JP2008283096A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
JP2008283096A
JP2008283096A JP2007127622A JP2007127622A JP2008283096A JP 2008283096 A JP2008283096 A JP 2008283096A JP 2007127622 A JP2007127622 A JP 2007127622A JP 2007127622 A JP2007127622 A JP 2007127622A JP 2008283096 A JP2008283096 A JP 2008283096A
Authority
JP
Japan
Prior art keywords
layer
ohmic contact
light emitting
semiconductor layer
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007127622A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
和幸 飯塚
Masahiro Arai
優洋 新井
Sadanari Watanabe
禎就 渡邊
Kenji Tsukahara
健志 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2007127622A priority Critical patent/JP2008283096A/en
Publication of JP2008283096A publication Critical patent/JP2008283096A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element enabling high luminance and low forward voltage. <P>SOLUTION: The semiconductor light-emitting element has: a reflection metal film (10) having a reflecting layer formed on a second main surface side of a group III-V compound semiconductor layer (11), where a first main surface side of the group III-V compound semiconductor layer (11), having a light-emitting layer (5) is used as a light-extracting surface (11a); a conductive support substrate (20) coupled via the reflection metal film (10); and an ohmic contact bonding portion (9), disposed so as to be dispersed on an interface between the group III-V compound semiconductor layer (11) and the reflecting metal layer (10). The ohmic contact bonding portion (9) has an ohmic contact metal layer (9a) bonded by ohmic contact to the group III-V compound semiconductor layer (11); and an oxidation-preventing metal layer (9b), formed to contact to the reflecting metal film (10) and containing 90% or higher metal having ionization tendency that is smaller than that of pure silver. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発光層からの光を光取り出し面側に反射する反射金属膜を備えた半導体発光素子に関するものである。   The present invention relates to a semiconductor light emitting element including a reflective metal film that reflects light from a light emitting layer to a light extraction surface side.

従来、半導体発光素子である発光ダイオード(LED)は、近年、GaN系や AlGaInP系の高品質結晶をMOVPE法で成長出来る様になったことから、青色、緑色、橙色、黄色、赤色の高輝度LEDが製作出来る様になった。そして、LEDの高輝度化に伴いその用途は、自動車のブレーキランプや液晶ディスプレイのバックライト等へ広がりその需要は年々増加している。   Conventionally, light-emitting diodes (LEDs), which are semiconductor light-emitting elements, have recently been able to grow GaN-based and AlGaInP-based high-quality crystals by the MOVPE method. Therefore, high brightness of blue, green, orange, yellow, and red LED can be manufactured. And with the increase in the brightness of LEDs, its application has spread to brake lamps for automobiles, backlights for liquid crystal displays, and the like, and the demand is increasing year by year.

現在、MOVPE法によって高品質の結晶が成長可能となってから、発光素子の内部効率は理論値限界値に近づきつつある。しかし、発光素子からの光取り出し効率はまだまだ低く、光取り出し効率を向上することが重要となっている。例えば、高輝度赤色LEDはAlGaInP系の材料で形成され、導電性のGaAs基板上に格子整合する組成のAlGaInP系の材料から成るn型AlGaInP層とp型AlGaInP層とそれらに挟まれたAlGaInP又はGaInPから成る発光層(活性層)を有するダブルヘテロ構造と成っている。しかしながら、GaAs基板のバンドギャップは発光層のバンドギャップよりも狭い為に、発光層からの光の多くがGaAs基板に吸収され、光の取り出し効率が著しく低下する。   Currently, since high-quality crystals can be grown by the MOVPE method, the internal efficiency of the light-emitting element is approaching the theoretical limit value. However, the light extraction efficiency from the light emitting element is still low, and it is important to improve the light extraction efficiency. For example, a high-intensity red LED is formed of an AlGaInP-based material, and an n-type AlGaInP layer and a p-type AlGaInP layer made of an AlGaInP-based material having a lattice-matched composition on a conductive GaAs substrate, and an AlGaInP sandwiched between them. A double heterostructure having a light emitting layer (active layer) made of GaInP is formed. However, since the band gap of the GaAs substrate is narrower than the band gap of the light emitting layer, most of the light from the light emitting layer is absorbed by the GaAs substrate, and the light extraction efficiency is significantly reduced.

発光層とGaAs基板の間に、屈折率の異なる半導体層から成る多層反射膜構造を形成することによってGaAs基板での光の吸収を低減し、光取り出し効率を向上させる方法もある。しかし、この方法では多層反射膜構造へ限定された狭い入射角を持つ光しか反射することが出来ない。   There is also a method for improving light extraction efficiency by reducing the absorption of light in the GaAs substrate by forming a multilayer reflective film structure composed of semiconductor layers having different refractive indexes between the light emitting layer and the GaAs substrate. However, this method can reflect only light having a narrow incident angle limited to the multilayer reflective film structure.

そこで、AlGaInP系の材料から成るダブルヘテロ構造を反射率の高い金属膜を介して、GaAs基板よりも熱伝導率の良いSi支持基板に貼り付け、その後、成長用に用いたGaAs基板を除去する方法が提案されている(例えば、特許文献1参照)。この方法を用いた場合には、反射膜として金属膜を用いている為、金属膜への光の入射角を選ばずに高い反射が可能となる。
また、反射膜として反射率の高い、例えば金、アルミ、銀等の金属はAlGaInP系化合物半導体とオーミックコンタクト接合できない。その為、AlGaInP系化合物半導体層と反射金属膜との界面の一部に反射膜金属とは異なる材料から成るオーミックコンタクト接合電極を配置し、電気的抵抗を低減する方法が提案されている。
Therefore, a double heterostructure made of an AlGaInP-based material is attached to a Si support substrate having a thermal conductivity higher than that of the GaAs substrate through a highly reflective metal film, and then the GaAs substrate used for growth is removed. A method has been proposed (see, for example, Patent Document 1). When this method is used, since a metal film is used as the reflection film, high reflection is possible regardless of the angle of incidence of light on the metal film.
In addition, metals such as gold, aluminum, and silver that have high reflectivity as the reflective film cannot be in ohmic contact with the AlGaInP-based compound semiconductor. Therefore, a method has been proposed in which an ohmic contact junction electrode made of a material different from the reflective film metal is disposed at a part of the interface between the AlGaInP-based compound semiconductor layer and the reflective metal film to reduce the electrical resistance.

特開2005−175462号公報JP 2005-175462 A

ところで、上記オーミックコンタクト接合電極の作製では、一般的なフォトリソグラフィー技術を用いてレジスト材料をパターニングして形成する。オーミックコンタクト接合電極形成後のリフトオフ工程において、レジスト材料の残渣があると、その後に成膜する反射金属膜の界面接合不良など、あるいは貼り合せ後のボイド(空隙)の原因となる為、リフトオフ工程後に確実にレジスト残渣を除去する必要がある。   By the way, in the production of the ohmic contact junction electrode, a resist material is patterned by using a general photolithography technique. In the lift-off process after the formation of the ohmic contact bonding electrode, if there is a residue of resist material, it will cause a defective interface bonding of the reflective metal film to be formed later, or a void (gap) after bonding. It is necessary to reliably remove the resist residue later.

一般的な有機溶剤によるリフトオフ工程では除去しきれないレジストは、酸素プラズマ
アッシング法によって確実にレジスト除去することが知られている。しかし、レジストを酸化除去する為、同時にオーミックコンタクト接合電極も酸化されてしまう。その結果として、酸化したオーミックコンタクト接合電極と反射金属膜との界面での抵抗が大きくなると共に、抵抗のバラツキも大きくなり、LED素子内での各オーミックコンタクト接合電極における電流密度のバラツキが生じる。その為に、電流集中が発生し順方向電圧が上昇してしまう。また、LED素子面内での発光が不均一となり発光出力が低下するといった問題が発生してしまう。また、LED素子に注入される電流密度が高くなると、ある閾値でオーミックコンタクト接合電極の酸化膜が破壊され導電される為に、電流−電圧特性のリニアリティーが著しく低下する。その結果、制御性の悪いLED素子となってしまう。
It is known that a resist that cannot be removed by a general organic solvent lift-off process is reliably removed by an oxygen plasma ashing method. However, since the resist is removed by oxidation, the ohmic contact junction electrode is also oxidized at the same time. As a result, the resistance at the interface between the oxidized ohmic contact junction electrode and the reflective metal film increases, and the variation in resistance also increases, resulting in a variation in current density in each ohmic contact junction electrode in the LED element. For this reason, current concentration occurs and the forward voltage increases. In addition, there is a problem in that the light emission in the LED element surface becomes non-uniform and the light emission output decreases. Further, when the current density injected into the LED element is increased, the oxide film of the ohmic contact junction electrode is broken and conductive at a certain threshold value, so that the linearity of the current-voltage characteristic is remarkably lowered. As a result, the LED element has poor controllability.

