JP2008285521A - Biodegradable resin composition and biodegradable film - Google Patents

Biodegradable resin composition and biodegradable film Download PDF

Info

Publication number
JP2008285521A
JP2008285521A JP2007129486A JP2007129486A JP2008285521A JP 2008285521 A JP2008285521 A JP 2008285521A JP 2007129486 A JP2007129486 A JP 2007129486A JP 2007129486 A JP2007129486 A JP 2007129486A JP 2008285521 A JP2008285521 A JP 2008285521A
Authority
JP
Japan
Prior art keywords
resin composition
biodegradable
film
biodegradable resin
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129486A
Other languages
Japanese (ja)
Other versions
JP5213352B2 (en
Inventor
Yasushi Ichikawa
靖 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2007129486A priority Critical patent/JP5213352B2/en
Publication of JP2008285521A publication Critical patent/JP2008285521A/en
Application granted granted Critical
Publication of JP5213352B2 publication Critical patent/JP5213352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable resin composition and a biodegradable film having improved biodegradability and being friendly to the environment and also being appealing from the view point of economy, by improving the biodegradability of an aliphatic polyester, improving steam barrier property of the biodegradable film, and actively utilizing an aliphatic polycarbonate prepared from carbon dioxide. <P>SOLUTION: The biodegradable resin composition comprises a combination of 5-99 mass% of an aliphatic polyester (A) and 95-1 mass% of an aliphatic polycarbonate (B) prepared by alternating copolymerization of carbon dioxide and an epoxide. The biodegradable film is prepared by forming the composition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生分解性樹脂組成物および生分解性フィルムに関するものである。さらに詳しくは、生分解性や成形性が改良された生分解性樹脂組成物および水蒸気バリア性や機械的特性が改良された生分解性フィルムに関するものである。   The present invention relates to a biodegradable resin composition and a biodegradable film. More specifically, the present invention relates to a biodegradable resin composition having improved biodegradability and moldability, and a biodegradable film having improved water vapor barrier properties and mechanical properties.

生分解性樹脂は、水中や土中で有害物を生成することなく比較的容易に分解することが知られている。そのため、ゴミ処理問題などの環境保全の面から世界的に注目されている。これらの中でも、脂肪族ポリエステル樹脂は、ポリエチレンに近い物性を有することもあって、該樹脂を成形して得られるフィルムは、農業資材、土木資材、植生資材、包装材等のフィルム用途として将来が期待されている(例えば、特許文献1および2参照)。
しかしながら、従来の生分解性フィルムは、その化学構造がエステル結合を有しており極性があることから本質的に水蒸気の透過しやすいフィルムである。
この特性は、場合によっては、不織布等に求められる特性として、中身が蒸れないなどの利点もあるが、容器にした場合、内容物の液体が透過して減ってしまうという問題や、農業用マルチフィルムとして使用した場合、土壌が乾燥するなどの問題があった。
一方、地球環境におけるもう一つの大きな問題として、炭酸ガスの排出が挙げられる。産業、交通等の発達によりエネルギー消費が著しく増加し、排出される炭酸ガス量が増えることにより温室効果による地球環境の破壊が進んでいる。京都議定書に基づき、各国で排出削減の努力がなされているが、排出量を減らすだけでは限界がある。そのため炭酸ガスを原料としたポリマーの開発はカーボンニュートラルとして注目を浴びている。カーボンニュートラルの一つの方法として、植物由来原料である乳酸を原料にしたポリ乳酸の研究が盛んに行われている。さらに直接的に炭酸ガスを原料とするポリマーとして脂肪族ポリカーボネートが上げられる。これは、炭酸ガスとエポキシ化合物とを原料として、高度に交互構造が進行した共重合体である。この重合体は、主鎖にエステル結合が存在するため、光崩壊させることができ、また完全に生分解性のプラスチックでもある。このような高分子量の共重合物のフィルムは、良好な透明性を有し、しかも酸素ガスと水蒸気を透過させない優れた機能を有しているから、炭酸ガスの有効利用が可能で、使い捨ての医薬品および食品包装材料などの領域において、広範囲の応用が期待されている。
実際に非特許文献1〜8あるいは特許文献3に示されている通り重合に関する研究開発が精力的に行われている。しかし、実用的な意味では、発泡断熱体(特許文献4)、高分子固体電解質(特許文献5)、ポリマー分散液(特許文献6)などの技術は開示されているが、組成物やフィルムに関する技術の開示はない。これは、フィルムなどの成形品とするには、一般にガラス転移温度が低く、結晶性も低いことから、ペレット同士のブロッキングや、成形したフィルムのブロッキングなど、成形性および物性に問題があるためである。
Biodegradable resins are known to decompose relatively easily without producing harmful substances in water or soil. For this reason, it is attracting worldwide attention from the viewpoint of environmental conservation such as the problem of waste disposal. Among these, the aliphatic polyester resin may have physical properties close to that of polyethylene, and the film obtained by molding the resin may be used for films such as agricultural materials, civil engineering materials, vegetation materials, and packaging materials. It is expected (see, for example, Patent Documents 1 and 2).
However, the conventional biodegradable film is essentially a film that easily permeates water vapor because its chemical structure has an ester bond and is polar.
In some cases, this characteristic has the advantage that the contents do not get steamed as a characteristic required for non-woven fabrics, etc., but when it is made into a container, the liquid of the content permeates and decreases. When used as a film, there were problems such as drying of the soil.
On the other hand, another major problem in the global environment is the emission of carbon dioxide. Energy consumption has increased remarkably due to the development of industry, transportation, etc., and the amount of carbon dioxide emitted has increased, leading to the destruction of the global environment due to the greenhouse effect. Efforts to reduce emissions are being made in each country based on the Kyoto Protocol, but there are limits to just reducing emissions. Therefore, the development of polymers using carbon dioxide as a raw material has attracted attention as carbon neutral. As one method of carbon neutral, research on polylactic acid using lactic acid which is a plant-derived raw material as a raw material has been actively conducted. Furthermore, aliphatic polycarbonate is directly listed as a polymer using carbon dioxide as a raw material. This is a copolymer having a highly advanced alternating structure using carbon dioxide gas and an epoxy compound as raw materials. Since this polymer has an ester bond in the main chain, it can be photodegraded and is also a completely biodegradable plastic. Such a high molecular weight copolymer film has good transparency and has an excellent function of not allowing oxygen gas and water vapor to permeate. A wide range of applications are expected in areas such as pharmaceuticals and food packaging materials.
In fact, as shown in Non-Patent Documents 1 to 8 or Patent Document 3, research and development relating to polymerization is being vigorously conducted. However, in a practical sense, techniques such as a foam insulation (Patent Document 4), a polymer solid electrolyte (Patent Document 5), and a polymer dispersion (Patent Document 6) have been disclosed. There is no disclosure of technology. This is because, in order to make a molded article such as a film, since the glass transition temperature is generally low and the crystallinity is also low, there are problems in moldability and physical properties such as blocking between pellets and blocking of the formed film. is there.

特開平5−271377号公報Japanese Patent Laid-Open No. 5-271377 特開平6−170941号公報Japanese Patent Laid-Open No. 6-170941 特開2004−263168号公報JP 2004-263168 A 特2746069号公報Japanese Patent No. 2746069 特3384174号公報Japanese Patent No. 3384174 特3197353号公報Japanese Patent No. 3197353 Macromolecules: 24,5305,1991Macromolecules: 24,5305,1991 Macromolecules: 30,3147,1997 20Macromolecules: 30,3147,1997 20 J.Polym.Sci.: PartA: Polym.Chem.37,1863,1999J.Polym.Sci .: PartA: Polym.Chem.37,1863,1999 Macromolecules: 28,7577,1995Macromolecules: 28,7577,1995 Macromolecules: 32,2137,1999Macromolecules: 32,2137,1999 Journal of American Chemical Society: 1998,120,4690Journal of American Chemical Society: 1998,120,4690 Journal of American Chemical Society: 1999,121,107Journal of American Chemical Society: 1999,121,107 Journal of American Chemical Society: 1998,120,11018Journal of American Chemical Society: 1998,120,11018

上記従来技術の問題点に鑑み、本発明の目的は脂肪族ポリエステルの生分解性や同ポリエステルから形成されたフィルムの水蒸気バリア性を改善し、あるいは、脂肪族ポリカーボネートの成形性を改善するとともに同ポリカーボネートから得られたフィルムのブロッキングを防ぎ、かつ、二酸化炭素を原料とするポリマーを積極的に活用することにより地球環境問題の一つの改善策となる生分解性樹脂組成物および生分解性フィルムを提供することにある。   In view of the above-mentioned problems of the prior art, the object of the present invention is to improve the biodegradability of aliphatic polyester and the water vapor barrier property of a film formed from the polyester, or to improve the moldability of aliphatic polycarbonate. A biodegradable resin composition and a biodegradable film that can be used as an improvement measure for global environmental problems by blocking the blocking of films obtained from polycarbonate and actively utilizing carbon dioxide-based polymers. It is to provide.

