抗を減少させていた。しかし、高強度鋼板のプレス成形における面圧条件においては、皮膜の磨耗量が増加するため、摺動距離が一定量を超えると十分な効果を得ることはできない。   In the conventional film, the frictional resistance is reduced by suppressing the contact between the galvanized layer and the mold. However, under the surface pressure conditions in press forming of high-strength steel sheets, the amount of wear of the film increases, so that a sufficient effect cannot be obtained if the sliding distance exceeds a certain amount.

そこで、本発明では、亜鉛系めっき鋼板の表層には、結晶性層状物皮膜を有することとする。
上記結晶性層状物皮膜の潤滑メカニズムについては明確ではないが、以下のように考えることができる。摺動時、金型とめっきの凝着力から表面にはせん断応力が生じる。結晶性層状物がめっきと金型の間に存在することで、結晶性層状物がすべり変形して表面に生じるせん断変形応力を吸収する。結晶性層状物は、亜鉛系めっき表層から磨耗された後にも、金型に付着し摩擦抵抗を減少する効果を発現するため、高強度鋼板を想定した高面圧条件においても十分な効果を得ることが可能となる。以上のように、亜鉛系めっき鋼板の表層に結晶性層状物を含有する皮膜を有することは本発明において最も重要な要件である。
上記結晶性層状物皮膜の厚さは、断面からSEMで観察した際の厚さとして、平均10nm以上2000nm以下とする。平均10nm未満だと十分な摺動特性向上効果を得ることが難しい。一方、平均2000nm超えになると、自動車製造の際に重要となるスポット溶接性が低下することが懸念される。
なお、結晶性層状物皮膜の厚さは、FIBで加工した断面を極低加速SEMにで観察した結果から測定し、結晶性層状物が結晶性かどうかの結晶構造の同定は薄膜X線回折で行うことができる。
また、本発明において、結晶性層状物とは、単位結晶格子のうち、板状の共有結合結晶が分子間力、水素結合、静電エネルギー等の比較的弱い結合で積層された結晶のことである。中でも、その構造が[M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで表すことができる層状複水酸化物は、正に帯電した板状の2価と3価の金属水酸化物に対し、負に帯電したアニオンが電気的なバランスを保つために静電気エネルギーにより結合し層状に積層するため層状の結晶構造を有しており、結晶性層状物として用いるのに好ましい。
[M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで示される層状複水酸化物であることは、X線回折で同定することができ、上記式で表すことが可能な物質は層状結晶となることが知られている。
[M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで表せる結晶性物質が層状となるのは、正に帯電した板状の2価と3価の金属水酸化物に対し、負に帯電したアニオンが電気的なバランスを保つために静電気エネルギーにより結合し層状に積層するためである。
Therefore, in the present invention, the surface layer of the galvanized steel sheet has a crystalline layered film.
Although the lubrication mechanism of the crystalline layered film is not clear, it can be considered as follows. During sliding, a shear stress is generated on the surface due to the adhesive force between the mold and the plating. The presence of the crystalline layered material between the plating and the mold absorbs the shear deformation stress generated on the surface due to slip deformation of the crystalline layered material. Even after the crystalline layered material is worn out from the zinc-based plating surface layer, it exhibits the effect of adhering to the mold and reducing the frictional resistance. Therefore, the crystalline layered material has a sufficient effect even under high surface pressure conditions assuming a high-strength steel sheet. It becomes possible. As described above, it is the most important requirement in the present invention to have a film containing a crystalline layered material on the surface layer of a galvanized steel sheet.
The thickness of the crystalline layered film is 10 nm or more and 2000 nm or less on average as the thickness when observed by SEM from the cross section. If the average is less than 10 nm, it is difficult to obtain a sufficient sliding property improvement effect. On the other hand, when it exceeds 2000 nm on average, there is a concern that spot weldability, which is important in automobile production, is reduced.
The thickness of the crystalline layered film is measured from the result of observing the cross section processed with FIB with an ultra-low acceleration SEM, and the identification of the crystalline structure as to whether the crystalline layered film is crystalline is a thin film X-ray diffraction Can be done.
In the present invention, the crystalline layered material is a crystal in which a plate-like covalently bonded crystal is laminated with relatively weak bonds such as intermolecular force, hydrogen bond, electrostatic energy, etc. in the unit crystal lattice. is there. Among them, the layered double hydroxide whose structure can be represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n− ] x / n · zH 2 O is a positively charged plate It has a layered crystal structure because negatively charged anions are bonded to each other by electrostatic energy in order to maintain electrical balance with the divalent and trivalent metal hydroxides, and are laminated in layers. It is preferable to be used as an active layered product.
[M 2+ 1-X M 3+ X (OH) 2 ] [A n- ] The layered double hydroxide represented by x / n · zH 2 O can be identified by X-ray diffraction. It is known that a substance that can be represented by the above formula becomes a layered crystal.
[M 2+ 1-X M 3+ X (OH) 2 ] [A n- ] The crystalline material represented by x / n · zH 2 O is layered because of the positively charged plate-like divalent property. This is because negatively charged anions are bonded to the trivalent metal hydroxide by electrostatic energy in order to maintain an electrical balance and are laminated in layers.