本発明は、上記課題を解決し、高輝度かつ低順方向電圧を可能とする半導体発光素子を提供することにある。   An object of the present invention is to provide a semiconductor light emitting device that solves the above-described problems and enables high luminance and low forward voltage.

上記課題を解決するために、本発明は次のように構成されている。   In order to solve the above problems, the present invention is configured as follows.

本発明の第1の態様は、第一導電型の半導体層と第二導電型の半導体層に発光層が挟まれた構造を有するIII−V族化合物半導体層と、前記III−V族化合物半導体層の第一の主表面側を光取り出し面とし、前記III−V族化合物半導体層の第二の主表面側に形成され
、前記発光層からの光を前記第一の主表面側へと反射させる反射層を有する反射金属膜と、前記III−V族化合物半導体層に前記反射金属膜を介して結合された導電性支持基板と
、前記III−V族化合物半導体層と前記反射金属膜との界面に分散して配置されたオーミ
ックコンタクト接合部と、前記III−V族化合物半導体の第一の主表面側に形成された表
面電極と、前記導電性支持基板の裏面側に形成された裏面電極とを備え、前記オーミックコンタクト接合部は、前記III−V族化合物半導体層にオーミックコンタクト接合するオ
ーミックコンタクト金属層と、前記反射金属膜に接して形成され、イオン化傾向が純銀以下である金属が90%以上含まれる酸化防止金属層とを有することを特徴とする半導体発光素子である。
According to a first aspect of the present invention, there is provided a group III-V compound semiconductor layer having a structure in which a light emitting layer is sandwiched between a first conductivity type semiconductor layer and a second conductivity type semiconductor layer, and the III-V group compound semiconductor. The first main surface side of the layer is a light extraction surface, formed on the second main surface side of the III-V compound semiconductor layer, and reflects light from the light emitting layer to the first main surface side A reflective metal film having a reflective layer, a conductive support substrate bonded to the III-V compound semiconductor layer via the reflective metal film, the III-V compound semiconductor layer, and the reflective metal film. Ohmic contact junctions distributed at the interface, a surface electrode formed on the first main surface side of the III-V compound semiconductor, and a back electrode formed on the back side of the conductive support substrate And the ohmic contact junction is a group III-V compound. A semiconductor comprising: an ohmic contact metal layer that is in ohmic contact with a conductor layer; and an antioxidant metal layer that is formed in contact with the reflective metal film and contains 90% or more of a metal having an ionization tendency of pure silver or less. It is a light emitting element.

本発明の第2の態様は、第1の態様の半導体発光素子において、前記III−V族化合物
半導体層と前記反射金属膜との間に透明誘電体膜が形成され、前記各オーミックコンタクト接合部が、前記透明誘電体膜を貫通し前記III−V族化合物半導体層と前記反射金属膜
に接して設けられていることを特徴とする。
According to a second aspect of the present invention, in the semiconductor light emitting device according to the first aspect, a transparent dielectric film is formed between the III-V compound semiconductor layer and the reflective metal film, and each of the ohmic contact junctions Is provided so as to penetrate the transparent dielectric film and to be in contact with the III-V compound semiconductor layer and the reflective metal film.

本発明の第3の態様は、第1の態様又は第2の態様の半導体発光素子において、前記酸化防止金属層のイオン化傾向が純銀以下である金属が、Ag、Pt、Auのいずれかであることを特徴とする。   According to a third aspect of the present invention, in the semiconductor light emitting device of the first aspect or the second aspect, the metal whose ionization tendency of the antioxidant metal layer is less than or equal to pure silver is Ag, Pt, or Au. It is characterized by that.

本発明の第4の態様は、第1〜第3の態様のいずれかの半導体発光素子おいて、前記オーミックコンタクト接合部の前記オーミックコンタクト金属層と前記酸化防止金属層との間に拡散バリア効果を有する拡散防止金属層が形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the semiconductor light emitting device of any one of the first to third aspects, a diffusion barrier effect is provided between the ohmic contact metal layer and the antioxidant metal layer of the ohmic contact junction. The diffusion prevention metal layer which has this is formed, It is characterized by the above-mentioned.

本発明の第5の態様は、第4の態様の半導体発光素子において、前記拡散防止金属層の金属が、Ni、Ti、Ptのいずれかであることを特徴とする。   According to a fifth aspect of the present invention, in the semiconductor light emitting device according to the fourth aspect, the metal of the diffusion preventing metal layer is any one of Ni, Ti, and Pt.

本発明の第6の態様は、第1〜第5の態様のいずれかの半導体発光素子おいて、前記オーミックコンタクト接合部が、前記透明誘電体膜内の前記表面電極直下の領域以外の領域に配置されていることを特徴とする。   According to a sixth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to fifth aspects, the ohmic contact junction is in a region other than the region directly below the surface electrode in the transparent dielectric film. It is arranged.

本発明の第7の態様は、第2〜第6の態様のいずれかの半導体発光素子おいて、前記オーミックコンタクト接合部及び前記透明誘電体膜とからなる層と前記III−V族化合物半
導体層との界面における前記オーミックコンタクト接合部の割合が10%以下であることを特徴とする。
According to a seventh aspect of the present invention, in the semiconductor light emitting device according to any one of the second to sixth aspects, the layer comprising the ohmic contact junction and the transparent dielectric film and the III-V compound semiconductor layer The ratio of the ohmic contact junction at the interface is 10% or less.

本発明の第8の態様は、第1〜第7の態様のいずれかの半導体発光素子おいて、前記第一導電型の半導体層と前記第二導電型の半導体層の、前記III−V族化合物半導体層の主
表面側の抵抗が低いことを特徴とする。
According to an eighth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to seventh aspects, the III-V group of the first conductive type semiconductor layer and the second conductive type semiconductor layer. It is characterized in that the resistance on the main surface side of the compound semiconductor layer is low.

本発明の第9の態様は、第2〜第8の態様のいずれかの半導体発光素子おいて、前記透明誘電体膜の材料が、SiO、SiN、ITOのいずれかであることを特徴とする。 A ninth aspect of the present invention, keep one of the semiconductor light-emitting device of the second to eighth aspect, the material of the transparent dielectric film, and characterized in that SiO 2, SiN, or the ITO To do.

本発明によれば、オーミックコンタクト接合部に酸化防止金属層を反射金属膜に接して形成したので、オーミックコンタクト接合部の酸化を防止でき、オーミックコンタクト接合部と反射金属膜との界面の抵抗を十分に低減でき、半導体発光素子内での電流集中を抑制できると共に、発光素子内での発光の均一化が図れ、高輝度かつ低順方向電圧の半導体発光素子が得られる。   According to the present invention, since the antioxidant metal layer is formed in contact with the reflective metal film at the ohmic contact junction, the oxidation of the ohmic contact junction can be prevented, and the resistance at the interface between the ohmic contact junction and the reflective metal film can be reduced. This can be sufficiently reduced, current concentration in the semiconductor light emitting element can be suppressed, light emission in the light emitting element can be made uniform, and a semiconductor light emitting element with high luminance and low forward voltage can be obtained.

以下、本発明に係る半導体発光素子の実施形態を図面を用いて説明する。
図1は、本実施形態の発光ダイオード(LEDベアチップ)の構造を示す断面図である。
Hereinafter, embodiments of a semiconductor light emitting device according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the structure of the light emitting diode (LED bare chip) of this embodiment.

本実施形態の発光ダイオードは、図1に示すように、第一導電型の半導体層3,4と第二導電型の半導体層6,7とに発光層(活性層)5が挟まれた構造のIII−V族化合物半
導体層11を有し、III−V族化合物半導体層11の第一の主表面側が光取り出し面11
aとなっている。III−V族化合物半導体層11の発光層部には、AlGaInP系、A
lGaAs系、GaN系、InGaAsP系などの化合物半導体が用いられ、また、これら化合物半導体をエピタキシャル成長させるための成長用基板としては、例えば、GaAs基板、InP基板、Ge基板、サファイア基板などが用いられる。なお、発光層(活性層)5は、アンドープのバルク層でも、或いは、多重量子井戸構造または歪み多重量子井戸構造でもよい。
As shown in FIG. 1, the light emitting diode of this embodiment has a structure in which a light emitting layer (active layer) 5 is sandwiched between first conductive type semiconductor layers 3 and 4 and second conductive type semiconductor layers 6 and 7. III-V compound semiconductor layer 11, and the first main surface side of the III-V compound semiconductor layer 11 is the light extraction surface 11.
It is a. The light emitting layer portion of the III-V compound semiconductor layer 11 has an AlGaInP-based, A
Compound semiconductors such as lGaAs, GaN, and InGaAsP are used, and examples of growth substrates for epitaxial growth of these compound semiconductors include GaAs substrates, InP substrates, Ge substrates, and sapphire substrates. The light emitting layer (active layer) 5 may be an undoped bulk layer, or a multiple quantum well structure or a strained multiple quantum well structure.