本発明者等は、前記課題を解決するため、鋭意検討を重ねた結果、脂肪族ポリエステルと特定の脂肪族ポリカーボネートからなる樹脂組成物によって上記問題を解決することができることを見いだし、本発明を完成するに至った。
すなわち、本発明は、以下、
(1)脂肪族ポリエステル(A)5〜99質量%および二酸化炭素とエポキシドの交互共重合で得られる脂肪族ポリカーボネート(B)95〜1質量%からなる組み合わせを含むことを特徴とする生分解性樹脂組成物、
(2)生分解速度比が前記(A)単独の場合の0.1〜0.6である上記(1)に記載の生分解性樹脂組成物、
(3)前記エポキシドがプロピレンオキシドである上記(1)または(2)に記載の生分解性樹脂組成物、
(4)前記(B)がそれ自身および前記(A)をさらに重合あるいは解重合させるに足る量の触媒を実質的に含まない上記(1)〜(3)のいずれかに記載の生分解性樹脂組成物、
(5)前記(A)が脂肪族ポリカルボン酸と脂肪族ポリオールの共重合により得られ、重量平均分子量が30,000〜300,000の脂肪族ポリエステルである上記(1)〜(4)のいずれかに記載の生分解性樹脂組成物、
(6)前記(A)が脂肪族ポリカルボン酸と脂肪族ポリオールの共重合により得られた重量平均分子量が30,000〜50,000のプレポリマーを、さらにポリイソシアネートでカップリングして得られた重量平均分子量が100,000〜300,000の脂肪族ポリエステルである(1)〜(5)のいずれかに記載の生分解性樹脂組成物、
(7)前記(A)が、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリエチレンサクシネート、ポリブチレンアジペートテレフタレート、ポリ3−ヒドロキシブチレート、ポリ3−ヒドロキシブチレート−3−ヒドロキシバリレート共重合体、ポリ3−ヒドロキシブチレート−3−ヒドロキシヘキサノエート共重合体、ポリ乳酸、ポリカプロラクトンおよびこれらの共重合体から選ばれる1種類以上である(1)〜(6)のいずれかに記載の生分解性樹脂組成物、
(8)前記(A)と前記(B)をドライブレンドしてなる上記(1)〜(7)のいずれかに記載の生分解性樹脂組成物、
(9)上記(1)〜(8)のいずれかに記載の生分解性樹脂組成物を成形してなる生分解性フィルム、および
(10)水蒸気バリア性(JIS Z0208に準拠)が前記(A)単独の樹脂から得られるフィルムに対し1.2〜20.0倍である上記(9)に記載の生分解性フィルムを提供する。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problem can be solved by a resin composition comprising an aliphatic polyester and a specific aliphatic polycarbonate, and the present invention has been completed. It came to do.
That is, the present invention includes the following:
(1) Biodegradability comprising a combination of aliphatic polyester (A) 5 to 99% by mass and aliphatic polycarbonate (B) 95 to 1% by mass obtained by alternating copolymerization of carbon dioxide and epoxide Resin composition,
(2) The biodegradable resin composition according to (1), wherein the biodegradation rate ratio is 0.1 to 0.6 in the case of (A) alone,
(3) The biodegradable resin composition according to the above (1) or (2), wherein the epoxide is propylene oxide,
(4) The biodegradability according to any one of the above (1) to (3), wherein the (B) substantially does not contain an amount of catalyst sufficient to further polymerize or depolymerize itself and the (A). Resin composition,
(5) In the above (1) to (4), (A) is an aliphatic polyester obtained by copolymerization of an aliphatic polycarboxylic acid and an aliphatic polyol, and having a weight average molecular weight of 30,000 to 300,000. Any one of the biodegradable resin compositions,
(6) The above (A) is obtained by further coupling a prepolymer having a weight average molecular weight of 30,000 to 50,000 obtained by copolymerization of an aliphatic polycarboxylic acid and an aliphatic polyol with a polyisocyanate. The biodegradable resin composition according to any one of (1) to (5), which is an aliphatic polyester having a weight average molecular weight of 100,000 to 300,000,
(7) The above (A) is polybutylene succinate, polybutylene succinate adipate, polyethylene succinate, polybutylene adipate terephthalate, poly-3-hydroxybutyrate, poly-3-hydroxybutyrate-3-hydroxyvalerate copolymer Any one of (1) to (6) selected from a polymer, a poly-3-hydroxybutyrate-3-hydroxyhexanoate copolymer, polylactic acid, polycaprolactone, and a copolymer thereof. Biodegradable resin composition,
(8) The biodegradable resin composition according to any one of the above (1) to (7), which is obtained by dry blending the (A) and the (B).
(9) A biodegradable film formed by molding the biodegradable resin composition according to any one of (1) to (8) above, and (10) a water vapor barrier property (conforming to JIS Z0208) is (A ) The biodegradable film according to (9), which is 1.2 to 20.0 times the film obtained from a single resin.

本発明によれば、脂肪族ポリエステルの生分解速度を適度に低下させ、それをフィルムに成形した場合の水蒸気バリア性を改善し、あるいは、脂肪族ポリカーボネートの成形性を改善し、二酸化炭素を原料とするポリマーを積極的に活用することにより地球環境問題の一つの改善策となり、かつコンポストバッグ、農業用フィルムおよび包装材料などに好適で、経済性にも優れた、生分解性樹脂組成物および生分解性フィルムが提供される。   According to the present invention, the biodegradation rate of an aliphatic polyester is moderately reduced, the water vapor barrier property when it is formed into a film is improved, or the moldability of an aliphatic polycarbonate is improved, and carbon dioxide is used as a raw material. The biodegradable resin composition which is one of the measures for improving the global environmental problems by being actively used as a polymer, and suitable for compost bags, agricultural films and packaging materials, etc. A biodegradable film is provided.