M2+としては、Mg2+、Ca2+、Fe2+、Ni2+、亜鉛2+、Pb2+、Sn2+の1種または2種以上が好ましい。中でも、Mg2+、Ca2+、Fe2+、Ni2+、亜鉛2+は、天然または人工的に生成した層状複水酸化物種として確認されており、層状複水酸化物として安定的に存在することが可能であるため、より好ましい。 M 2+ is preferably one or more of Mg 2+ , Ca 2+ , Fe 2+ , Ni 2+ , zinc 2+ , Pb 2+ , and Sn 2+ . Among them, Mg 2+ , Ca 2+ , Fe 2+ , Ni 2+ , and zinc 2+ have been confirmed as natural or artificially generated layered double hydroxide species and are stable as layered double hydroxides. It is more preferable because it can exist.

M3+としては、Al3+、Fe3+、Cr3+、3/4Zr4+、Mo3+の1種または2種以上が好ましい。中でも、Al3+、Fe3+、Cr3+は、天然または人工的に生成した層状複水酸化物種として確認されており、層状複水酸化物として安定的に存在することが可能であるため、より好ましい。 M 3+ is preferably one or more of Al 3+ , Fe 3+ , Cr 3+ , 3 / 4Zr 4+ and Mo 3+ . Among them, Al 3+ , Fe 3+ , and Cr 3+ have been confirmed as layered double hydroxide species generated naturally or artificially and can exist stably as layered double hydroxides. More preferable.

An-としては、OH-、F-、CO3 2-、Cl-、Br-、(C2O4)2-、I-、(NO3)-、(SO4)2-、(BrO3)-、(IO3)-、(V10O28)6-、(Si2O5)2-、(ClO4)-、(CH3COO)-、[C6H4(CO2)22-、(C6H5COO)-、[C8H16(CO222-、n(C8H17SO4)-、TPPC、n(C12H25SO4)-、n(C18H37SO4)-、SiO4 4-の1種または2種以上が好ましい。これらは、層状複水酸化物種の層間アニオンとしての取り込みが確認されており、層状複水酸化物として存在することが可能である。中でも、OH-、 CO3 2-、Cl-、 (SO4)2-は、亜鉛系めっき鋼板表面に成膜する際に層状複水酸化物種の他のアニオンと比較して層間アニオンとして取り込みやすく、短時間で成膜が可能なため、アニオンとしてより好適に用いることができる。
次いで、上記結晶性の結晶性層状物を亜鉛系めっき鋼板上に生成させる方法について、説明する。
ここでは、上記結晶性層状物の一種である層状複水酸化物を亜鉛系めっき鋼板上に生成させる方法を一例として、電気化学反応を用いる手法を挙げる。2価のカチオン(M2+)のいずれか一種類以上と、3価のカチオン(M3+)のいずれか一種類以上と、An-=(無機アニオン又は有機アニオン)のうちいずれか1種類以上のアニオンを含むpH0.5〜7.0の溶液中で、亜鉛めっき鋼板をカソードとして、0.01〜100A/dm2の電流を流す。
A The n-, OH -, F -, CO 3 2-, Cl -, Br -, (C 2 O 4) 2-, I -, (NO 3) -, (SO 4) 2-, (BrO 3 ) - , (IO 3 ) - , (V 10 O 28 ) 6- , (Si 2 O 5 ) 2- , (ClO 4 ) - , (CH 3 COO) - , [C 6 H 4 (CO 2 ) 2 ] 2- , (C 6 H 5 COO) - , [C 8 H 16 (CO 2 ) 2 ] 2- , n (C 8 H 17 SO 4 ) - , TPPC, n (C 12 H 25 SO 4 ) -, n (C 18 H 37 SO 4) -, SiO 4 4- 1 or two or more are preferred. These have been confirmed to be incorporated as interlayer anions of the layered double hydroxide species, and can exist as layered double hydroxides. Among them, OH -, CO 3 2-, Cl -, (SO 4) 2- is easily capture an interlayer anions as compared to the time of forming the zinc-based plated steel sheet with other anions of the layered double hydroxide species Since the film can be formed in a short time, it can be more suitably used as an anion.
Next, a method for producing the crystalline crystalline layered material on the zinc-based plated steel sheet will be described.
Here, a method using an electrochemical reaction is taken as an example of a method of generating a layered double hydroxide, which is a kind of the crystalline layered material, on a zinc-based plated steel sheet. And any one or more divalent cations (M 2+), and any one or more trivalent cation (M 3+), A n- = any one of (inorganic anion or an organic anion) 1 In a solution having a pH of 0.5 to 7.0 containing more than one kind of anion, a current of 0.01 to 100 A / dm 2 is passed using a galvanized steel sheet as a cathode.

