JP2010141225A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2010141225A
JP2010141225A JP2008317904A JP2008317904A JP2010141225A JP 2010141225 A JP2010141225 A JP 2010141225A JP 2008317904 A JP2008317904 A JP 2008317904A JP 2008317904 A JP2008317904 A JP 2008317904A JP 2010141225 A JP2010141225 A JP 2010141225A
Authority
JP
Japan
Prior art keywords
light emitting
surface electrode
layer
ohmic contact
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008317904A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
和幸 飯塚
Masahiro Arai
優洋 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008317904A priority Critical patent/JP2010141225A/en
Publication of JP2010141225A publication Critical patent/JP2010141225A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of light extraction from a semiconductor light emitting device. <P>SOLUTION: The semiconductor light emitting device 20 includes a surface electrode 13 formed on the first main surface of a group III-V semiconductor layer 21 having a light emitting layer 5, a reflection metal film 10 formed on a second main surface, a semiconductor layer 21 and a supporting substrate 11 connected through the reflection metal film 10, an ohmic contact joint 9 disposed in a region except just under the surface electrode 13 but in the portion of the face of the semiconductor layer 21 side of the reflection metal film 10. The semiconductor light emitting device 20 is ≤320 μm on a side. The surface electrode 13 has a polygonal or round shape with a circumferential length ≥235 μm and ≤700 μm. The ohmic contact joint 9 is disposed at the outer circumferential side or close to the outer circumference of the semiconductor light emitting device 20. The ohmic contact joint 9 surrounds the surface electrode 13 when viewed from the surface electrode 13 side. The distance L from each circumference position of the surface electrode 13 to the nearest ohmic contact joint 9 is the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光層を有するIII−V族化合物半導体層と支持基板との間にオーミックコ
ンタクト接合部および金属反射膜を挟んだ構造の半導体発光素子に関し、特に光の取出効率の向上を図った半導体発光素子に関する。
The present invention relates to a semiconductor light emitting device having a structure in which an ohmic contact junction and a metal reflective film are sandwiched between a III-V group compound semiconductor layer having a light emitting layer and a support substrate, and in particular, improvement of light extraction efficiency is achieved. The present invention relates to a semiconductor light emitting device.

従来、半導体発光素子である発光ダイオード(LED:Light Emitting Diode)は、近年、GaN系やAlGaInP系の高品質結晶をMOVPE法(有機金属気相成長法)で成長可能になったことから、青色、緑色、橙色、黄色、赤色の高輝度LEDが製作できるようになった。そして、LEDの高輝度化に伴い、その用途は自動車のブレーキランプや液晶ディスプレイのバックライト等へ広がりその需要は年々増加している。   2. Description of the Related Art Conventionally, light emitting diodes (LEDs), which are semiconductor light emitting elements, are blue because GaN-based and AlGaInP-based high-quality crystals can be grown by MOVPE (metal organic vapor phase epitaxy) in recent years. Green, orange, yellow, and red high-brightness LEDs can be manufactured. And with the increase in brightness of LEDs, their uses have spread to automobile brake lamps, liquid crystal display backlights, and the like, and their demand is increasing year by year.

現在、MOVPE法によって高品質の結晶が成長可能となってから、発光素子の内部効率は理論値限界値に近づきつつある。しかし、発光素子からの光取出効率はまだまだ低く、光取出効率を向上することが重要となっている。例えば、高輝度赤色LEDは、AlGaInP系の材料で形成され、その発光部は、導電性のGaAs基板上に格子整合する組成のAlGaInP系の材料から成るn型AlGaInP層とp型AlGaInP層とそれらに挟まれたAlGaInP又はGaInPから成る発光層(活性層)とを有するダブルヘテロ構造になっている。しかしながら、GaAs基板のバンドギャップは発光層のバンドギャップよりも狭い為に、発光層からの光の多くがGaAs基板に吸収され、光の取出効率が著しく低下してしまう。   Currently, since high-quality crystals can be grown by the MOVPE method, the internal efficiency of the light-emitting element is approaching the theoretical limit value. However, the light extraction efficiency from the light emitting element is still low, and it is important to improve the light extraction efficiency. For example, a high-intensity red LED is formed of an AlGaInP-based material, and its light emitting portion includes an n-type AlGaInP layer and a p-type AlGaInP layer made of an AlGaInP-based material having a lattice-matched composition on a conductive GaAs substrate. A double hetero structure having a light emitting layer (active layer) made of AlGaInP or GaInP sandwiched between two layers. However, since the band gap of the GaAs substrate is narrower than the band gap of the light emitting layer, most of the light from the light emitting layer is absorbed by the GaAs substrate, and the light extraction efficiency is significantly reduced.

そこで、GaAs基板による光の吸収を低減するために、従来、次のような方法が採用されていた。
発光層とGaAs基板の間に、屈折率の異なる半導体層から成る多層反射膜構造を形成することによって、GaAs基板での光の吸収を低減し、光の取出効率を向上させる方法が知られている。しかし、この方法では、多層反射膜構造への限定された入射角を持つ光しか反射することが出来ない。
Therefore, in order to reduce light absorption by the GaAs substrate, the following method has been conventionally employed.
There is a known method for reducing light absorption in a GaAs substrate and improving light extraction efficiency by forming a multilayer reflective film structure composed of semiconductor layers having different refractive indexes between a light emitting layer and a GaAs substrate. Yes. However, with this method, only light having a limited incident angle to the multilayer reflective film structure can be reflected.

また、AlGaInP系の材料から成るダブルヘテロ構造を反射率の高い金属反射膜を介して、GaAs基板よりも熱伝導率の良いSi支持基板に貼り付け、その後、半導体成長用に用いたGaAs基板を除去する方法が考案されている(例えば、特許文献1参照)。この方法で用いた金属反射膜では、金属反射膜への光の入射角を選ばずに高い反射が可能となるため、LEDの高輝度化が実現されている。   In addition, a double heterostructure made of an AlGaInP-based material is attached to a Si support substrate having a thermal conductivity higher than that of the GaAs substrate through a highly reflective metal reflective film, and then the GaAs substrate used for semiconductor growth is attached. A removal method has been devised (see, for example, Patent Document 1). In the metal reflection film used in this method, high reflection is possible regardless of the angle of incidence of light on the metal reflection film, so that high brightness of the LED is realized.

発光層とSi支持基板との間に金属反射膜を挟んだ上記LED構造においては、金属反射膜として反射率の高い金属、具体的には、Al、Au、Agを用いると、化合物半導体と電気的にオーミック接続が取れないため、金属反射膜の一部をオーミックコンタクト接合部としている。そのため、LED素子に注入された電子または正孔は、発光部上部に形成された表面電極からオーミックコンタクト接合部を通ってSi支持基板へと流れる。その際、表面電極とオーミックコンタクト接合部との間にある活性層で発光する。発光した光は発光部上部の半導体層表面(光取出面)から発光素子外部へ取り出される。   In the LED structure in which the metal reflective film is sandwiched between the light emitting layer and the Si support substrate, when a metal having high reflectivity is used as the metal reflective film, specifically, Al, Au, or Ag is used, the compound semiconductor and the electric material are electrically connected. Since ohmic connection cannot be obtained, a part of the metal reflective film is used as an ohmic contact junction. Therefore, the electrons or holes injected into the LED element flow from the surface electrode formed on the light emitting portion through the ohmic contact junction to the Si support substrate. At that time, light is emitted from the active layer between the surface electrode and the ohmic contact junction. The emitted light is extracted from the semiconductor layer surface (light extraction surface) above the light emitting unit to the outside of the light emitting element.

特開2005−175462号公報JP 2005-175462 A

ところで、発光層とSi支持基板との間にオーミックコンタクト接合部および金属反射膜を挟んだ上記従来のLED構造にあっては、発光した光の一部は光取出面と金属反射膜との間で多重反射されるが、光がオーミックコンタクト接合部および表面電極に到達した場合、オーミックコンタクト接合部も表面電極も共に発光した光に対しての吸収が高いため、光を発光素子外部に取り出せなくなる。特に、表面電極は、オーミックコンタクト部と比較して面積が大きいため、発光素子全体での大きな吸収要因となる。このため、表面電極の面積を小さくする必要がある。しかし、単純な円形状などの表面電極では、面積を小さくすると電流分散性が悪くなる。   By the way, in the above conventional LED structure in which the ohmic contact junction and the metal reflection film are sandwiched between the light emitting layer and the Si support substrate, a part of the emitted light is between the light extraction surface and the metal reflection film. However, when light reaches the ohmic contact junction and the surface electrode, both the ohmic contact junction and the surface electrode have high absorption for the emitted light, and thus light cannot be extracted outside the light emitting element. . In particular, since the surface electrode has a larger area than the ohmic contact portion, it becomes a large absorption factor in the entire light emitting element. For this reason, it is necessary to reduce the area of the surface electrode. However, in the case of a surface electrode having a simple circular shape or the like, the current dispersibility deteriorates when the area is reduced.