本発明について、以下具体的に説明する。
本発明の生分解性樹脂組成物における一方の樹脂成分(A)の脂肪族ポリエステルは、特に制限はないが、それ自身生分解性を有するものであれば良く、成形性を考慮すると熱可塑性であることが好ましい。
それらは化学合成系樹脂、微生物系樹脂、天然物利用系樹脂等のいずれに属する樹脂でも良い。例えば、ポリブチレンサクシネート、ポリブチレンサクシネート−アジペート、ポリエチレンサクシネートのようなポリオールとポリカルボン酸との重縮合によって得られる脂肪族ポリエステル、ポリカプロラクトンやポリ乳酸のようなオキシカルボン酸の分子間重合体や共重合体、ポリ乳酸−ポリグリコール酸共重合体、ポリ3−ヒドロキシブチレート、ポリ3−ヒドロキシブチレート−3−ヒドロキシヘキサノエート共重合体、ポリヒドロキシブチレート・バリレート共重合体等を挙げることができる。これらは一種を用いてもよく、二種以上を組み合わせて用いても良い。
中でも、フィルム成形性、物性を考えた場合、脂肪族ポリエステルとしては、脂肪族ポリカルボン酸と脂肪族ポリオールの共重合により得られ、融点が50〜180℃であり、重量平均分子量(以下、Mwと記す場合がある)は30,000以上であることが良好な成形品を得る点で好ましく、100,000〜300,000程度であることが良好な成形品を得る点でさらに好ましい。この程度の重量平均分子量を有する脂肪族ポリエステルは特殊な装置を使用して特殊な条件下、1段で得ることもできるが、脂肪族ポリオールと脂肪族ポリカルボン酸とを重縮合させて重量平均分子量が30,000〜50,000程度のプレポリマーを製造した後、ポリイソシアネートによりカップリングする方法によっても得られ、このような脂肪族ポリエステルを用いるのが経済性の観点から特に好ましい。
脂肪族ポリオールとしては、例えば、エチレングリコール、1,4−ブタンポリオール、1,6−ヘキサンジオール、デカメチレングリコール、ネオペンチルグリコール等のグリコール(ジオール)類が挙げられる。脂肪族ポリカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸のようなジカルボン酸並びにこれらの無水物等が挙げられる。
また、その他成分として、3官能または4官能を有するポリオール、ポリカルボン酸またはオキシカルボン酸を少量添加して共重合させたものでもよい。
また、生分解性を損ねない範囲で芳香族ポリオールまたは、芳香族ポリカルボン酸成分を含んでいてもよい。
The present invention will be specifically described below.
The aliphatic polyester of one resin component (A) in the biodegradable resin composition of the present invention is not particularly limited, but may be any one that itself has biodegradability and is thermoplastic in view of moldability. Preferably there is.
They may be resins belonging to any of chemically synthesized resins, microbial resins, natural product utilizing resins and the like. For example, polybutylene succinate, polybutylene succinate-adipate, aliphatic polyester obtained by polycondensation of polyol and polycarboxylic acid such as polyethylene succinate, intermolecular of oxycarboxylic acid such as polycaprolactone and polylactic acid Polymers and copolymers, polylactic acid-polyglycolic acid copolymer, poly-3-hydroxybutyrate, poly-3-hydroxybutyrate-3-hydroxyhexanoate copolymer, polyhydroxybutyrate-valerate copolymer Etc. These may be used alone or in combination of two or more.
Among them, when considering film moldability and physical properties, the aliphatic polyester is obtained by copolymerization of an aliphatic polycarboxylic acid and an aliphatic polyol, has a melting point of 50 to 180 ° C., and has a weight average molecular weight (hereinafter referred to as Mw). Is preferably 30,000 or more from the viewpoint of obtaining a good molded product, and more preferably about 100,000 to 300,000 from the viewpoint of obtaining a good molded product. An aliphatic polyester having a weight average molecular weight of this degree can be obtained in a single stage using special equipment under special conditions, but the weight average is obtained by polycondensation of an aliphatic polyol and an aliphatic polycarboxylic acid. A prepolymer having a molecular weight of about 30,000 to 50,000 is produced and then coupled by a polyisocyanate, and it is particularly preferable from the viewpoint of economy to use such an aliphatic polyester.
Examples of the aliphatic polyol include glycols (diols) such as ethylene glycol, 1,4-butane polyol, 1,6-hexanediol, decamethylene glycol, and neopentyl glycol. Examples of the aliphatic polycarboxylic acid include dicarboxylic acids such as succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid, and anhydrides thereof.
Further, as other components, a small amount of trifunctional or tetrafunctional polyol, polycarboxylic acid or oxycarboxylic acid may be added and copolymerized.
Moreover, the aromatic polyol or the aromatic polycarboxylic acid component may be included in the range which does not impair biodegradability.

重縮合型の脂肪族ポリエステルとしては、市販品があり、例えば、昭和高分子(株)製の"ビオノーレ"シリーズがよく知られている。
また、ポリカプロラクトンの市販品としては、例えば、ダイセル化学工業(株)製の"セルグリーンPH"シリーやユニオンカーバイド社製の"Tone"シリーズなどが挙げられる。ポリ乳酸の市販品としては、豊田自動車(株)製の"U'z"シリーズ、三井化学(株)製の"レイシア"シリーズやカーギル・ダウ社の"Nature Works"シリーズなどが挙げられる。
As the polycondensation type aliphatic polyester, there are commercially available products, for example, “Bionore” series manufactured by Showa Polymer Co., Ltd. is well known.
Examples of commercially available products of polycaprolactone include “Cell Green PH” series manufactured by Daicel Chemical Industries, Ltd. and “Tone” series manufactured by Union Carbide. Examples of commercially available polylactic acid include the “U'z” series manufactured by Toyota Motor Corporation, the “Lacia” series manufactured by Mitsui Chemicals, Inc., and the “Nature Works” series manufactured by Cargill Dow.

本発明の生分解性樹脂組成物におけるもう一方の成分(B)の二酸化炭素とエポキシドの交互共重合で得られる脂肪族ポリカーボネートで、−O−R−O−CO−(式中、Rは、置換又は非置換の、直鎖状、分岐状又は環状のアルキレン基を表し、その総炭素数は好ましくは2〜35である)で示される繰り返し単位を有するものであれば、特に制限はない。
成分(B)の脂肪族ポリカーボネートは、通常、温度は−30〜220℃、重合触媒存在下、二酸化炭素とエポキシドとの交互共重合によって製造される。重合触媒としては、有機亜鉛化合物と2価以上の活性水素を有する化合物との混合物(たとえば、ジメチル亜鉛、ジエチル亜鉛等と水との二元系触媒)、又は同二元系触媒にアルコール又はキレート化合物を添加した三元系触媒(たとえば、トリクロロ酢酸イットリウム-グリセリン-ジエチル亜鉛)、亜鉛アルコキシド、アルキルリチウム、及びこれらと水の混合物、金属酸化物担持の有機亜鉛化合物、亜鉛酢酸塩、水酸化亜鉛と脂肪族ジカルボン酸の反応混合物、または金属酸化物担持した亜鉛ハロゲン化物、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等の有機アルミニウム化合物と水の二元系触媒、またこれにアルコール又はキレート化合物を添加した三元系触媒、アルミニウムトリアルコキシド、ジアルキルアルミニウムアルコキシド、ジアルキルアルミニウムヒドリド、アルキルアルミニウムジアルコキシド、メチルアルミノキサン、有機アルミニウム硫酸塩、アルキルマグネシウム、及びそれらと水の混合物、その他の還元能を有する有機、無機化合物等が挙げられる。上記の中で、交互共重合性を高めるという観点では、トリクロロ酢酸イットリウム−グリセリン−ジエチル亜鉛のような亜鉛化合物を含む三元系触媒を用いるのが好ましい。
重合触媒は、エポキシドのモル数に対し、好ましくは0.0001〜10当量、さらに好ましくは0.002〜2当量である。
用いられた重合触媒は除去(脱灰処理)するのが好ましく、除去することにより成分(A)および成分(B)のさらなる重合や解重合が防止され、本発明の生分解性樹脂組成物およびそれから得られた生分解性フィルム等の品質の安定性を確保することができる。触媒の除去は通常、メタノール等成分(B)の貧溶媒を成分(B)に対して質量基準で通常2〜10倍量、好ましくは3〜8倍量程度添加して洗浄することにより行なわれる。
なお、本発明でいう「さらに重合あるいは解重合させるに足る量の触媒を実質的に含まない」とは成分(B)中に残存している触媒が実質的に触媒作用を示さない量、具体的には100ppm(質量基準)以下であることを意味する。
An aliphatic polycarbonate obtained by alternating copolymerization of carbon dioxide and epoxide of the other component (B) in the biodegradable resin composition of the present invention, wherein -O-R-O-CO- (wherein R is There is no particular limitation as long as it has a repeating unit represented by a substituted or unsubstituted linear, branched or cyclic alkylene group, preferably having a total carbon number of 2 to 35).
The aliphatic polycarbonate of component (B) is usually produced by alternating copolymerization of carbon dioxide and epoxide in the presence of a polymerization catalyst at a temperature of -30 to 220 ° C. As a polymerization catalyst, a mixture of an organic zinc compound and a compound having a divalent or higher active hydrogen (for example, a binary catalyst of dimethyl zinc, diethyl zinc or the like and water), or an alcohol or a chelate with the binary catalyst. Three-way catalyst with compound added (for example, yttrium trichloroacetate-glycerin-diethylzinc), zinc alkoxide, alkyllithium, and a mixture of these with water, metal oxide-supported organozinc compound, zinc acetate, zinc hydroxide A reaction mixture of bismuth and aliphatic dicarboxylic acid, or a metal oxide-supported zinc halide, organoaluminum compound such as trimethylaluminum, triethylaluminum, or triisobutylaluminum, and a water binary catalyst, and an alcohol or chelate compound added thereto Ternary catalyst, aluminum trialkoxide Dialkylaluminum alkoxides, dialkylaluminum hydrides, alkylaluminum dialkoxide, methylaluminoxane, organic aluminum sulfate, alkyl magnesium, and mixtures thereof with water, the organic having other reducing ability, inorganic compounds, and the like. Among the above, it is preferable to use a ternary catalyst containing a zinc compound such as yttrium trichloroacetate-glycerin-diethylzinc from the viewpoint of enhancing the alternating copolymerization property.
The polymerization catalyst is preferably 0.0001 to 10 equivalents, more preferably 0.002 to 2 equivalents, relative to the number of moles of epoxide.
The polymerization catalyst used is preferably removed (deashing treatment). By removing the catalyst, further polymerization and depolymerization of the component (A) and the component (B) are prevented, and the biodegradable resin composition of the present invention and The stability of the quality of the biodegradable film obtained therefrom can be ensured. The removal of the catalyst is usually performed by adding a poor solvent of component (B) such as methanol to the component (B), usually 2 to 10 times, preferably about 3 to 8 times the mass, and washing. .
In the present invention, “substantially free of an amount of catalyst sufficient for further polymerization or depolymerization” means an amount in which the catalyst remaining in the component (B) does not substantially exhibit a catalytic action. This means that it is 100 ppm (mass basis) or less.