III−V族化合物半導体層11の第二の主表面側には、発光層5で発光し第二の主表面
側に向かう光を、光取り出し面11a側へと反射させるAl,Ag,Auなどの金属からなる反射層を有する反射金属膜10が形成されている。
On the second main surface side of the III-V compound semiconductor layer 11, Al, Ag, Au, etc. for reflecting the light emitted from the light emitting layer 5 toward the second main surface side toward the light extraction surface 11 a side. A reflective metal film 10 having a reflective layer made of the above metal is formed.

III−V族化合物半導体層11は、反射金属膜10を介して導電性支持基板20に結合
され支持されている。本実施形態では、導電性支持基板20側の金属接合膜21のAu等からなる接合層と、反射金属膜10最表面のAu等からなる接合層との接合によって結合されている。導電性支持基板20には、例えば、Si基板、Ge基板、GaAs基板、金属基板などが用いられる。
The III-V compound semiconductor layer 11 is coupled to and supported by the conductive support substrate 20 via the reflective metal film 10. In the present embodiment, bonding is performed by bonding a bonding layer made of Au or the like of the metal bonding film 21 on the conductive support substrate 20 side and a bonding layer made of Au or the like on the outermost surface of the reflective metal film 10. As the conductive support substrate 20, for example, a Si substrate, a Ge substrate, a GaAs substrate, a metal substrate, or the like is used.

III−V族化合物半導体層11と反射金属膜10との界面には、オーミックコンタクト
接合部9が分散して配置されている。オーミックコンタクト接合部は、オーミックコンタクト接合電極、界面電極、部分電極などとも呼ばれる。
オーミックコンタクト接合部9は、III−V族化合物半導体層11にオーミックコンタ
クト接合して接触抵抗を低減するためのオーミックコンタクト金属層9aと、反射金属膜10に接して形成された、イオン化傾向が純銀以下である金属が90%以上含まれる酸化
防止金属層9bとを有する。
酸化防止金属層9bは、レジスト除去時の酸素プラズマアッシングなどによるオーミックコンタクト接合部9の酸化を防止するための層である。従って、酸化防止金属層9bは、イオン化傾向が純銀以下の金属、即ちAg、Pt、Auが好ましい。また、これら金属が90%以上含まれる高純度の金属ならば、酸化防止機能上、合金であってもよい。
At the interface between the III-V group compound semiconductor layer 11 and the reflective metal film 10, ohmic contact junctions 9 are disposed in a dispersed manner. The ohmic contact junction is also called an ohmic contact junction electrode, an interface electrode, a partial electrode, or the like.
The ohmic contact junction 9 is formed in contact with the reflective metal film 10 and the ohmic contact metal layer 9a for reducing the contact resistance by ohmic contact with the III-V compound semiconductor layer 11, and the ionization tendency is pure silver. And an antioxidant metal layer 9b containing 90% or more of the following metal.
The antioxidant metal layer 9b is a layer for preventing oxidation of the ohmic contact junction 9 due to oxygen plasma ashing or the like during resist removal. Therefore, the antioxidant metal layer 9b is preferably a metal having an ionization tendency of pure silver or less, that is, Ag, Pt, or Au. Further, an alloy may be used for the antioxidant function as long as it is a high-purity metal containing 90% or more of these metals.

III−V族化合物半導体11の第一の主表面側の、第一導電型の半導体層3上には表面
電極12が形成され、また、導電性支持基板20の裏面側には、裏面電極13が形成されている。
A surface electrode 12 is formed on the first conductive type semiconductor layer 3 on the first main surface side of the III-V compound semiconductor 11, and a back electrode 13 is formed on the back surface side of the conductive support substrate 20. Is formed.

本実施形態の発光ダイオードでは、III−V族化合物半導体層11と反射金属膜10と
の間に透明誘電体膜8が形成されており、各オーミックコンタクト接合部9は、透明誘電体膜8を貫通し、III−V族化合物半導体層11と反射金属膜10とにそれぞれ接して設
けられている。
III−V族化合物半導体層11と反射金属膜10が直接接触していると、貼り合せ工程
や電極形成後の熱処理工程で化合物半導体層11と反射金属膜10が反応し、反射金属膜10の反射率が低下するといった問題点が発生する。このため、化合物半導体層11と反射金属膜10と間のに透明誘電体膜8を挟み、化合物半導体層11と反射金属膜10との反応を防止している。しかし、そのままでは、化合物半導体層11と反射金属膜10との間で電気伝導が出来なくなるので、透明誘電体膜8の一部にオーミックコンタクト接合部9を配置している。透明誘電体膜8としては、比較的エッチング処理を行いやすいSiO、SiN、ITO(酸化インジウムスズ:Indium Tin Oxide)がプロセス工程上望ましい。
In the light emitting diode of the present embodiment, the transparent dielectric film 8 is formed between the III-V compound semiconductor layer 11 and the reflective metal film 10, and each ohmic contact junction 9 has the transparent dielectric film 8. It penetrates and is provided in contact with the III-V compound semiconductor layer 11 and the reflective metal film 10, respectively.
When the III-V compound semiconductor layer 11 and the reflective metal film 10 are in direct contact with each other, the compound semiconductor layer 11 and the reflective metal film 10 react in a bonding process or a heat treatment process after electrode formation. There arises a problem that the reflectance decreases. For this reason, the transparent dielectric film 8 is sandwiched between the compound semiconductor layer 11 and the reflective metal film 10 to prevent a reaction between the compound semiconductor layer 11 and the reflective metal film 10. However, as it is, electrical conduction cannot be performed between the compound semiconductor layer 11 and the reflective metal film 10, so that the ohmic contact junction 9 is disposed on a part of the transparent dielectric film 8. As the transparent dielectric film 8, SiO 2 , SiN, and ITO (Indium Tin Oxide) that are relatively easy to perform an etching process are desirable in the process step.

オーミックコンタクト接合部9は、透明誘電体膜8内の表面電極12直下の領域以外の領域に分散して配置するのが好ましい。表面電極12から注入された電子又はホールは、オーミックコンタクト接合部9を介して支持基板20へと流れることになる為、表面電極12直下にはオーミックコンタクト接合部9を配置しないことによって、電流狭窄効果が働き発光出力が向上する。
この電流狭窄効果をより有効とする為には、化合物半導体層11の第一導電型の半導体層3,4と第二導電型の半導体層6,7において、主表面側の半導体層の抵抗が低いことが重要である。ここで、第一導電型と第二導電型は、一方がn型ならば他方はp型となる。第一導電型は、n型、p型のいずれでもよい。
The ohmic contact junctions 9 are preferably dispersed and arranged in a region other than the region immediately below the surface electrode 12 in the transparent dielectric film 8. Electrons or holes injected from the surface electrode 12 flow to the support substrate 20 via the ohmic contact junction 9, so that the current confinement can be achieved by not arranging the ohmic contact junction 9 immediately below the surface electrode 12. The effect works and the light output is improved.
In order to make the current confinement effect more effective, the resistance of the semiconductor layer on the main surface side in the first conductive type semiconductor layers 3 and 4 and the second conductive type semiconductor layers 6 and 7 of the compound semiconductor layer 11 is reduced. Low is important. Here, if one of the first conductivity type and the second conductivity type is n-type, the other is p-type. The first conductivity type may be either n-type or p-type.

オーミックコンタクト接合部9及び透明誘電体膜8とからなる層と、III−V族化合物
半導体層11との界面におけるオーミックコンタクト接合部9の割合は、10%以下であることが好ましい。オーミックコンタクト金属層9aは反射率が低い金属となる為、発光出力の観点からオーミックコンタクト接合部9の面積は、ある程度小さいことが好ましく、本発明者らの検討結果から界面での面積比率として10%以下であることが望ましいことが分かっている。
The ratio of the ohmic contact junction 9 at the interface between the layer composed of the ohmic contact junction 9 and the transparent dielectric film 8 and the III-V compound semiconductor layer 11 is preferably 10% or less. Since the ohmic contact metal layer 9a is a metal having a low reflectance, the area of the ohmic contact junction 9 is preferably small to some extent from the viewpoint of light emission output, and the area ratio at the interface is 10 based on the examination results of the inventors. % Has been found to be desirable.

