JP2008285547A - Dechlorination apparatus and dechlorination method for carbonized product - Google Patents

Dechlorination apparatus and dechlorination method for carbonized product Download PDF

Info

Publication number
JP2008285547A
JP2008285547A JP2007130319A JP2007130319A JP2008285547A JP 2008285547 A JP2008285547 A JP 2008285547A JP 2007130319 A JP2007130319 A JP 2007130319A JP 2007130319 A JP2007130319 A JP 2007130319A JP 2008285547 A JP2008285547 A JP 2008285547A
Authority
JP
Japan
Prior art keywords
carbide
liquid
dechlorination
bubbles
carbide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007130319A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健次 鈴木
Junya Nishino
順也 西野
Hiroshi Nakai
宏 中井
Katsumi Takahashi
克巳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007130319A priority Critical patent/JP2008285547A/en
Publication of JP2008285547A publication Critical patent/JP2008285547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dechlorination apparatus and a dechlorination method for carbonized products that costs low, is environmentally friendly and efficiently removes chlorine from carbonized product particles. <P>SOLUTION: The dechlorination apparatus for carbonized products removes chlorine from chlorine-containing carbonized product particles formed by carbonizing wastes in a liquid. The dechlorination apparatus for carbonized products is equipped with a bubble-feeding apparatus (24) for feeding bubbles having a diameter of 1-100 μm into the liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は炭化物の脱塩素装置及び脱塩素方法に関する。   The present invention relates to a carbide dechlorination apparatus and a dechlorination method.

近年、紙、プラスチック、都市ごみ、バイオマス系の産業廃棄物等を原材料として炭化物燃料を製造し、得られた炭化物燃料を例えばボイラの燃料に混合して燃焼させる試みが始まっている。
炭化物燃料を製造する際には、まず、原材料を低酸素雰囲気の炉で炭化し、炭化物にする。炭化物は、適当な粒径の炭化物粒子になるよう粉砕され、炭化物粒子には、脱塩素処理が実施される。この後、塩素の含有量が低減された炭化物粒子はペレットに成形され、炭化物燃料が製造される。
In recent years, attempts have been made to manufacture carbide fuel using paper, plastic, municipal waste, biomass-based industrial waste, and the like as raw materials, and to mix the obtained carbide fuel with, for example, boiler fuel for combustion.
When manufacturing a carbide fuel, first, the raw material is carbonized in a furnace in a low oxygen atmosphere to form a carbide. The carbide is pulverized into carbide particles having an appropriate particle diameter, and the carbide particles are subjected to dechlorination treatment. Thereafter, the carbide particles having a reduced chlorine content are formed into pellets to produce a carbide fuel.

脱塩素処理は、炭化物燃料の燃焼によりボイラ等が腐食するのを防止するために実施されており、炭化物燃料中の塩素濃度が0.1%以下となるように実施される。水洗により塩素濃度を十分に低減するのは困難であることから、種々の技術が提案されている。
例えば、特許文献1は、多段の洗浄槽を用いて炭化物粒子の洗浄を繰り返すことを開示しており、特許文献2は、温水を用いて炭化物粒子を洗浄することを開示している。また、特許文献3は、スチームを用いて炭化物粒子を洗浄することを開示しており、特許文献4は、酸性又はアルカリ性の溶液で炭化物粒子を洗浄することを開示している。
特開2006-290911号公報 特許第3506893号公報 特許第3501925号公報 特開2005-8662号公報
The dechlorination treatment is performed to prevent the boiler and the like from being corroded by the combustion of the carbide fuel, and is performed so that the chlorine concentration in the carbide fuel becomes 0.1% or less. Various techniques have been proposed because it is difficult to sufficiently reduce the chlorine concentration by washing with water.
For example, Patent Document 1 discloses repeating cleaning of carbide particles using a multistage cleaning tank, and Patent Document 2 discloses cleaning carbide particles using hot water. Patent Document 3 discloses cleaning carbide particles using steam, and Patent Document 4 discloses cleaning carbide particles with an acidic or alkaline solution.
JP 2006-290911 JP Japanese Patent No. 3506893 Japanese Patent No. 3501925 JP-A-2005-8662

しかしながら、特許文献1〜4が開示する炭化物粒子の洗浄方法では、水で1回洗浄する場合に比べてコストがアップしてしまう。また、酸性やアルカリ性の溶液を用いた場合には環境負荷も大きくなる。
本発明は上述の事情に基づいてなされ、その目的とするところは、低コストで環境に優しく、炭化物粒子から塩素を効率的に除去する炭化物の脱塩素装置及び脱塩素方法を提供することにある。
However, the methods for cleaning carbide particles disclosed in Patent Documents 1 to 4 increase the cost as compared with the case of cleaning once with water. In addition, when an acidic or alkaline solution is used, the environmental load increases.
The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a dechlorination apparatus and dechlorination method for carbide that efficiently removes chlorine from carbide particles at low cost and is environmentally friendly. .