そこで、発光素子内に電流を均一に分散させるように、表面電極を円形の中心部から線状に電極を延ばした形状の表面電極(例えば、図10参照)など、種々の表面電極形状を工夫して、光の取出効率の向上のみならず、順方向電圧の低減などの特性向上を図っている。   Therefore, various surface electrode shapes such as a surface electrode having a shape in which the surface electrode is linearly extended from the center of the circular shape (for example, see FIG. 10) are devised so as to uniformly distribute the current in the light emitting element. Thus, not only the light extraction efficiency is improved, but also characteristics such as reduction of the forward voltage are improved.

しかしながら、表面電極での光吸収を減少させるために、表面電極の直下以外の領域にオーミックコンタクト接合部が配置された電流狭窄構造の発光素子にあっては、発光素子のチップサイズが小さな場合、線状に電極を延ばしたような複雑な形状の表面電極は、結果的に表面電極面積の増加となり、光の取出効率が低下してしまう。   However, in order to reduce light absorption at the surface electrode, in the current confinement structure light emitting element in which the ohmic contact junction is arranged in a region other than directly below the surface electrode, when the chip size of the light emitting element is small, A surface electrode having a complicated shape such as an electrode extended linearly results in an increase in the surface electrode area, and the light extraction efficiency decreases.

本発明は、上記課題を解決し、光の取出効率の向上が図れる半導体発光素子を提供することを目的とする。   An object of the present invention is to provide a semiconductor light emitting device that solves the above-described problems and can improve the light extraction efficiency.

上記課題を解決するために、本発明は次のように構成されている。   In order to solve the above problems, the present invention is configured as follows.

本発明の第1の態様は、発光層を有するIII−V族化合物半導体層を備え、前記III−V族化合物半導体層の第一の主表面側には光取出面が形成され、第二の主表面側には前記発光層からの光を前記光取出面側に反射する反射金属膜が形成され、前記反射金属膜を介して前記III−V族化合物半導体層と支持基板とが接合されており、前記III−V族化合物半導体層の第一の主表面上に表面電極が形成され、前記反射金属膜の前記III−V族化合物
半導体層側の面の一部にオーミックコンタクト接合部が前記表面電極の直下以外の領域に配置された半導体発光素子おいて、前記半導体発光素子は1辺が320μm以下の四角形状であり、前記表面電極は多角形状または丸形状からなり、前記表面電極の外周の長さが235μm以上700μm以下であり、前記オーミックコンタクト接合部が前記半導体発光素子の外周部側に配置され、前記表面電極側から前記オーミックコンタクト接合部をみたときに、前記オーミックコンタクト接合部が前記表面電極を包囲するように形成され、且つ前記表面電極の外縁部の各位置から最も近い前記オーミックコンタクト接合部までの距離が等しくなるように配置されていることを特徴とする半導体発光素子である。
A first aspect of the present invention includes a group III-V compound semiconductor layer having a light emitting layer, and a light extraction surface is formed on the first main surface side of the group III-V compound semiconductor layer, A reflective metal film that reflects light from the light emitting layer to the light extraction surface side is formed on the main surface side, and the III-V compound semiconductor layer and the support substrate are bonded via the reflective metal film. A surface electrode is formed on the first main surface of the group III-V compound semiconductor layer, and an ohmic contact junction is formed on a part of the surface of the reflective metal film on the group III-V compound semiconductor layer side. In the semiconductor light emitting device disposed in a region other than directly under the surface electrode, the semiconductor light emitting device has a square shape with one side of 320 μm or less, the surface electrode has a polygonal shape or a round shape, and the outer periphery of the surface electrode. Is 235 μm or more and 700 μm or less in length, The ohmic contact junction is disposed on the outer peripheral side of the semiconductor light emitting element, and when viewed from the surface electrode side, the ohmic contact junction is formed so as to surround the surface electrode, In addition, the semiconductor light emitting device is characterized in that the distance from each position of the outer edge portion of the surface electrode to the nearest ohmic contact junction is equal.

本発明の第2の態様は、第1の態様の半導体発光素子において、前記III−V族化合物
半導体層と前記反射金属膜との間に透明誘電体膜が設けられ、前記透明誘電体膜の一部に前記透明誘電体膜を貫通して前記オーミックコンタクト接合部が形成されている。
According to a second aspect of the present invention, in the semiconductor light emitting device of the first aspect, a transparent dielectric film is provided between the III-V compound semiconductor layer and the reflective metal film, The ohmic contact junction is formed in part through the transparent dielectric film.

本発明の第3の態様は、第1の態様又は第2の態様の半導体発光素子において、前記光取出面となる前記III−V族化合物半導体層の表面が、高さ100nm以上の凹凸形状で
ある。
According to a third aspect of the present invention, in the semiconductor light emitting device of the first aspect or the second aspect, the surface of the III-V group compound semiconductor layer serving as the light extraction surface has an uneven shape with a height of 100 nm or more. is there.

本発明の第4の態様は、第1〜第3の態様のいずれかの半導体発光素子において、前記オーミックコンタクト接合部は、前記表面電極の多角形状または丸形状と相似形の多角形状または丸形状の線状に形成され、且つ前記表面電極側からオーミックコンタクト接合部
を見たときに、前記表面電極と同心配置に設けられている。
According to a fourth aspect of the present invention, in the semiconductor light emitting device according to any one of the first to third aspects, the ohmic contact junction is a polygonal shape or a round shape similar to the polygonal shape or the round shape of the surface electrode. When the ohmic contact junction is viewed from the surface electrode side, it is provided concentrically with the surface electrode.

本発明の第5の態様は、第3の態様又は第4の態様の半導体発光素子において、前記凹凸形状である光取出面が、透明膜で覆われている。   According to a fifth aspect of the present invention, in the semiconductor light emitting device of the third aspect or the fourth aspect, the light extraction surface having the concavo-convex shape is covered with a transparent film.

本発明によれば、チップサイズが小さな半導体発光素子に対して、効果的に、光の取出効率を高めることができる。   According to the present invention, it is possible to effectively increase the light extraction efficiency for a semiconductor light emitting device having a small chip size.

以下に、本発明に係る半導体発光素子の一実施形態を説明する。   Hereinafter, an embodiment of a semiconductor light emitting device according to the present invention will be described.

本実施形態の半導体発光素子は、発光層を有するIII−V族化合物半導体層を備え、前
記III−V族化合物半導体層の第一の主表面側には光取出面が形成され、第二の主表面側
には前記発光層からの光を前記光取出面側に反射する反射金属膜が形成され、前記反射金属膜を介して前記III−V族化合物半導体層と支持基板とが接合されている。支持基板に
は裏面電極が形成される。
金属反射膜(少なくとも第二の主表面側の部分の金属反射膜)は、発光波長に対して80%以上の反射率を有する金属、具体的には、Au、Ag、Alの何れか、またはその合金からなることが好ましい。
光取出面は、光取出効率を高めるために、表面の高さ(表面粗さである最大高さ)が100nm以上の凹凸形状とするのが好ましい。
The semiconductor light emitting device of this embodiment includes a group III-V compound semiconductor layer having a light emitting layer, and a light extraction surface is formed on the first main surface side of the group III-V compound semiconductor layer. A reflective metal film that reflects light from the light emitting layer to the light extraction surface side is formed on the main surface side, and the III-V compound semiconductor layer and the support substrate are bonded via the reflective metal film. Yes. A back electrode is formed on the support substrate.
The metal reflecting film (at least the second main surface side metal reflecting film) is a metal having a reflectance of 80% or more with respect to the emission wavelength, specifically, any one of Au, Ag, Al, or It is preferable to consist of the alloy.
In order to increase the light extraction efficiency, it is preferable that the light extraction surface has a concavo-convex shape having a surface height (maximum height which is surface roughness) of 100 nm or more.