上記オーミックコンタクト接合部9の形成には、一般的なフォトリソグラフィー技術を用いてレジスト材料をパターニングし、オーミックコンタクト接合金属膜を真空蒸着法などで形成した後、リフトオフ法によりレジスト材料を除去するが、リフトオフ工程後に確実にレジスト残渣を除去する必要から、酸素プラズマアッシング処理などによって確実にレジスト除去を行う。その際に、従来のオーミックコンタクト接合電極では、金属表面が酸化され酸化膜が形成されてしまった。
そこで、本実施形態では、オーミックコンタクト接合部9の最表面を酸化防止金属層9bを形成して被覆することにより、オーミックコンタクト接合部9の酸化を防止・抑制している。レジスト除去時のオーミックコンタクト接合部9の酸化を防止できるので、オー
ミックコンタクト接合部9と金属反射膜10との界面での抵抗を十分に低減でき、LED素子面内の各オーミックコンタクト接合部9における電流密度が均一化し、また、LED素子面内の発光が均一となり、高輝度かつ低順方向電圧のLED素子が得られる。
The ohmic contact bonding portion 9 is formed by patterning a resist material using a general photolithography technique, forming an ohmic contact bonding metal film by a vacuum deposition method, and then removing the resist material by a lift-off method. Since the resist residue needs to be surely removed after the lift-off process, the resist is surely removed by oxygen plasma ashing or the like. At that time, in the conventional ohmic contact junction electrode, the metal surface is oxidized and an oxide film is formed.
Therefore, in this embodiment, the oxidation of the ohmic contact junction 9 is prevented and suppressed by covering the outermost surface of the ohmic contact junction 9 with the formation of the antioxidant metal layer 9b. Since the oxidation of the ohmic contact junction 9 at the time of removing the resist can be prevented, the resistance at the interface between the ohmic contact junction 9 and the metal reflective film 10 can be sufficiently reduced, and each ohmic contact junction 9 in the LED element plane can be reduced. The current density becomes uniform, and the light emission in the LED element surface becomes uniform, and an LED element with high brightness and low forward voltage can be obtained.

なお、上記実施形態において、オーミックコンタクト接合部9のオーミックコンタクト金属層9aと酸化防止金属層9bとの間に、拡散バリア効果を有する拡散防止金属層9cを形成してもよい。拡散防止金属層9cの金属としては、Ni、Ti、Ptが好ましい。
また、上記実施形態において、オーミックコンタクト接合部9と半導体層7との間にオーミックコンタクト金属層9aの密着力を向上する為に、密着効果を有するNi、Al、Ti等の密着層を設けたオーミックコンタクト接合部構造としてもよい。
In the above embodiment, a diffusion preventing metal layer 9c having a diffusion barrier effect may be formed between the ohmic contact metal layer 9a and the oxidation preventing metal layer 9b of the ohmic contact junction 9. As the metal of the diffusion preventing metal layer 9c, Ni, Ti, and Pt are preferable.
Moreover, in the said embodiment, in order to improve the contact | adhesion power of the ohmic contact metal layer 9a between the ohmic contact junction part 9 and the semiconductor layer 7, the contact | adherence layer, such as Ni, Al, Ti, which has the contact effect, was provided. An ohmic contact junction structure may be used.

次に、本発明の実施例を説明する。
(実施例1)
図1に示した上記実施形態と同一断面構造であって、発光波長が630nm付近の貼り替え型赤色LED素子を作製した。エピタキシャル成長の方法、エピタキシャル層の膜厚や構造、透明誘電体膜・オーミックコンタクト接合部・金属反射膜の作製、支持基板への貼り替え方法、電極形成方法、LED素子作製方法などは、以下の通りである。
Next, examples of the present invention will be described.
Example 1
A replaceable red LED element having the same cross-sectional structure as that of the above embodiment shown in FIG. 1 and an emission wavelength of around 630 nm was produced. The epitaxial growth method, the thickness and structure of the epitaxial layer, the production of the transparent dielectric film / ohmic contact junction / metal reflective film, the method of attaching to the support substrate, the electrode formation method, the LED element production method, etc. are as follows: It is.

この実施例1のLED素子の作製方法を図3に示す工程図を用いて説明する。
まず、図3(a)に示すように、赤色LED用エピタキシャルウェハを作製した。n型GaAs基板1をMOVPE(有機金属気相成長)装置に設置し、MOVPE法により、n型GaAs基板1上に、アンドープ(Al0.7Ga0.30.5In0.5Pエッチングストップ層2、Siドープのn型GaAsコンタクト層3、Siドープのn型(Al0.7Ga0.30.5In0.5Pクラッド層4、アンドープ(Al0.1Ga0.90.
In0.5P活性層5、Mgドープのp型(Al0.7Ga0.30.5In0.5Pク
ラッド層6、Mgドープのp型GaPコンタクト層7を、順次積層成長させた。
A method for manufacturing the LED element of Example 1 will be described with reference to the process chart shown in FIG.
First, as shown in FIG. 3A, a red LED epitaxial wafer was produced. An n-type GaAs substrate 1 is placed in an MOVPE (metal organic vapor phase epitaxy) apparatus, and undoped (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P is formed on the n-type GaAs substrate 1 by the MOVPE method. Etching stop layer 2, Si-doped n-type GaAs contact layer 3, Si-doped n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4, undoped (Al 0.1 Ga 0 .9 ) 0.
5 In 0.5 P active layer 5, Mg-doped p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 6, and Mg-doped p-type GaP contact layer 7 are sequentially stacked. Grown up.

MOVPE成長での成長温度は650℃とし、成長圧力は約6666Pa(50Torr)、各層の成長速度は0.3〜1.0nm/sec、V/III比は約200前後で行った
。因みにここで言うV/III比とは、分母をTMGaやTMAlなどのIII族原料のモル数とし、分子をAsH、PHなどのV族原料のモル数とした場合の比率(商)を指す。
The growth temperature in MOVPE growth was 650 ° C., the growth pressure was about 6666 Pa (50 Torr), the growth rate of each layer was 0.3 to 1.0 nm / sec, and the V / III ratio was about 200. Incidentally, the V / III ratio referred to here is the ratio (quotient) when the denominator is the number of moles of a group III material such as TMGa or TMAl and the molecule is the number of moles of a group V material such as AsH 3 or PH 3. Point to.

MOVPE成長において用いる原料としては、例えばトリメチルガリウム(TMGa)、又はトリエチルガリウム(TEGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)等の有機金属や、アルシン(AsH)、ホスフィン(PH)等の水素化物ガスを用いた。n型半導体層の添加物原料(導電型決定不純物)としては、ジシラン(Si)を用いた。p型半導体層の添加物原料としては、ビスシクロペンタジエニルマグネシウム(CpMg)を用いた。
その他に、n型半導体層のn型添加物原料として、セレン化水素(HSe)、モノシラン(SiH)、ジエチルテルル(DETe)、ジメチルテルル(DMTe)を用いることもできる。また、その他のp型半導体層のp型添加物原料として、ジメチルジンク(DMZn)、ジエチルジンク(DEZn)を用いる事も出来る。
Examples of raw materials used in the MOVPE growth include trimethylgallium (TMGa), organic metals such as triethylgallium (TEGa), trimethylaluminum (TMAl), and trimethylindium (TMIn), arsine (AsH 3 ), and phosphine (PH 3 ). A hydride gas such as was used. Disilane (Si 2 H 6 ) was used as an additive material (conductivity type determining impurity) for the n-type semiconductor layer. Biscyclopentadienyl magnesium (Cp 2 Mg) was used as an additive material for the p-type semiconductor layer.
In addition, hydrogen selenide (H 2 Se), monosilane (SiH 4 ), diethyl tellurium (DETe), and dimethyl tellurium (DMTe) can also be used as an n-type additive material for the n-type semiconductor layer. Moreover, dimethyl zinc (DMZn) and diethyl zinc (DEZn) can also be used as a p-type additive material for other p-type semiconductor layers.

次に、上記LED用エピタキシャルウエハをMOCVD装置から搬出した後、p型GaPコンタクト層7表面にプラズマ−CVD装置を用いて、透明誘電体膜としてSiO膜8を成膜した。その後、レジストやマスクアライナなどの一般的なフォトリソグラフィー技術を用いて、フッ酸系エッチング液でSiO膜8にSiO膜8を貫通する円形断面の開口部を分散して形成し、それら開口部に真空蒸着法によってオーミックコンタクト接合部9を形成した後、リフトオフ法によりレジスト材料を除去した(図3(b))。オー
ミックコンタクト接合部9は、後の工程で形成する表面電極12直下以外の領域になるように配置した。配置法則はランダム配置とし、直径7.5μmのオーミックコンタクト接
合部9を40個配置した。
この実施例1のオーミックコンタクト接合部9は、厚さ約88nmのAuBe(金・ベリリウム合金)から成るオーミックコンタクト金属層9aと、厚さ約30nmのAuから成る酸化防止金属層9bと、を順次積層した二層構造である。
Next, after the LED epitaxial wafer was unloaded from the MOCVD apparatus, a SiO 2 film 8 was formed as a transparent dielectric film on the surface of the p-type GaP contact layer 7 using a plasma-CVD apparatus. Then, using a general photolithographic technique such as a resist or mask aligner, is formed by dispersing an opening of circular cross-section passing through the SiO 2 film 8 on the SiO 2 film 8 a hydrofluoric acid etching solution, which opening After forming the ohmic contact bonding part 9 by the vacuum evaporation method, the resist material was removed by the lift-off method (FIG. 3B). The ohmic contact bonding portion 9 was disposed so as to be in a region other than immediately below the surface electrode 12 to be formed in a later step. The arrangement rule was random arrangement, and 40 ohmic contact junctions 9 having a diameter of 7.5 μm were arranged.
The ohmic contact junction 9 of the first embodiment has an ohmic contact metal layer 9a made of AuBe (gold / beryllium alloy) having a thickness of about 88 nm and an antioxidant metal layer 9b made of Au having a thickness of about 30 nm. It is a laminated two-layer structure.