上述の目的を達成するため、本発明によれば、液体中にて、廃棄物を炭化することによって生成された塩素を含む炭化物粒子から前記塩素を除去する炭化物の脱塩素装置において、前記液体中に1μm〜100μmの直径を有する気泡を供給する気泡供給器を備えることを特徴とする炭化物の脱塩素装置が提供される(請求項1)。
好ましくは、前記気泡供給器は、前記液体の旋回流及び圧力変化のうち一方あるいは両方を利用して前記気泡を発生させる(請求項2)。
In order to achieve the above-mentioned object, according to the present invention, in the liquid dechlorination apparatus for removing chlorine from carbide particles containing chlorine produced by carbonizing waste in the liquid, A carbide dechlorination apparatus is provided, comprising a bubble feeder for supplying bubbles having a diameter of 1 μm to 100 μm.
Preferably, the bubble supply device generates the bubbles using one or both of the swirling flow and pressure change of the liquid (claim 2).

好ましくは、前記気泡は二酸化炭素を含む(請求項3)。
好ましくは、前記脱塩素装置は、前記液体に超音波を付与する超音波発生器を更に備える(請求項4)。
好ましくは、前記液体は、酸性及びアルカリ性のうち一方である(請求項5)。
好ましくは、前記脱塩素装置は、前記液体を貯留する洗浄槽と、前記洗浄槽に貯留された前記液体中の炭化物粒子を粉砕する粉砕装置とを更に備え、前記気泡供給器は、前記洗浄槽に貯留された前記液体中に前記気泡を供給する(請求項6)。
Preferably, the bubbles contain carbon dioxide (Claim 3).
Preferably, the dechlorination device further includes an ultrasonic generator that applies ultrasonic waves to the liquid.
Preferably, the liquid is one of acidic and alkaline (Claim 5).
Preferably, the dechlorination device further includes a cleaning tank that stores the liquid, and a pulverizing device that pulverizes carbide particles in the liquid stored in the cleaning tank, and the bubble supply device includes the cleaning tank. The bubbles are supplied into the liquid stored in the container (Claim 6).

また、上述の目的を達成するため、本発明によれば、液体中にて、廃棄物を炭化することによって生成された塩素を含む炭化物粒子から前記塩素を除去するための炭化物の脱塩素方法において、前記液体中に1μm〜100μmの直径を有する気泡を供給することを特徴とする炭化物の脱塩素方法が提供される(請求項7)。
好ましくは、前記液体中の炭化物粒子に前記気泡を供給する一方、前記液体中の炭化物粒子を粉砕する(請求項8)。
In order to achieve the above-mentioned object, according to the present invention, in the carbide dechlorination method for removing chlorine from carbide particles containing chlorine generated by carbonizing waste in a liquid, according to the present invention. A carbide dechlorination method is provided, wherein bubbles having a diameter of 1 μm to 100 μm are supplied into the liquid.
Preferably, the bubbles are supplied to the carbide particles in the liquid while the carbide particles in the liquid are pulverized (claim 8).

本発明の請求項1の炭化物の脱塩素装置及び請求項6の炭化物の脱塩素方法では、直径が1μm〜100μmの気泡を液体中に供給することにより、炭化物粒子中の塩素が効率的に除去される。これは以下の理由による。
まず、液体中の各気泡の表面は負に帯電しているため、炭化物粒子の表面に容易に付着する。各気泡は、発生後に収縮してその内部が高温になるため、炭化物粒子の周囲を局所的に高温にする。この結果として、液体に対する塩素の溶解度が増大し、炭化物粒子から塩素が効率的に除去される。また気泡の崩壊にともない衝撃波が発生し、炭化物粒子内部の塩素の溶出を促進させる。
In the carbide dechlorination apparatus according to claim 1 of the present invention and the carbide dechlorination method according to claim 6, chlorine in carbide particles is efficiently removed by supplying bubbles having a diameter of 1 μm to 100 μm into the liquid. Is done. This is due to the following reason.
First, since the surface of each bubble in the liquid is negatively charged, it easily adheres to the surface of the carbide particles. Since each bubble shrinks after generation and the inside becomes high temperature, the periphery of the carbide particles is locally heated. As a result, the solubility of chlorine in the liquid increases and chlorine is efficiently removed from the carbide particles. In addition, shock waves are generated with the collapse of the bubbles, promoting the elution of chlorine inside the carbide particles.