この層状物質の形成メカニズムについては明確ではないが、次のように考えることができる。合金化溶融亜鉛めっき鋼板をカソードとして電流を流すと、鋼板側では水素イオンの還元あるいは溶存酸素の分解反応が生じ鋼板表面のpHが上昇する。
ここで、溶液中に存在する2価のカチオンと3価のカチオンは水酸化物としてコロイド状に鋼板表面のpHが上昇した領域に生成する。ここで、液中にOH-、F-、CO3 2-、Cl-、Br-、(C2O4)2-、I-、(NO3)-、(SO4)2-、(BrO3)-、(IO3)-、(V10O28)6-、(Si2O5)2-、(ClO4)-、(CH3COO)-、[C6H4(CO2)22-、(C6H5COO)-、[C8H16(CO222-、n(C8H17SO4)-、TPPC、n(C12H25SO4)-、n(C18H37SO4)-、SiO4 4-のいずれか一種以上の特定のアニオンが存在すると、金属水酸化物は層状複水酸化物として鋼板表面に沈殿する。
Although the formation mechanism of this layered substance is not clear, it can be considered as follows. When an alloyed hot-dip galvanized steel sheet is used as a cathode, current flows through the steel sheet, causing reduction of hydrogen ions or decomposition of dissolved oxygen, resulting in an increase in the pH of the steel sheet surface.
Here, the divalent cation and the trivalent cation existing in the solution are formed as a hydroxide in a region where the pH of the steel sheet surface is increased in a colloidal form. OH wherein, in the liquid -, F -, CO 3 2- , Cl -, Br -, (C 2 O 4) 2-, I -, (NO 3) -, (SO 4) 2-, (BrO 3 ) - , (IO 3 ) - , (V 10 O 28 ) 6- , (Si 2 O 5 ) 2- , (ClO 4 ) - , (CH 3 COO) - , [C 6 H 4 (CO 2 ) 2 ] 2- , (C 6 H 5 COO) - , [C 8 H 16 (CO 2 ) 2 ] 2- , n (C 8 H 17 SO 4 ) - , TPPC, n (C 12 H 25 SO 4 ) When one or more specific anions of-, n (C 18 H 37 SO 4 ) - , and SiO 4 4- are present, the metal hydroxide precipitates on the surface of the steel sheet as a layered double hydroxide.

なお、本発明に係る溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を製造するに関しては、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他にPb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Liなどが含有または添加されていても、本発明の効果が損なわれるものではない。   Incidentally, regarding the production of the hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet according to the present invention, it is necessary that Al is added to the plating bath, but the additive element components other than Al are not particularly limited. . That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, etc. are contained or added in addition to Al, the effect of the present invention is not impaired.

さらに、成膜処理などに使用する処理液中に不純物が含まれることによりN、Pb、Na、Mn、Ba、Sr、Siなどが皮膜層中に取り込まれても、本発明の効果が損なわれるものではない。   Furthermore, even if N, Pb, Na, Mn, Ba, Sr, Si, etc. are taken into the coating layer due to impurities contained in the processing solution used for the film forming process, the effect of the present invention is impaired. It is not a thing.

次に、本発明を実施例により更に詳細に説明する。   Next, the present invention will be described in more detail with reference to examples.

板厚0.7mmの冷延鋼板上に、常法により合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。また、同様に、常法により溶融亜鉛めっき皮膜、電気亜鉛めっき皮膜を形成した。引き続き、層状複水酸化物形成処理として、硝酸マグネシウム・6水和物:113g/L、硝酸アルミニウム・9水和物:83g/L、炭酸ナトリウム・10水和物:31g/Lを含み硝酸を用いてpH5.0に調整した溶液に鋼板を浸漬し、鋼板をカソードとして電流密度:1A/dm2で2〜300秒時間通電した。次に、十分水洗を行った後、乾燥した。 An alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.7 mm by a conventional method, and further temper rolled. Similarly, a hot dip galvanized film and an electrogalvanized film were formed by a conventional method. Subsequently, the layered double hydroxide formation treatment included magnesium nitrate hexahydrate: 113 g / L, aluminum nitrate nonahydrate: 83 g / L, sodium carbonate decahydrate: 31 g / L, and nitric acid. The steel plate was immersed in a solution adjusted to pH 5.0 by using the steel plate, and a current density of 1 A / dm 2 was applied for 2 to 300 seconds using the steel plate as a cathode. Next, after sufficiently washing with water, it was dried.