リフトオフ工程後にレジスト残渣を除去する為に、酸素プラズマアッシング装置でアッシング処理を行った。アッシングは約53.3Pa(400mTorr)雰囲気下におい
て出力600mWで20分処理して行った。
In order to remove the resist residue after the lift-off process, an ashing process was performed using an oxygen plasma ashing apparatus. Ashing was performed in an atmosphere of about 53.3 Pa (400 mTorr) with an output of 600 mW for 20 minutes.

次に、上記オーミックコンタクト接合部付きLED用エピタキシャルウエハ上に、反射金属膜10として、Al(アルミニウム)、Ti(チタン)、Au(金)を、それぞれ順に蒸着した(図3(c))。Alが反射層、Tiが拡散防止バリア層、Auが接合層となる。   Next, Al (aluminum), Ti (titanium), and Au (gold) were sequentially deposited as the reflective metal film 10 on the above-described LED epitaxial wafer with an ohmic contact junction (FIG. 3C). Al is a reflective layer, Ti is a diffusion barrier layer, and Au is a bonding layer.

一方、導電性支持基板として用意した導電性のSi基板20表面に、Ti(チタン)、Pt(プラチナ)、Au(金)をそれぞれ順に蒸着し、金属接合膜21を形成した(図3(d))。Tiがオーミックコンタクト金属層、Ptが拡散防止バリア層、Auが接合層となる。   On the other hand, Ti (titanium), Pt (platinum), and Au (gold) were sequentially deposited on the surface of the conductive Si substrate 20 prepared as a conductive support substrate to form a metal bonding film 21 (FIG. 3D). )). Ti is an ohmic contact metal layer, Pt is a diffusion barrier layer, and Au is a bonding layer.

上記の様にして作製したLED用エピタキシャルウエハの反射金属膜10最表面のAu接合層と、Si基板20の金属接合膜21最表面のAu接合層とを貼り合わせた(図3(e))。貼り合わせは、圧力約1.33Pa(0.01Torr)雰囲気で荷重を30Kgf/cm負荷した状態で、温度350℃で30分間保持することによって行った。 The Au bonding layer on the outermost surface of the reflective metal film 10 of the epitaxial wafer for LED produced as described above was bonded to the Au bonding layer on the outermost surface of the metal bonding film 21 of the Si substrate 20 (FIG. 3E). . The bonding was performed by holding at a temperature of 350 ° C. for 30 minutes in a pressure of about 1.33 Pa (0.01 Torr) and a load of 30 kgf / cm 2 .

次に、Si基板20に貼り合わせたLED用エピタキシャルウエハのn型GaAs基板1を、アンモニア水と過酸化水素水の混合液によってエッチング除去して、アンドープ(Al0.7Ga0.30.5In0.5Pエッチングストップ層2を露出させた。更に、塩酸でエッチングストップ層2を除去し、n型GaAsコンタクト層3を露出させた。
更に、n型GaAsコンタクト層3の表面にレジストやマスクアライナなどの一般的なフォトリソグラフィー技術を用い、直径100μmの円形中央部から放射状に幅l0μmで枝状に延びた分岐部を有する形状の表面電極12を真空蒸着によって形成した。表面電極12は、AuGe(金・ゲルマニウム合金)、Ti(チタン)、Au(金)を、それぞれ順に蒸着して形成した。
Next, the n-type GaAs substrate 1 of the LED epitaxial wafer bonded to the Si substrate 20 is removed by etching with a mixed solution of ammonia water and hydrogen peroxide solution, and undoped (Al 0.7 Ga 0.3 ) 0. The In 0.5 P etching stop layer 2 was exposed. Further, the etching stop layer 2 was removed with hydrochloric acid to expose the n-type GaAs contact layer 3.
Further, the surface of the n-type GaAs contact layer 3 is formed using a general photolithography technique such as a resist or a mask aligner, and has a shape having a branch portion radially extending in a branch shape with a width of 10 μm from a circular center portion having a diameter of 100 μm. Electrode 12 was formed by vacuum evaporation. The surface electrode 12 was formed by sequentially depositing AuGe (gold / germanium alloy), Ti (titanium), and Au (gold).

表面電極12の形成後、硫酸と過酸化水素水と水の混合液からなるエッチング液を用いて、形成した表面電極12をマスクとして、表面電極12直下以外のn型GaAsコンタクト層3をエッチング除去し、選択性エッチングによってn型(Al0.7Ga0.30.5In0.5Pクラッド層4を露出させた。
更に、Si基板20の底面には、全面に裏面電極13を真空蒸着法によって形成した。裏面電極13は、Ti(チタン)、Au(金)を、それぞれ順に蒸着し、その後、電極12,13の合金化であるアロイ工程を、窒素ガス雰囲気中にて400℃に加熱し、5分間熱処理する事で行った。
After the surface electrode 12 is formed, the n-type GaAs contact layer 3 other than directly under the surface electrode 12 is removed by etching using an etchant composed of a mixture of sulfuric acid, hydrogen peroxide solution, and water using the formed surface electrode 12 as a mask. Then, the n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 4 was exposed by selective etching.
Further, a back electrode 13 was formed on the entire bottom surface of the Si substrate 20 by vacuum deposition. The back electrode 13 is formed by sequentially depositing Ti (titanium) and Au (gold), respectively, and then an alloying process that is alloying of the electrodes 12 and 13 is heated to 400 ° C. in a nitrogen gas atmosphere for 5 minutes. This was done by heat treatment.

その後、上記のようにして電極が形成されたLED用Si基板20を、表面電極12の円形部が各チップの中心になる様にダイシング装置を用いて切断し、チップサイズ300μm角のLEDベアチップを作製した(図3(f))。
更に、上記LEDベアチップをTO−18ステム上にマウント(ダイボンディング)し、その後、更にマウントされた当該LEDベアチップに、ワイヤボンディングを行い、L
ED素子を作製した。
上記の通りに作製されたLED素子の初期特性を評価した結果、20mA通電時(評価時)の発光出力5.5mW、順方向電圧1.95Vという初期特性を有するLED素子を得る事が出来た。
Thereafter, the LED Si substrate 20 on which the electrodes are formed as described above is cut using a dicing device so that the circular portion of the surface electrode 12 is at the center of each chip, and an LED bare chip having a chip size of 300 μm square is formed. It produced (FIG.3 (f)).
Further, the LED bare chip is mounted on the TO-18 stem (die bonding), and then wire bonding is performed on the mounted LED bare chip.
An ED element was produced.
As a result of evaluating the initial characteristics of the LED element manufactured as described above, it was possible to obtain an LED element having initial characteristics of a light emission output of 5.5 mW and a forward voltage of 1.95 V when energized with 20 mA (evaluation). .

(比較例)
上記実施例1と比較するための比較例として、図2に示した構造の発光波長630nm付近の貼り替え型赤色LED素子を作製した。エピタキシャル成長の方法、エピタキシャル層の膜厚や構造、透明誘電体膜・反射金属膜の作製、支持基板への貼り替え方法、電極形成方法、エッチング方法等のプロセス工程、LED素子作製方法などは、基本的に上記実施例1と同じにした。上記実施例1と異なる点は、オーミックコンタクト接合部の構造である。
比較例では、オーミックコンタクト接合部19を、AuBe(金・ベリリウム合金)から成る単層構造のオーミックコンタクト金属層とし、真空蒸着法により形成した。
得られた比較例のLED素子の初期特性を評価した結果、20mA通電時の発光出力4.5mW、順方向電圧2.50Vであった。
(Comparative example)
As a comparative example for comparison with Example 1 described above, a replaceable red LED element having an emission wavelength near 630 nm and having the structure shown in FIG. 2 was produced. The epitaxial growth method, the thickness and structure of the epitaxial layer, the production of the transparent dielectric film / reflective metal film, the method of attaching to the support substrate, the process steps such as the electrode formation method, the etching method, the LED element production method, etc. The same as in Example 1 above. The difference from the first embodiment is the structure of the ohmic contact junction.
In the comparative example, the ohmic contact bonding portion 19 was formed as a single layer ohmic contact metal layer made of AuBe (gold / beryllium alloy) and formed by vacuum deposition.
As a result of evaluating the initial characteristics of the obtained LED element of the comparative example, the light emission output when energized with 20 mA was 4.5 mW and the forward voltage was 2.50 V.