また、気泡は、液体中において炭化物粒子を均一に分散させる効果も有し、この結果としても、炭化物粒子から効率的に塩素が除去される。
請求項2の炭化物の脱塩素装置では、液体の旋回流及び圧力変化のうち一方あるいは両方を利用することにより、簡単な構成で気泡が発生させられる。
請求項3の炭化物の脱塩素装置では、二酸化炭素を含む気泡を使用することにより、液体のpHが低下し、洗浄効果および脱塩素効果を向上させるとともに、環境負荷が更に低下する。また二酸化炭素を使用することにより、低酸素雰囲気下で製造した炭化物粒子に生成する3CaO・Al・CaCl・nHOのような安定な塩素化合物を溶出させ易くする。
The bubbles also have an effect of uniformly dispersing the carbide particles in the liquid, and as a result, chlorine is efficiently removed from the carbide particles.
In the carbide dechlorination apparatus according to the second aspect, bubbles are generated with a simple configuration by utilizing one or both of the swirling flow of the liquid and the pressure change.
In the carbide dechlorination apparatus according to the third aspect, by using bubbles containing carbon dioxide, the pH of the liquid is lowered, the cleaning effect and the dechlorination effect are improved, and the environmental load is further reduced. Further, by using carbon dioxide, to facilitate eluted stable chlorine compounds such as 3CaO · Al 2 O 3 · CaCl 2 · nH 2 O to produce a carbide particles produced under a low oxygen atmosphere.

請求項4の炭化物の脱塩素装置では、超音波によるキャビテーション現象により、より効率的に炭化物粒子から塩素が除去される。また超音波を追加で照射することにより、供給した気泡がより微細化される効果もあるため、脱塩素効果が高まる。
請求項5の炭化物の脱塩素装置によれば、液体が酸性又はアルカリ性であることにより、より効率的に炭化物粒子から塩素が除去される。
In the carbide dechlorination apparatus according to claim 4, chlorine is more efficiently removed from the carbide particles by a cavitation phenomenon caused by ultrasonic waves. Further, by additionally irradiating ultrasonic waves, there is an effect that the supplied bubbles are further refined, so that the dechlorination effect is enhanced.
According to the carbide dechlorination apparatus of claim 5, when the liquid is acidic or alkaline, chlorine is more efficiently removed from the carbide particles.

請求項6及び請求項8の炭化物の脱塩素装置又は脱塩素方法によれば、脱塩素処理を実行する前に粉砕機で複数回行っていた炭化物の粉砕工程を少なくとも1回省略することができる。
以上説明したように、本発明によれば、低コストで環境に優しく、炭化物粒子から塩素を効率的に除去する炭化物の脱塩素装置及び脱塩素方法が提供される。
According to the carbide dechlorination apparatus or the dechlorination method of claim 6 and claim 8, the carbide pulverization step that has been performed plural times by the pulverizer before the dechlorination treatment can be omitted at least once. .
As described above, according to the present invention, there are provided a dechlorination apparatus and a dechlorination method for carbide that efficiently remove chlorine from carbide particles at low cost and environmentally friendly.

図1は、一実施形態の脱塩素装置10が適用された炭化物燃料の製造システムの概略構成を示す。
炭化物燃料の製造システムは、原材料から炭化物燃料を製造するためのシステムであり、原材料としては、紙、プラスチック、都市ごみ、バイオマス系の産業廃棄物等を用いることができる。
FIG. 1 shows a schematic configuration of a carbide fuel manufacturing system to which a dechlorination apparatus 10 of one embodiment is applied.
The carbide fuel production system is a system for producing carbide fuel from raw materials, and paper, plastic, municipal waste, biomass industrial waste, etc. can be used as raw materials.