前記III−V族化合物半導体層の第一の主表面上に表面電極が形成され、前記反射金属
膜の前記III−V族化合物半導体層側の面の一部に接触抵抗を低減するためのオーミック
コンタクト接合部が前記表面電極の直下以外の領域に配置されている。すなわち、オーミックコンタクト接合部と表面電極とは、光取出面側から見て互いに重ならないように配置された電流狭窄構造となっている。
本実施形態では、前記III−V族化合物半導体層と前記反射金属膜との間には、発光層
で発光した光に対して透明な材料からなる透明誘電体膜が設けられ、前記透明誘電体膜の一部に透明誘電体膜を貫通して前記オーミックコンタクト接合部が形成されている。
透明誘電体膜の膜厚は、発光波長λ、透明誘電体膜の屈折率をnとした場合に、(2×λ)/(4×n)以上の厚さであることが好ましい。また、透明誘電体膜の材料には、例えば、SiO、SiNを用いるのが好ましい。
A surface electrode is formed on the first main surface of the III-V compound semiconductor layer, and an ohmic for reducing contact resistance on a part of the surface of the reflective metal film on the III-V compound semiconductor layer side The contact bonding portion is disposed in a region other than directly below the surface electrode. That is, the ohmic contact junction and the surface electrode have a current confinement structure arranged so as not to overlap each other when viewed from the light extraction surface side.
In the present embodiment, a transparent dielectric film made of a material transparent to the light emitted from the light emitting layer is provided between the III-V compound semiconductor layer and the reflective metal film, and the transparent dielectric The ohmic contact junction is formed through a part of the film through the transparent dielectric film.
The film thickness of the transparent dielectric film is preferably (2 × λ) / (4 × n) or more when the emission wavelength λ and the refractive index of the transparent dielectric film are n. For example, SiO 2 or SiN is preferably used as the material for the transparent dielectric film.

前記半導体発光素子のチップサイズは、1辺が320μm以下の四角形状であり、前記表面電極は、四角形状、五角形状等の多角形状、または円形状、楕円形状等の丸形状からなる。すなわち、本実施形態の表面電極は、円形等の中心部(電極パッド形成部分となる)から線状に延びたり突き出したりしたような複雑な形状の表面電極(例えば、図10の表面電極111,121)ではなく、単純な多角形状(例えば、図7の四角形状の表面電極13)または丸形状(例えば、図8の円形状の表面電極31)である。言い換えると、表面電極形状は、線状に延びた部分などがなく、小さくまとまった形状をしている。前記表面電極の外周の長さは、235μm以上700μm以下である。なお、表面電極の形状は、例えば、図9の表面電極41のように、四角形状の角部を、曲面や直線で滑らかに面取りしたような形状でも同様な効果が得られる。また、前記表面電極上には、通常、表面電極と同形・同寸法の電極パッドが設けられる。   The chip size of the semiconductor light emitting element is a quadrangular shape with one side of 320 μm or less, and the surface electrode has a quadrangular shape such as a quadrangular shape or a pentagonal shape, or a round shape such as a circular shape or an elliptical shape. That is, the surface electrode of the present embodiment has a complicated shape such as a surface electrode (for example, surface electrode 111, FIG. 121) instead of a simple polygonal shape (for example, the rectangular surface electrode 13 in FIG. 7) or a round shape (for example, the circular surface electrode 31 in FIG. 8). In other words, the shape of the surface electrode has a small unity shape without a linearly extending portion. The length of the outer periphery of the surface electrode is not less than 235 μm and not more than 700 μm. Note that the same effect can be obtained even when the shape of the surface electrode is such that the square corner is smoothly chamfered with a curved surface or a straight line as in the surface electrode 41 of FIG. 9, for example. On the surface electrode, an electrode pad having the same shape and size as the surface electrode is usually provided.

前記オーミックコンタクト接合部は前記半導体発光素子の外周部側に配置され、前記表面電極側から前記オーミックコンタクト接合部をみたときに、前記オーミックコンタクト接合部が前記表面電極を包囲するように線状等に形成され、且つ前記表面電極の外縁部の
各位置から最も近い前記オーミックコンタクト接合部までの距離(例えば、図7の距離(最短距離)L参照)が等しくなるように配置されている。
The ohmic contact junction is arranged on the outer peripheral side of the semiconductor light emitting device, and when viewed from the surface electrode side, the ohmic contact junction surrounds the surface electrode, so that the ohmic contact junction surrounds the surface electrode. And the distance from each position of the outer edge portion of the surface electrode to the nearest ohmic contact junction (for example, see the distance (shortest distance) L in FIG. 7) is equal.

具体的には、表面電極は、前記III−V族化合物半導体層の第一の主表面の中央部に、
多角形状(例えば、正方形状)または丸形状(例えば、円形状)に形成され、オーミックコンタクト接合部は、表面電極側からオーミックコンタクト接合部を見たときに、前記表面電極を包囲するように表面電極と相似の多角形状または丸形状の線状等で同心配置に設けられる。
Specifically, the surface electrode is formed at the center of the first main surface of the III-V compound semiconductor layer,
The ohmic contact junction is formed in a polygonal shape (for example, a square shape) or a round shape (for example, a circular shape), and the ohmic contact junction surface surrounds the surface electrode when viewed from the surface electrode side. It is provided in a concentric arrangement such as a polygonal shape or a round line shape similar to the electrode.

なお、オーミックコンタクト接合部は、表面電極側から見て表面電極を包囲するように設けられていればよく、オーミックコンタクト接合部は多角形状または丸形状の線状等の単一な閉じた形状のものに限らず、複数に分割された線状等のものが表面電極を包囲するように、全体として多角形状または丸形状に配置されていてもよい。或いは、オーミックコンタクト接合部が表面電極外周の全てを包囲せずに、例えば、四角形状の表面電極を、発光素子チップの中央部ではなく発光素子チップの一辺に近く配置し、四角形状の表面電極の三方をオーミックコンタクト接合部がコ字状に包囲するようにしてもよい。
また、表面電極の外縁部の各位置から最も近いオーミックコンタクト接合部までの距離が等しくなるように配置するとしているが、前記距離が等しくない箇所が部分的に少しあるような配置でもよい。
Note that the ohmic contact junction may be provided so as to surround the surface electrode when viewed from the surface electrode side, and the ohmic contact junction has a single closed shape such as a polygonal shape or a round linear shape. It is not limited to that, but may be arranged in a polygonal shape or a round shape as a whole so that a plurality of divided lines or the like surround the surface electrode. Alternatively, the ohmic contact junction does not surround the entire outer periphery of the surface electrode. For example, a rectangular surface electrode is arranged near one side of the light emitting element chip instead of the central portion of the light emitting element chip. These three sides may be surrounded by an ohmic contact junction in a U-shape.
In addition, although the arrangement is made such that the distance from each position of the outer edge portion of the surface electrode to the nearest ohmic contact junction is equal, the arrangement may be such that there are some portions where the distance is not equal.

半導体発光素子に順方向電圧を加えると、表面電極からオーミックコンタクト接合部を通って支持基板へと電流が流れる。その際、表面電極とオーミックコンタクト接合部との間にある発光層で発光する。発光した光は、光取出面やIII−V族化合物半導体層の側面
などから発光素子の外部に取り出される。
When a forward voltage is applied to the semiconductor light emitting device, a current flows from the surface electrode through the ohmic contact junction to the support substrate. At that time, light is emitted from the light emitting layer between the surface electrode and the ohmic contact junction. The emitted light is extracted to the outside of the light emitting element from the light extraction surface or the side surface of the III-V compound semiconductor layer.

発光素子のチップサイズが大きい場合には、円形等の中心部から線状に延びたような複雑な形状の表面電極は、電流分散性がよく、しかも光の吸収量・遮光量もあまり多くなく、優れた表面電極形状である。しかしながら、最近は、小さなチップサイズの発光素子が作製されており、1辺が320μmよりもチップサイズが小さくなると、線状に伸びた部分などを有する複雑な形状の表面電極は、発光素子チップ上面の面積に占める表面電極面積の割合が大きくなって、電流分散性の向上よりも、光の吸収量の増加が問題となり、光の取出効率が低下してしまう。   When the chip size of the light-emitting element is large, the surface electrode with a complicated shape that extends linearly from a central part such as a circle has good current dispersion and does not have much light absorption or light shielding. Excellent surface electrode shape. However, recently, a light-emitting element having a small chip size has been manufactured, and when the chip size is smaller than 320 μm on one side, the surface electrode having a complicated shape having a linearly extending portion is formed on the top surface of the light-emitting element chip. The ratio of the area of the surface electrode in the area is increased, and the increase in the amount of light absorption becomes a problem rather than the improvement in current dispersibility, and the light extraction efficiency is lowered.