上記により得られた合金化溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板表層の層状複水酸化物皮膜の膜厚を測定するとともに、層状複水酸化物を同定した。また、プレス成形性を評価する手法として摩擦係数の測定の実施、型カジリ性の評価を実施し摺動特性を評価した。なお、めっき表層の層状複水酸化物層の膜厚測定方法、層状複水酸化物皮膜の同定方法、摺動特性の測定方法は以下の通りである。
1)層状複水酸化物皮膜厚の測定
FIBを用いて皮膜の断面を45°にスパッタリングし、極低加速SEMで断面から観察した結果から任意の10点を測定した平均値をその皮膜の膜厚とした。
2)層状複水酸化物の同定方法
薄膜X線回折法により結晶性の層状複水酸化物の存在を確認した。Cu−Kα線を用い入射角度を0.5°に設定して薄膜法により得られるピークをICDDカードと照合して層状複水酸化物を同定した。合致したカードは下記であった。
Magnesium Aluminum Hydroxide Carbonate Hydrate
ICDDカート゛リファレンスコート゛: 01-089-0460
[Mg0.667Al0.333(OH)2][CO3 2-]0.167・0.5H2O
3)摩擦係数の測定方法
プレス成形性(特に絞り・流入部における成形性)を評価するために、各供試材の動摩擦係数を以下のようにして測定した。図1は摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることによりビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7がスライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するために第2ロードセル8が、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。
図2は使用したビードの形状・寸法を示す概略斜視図である(以下ビード形状1)。ビード6の下面が摩擦係数測定用試料1の表面に押し付けられた状態で摺動する。図4に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。
図3は使用したビードの形状・寸法を示す概略斜視図である(以下ビード形状2)。ビード6の下面が摩擦係数測定用試料1の表面に押し付けられた状態で摺動する。図4に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。
摩擦係数の測定に対しては、高強度鋼板のプレス成形を想定した面圧になるよう、室温(25℃)において、押し付け荷重Nを400、1200、1600kgfの3条件で行った。なお試料の引抜き速度(スライドテーブル3の水平移動速度)は100cm/minおよび20cm/min。これらの条件で、押し付け荷重Nと引抜き荷重Fを測定し、供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
While measuring the film thickness of the layered double hydroxide film | membrane of the alloyed hot-dip galvanized steel plate obtained by the above, a hot-dip galvanized steel plate, and an electrogalvanized steel plate, the layered double hydroxide was identified. In addition, as a method for evaluating the press formability, the friction coefficient was measured and the mold caulking property was evaluated to evaluate the sliding characteristics. The method for measuring the thickness of the layered double hydroxide layer on the plating surface layer, the method for identifying the layered double hydroxide film, and the method for measuring the sliding property are as follows.
1) Measurement of layered double hydroxide film thickness
The cross section of the film was sputtered to 45 ° using FIB, and the average value obtained by measuring any 10 points from the result of observation from the cross section with an ultra-low acceleration SEM was taken as the film thickness of the film.
2) Identification method of layered double hydroxide The presence of crystalline layered double hydroxide was confirmed by thin film X-ray diffraction. The layered double hydroxide was identified by checking the peak obtained by the thin film method with Cu-Kα ray and setting the incident angle to 0.5 ° with the ICDD card. Matched cards were:
Magnesium Aluminum Hydroxide Carbonate Hydrate
ICDD Cart Reference Coat: 01-089-0460
[Mg 0.667 Al 0.333 (OH) 2 ] [CO 3 2- ] 0.167・ 0.5H 2 O
3) Method for measuring friction coefficient In order to evaluate press formability (particularly, formability at the drawing / inflow portion), the dynamic friction coefficient of each specimen was measured as follows. FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact with the slide table 3 and capable of moving up and down, and by pushing this up, a pressing load N to the friction coefficient measuring sample 1 by the bead 6 is measured. A first load cell 7 is attached to the slide table support 5. A second load cell 8 is attached to one end portion of the slide table 3 in order to measure the sliding resistance force F for moving the slide table 3 in the horizontal direction with the pressing force applied. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the friction coefficient measurement sample 1 as a lubricant, and the test was performed.
FIG. 2 is a schematic perspective view showing the shape and dimensions of the bead used (bead shape 1). The bead 6 slides with its lower surface pressed against the surface of the friction coefficient measurement sample 1. The shape of the bead 6 shown in FIG. 4 is 10 mm wide, 12 mm long in the sliding direction of the sample, and the lower part of both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR. It has a 3mm long plane.
FIG. 3 is a schematic perspective view showing the shape and dimensions of the beads used (bead shape 2). The bead 6 slides with its lower surface pressed against the surface of the friction coefficient measurement sample 1. The bead 6 shown in FIG. 4 has a width of 10 mm, a length of 59 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is formed by a curved surface having a curvature of 4.5 mmR. It has a flat surface with a length of 50 mm.
The friction coefficient was measured under three conditions of a pressing load N of 400, 1200, and 1600 kgf at room temperature (25 ° C.) so as to obtain a surface pressure assuming press forming of a high-strength steel plate. The sample drawing speed (the horizontal movement speed of the slide table 3) is 100 cm / min and 20 cm / min. Under these conditions, the pressing load N and the pulling load F were measured, and the coefficient of friction μ between the test material and the bead was calculated by the formula: μ = F / N.

ビード形状および押し付け荷重条件、引き抜き速度の組み合わせは以下の通りである。
条件1: ビード形状1 押し付け荷重400kgf 引き抜き速度100cm/min
条件2: ビード形状1 押し付け荷重1200kgf 引き抜き速度100cm/min
条件3: ビード形状1 押し付け荷重1600kgf 引き抜き速度100cm/min
条件4: ビード形状2 押し付け荷重400kgf 引き抜き速度20cm/min
4)型カジリ性の測定方法
動摩擦係数に加え、純亜鉛系めっき鋼板では、摺動距離が長い部位において金型へめっきが付着し摺動抵抗が増加する型かじりが問題となる。そこで、図1に示した摩擦係数測定装置を用いて,摺動試験を50回繰り返し実施し、摩擦係数が0.01以上増加した繰り返し数を型かじり発生の繰り返し数として、型カジリ性の評価を実施した。ここで、50回繰り返し摺動試験を実施しても摩擦係数の上昇が認められない場合には、50回以上とした。試験条件は上記3)摩擦係数の測定方法と同様に高強度鋼板のプレス成形を想定した面圧になるよう上記の条件1〜条件3で実施した。
The combinations of bead shape, pressing load conditions, and drawing speed are as follows.
Condition 1: Bead shape 1 Press load 400kgf Pull-out speed 100cm / min
Condition 2: Bead shape 1 Pressing load 1200kgf Extraction speed 100cm / min
Condition 3: Bead shape 1 Pressing load 1600kgf Pull-out speed 100cm / min
Condition 4: Bead shape 2 Pressing load 400kgf Extraction speed 20cm / min
4) Measurement method of mold caulking property In addition to the dynamic friction coefficient, in pure zinc-based plated steel sheets, there is a problem of mold galling that causes plating to adhere to the mold and increase the sliding resistance at sites where the sliding distance is long. Therefore, using the friction coefficient measuring device shown in Fig. 1, the sliding test was repeated 50 times, and the number of repetitions where the friction coefficient increased by 0.01 or more was used as the number of mold galling occurrences, and the mold caulking property was evaluated. did. Here, when no increase in the coefficient of friction was observed even after the 50th sliding test was performed, it was set to 50 times or more. The test conditions were the same as those in the above conditions 1 to 3 so that the surface pressure was assumed to be press-forming of a high-strength steel sheet in the same manner as in the above-described 3) friction coefficient measurement method.