上記の実施例1と比較例の結果から、実施例1では、オーミックコンタクト接合部9の最表面に、Auの酸化防止金属層9bを成膜しているので、酸素アッシング処理時にオーミックコンタクト接合部9表面の酸化が防止されたと考えられる。
その為、オーミックコンタクト接合部9の抵抗が低減かつ均一になった為に、LED素子面内のオーミックコンタクト接合部9での電流密度が均一になり、電流集中が抑制され、順方向電圧が低減したと考えられる。また、電流がLED素子面内で均一に流れるようになる為、発光出力も向上したと考えられる。
図4に、実施例1と比較例の電流−電圧特性を示す。図示のように、実施例1では、電流−電圧特性のリニアリティーが良好であることが分かる。このことからも、オーミックコンタクト接合部9において、酸化膜による部分的抵抗上昇が生じていないことが確認できる。
From the results of the above Example 1 and the comparative example, in Example 1, since the oxidation preventing metal layer 9b of Au is formed on the outermost surface of the ohmic contact junction 9, the ohmic contact junction is formed during the oxygen ashing process. 9 It is thought that oxidation of the surface was prevented.
Therefore, since the resistance of the ohmic contact junction 9 is reduced and uniform, the current density at the ohmic contact junction 9 in the LED element surface becomes uniform, current concentration is suppressed, and the forward voltage is reduced. It is thought that. In addition, since the current flows uniformly in the LED element surface, it is considered that the light emission output is also improved.
In FIG. 4, the current-voltage characteristic of Example 1 and a comparative example is shown. As shown in the figure, in Example 1, it can be seen that the linearity of the current-voltage characteristic is good. This also confirms that the partial resistance increase due to the oxide film does not occur in the ohmic contact junction 9.

(実施例2)
図5に示した構造の発光波長630nm付近の貼り替え型赤色LED素子を作製した。エピタキシャル成長の方法、エピタキシャル層の膜厚や構造、透明誘電体膜・オーミックコンタクト接合部・反射金属膜の作製、支持基板への貼り替え方法、電極形成方法、エッチング方法等のプロセス工程、LED素子作製方法などは、基本的に上記実施例1と同じにした。上記実施例1と異なる点は、オーミックコンタクト接合部の構造であり、上記実施例1との相違を説明する。
この実施例2のオーミックコンタクト接合部9は、厚さ約68nmのAuBeから成るオーミックコンタクト金属層9aと、厚さ約10nmのTiから成る拡散防止金属層9cと、厚さ約30nmのAuから成る酸化防止金属層9bと、を順次積層した三層構造となっている。
(Example 2)
A replaceable red LED element having an emission wavelength of about 630 nm and having the structure shown in FIG. 5 was produced. Epitaxial growth method, epitaxial layer thickness and structure, production of transparent dielectric film / ohmic contact junction / reflective metal film, method of attaching to support substrate, electrode forming method, etching method, etc., LED element production The method and the like are basically the same as those in the first embodiment. A different point from the said Example 1 is the structure of an ohmic contact junction part, The difference with the said Example 1 is demonstrated.
The ohmic contact junction 9 of Example 2 is composed of an ohmic contact metal layer 9a made of AuBe having a thickness of about 68 nm, a diffusion preventing metal layer 9c made of Ti having a thickness of about 10 nm, and Au having a thickness of about 30 nm. It has a three-layer structure in which the antioxidant metal layer 9b is sequentially laminated.

オーミックコンタクト接合部9を形成した後、168時間経過してから酸素アッシングを行い、LED素子を作製した。作製した実施例2のLED素子の初期特性を評価した結果、20mA通電時の発光出力5.52mW、順方向電圧1.98Vという初期特性を有するLED素子を得る事が出来た。これは、実施例1の初期特性と比較して、同等のLED特性である。   After the ohmic contact junction 9 was formed, oxygen ashing was performed after 168 hours to produce an LED element. As a result of evaluating the initial characteristics of the manufactured LED element of Example 2, it was possible to obtain an LED element having initial characteristics of a light emission output of 5.52 mW and a forward voltage of 1.98 V when energized with 20 mA. This is an equivalent LED characteristic as compared with the initial characteristic of Example 1.

しかし、上記実施例1では、オーミックコンタクト接合部9を形成してから168時間後に酸素アッシング処理を行ってLED素子を作製を行ったところ、LED素子の初期特性が発光出力5.2mW、順方向電圧2.25Vとなってしまった。これは、常温において
オーミックコンタクト金属層9aのAuBe層中のBeが、酸化防止金属層9bのAu層へと拡散して酸化され易くなってしまった為と考えられる。つまり、実施例1の二層構造のオーミックコンタクト接合部9では、オーミックコンタクト接合部9形成後、直ちに酸素アッシング処理を行い、LED素子作製を行う必要がある。
これに対し、実施例2のオーミックコンタクト接合部9では、オーミックコンタクト金属層9aと酸化防止金属層9bとの間に、拡散バリア効果として作用するTi層の拡散防止金属層9cを挿入したことによって、オーミックコンタクト金属層9aのBeが酸化防止金属層9bのAu層へ拡散することが防止され、オーミックコンタクト接合電極形成後168時間経過しても最表面のAuの酸化防止金属層9bの純度が高く維持され、酸化防止機能が保持された為と考えられる。つまり、実施例2に示した方法においてオーミックコンタクト接合部9の経時変化を抑制できた。
However, in Example 1 above, when the LED element was fabricated by performing oxygen ashing treatment 168 hours after the ohmic contact junction 9 was formed, the initial characteristic of the LED element was a light emission output of 5.2 mW, forward direction. The voltage was 2.25V. This is presumably because Be in the AuBe layer of the ohmic contact metal layer 9a diffuses into the Au layer of the antioxidant metal layer 9b and is easily oxidized at room temperature. That is, in the ohmic contact junction 9 having the two-layer structure of Example 1, it is necessary to perform an oxygen ashing process immediately after the formation of the ohmic contact junction 9 to produce an LED element.
On the other hand, in the ohmic contact junction part 9 of Example 2, the diffusion preventing metal layer 9c of Ti layer acting as a diffusion barrier effect is inserted between the ohmic contact metal layer 9a and the antioxidant metal layer 9b. The Be of the ohmic contact metal layer 9a is prevented from diffusing into the Au layer of the anti-oxidation metal layer 9b, and the purity of the anti-oxidation metal layer 9b of Au on the outermost surface is maintained even after 168 hours have elapsed after the formation of the ohmic contact junction electrode It is thought that it was maintained at a high level and the antioxidant function was maintained. That is, the change with time of the ohmic contact junction 9 can be suppressed by the method shown in Example 2.

なお、上記実施例においては、発光波長630nmの赤色LED素子を作製したが、同じAlGaInP系の材料を用いて製作されるそれ以外のLED素子、例えば発光波長560nm〜660nmのLED素子においても、使用される各層の材料、キャリア濃度は同様である。従って、LED素子の発光波長を上記実施例と異なる波長帯域としても同様な効果が得られる。   In addition, in the said Example, although the red LED element of emission wavelength 630nm was produced, it is used also in the other LED element produced using the same AlGaInP type material, for example, the LED element of emission wavelength 560nm -660nm. The material and carrier concentration of each layer are the same. Therefore, the same effect can be obtained even when the emission wavelength of the LED element is set to a wavelength band different from that of the above embodiment.

また、上記実施例においては、オーミックコンタクト接合部9のオーミックコンタクト金属層9aとしてAuBeを用いたが、これはp型半導体層とのオーミックコンタクト接合に適しているからであり、n型半導体層とのオーミックコンタクト接合を考えた場合、オーミックコンタクト金属層としてAuZnを用いても同様の効果が得られる。   Moreover, in the said Example, although AuBe was used as the ohmic contact metal layer 9a of the ohmic contact junction part 9, this is because it is suitable for ohmic contact junction with a p-type semiconductor layer, and an n-type semiconductor layer and When the ohmic contact junction is considered, even if AuZn is used as the ohmic contact metal layer, the same effect can be obtained.

本発明の実施形態及び実施例1に係る発光ダイオードの断面構造図である。1 is a cross-sectional structure diagram of a light emitting diode according to an embodiment of the present invention and Example 1. FIG. 比較例の発光ダイオードの断面構造図である。It is sectional structure figure of the light emitting diode of a comparative example. 実施例1の発光ダイオードの作製方法を示す工程図である。6 is a process diagram illustrating a method for manufacturing the light-emitting diode of Example 1. FIG. 実施例1及び比較例の電流−電圧特性を示すグラフである。It is a graph which shows the current-voltage characteristic of Example 1 and a comparative example. 本発明の実施例2に係る発光ダイオードの断面構造図である。It is sectional drawing of the light emitting diode which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

