JP2008282478A - 磁気記録媒体及びその及び製造方法、磁気記録装置 - Google Patents

磁気記録媒体及びその及び製造方法、磁気記録装置 Download PDF

Info

Publication number
JP2008282478A
JP2008282478A JP2007126010A JP2007126010A JP2008282478A JP 2008282478 A JP2008282478 A JP 2008282478A JP 2007126010 A JP2007126010 A JP 2007126010A JP 2007126010 A JP2007126010 A JP 2007126010A JP 2008282478 A JP2008282478 A JP 2008282478A
Authority
JP
Japan
Prior art keywords
magnetic
recording
substrate
layer
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007126010A
Other languages
English (en)
Inventor
Chiseki Haginoya
千積 萩野谷
Yoshio Takahashi
由夫 高橋
Ko Suzuki
香 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007126010A priority Critical patent/JP2008282478A/ja
Publication of JP2008282478A publication Critical patent/JP2008282478A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】磁気記録媒体において実効的に記録磁場の不足、反転磁場のばらつきが問題となっている。この問題を解決するために斜め異方性磁気記録媒体が提案されているが、斜め異方性媒体の作製は困難であった。
【解決手段】磁気ディスク100は、ガラス基板101と、軟磁性裏打ち層(SUL)102と記録層103を有する。軟磁性裏打ち層(SUL)102は、基板面104からみて傾斜面を有する波状形状(のこぎり波形状、山型形状)をしている。この波状形状の軟磁性裏打ち層(SUL)102に形成された記録層103の磁気異方性の方向Aは、基板面104に対して垂直方向となる。一方、記録磁場は軟磁性裏打ち層(SUL)102の傾斜面に対して垂直に入射するので、記録層103の磁気異方性の方向Aを、記録磁場方向に対して角度αだけ斜めにすることが可能となる。これにより実効的に斜め異方性媒体記録が実現可能となる。
【選択図】図1

Description

本発明は、磁気記録媒体及びその製造方法に関する。また、磁気記録媒体を搭載する磁気記録装置に関するものである。
磁気ディスク装置に代表される磁気記録装置においては、さらなる記録密度の向上が求められている。このため、従来より用いられている面内記録方式媒体に代えて、記録膜の磁化方向が媒体面に対して垂直となる、所謂、垂直記録方式が幅広く研究され、実用化も始まっている。垂直記録方式においては、記録層としてディスク基板に垂直方向の磁気異方性を有する硬磁性材料を採用し、情報を磁化の上向き・下向きに対応させて記録することを特徴とする。各ビットの磁化がディスク面内方向を向いている面内記録方式に比べ、垂直記録方式では記録ビットから発生した磁束はビットの上部及び下部を通して閉磁路を形成するため、特にビットが小さくなったときに安定であり高密度記録に適していると考えられている。
このような垂直記録方式において、特に単磁極型(SPT)ヘッドと呼ばれる構造の記録ヘッドと、平滑なディスク基板上に形成された軟磁性裏打ち層(SUL)および硬磁性体よりなる記録層などで構成される記録媒体(垂直2層媒体)とを使用する方式が注目を集めている。本方式ではSPTヘッドの主磁極先端からの磁束は記録層を通過してSULに至る。磁束はSUL内において広がり、副磁極を通して還流する構造となっている。このようにSPTヘッド及びSULを含む垂直磁気記録媒体を組み合わせて採用することにより、実効的に記録層での記録磁場および磁場勾配を大きくできるという特徴が得られる。
記録密度の向上のためには媒体遷移ノイズの低減が必要であり、このため結晶粒径の微細化が進んでいる。一方で結晶粒径が小さくなると磁化反転に必要なエネルギー(ku・v)が熱エネルギー(k・T)と拮抗してくる。ここでkuは一軸異方性定数、vは磁性粒子の体積、kはボルツマン定数、Tは温度である。磁気記録媒体は長期間に渡り磁化状態を安定に保持するという制約上、ku・v/k・Tは一定値以上を保つことが必要である。このため、一般に記録密度の向上に伴って、記録媒体内で記録層を構成する各磁性粒子の一軸異方性定数(ku)は、増大させる必要がある。しかしながら、熱揺らぎ耐性を向上させるためのkuの増加は、同時に記録ヘッドからの磁場の増大を要求する。記録ヘッドから生じる記録磁場の最大値は、原理的に主磁極の飽和磁束密度(Bs)による制限を受ける。例えば非特許文献1によると、SULを用いた垂直媒体の場合、記録磁場の最大値は0.6〜0.7Bs程度であることが示されている。Bsは材料によって決定され、現在も高Bs材料の探索は続いているものの、Bs=2.4Tを大きく超え、かつ主磁極に必要な軟磁気特性、耐腐食性などを備えた材料の開発は困難であると考えられている。