以上より得られた試験結果を条件と併せて表1に示す。   The test results obtained above are shown in Table 1 together with the conditions.

Figure 2010242188
Figure 2010242188

表1に示す試験結果から下記事項が明らかとなった。
No1は成膜処理を行っていない合金化溶融亜鉛めっき鋼板の比較例である。摩擦係数はいずれも高い値である。
No2は成膜処理を行った合金化溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。
No3〜6は成膜処理を行った合金化溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo1、2の比較例と比較すると十分に低下している。
No7は成膜処理を行っていない溶融亜鉛めっき鋼板の比較例である。摩擦係数はいずれも高い値であり、型カジリ性においても少ない繰り返し数で摩擦係数が上昇している。
No8は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo7と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No9〜12は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo7、8の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No13は成膜処理を行っていない電気亜鉛めっき鋼板の比較例である。摩擦係数はいずれも高い値であり、型カジリ性においても少ない繰り返し数で摩擦係数が上昇している。
No14は成膜処理を行った電気亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo13と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No15〜18は成膜処理を行った電気亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo13、14の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
From the test results shown in Table 1, the following matters were clarified.
No. 1 is a comparative example of an galvannealed steel sheet that has not been subjected to film formation. The friction coefficient is a high value.
No. 2 is a comparative example of an alloyed hot-dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient.
Nos. 3 to 6 are alloyed hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently lower than the comparative examples No. 1 and 2.
No. 7 is a comparative example of a hot-dip galvanized steel sheet that has not been subjected to film formation. The coefficient of friction is a high value, and the coefficient of friction increases with a small number of repetitions even in mold caulking.
No. 8 is a comparative example of a hot dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the friction coefficient is lower than that of No7 where no film formation treatment is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 9 to 12 are hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently lower than the comparative examples of Nos. 7 and 8. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 13 is a comparative example of an electrogalvanized steel sheet that has not been subjected to film formation. The coefficient of friction is a high value, and the coefficient of friction increases with a small number of repetitions even in mold caulking.
No. 14 is a comparative example of an electrogalvanized steel sheet subjected to film formation. Since the film thickness is insufficient, the friction coefficient is lower than that of No13 where no film formation treatment is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 15 to 18 are electrogalvanized steel sheets subjected to film forming treatment, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently lower than the comparative examples No. 13 and 14. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.

板厚0.7mmの冷延鋼板上に、常法により溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。引き続き、層状複水酸化物形成処理として、表2に記載の組成を含み硝酸を用いてpH5.0に調整した溶液に鋼板を浸漬し、鋼板をカソードとして電流密度:1A/dm2で2〜300秒時間通電した。次に、十分水洗を行った後、乾燥した。 A hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.7 mm by a conventional method, and further temper rolled. Subsequently, as a layered double hydroxide formation treatment, the steel sheet was immersed in a solution containing the composition shown in Table 2 and adjusted to pH 5.0 using nitric acid, and the steel sheet was used as a cathode at a current density of 1 A / dm 2 from 2 to 2 Energized for 300 seconds. Next, after sufficiently washing with water, it was dried.