そこで、本実施形態では、表面電極は単純な多角形状または丸形状の小さくまとまった形状とし、表面電極側からオーミックコンタクト接合部をみたときに、オーミックコンタクト接合部を、表面電極を包囲するように、しかも表面電極からなるべく距離を置くように半導体発光素子の外周側に配置している。
これは、オーミックコンタクト接合部と表面電極との間の距離(特に、表面電極側からオーミックコンタクト接合部をみたときの、オーミックコンタクト接合部と表面電極との間の水平距離)によって光取り出し効率が大きく変化し、距離が大きい方が、発光出力が高くなる。表面電極が大きくなると、必然的に上記距離も小さくなる為、発光出力も低下する。
Therefore, in the present embodiment, the surface electrode has a simple polygonal shape or a round shape, and when viewed from the surface electrode side, the ohmic contact junction is surrounded by the surface electrode. And it arrange | positions on the outer peripheral side of a semiconductor light-emitting device so that it may keep distance as much as possible from a surface electrode.
This is because the light extraction efficiency depends on the distance between the ohmic contact junction and the surface electrode (particularly, the horizontal distance between the ohmic contact junction and the surface electrode when the ohmic contact junction is viewed from the surface electrode side). The light output increases as the distance changes greatly and the distance increases. When the surface electrode becomes large, the above-mentioned distance is inevitably reduced, so that the light emission output is also reduced.

表面電極(或いは電極パッド)は、歩留まり良くワイヤーボンディング可能とする為には、表面電極の中心を通る直線が表面電極を横切る長さ・寸法が最小で75μm以上必要である。この最小の長さ75μmを確保でき、外周長さを最も短くできる表面電極(或いは電極パッド)の形状は、直径75μmの円形の場合であり、直径75μmの円形の外周長さは235μmとなる。従って、表面電極の外周長さは235μm以上とするのがよい。
一方、発光素子のチップサイズの一辺が320μmよりも小さい場合に、単純な丸形状
または多角形状の表面電極の外周長さが700μmよりも長くなると、表面電極の光吸収によって光の取出効率が低下し、発光出力が著しく低下してしまう(図11、図12参照)。従って、表面電極の外周長さは700μm以下とするのがよい。
チップの一辺が320μmよりも大きい場合には、単純な丸形状や四角形状の表面電極(電極パット)から線状に延びた部分を有する表面電極とし、チップ内に電流を分散させて広げた方が発光出力が向上する。逆に、チップの1辺が320μm以下の比較的に小さいチップに対しては、単純な丸形状または多角形状の表面電極(電極パット)から線状電極を延ばすと、電流をチップ全体に広げる効果以上に光吸収要因が大きく作用して、発光出力が大きく出来ないものと考えられる(図13参照)。
The surface electrode (or electrode pad) needs to have a minimum length and dimension of 75 μm or more so that a straight line passing through the center of the surface electrode crosses the surface electrode in order to enable wire bonding with a high yield. The shape of the surface electrode (or electrode pad) that can secure the minimum length of 75 μm and that can shorten the outer peripheral length is the case of a circular shape with a diameter of 75 μm, and the circular outer peripheral length with a diameter of 75 μm is 235 μm. Therefore, the outer peripheral length of the surface electrode is preferably 235 μm or more.
On the other hand, when one side of the chip size of the light emitting element is smaller than 320 μm, if the outer circumference of a simple round or polygonal surface electrode is longer than 700 μm, the light extraction efficiency decreases due to light absorption of the surface electrode. As a result, the light emission output is significantly reduced (see FIGS. 11 and 12). Therefore, the outer peripheral length of the surface electrode is preferably 700 μm or less.
When one side of the chip is larger than 320 μm, it is a surface electrode having a portion extending linearly from a simple round or square surface electrode (electrode pad) and spread by spreading the current in the chip However, the light emission output is improved. Conversely, for a relatively small chip with one side of 320 μm or less, extending the linear electrode from a simple round or polygonal surface electrode (electrode pad) has the effect of spreading the current over the entire chip. As described above, it is considered that the light absorption factor acts so much that the light emission output cannot be increased (see FIG. 13).

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

(実施例1)
図7に、実施例1の半導体発光素子を示す。図1〜図6には、この実施例1の半導体発光素子の製造方法の各工程を示す。なお、図1〜図6には、図面の簡略化のために、二個の発光素子20が横並びに作製される状況を示している。
Example 1
FIG. 7 shows the semiconductor light emitting device of Example 1. 1 to 6 show respective steps of the method for manufacturing the semiconductor light emitting device of the first embodiment. 1 to 6 show a situation in which two light emitting elements 20 are manufactured side by side for simplification of the drawings.

まず、図1に示した構造の発光波長630nm付近の赤色LED用エピタキシャルウェハを作製した。エピタキシャル成長方法、エピタキシャル構造、電極形成方法、及びLED素子製作方法は、以下の通りである。   First, an epitaxial wafer for red LEDs having a light emission wavelength of about 630 nm having the structure shown in FIG. 1 was produced. The epitaxial growth method, epitaxial structure, electrode forming method, and LED element manufacturing method are as follows.

エピタキシャル成長では、n型GaAs基板1上に、MOVPE法を用いて、アンドープ(Al0.7Ga0.30.5In0.5Pエッチングストップ層2、n型(Siドープ)GaAsコンタクト層3、n型(Siドープ)(Al0.7Ga0.30.5In0.5Pクラッド層4、アンドープ(Al0.1Ga0.90.5In0.5P活性層(発光層)5、p型(Mgドープ)(Al0.7Ga0.30.5In0.5Pクラッド層6、およびp型(Mgドープ)GaPコンタクト層7を、MOVPE法で順次積層成長させた。
MOVPE成長での成長温度は650℃とし、成長圧力は50Torr(約6666Pa)、各層の成長速度は0.3〜1.0nm/sec、V/III比は約200前後で行った
。因みに、ここで言うV/III比とは、分母をTMGaやTMAlなどのIII族原料のモル数とし、分子をAsH、PHなどのV族原料のモル数とした場合の比率(商)を指す。
MOVPE成長において用いる原料としては、例えばトリメチルガリウム(TMGa)、又はトリエチルガリウム(TEGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)等の有機金属や、アルシン(AsH)、ホスフィン(PH)等の水素化物ガスを用いた。n型半導体層の導電型決定不純物の添加物原料としては、ジシラン(Si)を用いた。また、p型半導体層の導電型決定不純物の添加物原料としては、ビスシクロペンタジエニルマグネシウム(CpMg)を用いた。
その他に、n型層の導電型決定不純物の添加物原料として、セレン化水素(HSe)、モノシラン(SiH)、ジエチルテルル(DETe)、ジメチルテルル(DMTe)を用いることもできる。その他に、p型層のp型添加物原料として、ジメチルジンク(DMZn)、ジエチルジンク(DEZn)を用いる事も出来る。
In the epitaxial growth, an undoped (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P etching stop layer 2 and an n-type (Si-doped) GaAs contact layer are formed on the n-type GaAs substrate 1 using the MOVPE method. 3, n-type (Si doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4, undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P activity Layer (light emitting layer) 5, p-type (Mg doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 6, and p-type (Mg doped) GaP contact layer 7 are formed by MOVPE method. The layers were grown in order.
The growth temperature in MOVPE growth was 650 ° C., the growth pressure was 50 Torr (about 6666 Pa), the growth rate of each layer was 0.3 to 1.0 nm / sec, and the V / III ratio was about 200. Incidentally, the V / III ratio mentioned here is a ratio (quotient) when the denominator is the number of moles of a group III material such as TMGa or TMAl and the numerator is the number of moles of a group V material such as AsH 3 or PH 3. Point to.
The raw material used in the MOVPE growth, for example, trimethyl gallium (TMGa), or triethylgallium (TEGa), trimethylaluminum (TMAl), and organometallic birds such as trimethyl indium (TMIn), arsine (AsH 3), phosphine (PH 3) A hydride gas such as was used. Disilane (Si 2 H 6 ) was used as an additive material for the conductivity type determining impurity of the n-type semiconductor layer. Moreover, biscyclopentadienyl magnesium (Cp 2 Mg) was used as an additive material for the conductivity determining impurity of the p-type semiconductor layer.
In addition, hydrogen selenide (H 2 Se), monosilane (SiH 4 ), diethyl tellurium (DETe), or dimethyl tellurium (DMTe) can also be used as an additive material for the conductivity determining impurity of the n-type layer. In addition, dimethyl zinc (DMZn) and diethyl zinc (DEZn) can also be used as a p-type additive material for the p-type layer.