一般に磁気記録媒体の記録層は、強磁性体粒子(グレイン)より構成されている。磁性粒の磁化が一斉回転モードで反転する場合、その磁化反転の様子はStoner-Wolfarth(SW)モデルで説明することが可能である。図6(a)にSWモデルの模式図を示す。前述のようにSWモデルによると磁化反転に必要な磁場の大きさHswは、外部磁場と粒子の異方性の軸のなす角をαとして、
1/((cos2/3(α) + sin2/3(α))3/2)
に比例することが知られている。図6(b)はこの関係を示しており、非特許文献2のFig.3に記載されているものである。横軸は外部磁場と粒子の異方性の軸のなす角α、縦軸は磁化反転に必要な磁場の大きさHswを一軸異方性磁場(Hk)で規格化した値である。図6(b)より、α=0、即ち異方性軸方向と外部磁場方向が一致しているときHswは最大となり、α=45°のとき最小となる。また異方性軸方向に粒子ごとのばらつきを考えると、その影響はα=0のとき最大となり、α=45°のとき最小となる。例えば粒子ごとの異方性軸の分散が±5°の範囲にあった場合、α=5°の場合、Hswはおよそ30%の幅を持つのに対し、α=45°の場合、Hswはほぼ0に抑えられる。
非特許文献2ではこの性質を磁気記録媒体に応用し、記録層の磁気異方性の軸を記録磁場方向に対して斜め方向に向ける記録媒体を提案している。本提案では平坦な基板上にSULを配置し、その上に基板表面に対して斜め方向の磁気異方性の軸を有する記録層を配置することにより、斜め異方性媒体を実現している。本提案によると比較的大きな磁気異方性を有する媒体への記録が可能とされている。即ち、熱揺らぎ耐性が大きな記録媒体の反転磁場を実効的に小さくすることが可能であることが示されている。また、同時に同文献2では、磁気異方性を記録磁場方向に対して斜めに向けることにより、グレインごとの異方性の軸のばらつきに起因する反転磁場のばらつきが小さくなる、といった利点があることも示されている。これらの効果から磁気記録媒体の高密度化が達成できる。しかしながら、磁気ディスク媒体において、記録層の結晶異方性の軸を斜め方向に向けることは現実的には困難であり、本文献では記録層磁気異方性の軸を斜めに向ける方法は記載されていない。
近年、人工的に記録トラックをパターニングした磁気記録媒体(ディスクリートトラックメディア(DTM))や、記録ビットをパターニングした磁気記録媒体(パターンドメディア(PM)またはディスクリートビットメディア(DBM))が提案されている(例えば特許文献1、特許文献2)。このような媒体においても、記録層の異方性の軸は面内もしくは垂直を向いており、連続媒体同様、ディスク面に対し異方性の軸を傾けることは困難である。また、特にPMにおいては一ビットは一磁性粒子で構成されることを特徴としており、各磁性粒子の反転磁場(Hsw)のばらつきはビットエラーに繋がる重要な問題である。各磁性粒子のHswのばらつきには様々な要因が挙げられるが、各粒子の異方性の軸のばらつきもそのひとつである。
PMやDTMにおいて、記録密度の向上に伴いビット又はトラックの大きさは微細化が要求される。このような領域の微小構造の作製には、例えば電子線リソグラフィー(EBL)(例えば非特許文献3)や、X線リソグラフィー(例えば非特許文献4)などが適用可能である。しかしながら、これらの手法ではコストの観点から大量生産は困難である。この問題に対し、インプリント方式による微小パターンの形成が有利である。インプリント方式は、レジストを塗布した基板上にあらかじめ形成された型(モールド)を密着させて、モールドの複製を作製する手法である。レジストをガラス転移点以上に加熱して軟化させ、モールドを押し付けた後、冷却して硬化したレジストからモールドを除去する熱インプリント、基板上に塗布した液体状の光硬化レジストにモールドを押し当て、光硬化を用いて形成する光インプリント、特定の雰囲気中で軟化する樹脂を使用する化学インプリントなどがある。インプリント技術を用いてPMや、DTMなどを作製することが報告されている(非特許文献5、非特許文献6)。しかしながら、これまでに報告されている例では、記録層の磁気異方性の方向はディスク面に対し面内もしくは垂直に限られている。
また、特許文献3には、記録層をドライエッチングにより加工する方法が開示されている。この方法においては予め堆積された記録膜をドライエッチングするものであるが、記録膜の磁気異方性の方向はディスク面に対し垂直である。