1 n型GaAs基板
2 n型AlGaInPエッチングストップ層
3 n型GaAsコンタクト層(第一導電型の半導体層)
4 n型AlGaInPクラッド層(第一導電型の半導体層)
5 AlGaInP活性層(発光層)
6 p型AlGaInPクラッド層(第二導電型の半導体層)
7 p型GaPコンタクト層(第二導電型の半導体層)
8 SiO膜(透明誘電体膜)
9 オーミックコンタクト接合部
9a オーミックコンタクト金属層
9b 酸化防止金属層
9c 拡散防止金属層
10 反射金属膜
11 化合物半導体層
11a 光取り出し面
12 表面電極
13 裏面電極
20 Si基板(導電性支持基板)
21 金属接合膜
1 n-type GaAs substrate 2 n-type AlGaInP etching stop layer 3 n-type GaAs contact layer (first conductivity type semiconductor layer)
4 n-type AlGaInP cladding layer (first conductivity type semiconductor layer)
5 AlGaInP active layer (light emitting layer)
6 p-type AlGaInP cladding layer (second conductivity type semiconductor layer)
7 p-type GaP contact layer (second conductivity type semiconductor layer)
8 SiO 2 film (transparent dielectric film)
DESCRIPTION OF SYMBOLS 9 Ohmic contact junction part 9a Ohmic contact metal layer 9b Antioxidation metal layer 9c Diffusion prevention metal layer 10 Reflective metal film 11 Compound semiconductor layer 11a Light extraction surface 12 Surface electrode 13 Back surface electrode 20 Si substrate (conductive support substrate)
21 Metal bonding film

Claims (9)

第一導電型の半導体層と第二導電型の半導体層に発光層が挟まれた構造を有するIII−
V族化合物半導体層と、
前記III−V族化合物半導体層の第一の主表面側を光取り出し面とし、前記III−V族化合物半導体層の第二の主表面側に形成され、前記発光層からの光を前記第一の主表面側へと反射させる反射層を有する反射金属膜と、
前記III−V族化合物半導体層に前記反射金属膜を介して結合された導電性支持基板と

前記III−V族化合物半導体層と前記反射金属膜との界面に分散して配置されたオーミ
ックコンタクト接合部と、
前記III−V族化合物半導体の第一の主表面側に形成された表面電極と、
前記導電性支持基板の裏面側に形成された裏面電極とを備え、
前記オーミックコンタクト接合部は、前記III−V族化合物半導体層にオーミックコン
タクト接合するオーミックコンタクト金属層と、前記反射金属膜に接して形成され、イオン化傾向が純銀以下である金属が90%以上含まれる酸化防止金属層とを有することを特徴とする半導体発光素子。
III- having a structure in which a light emitting layer is sandwiched between a semiconductor layer of the first conductivity type and a semiconductor layer of the second conductivity type
A group V compound semiconductor layer;
The first main surface side of the III-V compound semiconductor layer is a light extraction surface, and is formed on the second main surface side of the III-V compound semiconductor layer. A reflective metal film having a reflective layer that reflects to the main surface side of
A conductive support substrate bonded to the III-V compound semiconductor layer via the reflective metal film;
An ohmic contact junction disposed in a dispersed manner at the interface between the III-V compound semiconductor layer and the reflective metal film;
A surface electrode formed on the first main surface side of the III-V compound semiconductor;
A back electrode formed on the back side of the conductive support substrate,
The ohmic contact junction includes an ohmic contact metal layer that is in ohmic contact with the group III-V compound semiconductor layer, and a metal that has an ionization tendency of pure silver or less and is 90% or more. A semiconductor light emitting device comprising an antioxidant metal layer.
請求項1に記載の半導体発光素子において、前記III−V族化合物半導体層と前記反射
金属膜との間に透明誘電体膜が形成され、前記各オーミックコンタクト接合部が、前記透明誘電体膜を貫通し前記III−V族化合物半導体層と前記反射金属膜に接して設けられて
いることを特徴とする半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein a transparent dielectric film is formed between the III-V compound semiconductor layer and the reflective metal film, and each ohmic contact junction includes the transparent dielectric film. A semiconductor light-emitting element, which penetrates and is provided in contact with the group III-V compound semiconductor layer and the reflective metal film.
請求項1または2に記載の半導体発光素子において、前記酸化防止金属層のイオン化傾向が純銀以下である金属が、Ag、Pt、Auのいずれかであることを特徴とする半導体発光素子。   3. The semiconductor light emitting device according to claim 1, wherein a metal whose ionization tendency of the antioxidant metal layer is equal to or lower than pure silver is Ag, Pt, or Au. 4. 請求項1〜3のいずれかに記載の半導体発光素子において、前記オーミックコンタクト接合部の前記オーミックコンタクト金属層と前記酸化防止金属層との間に拡散バリア効果を有する拡散防止金属層が形成されていることを特徴とする半導体発光素子。   4. The semiconductor light emitting device according to claim 1, wherein a diffusion preventing metal layer having a diffusion barrier effect is formed between the ohmic contact metal layer and the antioxidant metal layer of the ohmic contact junction. A semiconductor light emitting device characterized by comprising: 請求項4に記載の半導体発光素子において、前記拡散防止金属層の金属が、Ni、Ti、Ptのいずれかであることを特徴とする半導体発光素子。   5. The semiconductor light emitting device according to claim 4, wherein the metal of the diffusion preventing metal layer is Ni, Ti, or Pt. 請求項1〜5のいずれかに記載の半導体発光素子において、前記オーミックコンタクト接合部が、前記透明誘電体膜内の前記表面電極直下の領域以外の領域に配置されていることを特徴とする半導体発光素子。   6. The semiconductor light emitting device according to claim 1, wherein the ohmic contact junction is disposed in a region other than a region directly below the surface electrode in the transparent dielectric film. Light emitting element. 請求項2〜6のいずれかに記載の半導体発光素子において、前記オーミックコンタクト接合部及び前記透明誘電体膜とからなる層と前記III−V族化合物半導体層との界面にお
ける前記オーミックコンタクト接合部の割合が10%以下であることを特徴とする半導体発光素子。
7. The semiconductor light emitting device according to claim 2, wherein the ohmic contact junction at an interface between the ohmic contact junction and the layer made of the transparent dielectric film and the III-V compound semiconductor layer is formed. A semiconductor light emitting element characterized by having a ratio of 10% or less.
請求項1〜7のいずれかに記載の半導体発光素子において、前記第一導電型の半導体層と前記第二導電型の半導体層の、前記III−V族化合物半導体層の主表面側の抵抗が低い
ことを特徴とする半導体発光素子。
8. The semiconductor light emitting device according to claim 1, wherein a resistance of the first conductive type semiconductor layer and the second conductive type semiconductor layer on a main surface side of the III-V group compound semiconductor layer is set. A semiconductor light emitting device characterized by being low.
請求項2〜8のいずれかに記載の半導体発光素子において、前記透明誘電体膜の材料が、SiO、SiN、ITOのいずれかであることを特徴とする半導体発光素子。 The semiconductor light emitting device according to any one of claims 2-8, the material of the transparent dielectric film, SiO 2, SiN, a semiconductor light emitting device characterized in that either ITO.
JP2007127622A 2007-05-14 2007-05-14 Semiconductor light-emitting element Pending JP2008283096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127622A JP2008283096A (en) 2007-05-14 2007-05-14 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007127622A JP2008283096A (en) 2007-05-14 2007-05-14 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2008283096A true JP2008283096A (en) 2008-11-20

Family

ID=40143641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127622A Pending JP2008283096A (en) 2007-05-14 2007-05-14 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2008283096A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141225A (en) * 2008-12-15 2010-06-24 Hitachi Cable Ltd Semiconductor light emitting device
KR100974784B1 (en) 2009-03-10 2010-08-06 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
JP2010251531A (en) * 2009-04-16 2010-11-04 Rohm Co Ltd Semiconductor light-emitting element
JP2011129724A (en) * 2009-12-18 2011-06-30 Dowa Electronics Materials Co Ltd Semiconductor light-emitting element and method of manufacturing the same
CN102301498A (en) * 2009-01-30 2011-12-28 惠普开发有限公司 Plasmonic Light Emitting Diode
JP2012080089A (en) * 2010-10-04 2012-04-19 Shogen Koden Kofun Yugenkoshi Light-emitting element having plural contact parts
JP2012190905A (en) * 2011-03-09 2012-10-04 Hitachi Cable Ltd Method of manufacturing semiconductor light-emitting element
JP2013508994A (en) * 2009-11-06 2013-03-07 旭明光電股▲ふん▼有限公司 Light emitting diode device
JP2013069941A (en) * 2011-09-24 2013-04-18 Toshiba Corp Semiconductor light-emitting element
CN103500708A (en) * 2013-09-29 2014-01-08 山西飞虹微纳米光电科技有限公司 Graphic method for reducing bonding cavities
JP2014150257A (en) * 2013-01-30 2014-08-21 Lg Innotek Co Ltd Light emitting element
WO2018003374A1 (en) * 2016-06-30 2018-01-04 Dowaエレクトロニクス株式会社 Manufacturing method for semiconductor optical device, and semiconductor optical device
JP2018006494A (en) * 2016-06-30 2018-01-11 Dowaエレクトロニクス株式会社 Manufacturing method of semiconductor light-emitting element and semiconductor light-emitting element
JP2020065041A (en) * 2018-10-12 2020-04-23 ローム株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
KR20200070381A (en) * 2017-12-22 2020-06-17 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and manufacturing method thereof
JP2020202350A (en) * 2019-06-13 2020-12-17 ローム株式会社 Semiconductor light emitting device
US20210020814A1 (en) * 2018-03-30 2021-01-21 Dowa Electronics Materials Co., Ltd. Method of manufacturing semiconductor optical device and intermediate article of semiconductor optical device
US20210226095A1 (en) * 2018-12-24 2021-07-22 Quanzhou Sanan Semiconductor Technology Co., Ltd. Light-emitting diode and manufacturing method thereof
US20210234069A1 (en) * 2020-01-25 2021-07-29 Jade Bird Display (shanghai) Limited Micro light emitting diode with high light extraction efficiency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276682A (en) * 1990-12-20 1992-10-01 American Teleph & Telegr Co <Att> Semiconductor laser device provided with it and its manufacture
JPH05226789A (en) * 1991-11-27 1993-09-03 American Teleph & Telegr Co <Att> Product including distortion layer quantum well laser
JP2000216439A (en) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd Chip-type light emitting element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276682A (en) * 1990-12-20 1992-10-01 American Teleph & Telegr Co <Att> Semiconductor laser device provided with it and its manufacture
JPH05226789A (en) * 1991-11-27 1993-09-03 American Teleph & Telegr Co <Att> Product including distortion layer quantum well laser
JP2000216439A (en) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd Chip-type light emitting element and its manufacture