成分(B)の脂肪族ポリカーボネートの製造に用いるエポキシドは、モノエポキシドが好ましく、例えば、エチレンオキシド、プロピレンオキシド、1−ブテンオキシド、2−ブテンオキシド、イソブチレンオキシド、1−ペンテンオキシド、2−ペンテンオキシド、1−ヘキセンオキシド、1−オクテンオキシド、1−デセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキサンオキシド、3−フェニルプロピレンオキシド、3,3,3−トリフルオロプロピレンオキシド、3−ナフチルプロピレンオキシド、3−フェノキシプロピレンオキシド、3−ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3−ビニルオキシプロピレンオキシド、3−トリメチルシリルオキシプロピレンオキシド、メチルグリシジルカーボネートなど、エチルグリシジルカーボネート、コレステリルグリシジルカーボネート、好ましくは、エチレンオキシド、プロピレンオキシド、1−ブテンオキシド、2−ブテンオキシド、イソブチレンオキシド、1−ヘキセンオキシド、1−オクテンオキシド、1−デセンオキシド、シクロヘキセンオキシドが挙げられる。これらの中で、入手のし易さの観点から、特にエチレンオキシド、プロピレンオキシドが好ましく用いられる。
上記のエポキシドは単独で用いてもよいし、また2種以上を混合して用いてもよい。二酸化炭素については、特に制限はなく、通常市販されている純度のものを使用することができる。
本発明に用いられる成分(B)の脂肪族ポリカーボネートは機械的物性およびフィルム成形安定性の観点から、重量平均分子量100,000〜1,000,000のものが好ましく、さらに好ましくは、150,000〜500,000である。
The epoxide used for the production of the aliphatic polycarbonate of component (B) is preferably a monoepoxide, such as ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, 1-hexene oxide, 1-octene oxide, 1-decene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3,3,3-trifluoropropylene oxide, 3-naphthylpropylene oxide , 3-phenoxypropylene oxide, 3-naphthoxypropylene oxide, butadiene monooxide, 3-vinyloxypropylene oxide, 3-trimethylsilyloxypro Ethylene glycidyl carbonate, cholesteryl glycidyl carbonate, preferably ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-hexene oxide, 1-octene oxide, 1-decene oxide And cyclohexene oxide. Among these, ethylene oxide and propylene oxide are particularly preferably used from the viewpoint of easy availability.
The above epoxides may be used alone or in combination of two or more. There is no restriction | limiting in particular about a carbon dioxide, The thing of the purity normally marketed can be used.
The aliphatic polycarbonate of component (B) used in the present invention preferably has a weight average molecular weight of 100,000 to 1,000,000, more preferably 150,000, from the viewpoint of mechanical properties and film forming stability. ~ 500,000.

本発明の生分解性樹脂組成物中の成分(A)と成分(B)の配合割合としては、特に、同樹脂組成物を成形して生分解性フィルムを製造する際の成形性と得られる生分解性フィルムの機械物性の観点から、成分(A)と成分(B)との合計量に基づき、成分(A)が5〜99質量%、好ましくは60〜80質量%である。
脂肪族ポリエステルを5質量%以上とすることにより、ペレットのブロッキングを防止でき、かつ、生分解性フィルムを製造する際の成形性の向上効果が得られる。
また、脂肪族ポリエステルを99質量%以下とすることにより、本発明の樹脂組成物から形成された生分解性フィルムにおいて水蒸気バリア性の向上効果が得られる。
本発明の生分解性樹脂組成物はそれから形成されたフィルムの水蒸気バリア性が成分(A)単独の樹脂から形成されたフィルムの水蒸気バリア性の1.2〜5.0倍であることが好ましく、生分解速度は成分(A)単独の樹脂から形成されたフィルムに対し0.1〜0.5倍であることが好ましい。本発明の生分解性樹脂組成物において、成分(A)が60〜80質量%、成分(B)が40〜20質量%の場合、上記のような範囲の水蒸気バリア性と生分解速度比を有するものにすることができる。
なお、本発明における水蒸気バリア性はJIS Z0208に準拠して測定した成分(A)単独の樹脂から作製したフィルムの透湿度(水蒸気透過度)を成分(A)と成分(B)からなる樹脂組成物から作製したフィルムの透湿度で除した数値によって表わされる。
また、本発明においては、後記するように、特定の場所の地面から約10cmの深さのところに10cm角に裁断したフィルムをナイロンメッシュに挟んで1ヶ月埋設した後、質量減少量を測定し、その減少割合を生分解速度とする。
As the blending ratio of the component (A) and the component (B) in the biodegradable resin composition of the present invention, in particular, the moldability when molding the resin composition to produce a biodegradable film is obtained. From the viewpoint of mechanical properties of the biodegradable film, the component (A) is 5 to 99 mass%, preferably 60 to 80 mass%, based on the total amount of the component (A) and the component (B).
By making aliphatic polyester into 5 mass% or more, blocking of a pellet can be prevented and the improvement effect of the moldability at the time of manufacturing a biodegradable film is acquired.
Moreover, the improvement effect of water vapor | steam barrier property is acquired in the biodegradable film formed from the resin composition of this invention by making aliphatic polyester into 99 mass% or less.
In the biodegradable resin composition of the present invention, the water vapor barrier property of the film formed therefrom is preferably 1.2 to 5.0 times the water vapor barrier property of the film formed from the resin of component (A) alone. The biodegradation rate is preferably 0.1 to 0.5 times that of the film formed from the resin of component (A) alone. In the biodegradable resin composition of the present invention, when the component (A) is 60 to 80% by mass and the component (B) is 40 to 20% by mass, the water vapor barrier property and the biodegradation rate ratio in the above ranges are set. You can have it.
In addition, the water vapor barrier property in this invention is the resin composition which consists of a component (A) and a component (B) in the water vapor permeability (water vapor permeability) of the film produced from the resin of the component (A) independent measured based on JISZ0208. It is represented by a numerical value divided by the moisture permeability of a film produced from the product.
In the present invention, as will be described later, a 10 cm square film cut at a depth of about 10 cm from the ground at a specific location is embedded in a nylon mesh for one month, and then the mass loss is measured. The rate of decrease is taken as the biodegradation rate.

本発明の生分解性樹脂組成物を製造する方法としては、熱可塑性樹脂を溶融混合する場合に用いられる押出機を使用してもよいが、成分(A)と成分(B)をドライブレンドするだけで生分解性樹脂組成物を調製することもできる。   As a method for producing the biodegradable resin composition of the present invention, an extruder used when melt-mixing a thermoplastic resin may be used, but component (A) and component (B) are dry blended. The biodegradable resin composition can also be prepared only by the above.