炭化装置12は、低酸素雰囲気下にて原材料を加熱可能な炭化炉により構成され、原材料である廃棄物は炭化装置12にて炭化されて炭化物になる。
粉砕機14は、炭化物を適当な粒径に粉砕可能であり、好ましくは、炭化物は平均粒径が1μm〜30μmの炭化物粒子となるように粉砕される。
脱塩素装置10は、炭化物粒子に含まれる塩素を除去する装置であり、脱塩素装置10により、炭化物粒子の塩素濃度は、例えば0.1質量%以下まで低減される。
The carbonization apparatus 12 is configured by a carbonization furnace capable of heating raw materials in a low oxygen atmosphere, and waste as raw materials is carbonized by the carbonization apparatus 12 to become carbides.
The pulverizer 14 can pulverize the carbide to an appropriate particle diameter. Preferably, the carbide is pulverized so as to become carbide particles having an average particle diameter of 1 μm to 30 μm.
The dechlorination apparatus 10 is an apparatus that removes chlorine contained in the carbide particles, and the dechlorination apparatus 10 reduces the chlorine concentration of the carbide particles to, for example, 0.1% by mass or less.

脱塩素装置10で脱塩素処理された炭化物粒子は、脱水機16で脱水された後、造粒機18で適当な形状のペレットに成形され、炭化物燃料となる。
より詳しくは、脱塩素装置10は、図2に示したように、洗浄槽20を有し、洗浄槽20内には洗浄液が貯留されるとともに、脱塩素処理の対象としての炭化物粒子が投入される。洗浄液としては、例えば水を用いることができる。
The carbide particles dechlorinated by the dechlorination apparatus 10 are dehydrated by a dehydrator 16 and then formed into pellets of an appropriate shape by a granulator 18 to become a carbide fuel.
More specifically, as shown in FIG. 2, the dechlorination apparatus 10 has a cleaning tank 20, in which cleaning liquid is stored and carbide particles as an object of dechlorination treatment are charged. The As the cleaning liquid, for example, water can be used.

洗浄槽20内には、撹拌器22が配置され、撹拌器は洗浄液を撹拌し、炭化物粒子を均一に分散させる。
また、洗浄槽20内には、気泡供給器24が配置され、気泡供給器24は、洗浄液に直径が1μm〜100μmの気泡25を供給し、好ましくは、直径が1μm〜30μmの気泡25を供給する。気泡供給器24には、ガス供給源26がガス管を介して接続されるとともに、ポンプ28の吐出側が給水管を介して接続される。気泡供給器24は、ガス供給源26からのガス及びポンプ28からの加圧水を用いて気泡25を発生させ、洗浄液に供給する。
A stirrer 22 is disposed in the cleaning tank 20, and the stirrer stirs the cleaning liquid to uniformly disperse the carbide particles.
In addition, a bubble supplier 24 is disposed in the cleaning tank 20, and the bubble supplier 24 supplies bubbles 25 having a diameter of 1 μm to 100 μm to the cleaning liquid, and preferably supplies bubbles 25 having a diameter of 1 μm to 30 μm. To do. A gas supply source 26 is connected to the bubble supply device 24 via a gas pipe, and a discharge side of the pump 28 is connected via a water supply pipe. The bubble supplier 24 generates bubbles 25 using the gas from the gas supply source 26 and the pressurized water from the pump 28 and supplies the bubbles 25 to the cleaning liquid.

なお、ポンプ28の吸入側は、洗浄槽20に取水管を介して接続されており、ポンプ28に吸い込まれた洗浄液は、気泡供給器24から気泡25とともに洗浄槽20内に還流させられる。
具体的には、図3及び図4に概略的に示したように、気泡供給器24は円筒状の本体部30を有する。本体部30の一端にガス管の先端が接続され、本体部30内には、軸線方向にガスが供給される。本体部30内は洗浄液で満たされているけれども、供給されたガスは、その勢いにより本体部30内に略柱状のガス柱32を形成する。一方、本体部30の外周面には給水管が接続されており、本体部30内には、接線方向(周方向)に加圧水が供給される。加圧水はガス柱32の回りに旋回流を生成し、旋回流によってガス柱32の先端が細かく分断されて気泡25になる。発生した気泡25は、本体部30の他端に形成された開口34を通じて、加圧水とともに本体部30から放出される。
Note that the suction side of the pump 28 is connected to the cleaning tank 20 via a water intake pipe, and the cleaning liquid sucked into the pump 28 is recirculated into the cleaning tank 20 together with the bubbles 25 from the bubble supplier 24.
Specifically, as schematically shown in FIGS. 3 and 4, the bubble supplier 24 has a cylindrical main body 30. A distal end of a gas pipe is connected to one end of the main body 30, and gas is supplied into the main body 30 in the axial direction. Although the main body 30 is filled with the cleaning liquid, the supplied gas forms a substantially columnar gas column 32 in the main body 30 due to its momentum. On the other hand, a water supply pipe is connected to the outer peripheral surface of the main body 30, and pressurized water is supplied into the main body 30 in the tangential direction (circumferential direction). The pressurized water generates a swirling flow around the gas column 32, and the tip of the gas column 32 is finely divided by the swirling flow into bubbles 25. The generated bubbles 25 are discharged from the main body 30 together with the pressurized water through the opening 34 formed at the other end of the main body 30.