更に、このLED用エピタキシャルウェハをMOCVD装置から搬出した後、p型GaPコンタクト層7表面に、プラズマーCVD装置で、透明誘電体膜としてのSiO膜8を成膜し、レジストやマスクアライナなどの一般的なフォトリソグラフィー技術を使用し、フッ酸系エッチング液でSiO膜8に開口部(正方形の線状の開口部)を形成し、その開口部に真空蒸着法によって、線状の正方形のオーミックコンタクト接合部9を形成した(図2)。図2(a)は上面図、図2(b)は図2(a)の2B−2B断面図である。
オーミックコンタクト接合部9には、AuZn(金・亜鉛)合金を用いた。また、オーミックコンタクト接合部9は、後で形成する表面電極13直下以外の領域になるように配置した。
Further, after the LED epitaxial wafer is unloaded from the MOCVD apparatus, a SiO 2 film 8 as a transparent dielectric film is formed on the surface of the p-type GaP contact layer 7 by a plasma CVD apparatus, and a resist, a mask aligner, etc. Using a general photolithography technique, an opening (a square linear opening) is formed in the SiO 2 film 8 with a hydrofluoric acid-based etching solution, and a linear square is formed in the opening by vacuum deposition. An ohmic contact junction 9 was formed (FIG. 2). 2A is a top view, and FIG. 2B is a cross-sectional view taken along the line 2B-2B in FIG.
An AuZn (gold / zinc) alloy was used for the ohmic contact junction 9. Further, the ohmic contact junction 9 was disposed so as to be in a region other than directly below the surface electrode 13 to be formed later.

次に、上記オーミックコンタクト接合部付きLED用エピタキシャルウェハ上に、反射金属膜10として、Al(アルミニウム)層、Ti(チタン)層、Au(金)層を、それぞれ順に蒸着した(図3)。Al層が反射層(反射膜)、Tiが拡散防止バリア層、Auが接合層となる。
一方、支持基板として用意した導電性Si基板11の表面に、Ti(チタン)層、Pt(プラチナ)層、Au(金)層を、それぞれ順に蒸着し、金属密着層12を形成した(図3)。Ti層がオーミックコンタクト金属層、Ptが拡散防止バリア層、Auが接合層となる。
上記の様にして作製したLEDエピタキシャルウエハ表面のAu接合層と、Si基板11表面のAu接合層とを貼り合わせる(図3)。貼り合わせは、圧力0.01Torr(
約1.33Pa)雰囲気で荷重を30Kgf/cm負荷した状態で、温度350℃で3
0分間保持することによって行った。
Next, an Al (aluminum) layer, a Ti (titanium) layer, and an Au (gold) layer were sequentially deposited as the reflective metal film 10 on the above-described LED epitaxial wafer with an ohmic contact junction (FIG. 3). The Al layer is a reflection layer (reflection film), Ti is a diffusion barrier layer, and Au is a bonding layer.
On the other hand, a Ti (titanium) layer, a Pt (platinum) layer, and an Au (gold) layer were sequentially deposited on the surface of the conductive Si substrate 11 prepared as a support substrate to form a metal adhesion layer 12 (FIG. 3). ). The Ti layer is an ohmic contact metal layer, Pt is a diffusion barrier layer, and Au is a bonding layer.
The Au bonding layer on the surface of the LED epitaxial wafer produced as described above is bonded to the Au bonding layer on the surface of the Si substrate 11 (FIG. 3). Bonding is performed at a pressure of 0.01 Torr (
About 1.33 Pa) With a load of 30 kgf / cm 2 in an atmosphere, the temperature is 350 ° C. and 3
This was done by holding for 0 minutes.

次に、Si基板11に貼り合わせたLEDエピタキシャルウェハのGaAs基板1をアンモニア水と過酸化水素水の混合液によってエッチング除去し、アンドープ(Al0.7
Ga0.30.5In0.5Pエッチングストップ層2を露出させた。更に、塩酸でエッ
チングストップ層2を除去し、n型GaAsコンタクト層3を露出させた(図4)。
Next, the GaAs substrate 1 of the LED epitaxial wafer bonded to the Si substrate 11 is removed by etching with a mixed solution of ammonia water and hydrogen peroxide solution, and undoped (Al 0.7).
Ga 0.3 ) 0.5 In 0.5 P etching stop layer 2 was exposed. Further, the etching stop layer 2 was removed with hydrochloric acid to expose the n-type GaAs contact layer 3 (FIG. 4).

次に、n型GaAsコンタクト層3の表面にレジストやマスクアライナなどの一般的なフォトリソグラフィー技術を用い、真空蒸着法によって独立した1辺がl00μmの正方形からなるn側表面電極13を形成した。表面電極13は、AuGe(金−ゲルマニウム合金)層、Ti(チタン)層、Au(金)層を、それぞれ順に蒸着して形成した。表面電極13の形成後、硫酸と過酸化水素水と水の混合液からなるエッチング液を用いて、形成した表面電極13をマスクとして、表面電極13直下以外のGaAsコンタクト層3をエッチング除去し、選択性エッチングによってn型(Al0.7Ga0.30.5In0.5Pクラッド層4を露出させた(図5)。 Next, a general photolithography technique such as a resist or a mask aligner was used on the surface of the n-type GaAs contact layer 3 to form an n-side surface electrode 13 made of a square having a side of 100 μm by a vacuum deposition method. The surface electrode 13 was formed by sequentially depositing an AuGe (gold-germanium alloy) layer, a Ti (titanium) layer, and an Au (gold) layer. After the formation of the surface electrode 13, the GaAs contact layer 3 other than directly below the surface electrode 13 is removed by etching using an etchant composed of a mixture of sulfuric acid, hydrogen peroxide and water, using the formed surface electrode 13 as a mask, The n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 4 was exposed by selective etching (FIG. 5).

次に、光取出面4aとなるn型(Al0.7Ga0.30.5In0.5Pクラッド層4上にフォトリソグラフィー技術を用いて1.0μm〜3.0μm周期のパターニングを行い、ウエットエッチング法でn型(Al0.7Ga0.30.5In0.5Pクラッド層4表面に凹凸形状を形成した(図6)。
更に、フォトリソグラフィー技術を用いて素子間分離のためのパターニングを行い、n型クラッド層4表面からp型GaPコンタクト層7までをウエットエッチング法で除去することによって素子間分離を行った(図6)。
Next, patterning with a period of 1.0 μm to 3.0 μm is performed on the n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 4 to be the light extraction surface 4a by using a photolithography technique. Then, an uneven shape was formed on the surface of the n-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer 4 by wet etching (FIG. 6).
Further, patterning for element isolation was performed using a photolithography technique, and element isolation was performed by removing the surface from the n-type cladding layer 4 to the p-type GaP contact layer 7 by wet etching (FIG. 6). ).

次に、Si基板11裏面に、Ti(チタン)層、Au(金)層からなる裏面電極14を真空蒸着法によって形成した後、電極の合金化であるアロイエ程を、窒素ガス雰囲気中にて400℃に加熱し、5分間熱処理する事で行った。
更に、ワイヤーのボンディング用にTi(チタン)層、Au(金)層からなる表面電極パット15を、表面電極13上にフォトリソグラフィー技術および真空蒸着法によって形成した。
その後、上記の様にして構成された電極形成したLED用基板を、ダイシング装置を用いて切断し、チップサイズ300μm角のLEDベアチップを作製した(図7)。
更に前記LEDベアチップをTO−18ステム上にマウント(ダイボンディング)し、その後、更にマウントされた前記LEDベアチップに、ワイヤボンディングを行い、LED素子を作製した。
Next, after forming a back electrode 14 made of a Ti (titanium) layer and an Au (gold) layer on the back surface of the Si substrate 11 by vacuum deposition, alloying of the electrode is performed in a nitrogen gas atmosphere. It was performed by heating to 400 ° C. and heat treating for 5 minutes.
Further, a surface electrode pad 15 made of a Ti (titanium) layer and an Au (gold) layer for wire bonding was formed on the surface electrode 13 by photolithography and vacuum deposition.
Thereafter, the electrode substrate with the electrode formed as described above was cut using a dicing apparatus to produce an LED bare chip having a chip size of 300 μm square (FIG. 7).
Furthermore, the LED bare chip was mounted on a TO-18 stem (die bonding), and then wire bonding was performed on the mounted LED bare chip to produce an LED element.