また、本発明の生分解性樹脂組成物には、所望により当該技術分野において通常用いられている添加剤、例えば、酸化防止剤、熱安定剤、紫外線防止剤、帯電防止剤、難燃剤、結晶化促進剤、可塑剤などを本発明の特性を損なわない範囲で添加してもよい。
具体的には、酸化防止剤としては2,6-ジ−t−ブチル-p-クレゾール、3,5-ジ−t−ブチル-4-ヒドロキシアニソール等のヒンダードフェノール系酸化防止剤;熱安定剤としてはトリフェニルホスファイト、トリスノニルフェニルホスファイト等;紫外線吸収剤としてはp−t−ブチルフェニルサリシレート、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2,−カルボキシベンゾフェノン、2,4,5−トリヒドロキシブチロフェノン等;帯電防止剤としてはN,N−ビス(ヒドロキシエチル)アルキルアミン、アルキルアミン、アルキルアリールスルホネート、アルキルスルホネート等;難燃剤としてはヘキサブロモシクロドデカン、トリス−(2,3−ジクロロプロピル)ホスフェート、ペンタブロモフェニルアリルエーテル等;結晶化促進剤としてはタルク、ホロンナイトライト、ポリエチレンテレフタレート、ポリ−トランスシクロヘキサンジメタノールテレフタレート等が挙げられる。
In addition, the biodegradable resin composition of the present invention includes additives that are usually used in the technical field as desired, for example, antioxidants, heat stabilizers, ultraviolet inhibitors, antistatic agents, flame retardants, crystals. Accelerators, plasticizers and the like may be added as long as the properties of the present invention are not impaired.
Specifically, hindered phenol-based antioxidants such as 2,6-di-t-butyl-p-cresol and 3,5-di-t-butyl-4-hydroxyanisole as antioxidants; As the agent, triphenyl phosphite, trisnonylphenyl phosphite, etc .; As the ultraviolet absorber, pt-butylphenyl salicylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2 , -carboxybenzophenone 2,4,5-trihydroxybutyrophenone, etc .; N, N-bis (hydroxyethyl) alkylamine, alkylamine, alkylarylsulfonate, alkylsulfonate, etc. as antistatic agent; Hexabromocyclododecane, Tris as flame retardant -(2,3-dichloropropyl) phosphate, pentabromofete Nyl allyl ether and the like; Examples of the crystallization accelerator include talc, holon nitrite, polyethylene terephthalate, poly-transcyclohexanedimethanol terephthalate and the like.

次に上記生分解性樹脂組成物を成形してなる本発明の生分解性フィルムについて説明する。
本発明の生分解性フィルムの製造方法としては、例えば、上記のように成分(A)と成分(B)を押出機で温度130〜230℃程度、好ましくは、150〜200℃程度で溶融混合することにより生分解性樹脂組成物とした後、ペレット化やフレーク化することなく押出機出口を公知の水冷または空冷インフレーション成形、Tダイ式フィルム成形機に連結して連続して製造することができる。このようにすれば、熱履歴および剪断履歴が少なくなるため得られたフィルム等の物性が低下するのを防止できるので好ましい。
また、生分解性樹脂組成物を一旦ペレット化またはフレーク化して、その後、公知の水冷または空冷インフレーション成形、Tダイ式フィルム押出成形機を用いて成形しても良い。
さらに、前記のようにドライブレンドにより調製した生分解性樹脂組成物をペレット化やフレーク化することなくインフレーション成形機等に供給してフィルム等を製造してもよい。このようにすれば、連続製造と同様に熱履歴および剪断履歴が少なくなるため得られたフィルム等の物性が低下するのを防止できるので好ましい。
Next, the biodegradable film of the present invention formed by molding the biodegradable resin composition will be described.
As the method for producing the biodegradable film of the present invention, for example, as described above, the component (A) and the component (B) are melt mixed at a temperature of about 130 to 230 ° C., preferably about 150 to 200 ° C. with an extruder. Can be produced continuously by connecting the extruder outlet to a known water-cooled or air-cooled inflation molding, T-die type film molding machine without pelletizing or flaking. it can. This is preferable because the thermal history and shear history are reduced, so that the physical properties of the obtained film and the like can be prevented from being lowered.
Alternatively, the biodegradable resin composition may be once pelletized or flaked and then molded using a known water-cooled or air-cooled inflation molding or T-die type film extruder.
Further, the biodegradable resin composition prepared by dry blending as described above may be supplied to an inflation molding machine or the like without being pelletized or flaked to produce a film or the like. This is preferable because the thermal history and shear history are reduced in the same manner as in continuous production, so that the physical properties of the obtained film and the like can be prevented from being lowered.

上記のように、生分解性樹脂組成物の調製に引き続いて連続してフィルムの製造を行うのでなく、一旦ペレット化またはフレーク化された生分解性樹脂組成物またはドライブレンドした生分解性樹脂組成物を用いてフィルムの製造を行う場合、インフレーション成形、Tダイ式フィルム押出成形機の設定温度は130〜180℃程度、好ましくは、145〜170℃程度である。
本発明の生分解性フィルムは、前記フィルムをさらに一軸又は二軸延伸したものであってもよい。
本発明の生分解性樹脂組成物は、それを生分解性フィルムに成形する際の成形性
が改良されているので、生産性が向上し、かつ、得られた生分解性フィルムは水蒸気バリア性が改良されているので生分解性を有するコンポストバッグ、農業用フィルムおよび包装材料などに好適に用いられる。
As described above, the biodegradable resin composition once pelletized or flaked or the dry-degraded biodegradable resin composition is used instead of continuously producing the film following the preparation of the biodegradable resin composition. When manufacturing a film using a product, the set temperature of the inflation molding or T-die type film extrusion molding machine is about 130 to 180 ° C, preferably about 145 to 170 ° C.
The biodegradable film of the present invention may be obtained by further uniaxially or biaxially stretching the film.
Since the biodegradable resin composition of the present invention has improved moldability when it is formed into a biodegradable film, the productivity is improved, and the obtained biodegradable film has a water vapor barrier property. Has been improved, it is suitably used for biodegradable compost bags, agricultural films and packaging materials.

以下に実施例および比較例を示し、本発明をさらに詳細に説明するが、本発明は下記の例になんら限定されるものではない。   The present invention will be described in more detail with reference to examples and comparative examples below, but the present invention is not limited to the following examples.

[実施例1〜9および比較例1〜4]
表1に脂肪族ポリエステル(A)および脂肪族ポリカーボネート(B)の種類、各配合量(質量%)を示す。各例における原料をタンブラー内で混合し、池貝鉄工製のベントを備えたスクリュー径30mmの同方向二軸押出機(L/Dは25)を用いて溶融混練し、生分解性樹脂組成物のペレットを得た。設定温度150〜180℃である。
各例で得られたペレットを温度70℃で3時間除湿空気循環式乾燥機で乾燥後、吉井鉄工社製インフレーション成形機を用いて厚さ30μm、折幅300mm(ブローアップ比=3相当)のフィルムを成形した。成形温度は165℃である。
[Examples 1 to 9 and Comparative Examples 1 to 4]
Table 1 shows the types of aliphatic polyester (A) and aliphatic polycarbonate (B), and the respective amounts (% by mass). The raw materials in each example were mixed in a tumbler and melt-kneaded using a 30 mm screw twin screw extruder (L / D is 25) equipped with a vent made by Ikekai Tekko, and the biodegradable resin composition Pellets were obtained. The set temperature is 150 to 180 ° C.
The pellets obtained in each example were dried at a temperature of 70 ° C. for 3 hours with a dehumidifying air circulation dryer, and then a thickness of 30 μm and a folding width of 300 mm (equivalent to a blow-up ratio = 3) using an inflation molding machine manufactured by Yoshii Tekko Co., Ltd. A film was formed. The molding temperature is 165 ° C.