特開平6-231443号公報 特開平4-336404号公報 特許第3802539号公報 米国特許出願公開第2006/0082924号明細書 特開2004-259306号公報 Kai-Zhong Gao et al, JAP 91 (2002) p.8369 Kai-Zhong Gao et al, IEEE Trans. Magn.VOL.38 (2002) p.3675 R.M.H.New et al, JVST B 12 (1994) p.3196 F.Rousseaux et al, JVST B 13 (1995) p.2787) Stepheh.Y.Chou et al, JAP 79 (1996) p.6101 Kazuhiro Hattori et al, IEEE Trans. Magn.VOL.40 (2004) p.2510 Hiroaki Nemoto et al, IEEE Trans. Magn.VOL.39 (2003) p.2714
上記のとおり、非特許文献2には、平坦な基板上にSULを配置し、その上に基板表面に対して斜め方向の磁気異方性の軸を有する記録層を配置する、斜め異方性媒体が開示されている。しかしながら、非特許文献2には記録層磁気異方性の軸を斜めに向ける方法については記載されていない。実際、磁気ディスク媒体において、記録層の結晶異方性の軸を斜め方向に向けることは困難である。
本発明の目的は、磁場印加方向に対して記録層の磁気異方性の軸が実効的に斜めである磁気記録媒体を提供することである。
本発明の他の目的は、磁場印加方向に対して記録層の磁気異方性の軸が実効的に斜めである磁気記録媒体の製造方法を提供することである。
本発明のさらに他の目的は、熱揺らぎ耐性の大きな記録媒体に対して安定した記録が可能な磁気記録装置を提供することである。
上記目的を達成するために、本発明の磁気記録媒体においては、基板と、基板上に形成され、少なくともデータ部においてトラック幅方向に傾斜した面を有する軟磁性層と、軟磁性層上に形成され、基板の面に対して鉛直方向に磁気異方性を有する記録層とを有する。
上記他の目的を達成するために、本発明の磁気記録媒体の製造方法においては、基板上に軟磁性層を形成する工程と、軟磁性層上にレジストを塗布する工程と、レジストに波状形状の凹部を有する金型を押し付け、金型の波状形状をレジストに転写する工程と、波状形状が転写されたレジストをマスクとして軟磁性層をエッチングして、波状形状を転写する工程と、波状形状が転写された軟磁性層上に、基板の面に鉛直方向に磁気異方性を有する記録層を形成する工程とを含む。
上記さらに他の目的を達成するために、本発明の磁気記録装置においては、前記磁気記録媒体と、磁気記録媒体に磁気記録を行う単磁極型記録ヘッドとを備える。
本発明によれば、垂直異方性を有する記録層を使用しつつ、容易軸を実効的に基板面に対して斜めに向けることが可能となる。また、このような磁気記録媒体を、簡単なプロセスで、高い歩留まりで作製することが可能となる。さらに、実効的に磁気異方性の軸に対して記録磁場を斜めに印加することが可能であるため、熱揺らぎ耐性の大きな記録媒体に対し安定した記録が可能な磁気記録装置の実現が可能となる。
図3を参照して、実施例1による磁気記録媒体(磁気ディスク)の全体構成を説明する。図3には磁気ディスクの上面図と、一部分の断面拡大模式図が含まれている。磁気ディスク100は、基板101上に積層された軟磁性裏打ち層(軟磁性層:SUL)102および記録層103を有する。上部から見ると、内径20と外径30を有し、内径20と外径30の間が磁気記録面40であり、内径20の内側はスピンドルモータへの取り付け穴である。磁気記録面40は、データ領域50と、サーボパターン領域60で構成されている。
図1は磁気ディスク100のトラック幅方向断面(紙面の左右方向がトラック幅方向、垂直方向がビット方向)を示す模式図である。図1には、単磁極型(SPT)ヘッド111も示されている。本実施例においては、記録トラック同士が人工的にパターニングされている所謂DTMを例にして以下説明する。従って、紙面垂直方向に同様の形状のトラックが続いていると考えてよい。もちろん、円板状の記録媒体の場合は、正確には紙面垂直方向ではなく円板の回転中心を中心とした同心円状のトラックが形成されているが、その半径はトラック幅に比べて十分に大きいため、ここでは無視する。基板面104は磁気記録装置内においてヘッド浮上面(ABS)と平行となる面である。媒体作成時においては、実際のヘッド浮上面は測定できないため、ヘッドの浮上面と平行になる仮想面を考え基板面104と定義し、以後、媒体構造の基準とする。ここでは基板面104は平坦な基板101表面とほぼ一致すると考えてよい。