上記により得られた溶融亜鉛めっき鋼板に対して、めっき表層の層状複水酸化物皮膜の膜厚を測定するとともに、層状複水酸化物を同定した。また、プレス成形性を評価する手法として摩擦係数の測定の実施、型カジリ性の評価を実施し摺動特性を評価した。なお、めっき表層の層状複水酸化物層の膜厚測定方法、層状複水酸化物皮膜の同定方法、摺動特性の測定方法の評価方法は実施例1と同じである。合致したICDDカードは下記である。
ア)Zinc Aluminum Carbonate Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-048-1021
[Zn0.71Al 0.29(OH)2][CO3 2-]0.145・H2O
イ)Iron Carbonate Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-050-1380
[Fe0.67Fe0.33(OH) 2 ][CO3 2-] 0.145・0.33H2O
ウ)Iron Nickel Sulfate Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-042-0573
[Ni0.75Fe0.25(OH)2][SO4 2-]0.125・0.5H2O
エ)Magnesium Aluminum Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-038-0478
[Mg0.75Al0.25(OH)2][OH-]0.25・0.5H2O
オ)Magnesium Iron Oxide Chloride Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-020-0500
[Mg0.75Fe0.25(OH)2][Cl-]0.25・0.5H2O
カ)Calcium Aluminum Hydroxide Chloride Hydrate
ICDDカート゛リファレンスコート゛: 00-035-0105
[Ca0.67Al0.33(OH)2][Cl-]0.33・0.67H2O
キ)Magnesium Chromium Carbonate Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-045-1475
[Mg0.67Cr 0.33(OH)2][CO3 2-]0.157・0.5H2O
ク)Nickel Aluminum Oxide Carbonate Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-051-1527
[Fe0.67Al0.33(OH)2][CO3 2-]0.157・0.5H2O
ケ)Nickel Aluminum Oxide Carbonate Hydroxide Hydrate
ICDDカート゛リファレンスコート゛: 00-015-0087
[Ni 0.67Al0.33(OH)2][CO3 2- ,OH-]0.157・0.5H2O
以上より得られた試験結果を条件と併せて表2に示す。
While measuring the film thickness of the layered double hydroxide film of the plating surface layer on the hot dip galvanized steel sheet obtained as described above, the layered double hydroxide was identified. In addition, as a method for evaluating the press formability, the friction coefficient was measured and the mold caulking property was evaluated to evaluate the sliding characteristics. The method for measuring the thickness of the layered double hydroxide layer on the plating surface layer, the method for identifying the layered double hydroxide film, and the evaluation method for the method for measuring the sliding property are the same as in Example 1. The matched ICDD card is as follows.
A) Zinc Aluminum Carbonate Hydroxide Hydrate
ICDD Cart Reference Coat: 00-048-1021
[Zn 0.71 Al 0.29 (OH) 2 ] [CO 3 2- ] 0.145・ H 2 O
B) Iron Carbonate Hydroxide Hydrate
ICDD cart reference coat: 00-050-1380
[Fe 0.67 Fe 0.33 (OH) 2 ] [CO 3 2- ] 0.145・ 0.33H 2 O
C) Iron Nickel Sulfate Hydroxide Hydrate
ICDD Cart Reference Coat: 00-042-0573
[Ni 0.75 Fe 0.25 (OH) 2 ] [SO 4 2- ] 0.125・ 0.5H 2 O
D) Magnesium Aluminum Hydroxide Hydrate
ICDD Cart Reference Court: 00-038-0478
[Mg 0.75 Al 0.25 (OH) 2] [OH -] 0.25 · 0.5H 2 O
E) Magnesium Iron Oxide Chloride Hydroxide Hydrate
ICDD Cart Reference Coat: 00-020-0500
[Mg 0.75 Fe 0.25 (OH) 2] [Cl -] 0.25 · 0.5H 2 O
F) Calcium Aluminum Hydroxide Chloride Hydrate
ICDD Cart Reference Coat: 00-035-0105
[Ca 0.67 Al 0.33 (OH) 2] [Cl -] 0.33 · 0.67H 2 O
G) Magnesium Chromium Carbonate Hydroxide Hydrate
ICDD Cart Reference Coat: 00-045-1475
[Mg 0.67 Cr 0.33 (OH) 2 ] [CO 3 2- ] 0.157・ 0.5H 2 O
H) Nickel Aluminum Oxide Carbonate Hydroxide Hydrate
ICDD Cart Reference Coat: 00-051-1527
[Fe 0.67 Al 0.33 (OH) 2 ] [CO 3 2- ] 0.157・ 0.5H 2 O
I) Nickel Aluminum Oxide Carbonate Hydroxide Hydrate
ICDD Cart Reference Coat: 00-015-0087
[Ni 0.67 Al 0.33 (OH) 2] [CO 3 2-, OH -] 0.157 · 0.5H 2 O
The test results obtained above are shown in Table 2 together with the conditions.