上述した炭化物の脱塩素装置10によれば、炭化物粒子中の塩素が洗浄液中に溶け出し、炭化物粒子の塩素濃度が低減される。
特に上述した炭化物の脱塩素装置10では、直径が1μm〜100μmの気泡25を洗浄液中に供給することにより、炭化物粒子中の塩素が効率的に除去される。これは以下の理由による。
According to the carbide dechlorination apparatus 10 described above, chlorine in the carbide particles dissolves into the cleaning liquid, and the chlorine concentration of the carbide particles is reduced.
In particular, in the carbide dechlorination apparatus 10 described above, chlorine in the carbide particles is efficiently removed by supplying bubbles 25 having a diameter of 1 μm to 100 μm into the cleaning liquid. This is due to the following reason.

まず、洗浄液中の各気泡25の表面は負に帯電しているため、炭化物粒子の表面に容易に付着する。各気泡25は、発生後に断熱収縮してその内部が高温になるため、炭化物粒子の周囲を局所的に高温にする。この結果として、洗浄液に対する塩素の溶解度が増大し、炭化物粒子から塩素が効率的に除去される。
また、気泡25は、洗浄液中において炭化物粒子を均一に分散させる効果も有し、この結果としても、炭化物粒子から効率的に塩素が除去される。
First, since the surface of each bubble 25 in the cleaning liquid is negatively charged, it easily adheres to the surface of the carbide particles. Since each bubble 25 is adiabatic contraction after generation and the inside becomes high temperature, the periphery of the carbide particles is locally heated. As a result, the solubility of chlorine in the cleaning liquid increases and chlorine is efficiently removed from the carbide particles.
The bubbles 25 also have an effect of uniformly dispersing the carbide particles in the cleaning liquid. As a result, chlorine is efficiently removed from the carbide particles.

本発明は上記した一実施形態に限定されることはなく、種々の変形が可能である。
例えば、気泡25の発生手段は特に限定されることはないが、簡単な構成で気泡25を発生させるために、洗浄液の旋回流又は圧力変化のうち一方あるいは両方を利用して気泡を発生させるのが好ましい。なお、圧力変化を利用する場合には、高圧下で洗浄液にガスを溶け込ませた後、減圧することにより気泡を発生させることができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, the means for generating the bubble 25 is not particularly limited, but in order to generate the bubble 25 with a simple configuration, the bubble is generated using one or both of the swirling flow and the pressure change of the cleaning liquid. Is preferred. When using a pressure change, bubbles can be generated by dissolving the gas in the cleaning liquid under high pressure and then reducing the pressure.

気泡25の直径は、気泡の安定製造限界の目安である1μm程度を下限とし、断熱収縮可能な直径の目安である100μm程度を上限としている。なお、気泡が粒径1〜30μmの炭化物粒子に付着し、液中にて塩素を除去するための滞留時間を十分に確保するためには、気泡25の直径が炭化物粒子の直径と同程度の1〜30μm程度であることが好ましい。   The diameter of the bubbles 25 has a lower limit of about 1 μm, which is a standard for the stable production limit of bubbles, and an upper limit of about 100 μm, which is a standard of the diameter capable of adiabatic shrinkage. In addition, in order to ensure sufficient residence time for the bubbles to adhere to the carbide particles having a particle size of 1 to 30 μm and to remove chlorine in the liquid, the diameter of the bubbles 25 is approximately the same as the diameter of the carbide particles. It is preferable that it is about 1-30 micrometers.

気泡25の成分は特に限定されず、空気、窒素、酸素、二酸化炭素又はこれらのうち二種以上を混合したものを用いることができる。ただし、二酸化炭素を含む気泡25を使用するのが好ましい。これは、液体のpHが低下し、洗浄効果および脱塩素効果が向上するとともに、環境負荷が更に低下するからである。また二酸化炭素を使用することにより、低酸素雰囲気下で製造した炭化物粒子に生成する3CaO・Al・CaCl・nHOのような安定な塩素化合物を溶出させ易くするからである。 The components of the bubbles 25 are not particularly limited, and air, nitrogen, oxygen, carbon dioxide, or a mixture of two or more of these can be used. However, it is preferable to use bubbles 25 containing carbon dioxide. This is because the pH of the liquid is lowered, the cleaning effect and the dechlorination effect are improved, and the environmental load is further reduced. Further, by using carbon dioxide, because it easy to elute stable chlorine compounds such as 3CaO · Al 2 O 3 · CaCl 2 · nH 2 O to produce a carbide particles produced under a low oxygen atmosphere.