各特性の測定方法を以下に示す。
<MFR>
JIS K7210に準拠し、温度190℃、荷重21.18MPaの条件で測定した。
<生分解性(生分解速度)>
昭和高分子(株)竜野工場内の地面から約10cmの深さのところに10cm角に裁断したフィルムをナイロンメッシュに挟んで1ヶ月埋設した後、質量減少量を測定し、その減少割合を生分解速度とした。農業用マルチなどの実用性として要求される性能を考慮(生分解速度が使用期間より著しく早い場合、破れや、飛散などの問題を生じ、著しく遅い場合、鋤き込んでも分解せずに残る問題がある)して次の4段階のランク付けを行なって表1に示した。また、脂肪族ポリエステル(A)単独の樹脂から得られたフィルムの生分解度で各樹脂組成物のそれから得られたフィルムの生分解度を除して生分解速度比として表1に記載した。
◎:30〜60%未満
○:10〜30%未満
△:60〜80%未満
×:80%以上あるいは10%未満
<フィルム成形性>
以下の通り3段階評価とした。
○:バブルが安定し所定の寸法のフィルムが得られた場合
△:バブルが不安定で所定の寸法のフィルムを調節できなかった場合
×:バブルが立ち上がらずあるいはパンクが生じて成形できなかった場合
<フィルム物性>
以下の方法で測定した結果を元に4段階評価とした。
◎:引張破断強度、20MPa以上、引張破断伸度200%以上、ヤング率250〜500MPa、 インパクト強度2000Ncm/mm以上である場合
○:上記いずれか1項目が未達の場合
△:上記いずれか2項目が未達の場合
×:上記いずれか3項目以上が未達の場合
それぞれの測定方法は以下の通りである。
・引張破断強度:JIS Z−1702に準じて測定した。
・引張破断伸度:JIS Z−1702に準じて測定した。
・ヤング率:ASTM D−822に準じて測定した。
・インパクト強度:JIS P−8134に準じて測定した。
上記の機械的特性はフィルム成形性の評価が○あるいは△で、フィルムが得られた場合のみ各フィルムについて測定した。インパクト強度以外の機械的特性は、いずれも縦方向(フィルム引き取り方向、MD)と横方向(TD)の両者について測定した。
<ブロッキング>
ブロッキングについては成形したフィルムの開口度合いで次のような方法で評価した。製膜した直後のフィルムを下記の判定基準でランク付を行なって表1に示した。
◎:軽く触れるだけで開く
○:普通に指でひねって1〜2回で開く
△:普通に指でひねって3〜5回で開く
×:強く指で6回以上ひねっても開かない
<水蒸気バリア性>
水蒸気バリア性については、成形した厚さ30μのフィルムを用いて、JIS Z0208(40℃)に従って水蒸気透過度(g/m2・day・atm)の測定を行い、脂肪族ポリエステル(A)単独の樹脂から得られたフィルムの水蒸気透過度を各樹脂組成物のそれから得られたフィルムの水蒸気透過度で除して水蒸気バリア性として表1に記載した。下記の判定基準で水蒸気透過度のランク付を行なって併せて表1に示した。
◎:50g/m2・day・atm 未満
○:50〜100g/m2・day・atm未満
△:100〜300g/m2・day・atm未満
×:300g/m2・day・atm 以上
The measuring method of each characteristic is shown below.
<MFR>
Based on JIS K7210, the measurement was performed under conditions of a temperature of 190 ° C. and a load of 21.18 MPa.
<Biodegradability (biodegradation rate)>
A film cut to 10cm square is embedded in nylon mesh at a depth of about 10cm from the ground in Showa Polymer Co., Ltd.'s Tatsuno Plant, and embedded for 1 month. Degradation rate. Considering performance required for practical use such as agricultural mulch (If the biodegradation speed is significantly faster than the period of use, problems such as tearing and scattering will occur, and if it is extremely slow, it will remain undecomposed even if it is swallowed. Then, the following four rankings were performed and shown in Table 1. In addition, the biodegradation rate of the film obtained from each resin composition was divided by the biodegradation degree of the film obtained from the resin of the aliphatic polyester (A) alone, and the biodegradation rate ratio is shown in Table 1.
◎: Less than 30 to 60% ○: Less than 10 to 30% Δ: 60 to less than 80% ×: 80% or more or less than 10% <Film formability>
A three-level evaluation was performed as follows.
○: When the bubble is stable and a film with a predetermined size is obtained. Δ: When the bubble is unstable and the film with a predetermined size cannot be adjusted. ×: When the bubble does not stand up or puncture occurs and cannot be formed. <Physical properties of film>
A four-step evaluation was made based on the results measured by the following method.
A: When the tensile strength at break is 20 MPa or more, the tensile elongation at break is 200% or more, the Young's modulus is 250 to 500 MPa, and the impact strength is 2000 Ncm / mm or more. ○: When any one of the above items is not achieved. When the item is not achieved x: When any of the above three items is not achieved Each measurement method is as follows.
-Tensile strength at break: Measured according to JIS Z-1702.
-Tensile elongation at break: measured according to JIS Z-1702.
-Young's modulus: measured according to ASTM D-822.
Impact strength: measured according to JIS P-8134.
The above-mentioned mechanical properties were measured for each film only when the film formability was evaluated as ◯ or Δ and a film was obtained. Mechanical properties other than impact strength were measured in both the vertical direction (film take-up direction, MD) and the horizontal direction (TD).
<Blocking>
About blocking, it evaluated by the following methods with the opening degree of the shape | molded film. The films immediately after film formation were ranked according to the following criteria and are shown in Table 1.
◎: Open with a light touch ○: Ordinarily twist with a finger and open once or twice △: Ordinarily twist with a finger and open 3 to 5 times ×: Strongly twist with a finger 6 or more times Barrier properties>
For the water vapor barrier property, the water vapor permeability (g / m 2 · day · atm) was measured according to JIS Z0208 (40 ° C.) using a molded film having a thickness of 30 μm, and the aliphatic polyester (A) alone was used. The water vapor permeability of the film obtained from the resin was divided by the water vapor permeability of the film obtained from that of each resin composition, and the water vapor barrier properties are shown in Table 1. The water vapor permeability was ranked according to the following criteria, and the results are shown in Table 1.
◎: less than 50g / m 2 · day · atm ○: 50~100g / m less than 2 · day · atm △: 100~300g / m 2 · day · atm less than ×: 300g / m 2 · day · atm or more