Figure 2010242188
Figure 2010242188

表2に示す試験結果から下記事項が明らかとなった。
No19は成膜処理を行っていない溶融亜鉛めっき鋼板の比較例である。摩擦係数はいずれも高い値であり、型カジリ性においても少ない繰り返し数で摩擦係数が上昇している。
No20は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo19と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No21〜24は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo19、20の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No25は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No26〜29は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo25の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No30は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No31〜34は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo30の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No35は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No36〜39は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo35の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No40は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No41〜44は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はいずれも成膜処理行っていないNo40の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No45は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No46〜49は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo45の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No50は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No51〜54は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo50の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No55は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No56〜59は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はNo55の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
No60は成膜処理を行った溶融亜鉛めっき鋼板の比較例である。膜厚が不十分であるため摩擦係数はいずれも成膜処理行っていないNo1と比較すると低下しているがその効果は十分ではない。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にあるがその効果は十分ではない。
No61〜64は成膜処理を行った溶融亜鉛めっき鋼板であり膜厚も本発明の範囲内である本発明例である。摩擦係数はいずれも成膜処理行っていないNo60の比較例と比較すると十分に低下している。また型カジリ性においても、摩擦係数が上昇する繰り返し数が増加する傾向にありその効果は十分である。
From the test results shown in Table 2, the following matters became clear.
No19 is a comparative example of a hot-dip galvanized steel sheet that has not been subjected to film formation. The coefficient of friction is a high value, and the coefficient of friction increases with a small number of repetitions even in mold caulking.
No. 20 is a comparative example of a hot dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the friction coefficient is lower than that of No19 where no film formation treatment is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 21 to 24 are hot-dip galvanized steel sheets subjected to film formation, and are examples of the present invention in which the film thickness is within the scope of the present invention. The coefficient of friction is sufficiently lower than the comparative examples of No19 and 20. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 25 is a comparative example of a hot dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 26 to 29 are hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently reduced compared to the No25 comparative example. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 30 is a comparative example of a hot-dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 31 to 34 are hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently lower than the comparative example of No30. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 35 is a comparative example of a hot dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 36 to 39 are hot-dip galvanized steel sheets subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently low compared to the comparative example of No35. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 40 is a comparative example of a hot-dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 41 to 44 are hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently reduced as compared with the comparative example of No. 40 where no film forming process is performed. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 45 is a comparative example of a hot dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 46 to 49 are hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently reduced compared to the No45 comparative example. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 50 is a comparative example of a hot dip galvanized steel sheet subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 51 to 54 are hot-dip galvanized steel sheets subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently lower than the comparative example of No50. Further, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 55 is a comparative example of a hot dip galvanized steel sheet subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film forming process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 56 to 59 are hot-dip galvanized steel sheets subjected to film forming treatment, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently lower than that of the No55 comparative example. Also, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.
No. 60 is a comparative example of a hot dip galvanized steel sheet that has been subjected to film formation. Since the film thickness is insufficient, the coefficient of friction is lower than that of No1 where no film formation process is performed, but the effect is not sufficient. In addition, the mold caulking property tends to increase the number of repetitions in which the friction coefficient increases, but the effect is not sufficient.
Nos. 61 to 64 are hot-dip galvanized steel sheets that have been subjected to film formation, and are examples of the present invention in which the film thickness is also within the scope of the present invention. The coefficient of friction is sufficiently reduced as compared with the comparative example of No60 where no film forming treatment is performed. Also, in the mold caulking property, the number of repetitions in which the friction coefficient increases tends to increase, and the effect is sufficient.

本発明の亜鉛系めっき鋼板はプレス成形性に優れることから、難成形材料を必要とする自動車車体用途を中心に広範な分野で適用できる。   Since the galvanized steel sheet of the present invention is excellent in press formability, it can be applied in a wide range of fields mainly for automobile body applications that require difficult-to-form materials.

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
DESCRIPTION OF SYMBOLS 1 Friction coefficient measurement sample 2 Sample stand 3 Slide table 4 Roller 5 Slide table support stand 6 Bead 7 1st load cell 8 2nd load cell 9 Rail N Pushing load F Sliding resistance force

Claims (3)

表層に結晶性層状物を含有する皮膜を有し、該皮膜の平均膜厚が10nm〜2000nmであることを特徴とする亜鉛系めっき鋼板。   A zinc-based plated steel sheet having a film containing a crystalline layered material on a surface layer, and an average film thickness of the film being 10 nm to 2000 nm. 前記結晶性層状物は [M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで示される層状複水酸化物であり、
前記M2+はMg2+、Ca2+、Fe2+、Ni2+、亜鉛2+、Pb2+、Sn2+の1種または2種以上であり、
前記M3+はAl3+、Fe3+、Cr3+、3/4Zr4+、Mo3+の1種または2種以上であり、
前記An-は OH-、F-、CO3 2-、Cl-、Br-、(C2O4)2-、I-、(NO3)-、(SO4)2-、(BrO3)-、(IO3)-、(V10O28)6-、(Si2O5)2-、(ClO4)-、(CH3COO)-、[C6H4(CO2)22-、(C6H5COO)-、[C8H16(CO222-、n(C8H17SO4)-、TPPC、n(C12H25SO4)-、n(C18H37SO4)-、SiO4 4-の1種または2種以上であることを特徴とする請求項1に記載の亜鉛系めっき鋼板。
The crystalline layered product is a layered double hydroxide represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n− ] x / n · zH 2 O,
The M 2+ is one or more of Mg 2+ , Ca 2+ , Fe 2+ , Ni 2+ , zinc 2+ , Pb 2+ , Sn 2+ ,
The M 3+ is Al 3+ , Fe 3+ , Cr 3+ , 3 / 4Zr 4+ , Mo 3+ or one or more of them,
The A n- may OH -, F -, CO 3 2-, Cl -, Br -, (C 2 O 4) 2-, I -, (NO 3) -, (SO 4) 2-, (BrO 3 ) - , (IO 3 ) - , (V 10 O 28 ) 6- , (Si 2 O 5 ) 2- , (ClO 4 ) - , (CH 3 COO) - , [C 6 H 4 (CO 2 ) 2 ] 2- , (C 6 H 5 COO) - , [C 8 H 16 (CO 2 ) 2 ] 2- , n (C 8 H 17 SO 4 ) - , TPPC, n (C 12 H 25 SO 4 ) - 2. The galvanized steel sheet according to claim 1, wherein the galvanized steel sheet is one or more of n, (C 18 H 37 SO 4 ) and SiO 4 4- .
前記結晶性層状物は [M2+ 1-XM3+ X(OH)2][An-]x/n・zH2Oで示される層状複水酸化物であり、
前記M2+はMg2+、Ca2+、Fe2+、Ni2+、亜鉛2+の1種または2種以上であり、
前記M3+はAl3+、Fe3+、Cr3+の1種または2種以上であり、
An-が OH-、 CO3 2-、Cl-、 (SO4)2-の1種または2種以上であることを特徴とする請求項1に記載の亜鉛系めっき鋼板。
The crystalline layered product is a layered double hydroxide represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n− ] x / n · zH 2 O,
The M 2+ is one or more of Mg 2+ , Ca 2+ , Fe 2+ , Ni 2+ , and zinc 2+ ;
M 3+ is one or more of Al 3+ , Fe 3+ , Cr 3+ ,
A n- is OH -, CO 3 2-, Cl -, (SO 4) galvanized steel sheet according to claim 1, characterized in that 2-one or more.
JP2009093595A 2009-04-08 2009-04-08 Galvanized steel sheet Active JP5771890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093595A JP5771890B2 (en) 2009-04-08 2009-04-08 Galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093595A JP5771890B2 (en) 2009-04-08 2009-04-08 Galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2010242188A true JP2010242188A (en) 2010-10-28
JP5771890B2 JP5771890B2 (en) 2015-09-02