また、図2に2点鎖線で示したように、洗浄槽20内に、例えば20kHz〜300kHzの超音波を発生可能な超音波発生器36を配置してもよい。この場合、超音波によるキャビテーション現象により、より効率的に炭化物粒子から塩素を除去することができる。なお、超音波の出力は、洗浄槽20の大きさ等に応じて適宜調節される。
更に、洗浄液の種類は特に限定されず、より効率的に炭化物粒子から塩素を除去するために、酸性又はアルカリ性の洗浄液を用いてもよい。具体的には、洗浄液には、硝酸、硫酸、炭酸、ギ酸、酢酸、乳酸等の酸や、水酸化ナトリウム、水酸化カリウム等のアルカリを用いることができる。この一方、環境に対する負荷を軽減するという観点からは、純水や工業用水等の水を用いるのが好ましい。
Further, as indicated by a two-dot chain line in FIG. 2, an ultrasonic generator 36 capable of generating an ultrasonic wave of 20 kHz to 300 kHz, for example, may be disposed in the cleaning tank 20. In this case, chlorine can be more efficiently removed from the carbide particles by a cavitation phenomenon caused by ultrasonic waves. Note that the output of the ultrasonic wave is appropriately adjusted according to the size of the cleaning tank 20 and the like.
Furthermore, the type of the cleaning liquid is not particularly limited, and an acidic or alkaline cleaning liquid may be used in order to more efficiently remove chlorine from the carbide particles. Specifically, an acid such as nitric acid, sulfuric acid, carbonic acid, formic acid, acetic acid, or lactic acid, or an alkali such as sodium hydroxide or potassium hydroxide can be used for the cleaning liquid. On the other hand, from the viewpoint of reducing the burden on the environment, it is preferable to use water such as pure water or industrial water.

また更に、脱塩素装置10は、複数の洗浄槽20を有していてもよく、各洗浄槽20に気泡供給器24を設けてもよい。
また、ポンプ28は、洗浄液の輸送機能のみを有していたが、炭化物粒子の粉砕、輸送、洗浄を同時に行うべく、粉砕機能を有するポンプ(カッターポンプ等)を使用してもよい。洗浄槽20内の炭化物粒子を粉砕する粉砕装置を洗浄槽20に設け、脱塩素処理の一方で粉砕処理を実行すれば、粉砕機14で複数回行っていた炭化物の粉砕工程を、少なくとも1回省略することができる。
Furthermore, the dechlorination apparatus 10 may have a plurality of cleaning tanks 20, and each cleaning tank 20 may be provided with a bubble supplier 24.
The pump 28 has only the cleaning liquid transport function. However, a pump (such as a cutter pump) having a pulverizing function may be used to simultaneously pulverize, transport, and clean the carbide particles. If a pulverizer for pulverizing the carbide particles in the cleaning tank 20 is provided in the cleaning tank 20 and the pulverization process is performed during the dechlorination process, the pulverization process of the carbide that has been performed plural times by the pulverizer 14 is performed at least once. Can be omitted.

更に、一実施形態では、バッチ式で脱塩素処理が実施されているが、連続的に脱塩素処理を実施するように構成してもよい。   Furthermore, in one embodiment, the dechlorination treatment is performed in a batch manner, but the dechlorination treatment may be performed continuously.

炭化物燃料の製造システムの概略構成を示す図である。It is a figure showing the schematic structure of the manufacture system of carbide fuel. 図1のシステムに適用された一実施形態の炭化物の脱塩素装置を概略的に示す図である。It is a figure which shows roughly the dechlorination apparatus of the carbide | carbonized_material of one Embodiment applied to the system of FIG. 図2の脱塩素装置に適用された気泡供給器を概略的に示す断面図である。It is sectional drawing which shows schematically the bubble supply device applied to the dechlorination apparatus of FIG. 図2の脱塩素装置に適用された気泡供給器を概略的に示す正面図である。It is a front view which shows roughly the bubble supply device applied to the dechlorination apparatus of FIG.