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141225A (en) * 2008-12-15 2010-06-24 Hitachi Cable Ltd Semiconductor light emitting device
JP2012516569A (en) * 2009-01-30 2012-07-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Plasmonic light emitting diode
CN102301498A (en) * 2009-01-30 2011-12-28 惠普开发有限公司 Plasmonic Light Emitting Diode
US9263637B2 (en) 2009-01-30 2016-02-16 Hewlett Packard Enterprise Development Lp Plasmonic light emitting diode
KR100974784B1 (en) 2009-03-10 2010-08-06 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
US8049241B2 (en) 2009-03-10 2011-11-01 Lg Innotek Co., Ltd. Light emitting device fabrication method thereof, and light emitting apparatus
JP2010251531A (en) * 2009-04-16 2010-11-04 Rohm Co Ltd Semiconductor light-emitting element
JP2013508994A (en) * 2009-11-06 2013-03-07 旭明光電股▲ふん▼有限公司 Light emitting diode device
JP2011129724A (en) * 2009-12-18 2011-06-30 Dowa Electronics Materials Co Ltd Semiconductor light-emitting element and method of manufacturing the same
CN102446949A (en) * 2010-10-04 2012-05-09 晶元光电股份有限公司 Light-emitting element having a plurality of contact parts
US9997687B2 (en) 2010-10-04 2018-06-12 Epistar Corporation Light-emitting device
US9012948B2 (en) 2010-10-04 2015-04-21 Epistar Corporation Light-emitting element having a plurality of contact parts
CN102446949B (en) * 2010-10-04 2016-01-20 晶元光电股份有限公司 There is the light-emitting component of multiple contact site
JP2012080089A (en) * 2010-10-04 2012-04-19 Shogen Koden Kofun Yugenkoshi Light-emitting element having plural contact parts
US9577170B2 (en) 2010-10-04 2017-02-21 Epistar Corporation Light-emitting device having a plurality of contact parts
US10985301B2 (en) 2010-10-04 2021-04-20 Epistar Corporation Light-emitting device
JP2012190905A (en) * 2011-03-09 2012-10-04 Hitachi Cable Ltd Method of manufacturing semiconductor light-emitting element
JP2013069941A (en) * 2011-09-24 2013-04-18 Toshiba Corp Semiconductor light-emitting element
JP2014150257A (en) * 2013-01-30 2014-08-21 Lg Innotek Co Ltd Light emitting element
CN103500708A (en) * 2013-09-29 2014-01-08 山西飞虹微纳米光电科技有限公司 Graphic method for reducing bonding cavities
KR20190009794A (en) * 2016-06-30 2019-01-29 도와 일렉트로닉스 가부시키가이샤 Method for manufacturing semiconductor optical device and semiconductor optical device
KR102209263B1 (en) * 2016-06-30 2021-01-28 도와 일렉트로닉스 가부시키가이샤 Semiconductor optical device manufacturing method and semiconductor optical device
JP2018006495A (en) * 2016-06-30 2018-01-11 Dowaエレクトロニクス株式会社 Manufacturing method of semiconductor optical device and semiconductor optical device
CN109314158A (en) * 2016-06-30 2019-02-05 同和电子科技有限公司 The manufacturing method and optical semiconductor of optical semiconductor
TWI662629B (en) * 2016-06-30 2019-06-11 同和電子科技股份有限公司 Manufacturing method of semiconductor optical element and semiconductor optical element
JP2018006494A (en) * 2016-06-30 2018-01-11 Dowaエレクトロニクス株式会社 Manufacturing method of semiconductor light-emitting element and semiconductor light-emitting element
US11417793B2 (en) 2016-06-30 2022-08-16 Dowa Electronics Materials Co., Ltd. Method of manufacturing semiconductor optical device and semiconductor optical device
WO2018003374A1 (en) * 2016-06-30 2018-01-04 Dowaエレクトロニクス株式会社 Manufacturing method for semiconductor optical device, and semiconductor optical device
KR102441461B1 (en) * 2017-12-22 2022-09-07 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and manufacturing method thereof
US11508875B2 (en) 2017-12-22 2022-11-22 Dowa Electronics Materials Co., Ltd. Semiconductor light-emitting device and method of manufacturing the same
KR20200070381A (en) * 2017-12-22 2020-06-17 도와 일렉트로닉스 가부시키가이샤 Semiconductor light emitting device and manufacturing method thereof
US11894502B2 (en) * 2018-03-30 2024-02-06 Dowa Electronics Materials Co., Ltd. Method of manufacturing semiconductor optical device and intermediate article of semiconductor optical device
US20210020814A1 (en) * 2018-03-30 2021-01-21 Dowa Electronics Materials Co., Ltd. Method of manufacturing semiconductor optical device and intermediate article of semiconductor optical device
JP2020065041A (en) * 2018-10-12 2020-04-23 ローム株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7364376B2 (en) 2018-10-12 2023-10-18 ローム株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7154429B2 (en) 2018-12-24 2022-10-17 泉州三安半導体科技有限公司 Light emitting diode and manufacturing method thereof
US20210226095A1 (en) * 2018-12-24 2021-07-22 Quanzhou Sanan Semiconductor Technology Co., Ltd. Light-emitting diode and manufacturing method thereof
EP3905344A4 (en) * 2018-12-24 2022-08-03 Quanzhou Sanan Semiconductor Technology Co., Ltd. Light-emitting diode and manufacturing method thereof
JP2022508781A (en) * 2018-12-24 2022-01-19 泉州三安半導体科技有限公司 Light emitting diode and its manufacturing method
JP2020202350A (en) * 2019-06-13 2020-12-17 ローム株式会社 Semiconductor light emitting device
JP7360822B2 (en) 2019-06-13 2023-10-13 ローム株式会社 semiconductor light emitting device
US11626550B2 (en) * 2020-01-25 2023-04-11 Jade Bird Display (shanghai) Limited Micro light emitting diode with high light extraction efficiency
US20210234069A1 (en) * 2020-01-25 2021-07-29 Jade Bird Display (shanghai) Limited Micro light emitting diode with high light extraction efficiency
US11908988B2 (en) 2020-01-25 2024-02-20 Jade Bird Display (shanghai) Limited Micro light emitting diode with high light extraction efficiency

Similar Documents

Publication Publication Date Title
JP2008283096A (en) Semiconductor light-emitting element
JP5169012B2 (en) Semiconductor light emitting device
US7692203B2 (en) Semiconductor light emitting device
US7564071B2 (en) Semiconductor light emitting device
JP4985067B2 (en) Semiconductor light emitting device
JP4835377B2 (en) Semiconductor light emitting device
JP2009200178A (en) Semiconductor light-emitting device
JP2010080817A (en) Light-emitting element
JP2008103534A (en) Semiconductor light emitting element
JP4894411B2 (en) Semiconductor light emitting device
JP2010278112A (en) Semiconductor light emitting element
US8610151B2 (en) Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JP5845557B2 (en) Manufacturing method of semiconductor light emitting device
JP4831107B2 (en) Semiconductor light emitting device
JP2012129357A (en) Semiconductor light-emitting element
WO2014167773A1 (en) Semiconductor light emitting element and method for manufacturing same
JP4835376B2 (en) Semiconductor light emitting device
US8212268B2 (en) Epitaxial wafer, light-emitting element, method of fabricating epitaxial wafer and method of fabricating light-emitting element
JP2006261219A (en) Semiconductor light emitting element
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2006040998A (en) Semiconductor light emitting device and epitaxial wafer therefor
JP4710764B2 (en) Semiconductor light emitting device
JP2007096168A (en) Semiconductor light emitting element
JP2012129298A (en) Semiconductor light-emitting element and method for manufacturing the same
JP2010062355A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724