Family

ID=43095518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093595A Active JP5771890B2 (en) 2009-04-08 2009-04-08 Galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5771890B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525363A (en) * 2013-09-30 2014-01-22 东南大学 Core-shell type infrared composite material and preparation method thereof
WO2018180986A1 (en) 2017-03-27 2018-10-04 新日鐵住金株式会社 Al-based plated steel sheet
WO2018180979A1 (en) 2017-03-27 2018-10-04 新日鐵住金株式会社 Al-BASED PLATED STEEL PLATE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174104A (en) * 2018-09-29 2019-01-11 陕西科技大学 A kind of carbon cloth zinc supported nickel bimetal hydroxide water-splitting method for preparing catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025596A (en) * 1996-07-12 1998-01-27 Nkk Corp Production of galvanized steel sheet
JP2000073183A (en) * 1998-08-28 2000-03-07 Sumitomo Metal Ind Ltd Zinc system plated steel sheet excellent in formability and weldability and its production
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2006274385A (en) * 2005-03-30 2006-10-12 Tayca Corp Corrosion preventive coating composition using layered double hydroxide which peels in water and rust preventive treatment metallic material using the same
JP2007231376A (en) * 2006-03-01 2007-09-13 Jfe Steel Kk Galvannealed steel sheet
JP2008184618A (en) * 2007-01-26 2008-08-14 Jfe Steel Kk Process for producing hot dip galvannealed steel sheet
JP2008285706A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvannealed steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025596A (en) * 1996-07-12 1998-01-27 Nkk Corp Production of galvanized steel sheet
JP2000073183A (en) * 1998-08-28 2000-03-07 Sumitomo Metal Ind Ltd Zinc system plated steel sheet excellent in formability and weldability and its production
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2006274385A (en) * 2005-03-30 2006-10-12 Tayca Corp Corrosion preventive coating composition using layered double hydroxide which peels in water and rust preventive treatment metallic material using the same
JP2007231376A (en) * 2006-03-01 2007-09-13 Jfe Steel Kk Galvannealed steel sheet
JP2008184618A (en) * 2007-01-26 2008-08-14 Jfe Steel Kk Process for producing hot dip galvannealed steel sheet
JP2008285706A (en) * 2007-05-16 2008-11-27 Jfe Steel Kk Galvannealed steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525363A (en) * 2013-09-30 2014-01-22 东南大学 Core-shell type infrared composite material and preparation method thereof
WO2018180986A1 (en) 2017-03-27 2018-10-04 新日鐵住金株式会社 Al-based plated steel sheet
WO2018180979A1 (en) 2017-03-27 2018-10-04 新日鐵住金株式会社 Al-BASED PLATED STEEL PLATE
KR20190105063A (en) 2017-03-27 2019-09-11 닛폰세이테츠 가부시키가이샤 Al-based galvanized steel
KR20190113873A (en) 2017-03-27 2019-10-08 닛폰세이테츠 가부시키가이샤 Al-based galvanized steel

Also Published As

Publication number Publication date
JP5771890B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5696445B2 (en) Galvanized steel sheet
JP5838542B2 (en) Cold rolled steel sheet manufacturing method
JP5522185B2 (en) Galvanized steel sheet
JP5884207B2 (en) Zinc-based plated steel sheet and method for producing the same
TWI525215B (en) Method for producing galvanized steel plate
JP5771890B2 (en) Galvanized steel sheet
JP2002012958A (en) Alloyed hot-dip galvanized steel sheet and its manufacturing method
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP2007231375A (en) Galvannealed steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP2007119872A (en) Method for producing galvannealed steel sheet and galvannealed steel sheet
JP2002302753A (en) Galvannealed steel sheet
JP2002256406A (en) Galvannealed steel sheet
JP5927995B2 (en) Method for producing galvanized steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5771890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250