符号の説明Explanation of symbols

22 撹拌器
24 気泡供給器
26 ガス供給源
28 ポンプ
22 Stirrer 24 Bubble Supply Device 26 Gas Supply Source 28 Pump

Claims (8)

液体中にて、廃棄物を炭化することによって生成された塩素を含む炭化物粒子から前記塩素を除去する炭化物の脱塩素装置において、前記液体中に1μm〜100μmの直径を有する気泡を供給する気泡供給器を備えることを特徴とする炭化物の脱塩素装置。   Bubbling supply for supplying bubbles having a diameter of 1 μm to 100 μm into the liquid in a dechlorination apparatus for carbide that removes chlorine from carbide particles containing chlorine generated by carbonizing waste in a liquid A dechlorination device for carbide comprising a vessel. 前記気泡供給器は、前記液体の旋回流及び圧力変化のうち一方あるいは両方を利用して前記気泡を発生させることを特徴とする請求項1に記載の炭化物の脱塩素装置。   2. The carbide dechlorination apparatus according to claim 1, wherein the bubble supply device generates the bubbles using one or both of a swirl flow of the liquid and a pressure change. 前記気泡は、二酸化炭素を含むことを特徴とする請求項1又は2に記載の炭化物の脱塩素装置。   The said bubble contains carbon dioxide, The dechlorination apparatus of the carbide | carbonized_material of Claim 1 or 2 characterized by the above-mentioned. 前記液体に超音波を付与する超音波発生器を更に備えることを特徴とする請求項1乃至3の何れかに記載の炭化物の脱塩素装置。   The carbide dechlorination apparatus according to any one of claims 1 to 3, further comprising an ultrasonic generator that applies ultrasonic waves to the liquid. 前記液体は、酸性及びアルカリ性のうち一方であることを特徴とする請求項1乃至4の何れかに記載の炭化物の脱塩素装置。   The carbide dechlorination apparatus according to any one of claims 1 to 4, wherein the liquid is one of acidic and alkaline. 前記液体を貯留する洗浄槽と、
前記洗浄槽に貯留された前記液体中の炭化物粒子を粉砕する粉砕装置と
を更に備え、
前記気泡供給器は、前記洗浄槽に貯留された前記液体中に前記気泡を供給する
ことを特徴とする請求項1乃至5の何れかに記載の炭化物の脱塩素装置。
A cleaning tank for storing the liquid;
A pulverization device for pulverizing the carbide particles in the liquid stored in the washing tank,
The carbide dechlorination apparatus according to any one of claims 1 to 5, wherein the bubble supply device supplies the bubbles to the liquid stored in the cleaning tank.
液体中にて、廃棄物を炭化することによって生成された塩素を含む炭化物粒子から前記塩素を除去するための炭化物の脱塩素方法において、前記液体中に1μm〜100μmの直径を有する気泡を供給することを特徴とする炭化物の脱塩素方法。   In a method for dechlorinating a carbide for removing chlorine from carbide particles containing chlorine generated by carbonizing waste in a liquid, bubbles having a diameter of 1 μm to 100 μm are supplied to the liquid. A dechlorination method for carbides. 前記液体中の炭化物粒子に前記気泡を供給する一方、前記液体中の炭化物粒子を粉砕することを特徴とする請求項7に記載の炭化物の脱塩素方法。   The carbide dechlorination method according to claim 7, wherein the bubbles are supplied to the carbide particles in the liquid while the carbide particles in the liquid are pulverized.
JP2007130319A 2007-05-16 2007-05-16 Dechlorination apparatus and dechlorination method for carbonized product Pending JP2008285547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007130319A JP2008285547A (en) 2007-05-16 2007-05-16 Dechlorination apparatus and dechlorination method for carbonized product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007130319A JP2008285547A (en) 2007-05-16 2007-05-16 Dechlorination apparatus and dechlorination method for carbonized product

Publications (1)

Publication Number Publication Date
JP2008285547A true JP2008285547A (en) 2008-11-27

Family

ID=40145603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007130319A Pending JP2008285547A (en) 2007-05-16 2007-05-16 Dechlorination apparatus and dechlorination method for carbonized product

Country Status (1)