(実施例2、実施例3)
実施例2として、図8の上面図に示した構造の発光波長630nm付近の貼り換え型赤色発光素子30を作製した。また、実施例3として、図9の上面図に示した構造の発光波長630nm付近の貼り換え型赤色発光素子40を作製した。実施例2、実施例3において、エピタキシャル成長の方法、エピタキシャル層膜厚、エピタキシャル層構造、反射金属膜、支持基板への貼り替え方法、エッチング方法等のプロセス工程やLED素子製作方法は、基本的に上記実施例1と同じにした。
上記実施例1と異なる点は、実施例2では、図8に示すように、表面電極31は円形状であり、表面電極31側から見て、円形状の表面電極31を取り囲んで円形の線状のオーミックコンタクト接合部32が同心配置で設けられている点である。また、実施例3では、図9に示すように、表面電極41は正方形の角部を滑らかにR面取りしたような形状であり、表面電極41側から見て、表面電極31を取り囲んで表面電極41と相似形状の線状のオーミックコンタクト接合部42が同心配置で設けられている点である。
(Example 2, Example 3)
As Example 2, a replaceable red light emitting device 30 having an emission wavelength near 630 nm and having the structure shown in the top view of FIG. Further, as Example 3, a repositionable red light emitting device 40 having an emission wavelength near 630 nm and having the structure shown in the top view of FIG. In Example 2 and Example 3, process steps such as an epitaxial growth method, an epitaxial layer thickness, an epitaxial layer structure, a reflective metal film, a method of attaching to a support substrate, an etching method, and an LED element manufacturing method are basically Same as Example 1 above.
The difference from the first embodiment is that in the second embodiment, as shown in FIG. 8, the surface electrode 31 has a circular shape, and surrounds the circular surface electrode 31 as viewed from the surface electrode 31 side. The point is that the ohmic contact junctions 32 are provided in a concentric arrangement. In Example 3, as shown in FIG. 9, the surface electrode 41 has a shape in which a square corner portion is smoothly rounded on the R surface, and surrounds the surface electrode 31 when viewed from the surface electrode 41 side. 41, linear ohmic contact junctions 42 having a similar shape to that of 41 are provided in a concentric arrangement.

(比較例1、比較例2)
比較例1として、図10(a)の上面図に示した構造の発光波長630nm付近の貼り換え型赤色発光素子110を作製した。また、比較例2として、図10(b)の上面図に示した構造の発光波長630nm付近の貼り換え型赤色発光素子120を作製した。比較例1、比較例2において、エピタキシャル成長の方法、エピタキシャル層膜厚、エピタキシャル層構造、反射金属膜、支持基板への貼り替え方法、エッチング方法等のプロセス工程やLED素子製作方法は、基本的に上記実施例1と同じにした。
上記実施例1と異なる点は、比較例1では、図10(a)に示すように、表面電極111は中央部(電極パッドが形成される部分)が円形(直径100μm)であって、この円形の中央部から放射状に線状電極が延びた形状であり、表面電極111側から見て、表面電極111の線状電極を取り囲むように線状のオーミックコンタクト接合部112が設けられている点である。また、比較例2では、図10(b)に示すように、表面電極121は中央部(電極パッドが形成される部分)が円形(直径100μm)であって、この円形の中央部から放射状に線状電極が延び且つ線状電極の一部が更にその先端部で左右に枝分かれしたような形状であり、表面電極121側から見て、表面電極121の線状電極を取り囲むように線状のオーミックコンタクト接合部122が設けられている点である。
(Comparative Example 1 and Comparative Example 2)
As Comparative Example 1, a repositionable red light emitting device 110 having an emission wavelength near 630 nm and having the structure shown in the top view of FIG. In addition, as Comparative Example 2, a repositionable red light emitting device 120 having a structure having the structure shown in the top view of FIG. In Comparative Example 1 and Comparative Example 2, process steps such as epitaxial growth method, epitaxial layer thickness, epitaxial layer structure, reflective metal film, support substrate replacement method, etching method, and LED element manufacturing method are basically Same as Example 1 above.
The difference from Example 1 is that, in Comparative Example 1, as shown in FIG. 10 (a), the surface electrode 111 has a circular central portion (portion where the electrode pad is formed) (diameter 100 μm). The linear electrode extends radially from the center of the circle, and the linear ohmic contact junction 112 is provided so as to surround the linear electrode of the surface electrode 111 when viewed from the surface electrode 111 side. It is. Moreover, in the comparative example 2, as shown in FIG.10 (b), the surface electrode 121 is circular (diameter 100 micrometers) in the center part (part in which an electrode pad is formed), and is radial from this circular center part. The linear electrode extends and a part of the linear electrode is further branched to the left and right at the tip, and the linear electrode is formed so as to surround the linear electrode of the surface electrode 121 when viewed from the surface electrode 121 side. The ohmic contact junction 122 is provided.

上記の通りに作製された実施例のLED素子をエポキシ樹脂でモールドした後に、20mA通電を行ってLED特性を調べた。
図11には、図7に示す実施例1の構造における、正方形の表面電極(電極パット)の外周長さと発光出力との関係を示す。また、図12には、図8に示す実施例2の構造における、円形の表面電極(電極パット)の外周長さと発光出力との関係を示す。
図11及び図12より、表面電極の外周の長さが700μmよりも長くなると、発光出力の低下が顕著となる。これは、表面電極の面積が大きくなり、発光素子内の吸収要因が大きくなるからである。また、図9に示す実施例3の表面電極形状においても実施例1と同様の効果が確認された。
After the LED element of the example produced as described above was molded with an epoxy resin, a current of 20 mA was applied to examine the LED characteristics.
FIG. 11 shows the relationship between the outer peripheral length of the square surface electrode (electrode pad) and the light emission output in the structure of Example 1 shown in FIG. FIG. 12 shows the relationship between the outer peripheral length of the circular surface electrode (electrode pad) and the light emission output in the structure of Example 2 shown in FIG.
From FIG. 11 and FIG. 12, when the length of the outer periphery of the surface electrode is longer than 700 μm, the light emission output is significantly reduced. This is because the area of the surface electrode increases and the absorption factor in the light emitting element increases. Moreover, the same effect as Example 1 was confirmed also in the surface electrode shape of Example 3 shown in FIG.

また、図10(a)、(b)に示す比較例1、比較例2についても、実施例と同様に樹脂モールドして20mA通電して発光出力を評価した。その結果、比較例1、比較例2では、発光出力は、それぞれ8.7mW、9.5mWであり、実施例と比較して低い値となった。これは、チップの1辺が320μm以下の比較的に小さいチップにあっては、表面電極(電極パット)から線状電極を延ばすと、電流をチップ全体に広げる効果以上に光吸収要因が大きく作用して、発光出力が大きくならないものと考えられる。   Moreover, also about the comparative example 1 and the comparative example 2 which are shown to Fig.10 (a), (b), resin mold was carried out similarly to the Example, 20 mA electricity supply was carried out, and the light emission output was evaluated. As a result, in Comparative Example 1 and Comparative Example 2, the light emission outputs were 8.7 mW and 9.5 mW, respectively, which were lower values than in the example. This is because, in the case of a relatively small chip having a side of 320 μm or less, if the linear electrode is extended from the surface electrode (electrode pad), the light absorption factor acts more than the effect of spreading the current over the entire chip. Therefore, it is considered that the light emission output does not increase.

次に、上記図9に示す実施例3の発光素子40を、チップサイズを200μm〜500
μmまで変えて作製(図9に示す表面電極41及びオーミックコンタクト接合部42に相似するパターン形状を保って作製)し、作製された実施例3の発光素子40をエポキシ樹脂でモールドした後に、20mA通電を行って発光出力を測定した。同様に、図10(b)に示す比較例2の発光素子120を、チップサイズを200μm〜500μmまで変えて作製(図10(b)に示す表面電極121及びオーミックコンタクト接合部122に相似するパターン形状を保って作製)し、作製された比較例2の発光素子120をエポキシ樹脂でモールドした後に、20mA通電を行って発光出力を測定した。
図13に測定結果を示す。図13に示すように、発光素子チップの一辺の長さ(チップサイズ)が320μm以下となると、本発明にかかる実施例3の発光素子の構造が、比較例2の発光素子よりも発光出力が大きくなり、有効であることが確認された。
Next, the chip size of the light-emitting element 40 of Example 3 shown in FIG. 9 is 200 μm to 500 μm.
It is manufactured up to μm (manufactured while maintaining a pattern shape similar to the surface electrode 41 and the ohmic contact bonding portion 42 shown in FIG. 9), and the manufactured light emitting element 40 of Example 3 is molded with an epoxy resin, and then 20 mA. The light emission output was measured by applying current. Similarly, the light emitting device 120 of Comparative Example 2 shown in FIG. 10B is manufactured by changing the chip size from 200 μm to 500 μm (a pattern similar to the surface electrode 121 and the ohmic contact junction 122 shown in FIG. 10B). The shape was kept, and the light emitting device 120 of Comparative Example 2 thus manufactured was molded with an epoxy resin, and then 20 mA current was applied to measure the light emission output.
FIG. 13 shows the measurement results. As shown in FIG. 13, when the length of one side (chip size) of the light emitting element chip is 320 μm or less, the structure of the light emitting element of Example 3 according to the present invention has a light emission output higher than that of the light emitting element of Comparative Example 2. It was confirmed that it was large and effective.