<使用材料>
(1) 脂肪族ポリエステル(A):昭和高分子(株)製脱水縮合型脂肪族ポリエステル[ビオノーレ30 01G(融点;95℃、MFR;1.2g/10分)]
この脂肪族ポリエステル(A)を表1中では、A−1と記す。
(2) 脂肪族ポリエステル(A):昭和高分子(株)製脱水縮合型脂肪族ポリエステル[ビオノーレ10 01G(融点;114℃、MFR;1.2g/10分)]
この脂肪族ポリエステル(A)を表1中では、A−2と記す。
(3) 脂肪族ポリエステル(A):ダイセル化学工業(株)製のポリカプロラクトン[プラクセルH−7 (融点;60℃、MFR;3.5g/10分)]
この脂肪族ポリエステル(A)を表1中では、A−3と記す。
(4) 脂肪族ポリカーボネート(B):
三元触媒として、モル比が1:10:20のトリクロロ酢酸イットリウム−グリセリン−ジエチル亜鉛を用いて、ポリプロピレンカーボネートの合成を行った。
触媒の調製は以下の手順により行った。グリセリン:トリクロロ酢酸イットリウムを10:1のモル比で1,4−ジオキサン中に添加し、二酸化炭素の存在条件で、反応混合物の温度を25℃以下に保持し、トリクロロ酢酸イットリウム:ジヒドロカルビル亜鉛のモル比が1:20になるようにジヒドロカルビル亜鉛を滴下して、その後、さらに二酸化炭素の雰囲気で、3時間エージングすることにより、三元触媒懸濁液を調製した。用いた1,4−ジオキサンの量は、ジヒドロカルビル亜鉛0.002〜0.02モルに対して40ミリリットルに相当する量であった。
ポリプロピレンカーボネートの重合は以下のように行なった。
先ず、プロピレンオキシド166gを容量500ミリリットルの圧力釜に仕込んだ。ついで、エージングされた上記三元触媒の有効量が8質量%の触媒懸濁液の、有効触媒量3.0gになる量を添加して、ただちに二酸化炭素を充填し、温度を65℃にして反応を開始した。反応中に消費された二酸化炭素を補充して、反応が終了するまで、釜内の圧力を3.5MPa(絶対圧)、温度を65℃に維持しつつ、共重合反応を10時間行った。
ついで、反応生成物に1.5倍量(質量比)のメタノールを添加して反応を停止させ、さらに反応生成物の5倍量(質量比)のメタノールを添加して洗浄し、乾燥後、白色のポリプロピレンカーボネート98.4gを得た。触媒効率はジエチル亜鉛1モルあたりポリプロピレンカーボネート6,500gであった。ポリプロピレンカーボネートの重量平均分子量は80,000、二酸化炭素の固定率は40質量%以上、交互構造含有量は95%以上であった。
このポリプロピレンカーボネートを表1中では、B−1と記す。
<Materials used>
(1) Aliphatic polyester (A): Dehydrated condensation type aliphatic polyester manufactured by Showa Polymer Co., Ltd. [Bionole 3001G (melting point: 95 ° C., MFR; 1.2 g / 10 min)]
In Table 1, this aliphatic polyester (A) is indicated as A-1.
(2) Aliphatic polyester (A): Dehydration condensation type aliphatic polyester manufactured by Showa Polymer Co., Ltd. [Bionole 1001G (melting point: 114 ° C., MFR; 1.2 g / 10 min)]
This aliphatic polyester (A) is indicated as A-2 in Table 1.
(3) Aliphatic polyester (A): Polycaprolactone manufactured by Daicel Chemical Industries, Ltd. [Placcel H-7 (melting point: 60 ° C., MFR; 3.5 g / 10 min)]
In Table 1, this aliphatic polyester (A) is indicated as A-3.
(4) Aliphatic polycarbonate (B):
Polypropylene carbonate was synthesized using yttrium trichloroacetate-glycerin-diethyl zinc having a molar ratio of 1:10:20 as a three-way catalyst.
The catalyst was prepared by the following procedure. Glycerin: yttrium trichloroacetate was added to 1,4-dioxane at a molar ratio of 10: 1, and the temperature of the reaction mixture was kept below 25 ° C. in the presence of carbon dioxide, and yttrium trichloroacetate: dihydrocarbyl zinc Three-way catalyst suspension was prepared by adding dihydrocarbyl zinc dropwise at a molar ratio of 1:20 and then aging for 3 hours in an atmosphere of carbon dioxide. The amount of 1,4-dioxane used was an amount corresponding to 40 ml with respect to 0.002 to 0.02 mol of dihydrocarbyl zinc.
Polymerization of polypropylene carbonate was performed as follows.
First, 166 g of propylene oxide was charged into a 500 ml capacity pressure cooker. Then, an effective amount of the aged three-way catalyst is added in an amount of 8% by mass to an effective catalyst amount of 3.0 g, and immediately charged with carbon dioxide to bring the temperature to 65 ° C. The reaction was started. Carbon dioxide consumed during the reaction was replenished, and the copolymerization reaction was carried out for 10 hours while maintaining the pressure in the kettle at 3.5 MPa (absolute pressure) and the temperature at 65 ° C. until the reaction was completed.
Next, 1.5 times (mass ratio) of methanol is added to the reaction product to stop the reaction, and further 5 times (mass ratio) of methanol is added to the reaction product to wash, and after drying, 98.4 g of white polypropylene carbonate was obtained. The catalyst efficiency was 6,500 g of polypropylene carbonate per mole of diethyl zinc. Polypropylene carbonate had a weight average molecular weight of 80,000, a carbon dioxide fixation rate of 40% by mass or more, and an alternating structure content of 95% or more.
This polypropylene carbonate is indicated as B-1 in Table 1.

Figure 2008285521
Figure 2008285521

表1に示されている結果から、本発明の生分解性樹脂組成物は比較例のものと比べてフィルム成形性に優れ、得られた生分解性フィルムは比較例のものと比べて機械的強度において優れており、さらに、ブロッキング防止性能と水蒸気バリア性能のバランスに優れていることがわかる。   From the results shown in Table 1, the biodegradable resin composition of the present invention is superior in film formability compared with the comparative example, and the obtained biodegradable film is mechanical compared with the comparative example. It can be seen that the strength is excellent and the balance between the anti-blocking performance and the water vapor barrier performance is excellent.

本発明の生分解性樹脂組成物はフィルム成形性に優れ、得られた生分解性フィルムはブロッキング防止性能と水蒸気バリア性能のバランスに優れており、さらに機械的性能に優れており、コンポストバッグ、農業用フィルムおよび包装材料などとして好適に使用される。   The biodegradable resin composition of the present invention is excellent in film moldability, and the obtained biodegradable film is excellent in the balance between anti-blocking performance and water vapor barrier performance, and is further excellent in mechanical performance, compost bag, It is suitably used as an agricultural film and packaging material.

Claims (10)

脂肪族ポリエステル(A)5〜99質量%および二酸化炭素とエポキシドの交互共重合で得られる脂肪族ポリカーボネート(B)95〜1質量%からなる組み合わせを含むことを特徴とする生分解性樹脂組成物。   A biodegradable resin composition comprising a combination of aliphatic polyester (A) 5 to 99% by mass and aliphatic polycarbonate (B) 95 to 1% by mass obtained by alternating copolymerization of carbon dioxide and epoxide. . 生分解速度比が前記(A)単独の場合の0.1〜0.6である請求項1に記載の生分解性樹脂組成物。   The biodegradable resin composition according to claim 1, wherein the biodegradation rate ratio is 0.1 to 0.6 in the case of (A) alone. 前記エポキシドがプロピレンオキシドである請求項1または2に記載の生分解性樹脂組成物。   The biodegradable resin composition according to claim 1 or 2, wherein the epoxide is propylene oxide. 前記(B)がそれ自身および前記(A)をさらに重合あるいは解重合させるに足る量の触媒を実質的に含まない請求項1〜3のいずれかに記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 3, wherein (B) does not substantially contain an amount of a catalyst sufficient to further polymerize or depolymerize itself and (A). 前記(A)が脂肪族ポリカルボン酸と脂肪族ポリオールの共重合により得られ、重量平均分子量が30,000〜300,000の脂肪族ポリエステルである請求項1〜4のいずれかに記載の生分解性樹脂組成物。   The raw material according to any one of claims 1 to 4, wherein (A) is an aliphatic polyester obtained by copolymerization of an aliphatic polycarboxylic acid and an aliphatic polyol and having a weight average molecular weight of 30,000 to 300,000. Degradable resin composition. 前記(A)が脂肪族ポリカルボン酸と脂肪族ポリオールの共重合により得られた重量平均分子量が30,000〜50,000のプレポリマーを、さらにポリイソシアネートでカップリングして得られた重量平均分子量が100,000〜300,000の脂肪族ポリエステルである請求項1〜5のいずれかに記載の生分解性樹脂組成物。   The weight average obtained by further coupling (A) a prepolymer having a weight average molecular weight of 30,000 to 50,000 obtained by copolymerization of an aliphatic polycarboxylic acid and an aliphatic polyol with a polyisocyanate. The biodegradable resin composition according to any one of claims 1 to 5, which is an aliphatic polyester having a molecular weight of 100,000 to 300,000. 前記(A)が、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリエチレンサクシネート、ポリブチレンアジペートテレフタレート、ポリ3−ヒドロキシブチレート、ポリ3−ヒドロキシブチレート−3−ヒドロキシバリレート共重合体、ポリ3−ヒドロキシブチレート−3−ヒドロキシヘキサノエート共重合体、ポリ乳酸、ポリカプロラクトンおよびこれらの共重合体から選ばれる1種類以上である請求項1〜6のいずれかに記載の生分解性樹脂組成物。   (A) is a polybutylene succinate, polybutylene succinate adipate, polyethylene succinate, polybutylene adipate terephthalate, poly-3-hydroxybutyrate, poly-3-hydroxybutyrate-3-hydroxyvalerate copolymer, poly The biodegradable resin according to any one of claims 1 to 6, which is at least one selected from 3-hydroxybutyrate-3-hydroxyhexanoate copolymer, polylactic acid, polycaprolactone, and a copolymer thereof. Composition. 前記(A)と前記(B)をドライブレンドしてなる請求項1〜7のいずれかに記載の生分解性樹脂組成物。   The biodegradable resin composition according to any one of claims 1 to 7, wherein the (A) and the (B) are dry blended. 請求項1〜8のいずれかに記載の生分解性樹脂組成物を成形してなる生分解性フィルム。   The biodegradable film formed by shape | molding the biodegradable resin composition in any one of Claims 1-8. 水蒸気バリア性(JIS Z0208に準拠)が前記(A)単独の樹脂から得られるフィルムに対し1.2〜20.0倍である請求項9に記載の生分解性フィルム。   The biodegradable film according to claim 9, wherein the water vapor barrier property (based on JIS Z0208) is 1.2 to 20.0 times that of the film obtained from the resin (A) alone.
JP2007129486A 2007-05-15 2007-05-15 Biodegradable resin composition and biodegradable film Active JP5213352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129486A JP5213352B2 (en) 2007-05-15 2007-05-15 Biodegradable resin composition and biodegradable film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129486A JP5213352B2 (en) 2007-05-15 2007-05-15 Biodegradable resin composition and biodegradable film