Country Link
JP (1) JP2008285547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193567A1 (en) * 2017-04-19 2018-10-25 株式会社Ihi Fuel production device and fuel production method
US20190153346A1 (en) * 2017-11-22 2019-05-23 Mitsubishi Heavy Industries, Ltd. Biomass fuel manufacturing plant, manufacturing plant system, and biomass fuel manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894056A (en) * 1994-09-28 1996-04-12 Kawasaki Heavy Ind Ltd Incinerating method for organic waste
JPH11189778A (en) * 1997-12-26 1999-07-13 Kurimoto Ltd Production of carbonized material from waste solid fuel
JPH11209768A (en) * 1998-01-20 1999-08-03 Kurimoto Ltd Production of carbide from flammable waste and apparatus therefor
JPH11267391A (en) * 1998-03-23 1999-10-05 Tera Bondo:Kk Bubble-jet washing machine and bubble-jet washing method
JP2004275897A (en) * 2003-03-17 2004-10-07 Fudo Constr Co Ltd Soil cleaning apparatus and soil cleaning construction method
JP2005008662A (en) * 2003-06-16 2005-01-13 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating carbonized product
JP2005082797A (en) * 2003-09-11 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating carbonized material
JP2006068631A (en) * 2004-09-01 2006-03-16 Shigen Kaihatsu Kk Washing apparatus and bubble generation nozzle used therein

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894056A (en) * 1994-09-28 1996-04-12 Kawasaki Heavy Ind Ltd Incinerating method for organic waste
JPH11189778A (en) * 1997-12-26 1999-07-13 Kurimoto Ltd Production of carbonized material from waste solid fuel
JPH11209768A (en) * 1998-01-20 1999-08-03 Kurimoto Ltd Production of carbide from flammable waste and apparatus therefor
JPH11267391A (en) * 1998-03-23 1999-10-05 Tera Bondo:Kk Bubble-jet washing machine and bubble-jet washing method
JP2004275897A (en) * 2003-03-17 2004-10-07 Fudo Constr Co Ltd Soil cleaning apparatus and soil cleaning construction method
JP2005008662A (en) * 2003-06-16 2005-01-13 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating carbonized product
JP2005082797A (en) * 2003-09-11 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating carbonized material
JP2006068631A (en) * 2004-09-01 2006-03-16 Shigen Kaihatsu Kk Washing apparatus and bubble generation nozzle used therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193567A1 (en) * 2017-04-19 2018-10-25 株式会社Ihi Fuel production device and fuel production method
US20190153346A1 (en) * 2017-11-22 2019-05-23 Mitsubishi Heavy Industries, Ltd. Biomass fuel manufacturing plant, manufacturing plant system, and biomass fuel manufacturing method
JP2019094432A (en) * 2017-11-22 2019-06-20 三菱重工業株式会社 Production plant of biomass fuel, production plant system, production method of biomass fuel, and biomass fuel
US10822566B2 (en) 2017-11-22 2020-11-03 Mitsubishi Heavy Industries, Ltd. Biomass fuel manufacturing plant, manufacturing plant system, and biomass fuel manufacturing method

Similar Documents

Publication Publication Date Title
JP5950790B2 (en) Wastewater treatment method and system
JP2010106133A (en) Process and apparatus for making waste into fuel
KR101248311B1 (en) Apparatus and method for anaerobic digestion of organic waste
JPH10292177A (en) Conversion of plastic into oil, and apparatus therefor
JP2008285547A (en) Dechlorination apparatus and dechlorination method for carbonized product
JP5329369B2 (en) Sludge solubilizer and sludge solubilization method
CN113828615A (en) Novel waste salt treatment system
JP4667890B2 (en) Organic waste treatment methods
JP2009125684A (en) Water treatment apparatus
JP2005154503A (en) Method for removing hydrogen sulfide from biogas
JP2004105878A (en) Methane fermentation apparatus and methane fermentation process
JP2007029781A (en) Wet oxidation apparatus and method for organic waste liquid
JP2006021154A (en) Method for stabilizing combustion ash, stabilized combustion ash and method for manufacturing hydrogen
JP2005144394A (en) Oxy-hydrogen gas combustion utilizing device and its method
KR20230150984A (en) Organic waste treatment device and organic waste treatment system
TWI709444B (en) Fuel treatment device and method for crushing residues of waste motor vehicles
JP2006194232A (en) Processing and effectively using method and effectively using system of raw waste
KR20140132615A (en) Highly water contained waste drying apparatus, and manufacturing method for refuse derived fuel using highly water contained waste, pretreatment method for highly water contained waste
JP5822112B2 (en) Method for removing chlorine-containing plastics from mixed plastic waste
JP2018130656A (en) Waste treatment method and waste treatment system
CN102716899B (en) Innocent treatment process of domestic garbage
KR102010124B1 (en) Pretreatment methods of sludge solubilization for anaerobic digestion
JP2005343914A (en) Apparatus for treating plastic and method for treating plastic
JPH1177012A (en) Supercritical hydroxylation decomposition treatment device for urban waste
JP2008002725A (en) Hydrogen fuel combustion device and operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120912