(実施例4)
この実施例4では、上記実施例の発光素子において、凹凸形状に形成された光取出面4aを、透明膜17、18で覆った構造とした。
まず、凹凸形状の光取出面4aに、繰り返し塗布を行うことで、光取出面4aの凹部が埋まり、光取出面4aの凹凸形状に対応した波形形状の表面を有する透明膜17を形成した。更に、スパッタリングにより、透明膜17上に平坦な表面を有する透明膜18を形成した。スパッタリングで透明膜18を形成することで、透明膜18を結晶性良く形成でき、外部からの水分等の侵入を防止できる。また、本発明では表面電極が単純な多角形状または丸形状なので、透明膜17、18を形成するための塗布、スパッタリングは、容易に実施できる。
凹凸形状の光取出面4aを透明膜17、18で覆うことにより、光取出面4aの凹凸部を保護することができる。また、透明膜17の屈折率を、光取出面4aを有する半導体層4の屈折率(3.5〜3.6程度)よりも小さな屈折率とすることにより、光取出面4aでの反射を抑えることができる。更に、透明膜18の屈折率を透明膜17の屈折率よりも小さな屈折率とするのが好ましく、これにより、透明膜17と透明膜18との界面での反射を抑えることができる。また、透明膜17の表面が波形の曲面となることから、レンズ効果による光取り出しの向上が期待できる。
透明膜17、18は、導電性の材料、絶縁性の材料のいずれを用いてもよい。具体的には、ITO、SiO、Siなどが挙げられる。また、例えば、半導体層4側の透明膜17を導電性の材料とし、表面側の透明膜18を絶縁性の材料としてもよい。また、透明膜18を省略し、透明膜17のみとしてもよい。なお、透明膜17、18に用いる材料や製法、発光素子の製造プロセスにおける透明膜17、18の形成順序などは、発光素子の特性、生産性、コストなどを考慮して適宜決定される。
Example 4
In Example 4, in the light emitting device of the above example, the light extraction surface 4a formed in the concavo-convex shape was covered with the transparent films 17 and 18.
First, by repeatedly applying to the uneven light extraction surface 4a, the concave portion of the light extraction surface 4a was filled, and the transparent film 17 having a corrugated surface corresponding to the uneven shape of the light extraction surface 4a was formed. Further, a transparent film 18 having a flat surface was formed on the transparent film 17 by sputtering. By forming the transparent film 18 by sputtering, the transparent film 18 can be formed with good crystallinity, and entry of moisture and the like from the outside can be prevented. In the present invention, since the surface electrode is a simple polygonal shape or a round shape, coating and sputtering for forming the transparent films 17 and 18 can be easily performed.
By covering the uneven light extraction surface 4a with the transparent films 17 and 18, the uneven portion of the light extraction surface 4a can be protected. Further, by making the refractive index of the transparent film 17 smaller than the refractive index of the semiconductor layer 4 having the light extraction surface 4a (about 3.5 to 3.6), reflection on the light extraction surface 4a is prevented. Can be suppressed. Furthermore, it is preferable that the refractive index of the transparent film 18 be smaller than the refractive index of the transparent film 17, whereby reflection at the interface between the transparent film 17 and the transparent film 18 can be suppressed. Further, since the surface of the transparent film 17 has a corrugated curved surface, an improvement in light extraction due to the lens effect can be expected.
The transparent films 17 and 18 may use either a conductive material or an insulating material. Specifically, ITO, etc. SiO 2, Si 3 N 4 and the like. Further, for example, the transparent film 17 on the semiconductor layer 4 side may be a conductive material, and the transparent film 18 on the surface side may be an insulating material. Further, the transparent film 18 may be omitted and only the transparent film 17 may be used. Note that the materials and manufacturing methods used for the transparent films 17 and 18, the order of forming the transparent films 17 and 18 in the light emitting element manufacturing process, and the like are appropriately determined in consideration of the characteristics, productivity, cost, and the like of the light emitting elements.

(その他の実施例)
上記実施例では、支持基板としては、Si基板11を用いていたが、発光素子の製造プロセスに耐え得る支持基板であれば、Si基板以外にも用いることが可能である。具体的には、Ge基板、GaAs基板、GaP基板、その他メタル基板等が挙げられる。
また、上記実施例では、活性層(発光層)5をバルク層としているが多重量子井戸等でもその効果は同様であり、更に、上記実施例では、発光波長630nm付近の赤色発光素子について述べたが、本発明はLEDの発光波長に依存せずに、発光出力を向上させる効果が得られる。
また、上記実施例では、光取出面4a側をn型ドーピング層としているが、n型層とp型層を逆にしても、勿論、同様の効果が得られる。
(Other examples)
In the above embodiment, the Si substrate 11 is used as the support substrate. However, any substrate other than the Si substrate can be used as long as the support substrate can withstand the light emitting element manufacturing process. Specific examples include a Ge substrate, a GaAs substrate, a GaP substrate, and other metal substrates.
In the above embodiment, the active layer (light emitting layer) 5 is a bulk layer, but the effect is the same in a multiple quantum well or the like. Further, in the above embodiment, a red light emitting element having an emission wavelength near 630 nm has been described. However, the present invention provides an effect of improving the light emission output without depending on the light emission wavelength of the LED.
In the above embodiment, the light extraction surface 4a side is an n-type doping layer, but the same effect can be obtained even if the n-type layer and the p-type layer are reversed.

実施例1の半導体発光素子の製造工程を示す断面図である。7 is a cross-sectional view showing a manufacturing step of the semiconductor light-emitting element of Example 1. FIG. 実施例1の半導体発光素子の製造工程を示すもので、図2(a)は上面図、図2(b)は図2(a)の2B−2B断面図である。FIGS. 2A and 2B are cross-sectional views taken along the line 2B-2B of FIG. 2A, respectively, illustrating a manufacturing process of the semiconductor light emitting device of Example 1. FIG. 実施例1の半導体発光素子の製造工程を示す断面図である。7 is a cross-sectional view showing a manufacturing step of the semiconductor light-emitting element of Example 1. FIG. 実施例1の半導体発光素子の製造工程を示す断面図である。7 is a cross-sectional view showing a manufacturing step of the semiconductor light-emitting element of Example 1. FIG. 実施例1の半導体発光素子の製造工程を示すもので、図5(a)は上面図、図5(b)は図5(a)の5B−5B断面図である。FIGS. 5A and 5B show a manufacturing process of the semiconductor light emitting device of Example 1, in which FIG. 5A is a top view and FIG. 5B is a cross-sectional view taken along 5B-5B in FIG. 実施例1の半導体発光素子の製造工程を示すもので、図6(a)は上面図、図6(b)は図6(a)の6B−6B断面図である。The manufacturing process of the semiconductor light emitting element of Example 1 is shown, FIG. 6A is a top view and FIG. 6B is a 6B-6B cross-sectional view of FIG. 実施例1の半導体発光素子を示すもので、図7(a)は上面図、図7(b)は図7(a)の7B−7B断面図である。The semiconductor light-emitting device of Example 1 is shown, FIG. 7A is a top view, and FIG. 7B is a 7B-7B cross-sectional view of FIG. 実施例2の半導体発光素子の上面図である。6 is a top view of a semiconductor light emitting device of Example 2. FIG. 実施例3の半導体発光素子の上面図である。6 is a top view of a semiconductor light emitting device of Example 3. FIG. 比較例の半導体発光素子の上面図である。It is a top view of the semiconductor light emitting element of a comparative example. 実施例1の構造において、表面電極の外周長さと発光出力との関係を示すグラフである。In the structure of Example 1, it is a graph which shows the relationship between the outer periphery length of a surface electrode, and light emission output. 実施例2の構造において、表面電極の外周長さと発光出力との関係を示すグラフである。In the structure of Example 2, it is a graph which shows the relationship between the outer periphery length of a surface electrode, and light emission output. 実施例および比較例の半導体発光素子において、半導体発光素子のチップ一辺の長さと発光出力との関係を示すグラフである。4 is a graph showing the relationship between the length of one side of a semiconductor light emitting element and the light emission output in the semiconductor light emitting elements of Examples and Comparative Examples. 実施例4の半導体発光素子における光取出面の部分拡大断面図である。6 is a partial enlarged cross-sectional view of a light extraction surface in a semiconductor light emitting element of Example 4. FIG.