Publications (2)

Publication Number Publication Date
JP2008285521A true JP2008285521A (en) 2008-11-27
JP5213352B2 JP5213352B2 (en) 2013-06-19

Family

ID=40145577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129486A Active JP5213352B2 (en) 2007-05-15 2007-05-15 Biodegradable resin composition and biodegradable film

Country Status (1)

Country Link
JP (1) JP5213352B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857668A (en) * 2010-07-02 2010-10-13 中国科学院长春应用化学研究所 Biodegradable polymer and preparation method thereof
JP2013543045A (en) * 2010-11-19 2013-11-28 エスケーシー カンパニー,リミテッド Environmentally friendly heat shrink film
CN104945870A (en) * 2015-04-10 2015-09-30 普宁市华芝路生物材料有限公司 All-biodegradable modified polylactic acid film-blowing resin and preparation method thereof
KR20160003616A (en) * 2015-12-23 2016-01-11 주식회사 엘지화학 Emulsion composition comprising polyalkyene carbonate and polylactic acid and biodegradable molded article produced therefrom
CN105623232A (en) * 2016-01-21 2016-06-01 中国科学院长春应用化学研究所 Biodegradable mulch film and preparation method thereof
CN114262511A (en) * 2022-01-18 2022-04-01 上海华峰新材料研发科技有限公司 Biodegradable resin composition and preparation method and application thereof
CN114437516A (en) * 2020-11-04 2022-05-06 常州化学研究所 High-barrier high-light-transmission biodegradable film and preparation method thereof
JP2022527566A (en) * 2018-10-13 2022-06-02 プーマ エス イー Footwear with degradable ingredients
WO2023104076A1 (en) * 2021-12-07 2023-06-15 山东联欣环保科技有限公司 Polycarbonate composition, plastic made of same, and preparation method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170941A (en) * 1992-05-14 1994-06-21 Showa Highpolymer Co Ltd Polyester film
JP2002114899A (en) * 2000-08-02 2002-04-16 Mitsui Chemicals Inc Resin composition and its application
JP2004002687A (en) * 2002-04-04 2004-01-08 Idemitsu Technofine Co Ltd Biodegradable resin composition and molded product made by molding the same
JP2005530022A (en) * 2002-06-20 2005-10-06 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same
JP2006206905A (en) * 2001-03-30 2006-08-10 Daicel Chem Ind Ltd Aliphatic polyester-based biodegradable resin film-form molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170941A (en) * 1992-05-14 1994-06-21 Showa Highpolymer Co Ltd Polyester film
JP2002114899A (en) * 2000-08-02 2002-04-16 Mitsui Chemicals Inc Resin composition and its application
JP2006206905A (en) * 2001-03-30 2006-08-10 Daicel Chem Ind Ltd Aliphatic polyester-based biodegradable resin film-form molded product
JP2004002687A (en) * 2002-04-04 2004-01-08 Idemitsu Technofine Co Ltd Biodegradable resin composition and molded product made by molding the same
JP2005530022A (en) * 2002-06-20 2005-10-06 ポスコ Method for producing aliphatic polycarbonate polymerization catalyst and method for polymerizing aliphatic polycarbonate using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857668A (en) * 2010-07-02 2010-10-13 中国科学院长春应用化学研究所 Biodegradable polymer and preparation method thereof
JP2013543045A (en) * 2010-11-19 2013-11-28 エスケーシー カンパニー,リミテッド Environmentally friendly heat shrink film
CN104945870A (en) * 2015-04-10 2015-09-30 普宁市华芝路生物材料有限公司 All-biodegradable modified polylactic acid film-blowing resin and preparation method thereof
KR20160003616A (en) * 2015-12-23 2016-01-11 주식회사 엘지화학 Emulsion composition comprising polyalkyene carbonate and polylactic acid and biodegradable molded article produced therefrom
KR101659069B1 (en) 2015-12-23 2016-09-22 주식회사 엘지화학 Emulsion composition comprising polyalkyene carbonate and polylactic acid and biodegradable molded article produced therefrom
CN105623232A (en) * 2016-01-21 2016-06-01 中国科学院长春应用化学研究所 Biodegradable mulch film and preparation method thereof
JP2022527566A (en) * 2018-10-13 2022-06-02 プーマ エス イー Footwear with degradable ingredients
CN114437516A (en) * 2020-11-04 2022-05-06 常州化学研究所 High-barrier high-light-transmission biodegradable film and preparation method thereof
CN114437516B (en) * 2020-11-04 2023-06-02 常州化学研究所 High-barrier high-light-transmittance biodegradable film and preparation method thereof
WO2023104076A1 (en) * 2021-12-07 2023-06-15 山东联欣环保科技有限公司 Polycarbonate composition, plastic made of same, and preparation method therefor
CN114262511A (en) * 2022-01-18 2022-04-01 上海华峰新材料研发科技有限公司 Biodegradable resin composition and preparation method and application thereof
CN114262511B (en) * 2022-01-18 2024-02-23 上海华峰新材料研发科技有限公司 Biodegradable resin composition and preparation method and application thereof

Also Published As

Publication number Publication date
JP5213352B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5213352B2 (en) Biodegradable resin composition and biodegradable film
ES2718635T3 (en) Combinations of polymers with improved rheology and impact resistance without improved notch
US20050244606A1 (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
JP4411521B2 (en) Polylactic acid composition
Khare et al. Studies toward producing eco-friendly plastics
JP4417834B2 (en) Polyester blend composition and biodegradable film made therefrom
ES2535508T3 (en) Polyester composition
WO2013073403A1 (en) Biodegradable resin composition, and biodegradable film
JP2006161017A (en) Novel polyoxalate
JP4180606B2 (en) Biodegradable sheet, molded body using this sheet, and molding method thereof
JP2023055686A (en) Biodegradable resin composition and molded body
KR102106116B1 (en) Resin composition comprising polyalkylene carbonate
JP2005060686A (en) Polylactic acid composition and shaped article obtained from the same
JP2005097590A (en) Polyoxalate composition and molded product obtained therefrom
JP5135740B2 (en) Polyester and production method thereof, and polyester block copolymer
JP4534806B2 (en) Aliphatic polyester composition and method for producing the same
JP5292868B2 (en) Resin composition and molded article and film comprising the resin composition
JP4089575B2 (en) Cellulose ester composition and molded product obtained therefrom
JP2008094882A (en) Method for preserving biodegradable resin
JP4171891B2 (en) Polyester carbonate copolymer and process for producing the same
JP2005336288A (en) Crystalline polylactic acid resin composition and molded product obtained by using the same
JP2005096262A (en) Biodegradable laminate
WO2016158331A1 (en) Resin composition and its film
JP4089579B2 (en) Wooden resin composition
Ye et al. Advanced Industrial and Engineering Polymer Research

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250