符号の説明Explanation of symbols

1 成長用GaAs基板
2 AlGaInPエッチングストップ層
3 n型GaAsコンタクト層
4 n型AlGaInPクラッド層
4a 光取出面
5 AlGaInP活性層
6 p型AlGaInPクラッド層
7 p型GaPコンタクト層
8 SiO
9 オーミックコンタクト接合部
10 反射金属層
11 Si基板
12 金属密着層
13 表面電極
14 裏面電極
15 電極パット
17 透明膜
18 透明膜
20 発光素子
30 発光素子
31 表面電極
32 オーミックコンタクト接合部
40 発光素子
41 表面電極
42 オーミックコンタクト接合部
DESCRIPTION OF SYMBOLS 1 Growth GaAs substrate 2 AlGaInP etching stop layer 3 n-type GaAs contact layer 4 n-type AlGaInP clad layer 4a Light extraction surface 5 AlGaInP active layer 6 p-type AlGaInP clad layer 7 p-type GaP contact layer 8 SiO 2 film 9 ohmic contact junction Part 10 Reflective metal layer 11 Si substrate 12 Metal adhesion layer 13 Surface electrode 14 Back electrode 15 Electrode pad 17 Transparent film 18 Transparent film 20 Light emitting element 30 Light emitting element 31 Surface electrode 32 Ohmic contact junction 40 Light emitting element 41 Surface electrode 42 Ohmic contact Junction

Claims (5)

発光層を有するIII−V族化合物半導体層を備え、前記III−V族化合物半導体層の第一の主表面側には光取出面が形成され、第二の主表面側には前記発光層からの光を前記光取出面側に反射する反射金属膜が形成され、前記反射金属膜を介して前記III−V族化合物
半導体層と支持基板とが接合されており、前記III−V族化合物半導体層の第一の主表面
上に表面電極が形成され、前記反射金属膜の前記III−V族化合物半導体層側の面の一部
にオーミックコンタクト接合部が前記表面電極の直下以外の領域に配置された半導体発光素子おいて、
前記半導体発光素子は1辺が320μm以下の四角形状であり、
前記表面電極は多角形状または丸形状からなり、前記表面電極の外周の長さが235μm以上700μm以下であり、
前記オーミックコンタクト接合部が前記半導体発光素子の外周部側に配置され、前記表面電極側から前記オーミックコンタクト接合部をみたときに、前記オーミックコンタクト接合部が前記表面電極を包囲するように形成され、且つ前記表面電極の外縁部の各位置から最も近い前記オーミックコンタクト接合部までの距離が等しくなるように配置されていることを特徴とする半導体発光素子。
A III-V group compound semiconductor layer having a light emitting layer, wherein a light extraction surface is formed on a first main surface side of the III-V group compound semiconductor layer, and a second main surface side is formed from the light emitting layer; A reflective metal film that reflects the light of the light to the light extraction surface side is formed, and the III-V compound semiconductor layer and the support substrate are joined via the reflective metal film, and the III-V compound semiconductor A surface electrode is formed on the first main surface of the layer, and an ohmic contact junction is arranged in a region other than directly below the surface electrode on a part of the surface of the reflective metal film on the III-V compound semiconductor layer side In the semiconductor light emitting device made,
The semiconductor light emitting device has a square shape with one side of 320 μm or less,
The surface electrode has a polygonal shape or a round shape, and the length of the outer periphery of the surface electrode is 235 μm or more and 700 μm or less,
The ohmic contact junction is disposed on the outer peripheral side of the semiconductor light emitting element, and when viewed from the surface electrode side, the ohmic contact junction is formed so as to surround the surface electrode, The semiconductor light emitting device is characterized in that the distance from each position of the outer edge portion of the surface electrode to the nearest ohmic contact junction is equal.
請求項1記載の半導体発光素子において、前記III−V族化合物半導体層と前記反射金
属膜との間に透明誘電体膜が設けられ、前記透明誘電体膜の一部に前記透明誘電体膜を貫通して前記オーミックコンタクト接合部が形成されていることを特徴とする半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein a transparent dielectric film is provided between the III-V compound semiconductor layer and the reflective metal film, and the transparent dielectric film is formed on a part of the transparent dielectric film. A semiconductor light emitting device, wherein the ohmic contact junction is formed therethrough.
請求項1または2記載の半導体発光素子において、前記光取出面となる前記III−V族
化合物半導体層の表面が、高さ100nm以上の凹凸形状であることを特徴とする半導体発光素子。
3. The semiconductor light emitting device according to claim 1, wherein the surface of the III-V compound semiconductor layer serving as the light extraction surface has an uneven shape with a height of 100 nm or more.
請求項1〜3のいずれかに記載の半導体発光素子において、前記オーミックコンタクト接合部は、前記表面電極の多角形状または丸形状と相似形の多角形状または丸形状の線状に形成され、且つ前記表面電極側からオーミックコンタクト接合部を見たときに、前記表面電極と同心配置に設けられていることを特徴とする半導体発光素子。   4. The semiconductor light emitting element according to claim 1, wherein the ohmic contact junction is formed in a polygonal shape or a round shape similar to the polygonal shape or the round shape of the surface electrode, and the A semiconductor light emitting device, which is provided concentrically with the surface electrode when the ohmic contact junction is viewed from the surface electrode side. 請求項3または4に記載の半導体発光素子において、前記凹凸形状である光取出面が、透明膜で覆われていることを特徴とする半導体発光素子。   5. The semiconductor light emitting device according to claim 3, wherein the light extraction surface having the concavo-convex shape is covered with a transparent film.
JP2008317904A 2008-12-15 2008-12-15 Semiconductor light emitting device Pending JP2010141225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317904A JP2010141225A (en) 2008-12-15 2008-12-15 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317904A JP2010141225A (en) 2008-12-15 2008-12-15 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2010141225A true JP2010141225A (en) 2010-06-24

Family

ID=42351078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317904A Pending JP2010141225A (en) 2008-12-15 2008-12-15 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2010141225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137769A1 (en) * 2011-04-06 2012-10-11 昭和電工株式会社 Light-emitting diode, light-emitting diode lamp, and lighting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738148A (en) * 1993-07-19 1995-02-07 Hitachi Cable Ltd Compound semiconductor optical element, and light emitting diode and manufacture thereof
JPH07111339A (en) * 1993-10-12 1995-04-25 Sumitomo Electric Ind Ltd Surface emission type semiconductor light emitting device
JP2007258338A (en) * 2006-03-22 2007-10-04 Rohm Co Ltd Semiconductor light-emitting element
JP2008283096A (en) * 2007-05-14 2008-11-20 Hitachi Cable Ltd Semiconductor light-emitting element
JP2008294482A (en) * 2002-01-28 2008-12-04 Nichia Corp Nitride semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738148A (en) * 1993-07-19 1995-02-07 Hitachi Cable Ltd Compound semiconductor optical element, and light emitting diode and manufacture thereof
JPH07111339A (en) * 1993-10-12 1995-04-25 Sumitomo Electric Ind Ltd Surface emission type semiconductor light emitting device
JP2008294482A (en) * 2002-01-28 2008-12-04 Nichia Corp Nitride semiconductor element
JP2007258338A (en) * 2006-03-22 2007-10-04 Rohm Co Ltd Semiconductor light-emitting element
JP2008283096A (en) * 2007-05-14 2008-11-20 Hitachi Cable Ltd Semiconductor light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137769A1 (en) * 2011-04-06 2012-10-11 昭和電工株式会社 Light-emitting diode, light-emitting diode lamp, and lighting device
JP2012222082A (en) * 2011-04-06 2012-11-12 Showa Denko Kk Light-emitting diode, light-emitting diode lamp, and luminaire

Similar Documents

Publication Publication Date Title
US7564071B2 (en) Semiconductor light emitting device
JP5169012B2 (en) Semiconductor light emitting device
US7692203B2 (en) Semiconductor light emitting device
JP4835377B2 (en) Semiconductor light emitting device
JP2010278112A (en) Semiconductor light emitting element
JP5304662B2 (en) Light emitting element
JP4985067B2 (en) Semiconductor light emitting device
JP2008283096A (en) Semiconductor light-emitting element
JP2011009524A (en) Light-emitting element, and method of making the light-emitting element
US7723731B2 (en) Semiconductor light emitting device
JP4894411B2 (en) Semiconductor light emitting device
WO2011016201A1 (en) Light-emitting element and light-emitting device
US8796711B2 (en) Light-emitting element
JP2011082233A (en) Light emitting element
JP2012129357A (en) Semiconductor light-emitting element
JP4835376B2 (en) Semiconductor light emitting device
JP2009252860A (en) Semiconductor light emitting element
JP2011142231A (en) Semiconductor light emitting element, led lamp, and method of manufacturing the semiconductor light emitting element
JP2011054862A (en) Epitaxial wafer, light-emitting element, method of manufacturing the epitaxial wafer, and method of manufacturing the light-emitting element
JP2009277898A (en) Semiconductor luminous element and manufacturing method of semiconductor luminous element
JP5298927B2 (en) Light emitting element
JP2012129298A (en) Semiconductor light-emitting element and method for manufacturing the same
JP2013030606A (en) Semiconductor light emitting element
JP2011176001A (en) Light emitting device and method of manufacturing the same
JP2010141225A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730