基板101はガラス、SUL 102は軟磁性材料、記録層103は硬磁性材料よりなる。基板101とSUL 102の間やSUL 102と記録層の間にはそれぞれ密着層や中間層などが、また、記録層103の上には平坦化のための非磁性体、保護層、潤滑層などがあるが、図1では省略してある。SUL 102は形状的には波状形状(のこぎり波形状)であり、平坦部105および波状部106よりなり、それぞれの高さは、平坦部高さt、波状部高さhで示される。波状部106はトラックピッチTpを1周期とする周期構造である。この1周期は斜面部幅Twおよび平面部幅Bwに分けることができる。ただし、斜面部幅Twは非零の値を持つが、平面部幅Bwは零となっても構わない。斜面角度θは、波状部高さh及び斜面部幅Twの逆正接で決まる値である。即ち、θ=arctan(h/Tw) で求めることができる。或いは基板面104と斜面延長線の交わる角度としてもよい。なお、周期Tpはディスク全面に渡り均一である必要はない。具体的には、磁気記録装置内に於ける記録再生ヘッドとの関係により、ディスク半径値などにより必要に応じて変化させてもよい。更にθを半径値により変化させても構わない。例えば、高速記録の要求されるディスク外周部においてθを大きく、内周部においてθを小さくしてもよい。また、本図では基板101の上面にのみパターニング、磁性膜成長が行われているが両面に行ってもよい。
図2に、図1において省略した構成要素も含めた断面構成を示す。SUL 102の波状形状に起因する記録層103の凹部には、SiO2やAl2O3等の非磁性材107が充填され、平坦化処理される。その上にカーボン保護膜108がスパッタリング法等により形成され、さらにその上にパーフロロアルキルポリエーテル(PFPE)等の潤滑膜109が塗布法により形成される。
図1に戻る。このような磁気ディスク媒体に対し、単磁極型(SPT)ヘッド111で記録を行う。このとき浮上量Fhはヘッドがクラッシュしない範囲でなるべく近づけることが望ましい。本手法により媒体記録層の磁気異方性の軸と媒体記録層を貫く磁場の方向を実効的に傾かせることが可能となる。すなわち、実効的に斜め異方性媒体を実現することが可能となる。
図4に、SPTヘッド111からの記録磁場が、SUL 102の傾斜面に入射する様子を示す。図4(a)はシミュレーションの結果を示す。図4(b)は模式図である。SPTヘッド111からの記録磁場は基板面104に垂直な方向でSUL 102の斜面に向かうが、SUL 102に入射する直前でSUL 102の斜面に垂直な方向に変化している。記録層103の磁気異方性の向きAは、記録層の成長方向となるので基板面104に対して鉛直方向である。記録磁場112のSUL 102斜面への入射角は直角となるので、記録磁場方向は磁気異方性の向きAに対して角度αだけ傾斜している。ここで、SUL 102の斜面に対して垂直な方向をZとすると、記録磁場112が記録層103に入射する時点では、垂直方向Zに対して角度φを有している。図5に、SUL 102の斜面角度θと、記録磁場112の方向Zに対する角度φとの関係を示す。斜面角度θと角度φの関係は、φ=0.83θである。図5から斜面角度θの下限は8°であり、望ましくは17°である。また、図6(b)に示されるように、磁化反転の磁場方向依存性は、45°を中心に、45°以上と以下で対称であり、82°(90°−8°)以上では平坦媒体と変わらなくなる。したがって、斜面角度θの上限は82°であり、望ましくは73°(90°−17°)である。
上記のとおり実施例1による磁気ディスクによれば、記録層の磁気異方性の軸を記録磁場方向に対して斜め方向に向けることができるので、熱揺らぎ耐性が大きな記録媒体の反転磁場を実効的に小さくすることが可能であり、比較的大きな磁気異方性を有する媒体への記録が可能となる。また、磁性粒子ごとの磁気異方性の軸のばらつきに起因する反転磁場のばらつきも小さくすることができる。
なお、上記の磁気ディスク媒体において、記録層103に入射する磁場方向とZ軸が一致した場合、斜面角度θを変化させることにより、実効的に記録媒体への記録磁場の方向を制御することが可能である。すなわち、現在使用されているものと同等の主磁極材料を用いても、より異方性定数の大きな材料への記録が可能となる。すなわち熱揺らぎに対して安定になる。このため、記録層を構成する磁性粒子の粒径を小さくすることが可能になる。
また、上記実施例1においてはDTMについて説明したが、同様の原理をPMにも適用可能である。このとき、PMのビット長方向については、トラック幅方向同様に斜面になっていても(即ち、角錐もしくは円錐状)、なっていなくてもよい。
次に、図7を用いて、上記実施例1よる磁気ディスクの製造方法を説明する。図7はDTMの作製プロセスを説明する媒体トラック幅方向断面の模式図である。PMに関しても同様のプロセスを適用可能である。図7(a)において、ガラス基板101は円板状であり中央部にはスピンドルに固定するための穴があいているが、本図では示していない。ガラス基板101上にSUL 102を成長させる。SUL 102はFe-Ta-C合金を採用し、真空チャンバー内でのスパッタ蒸着後、熱処理を行った。SUL 102には媒体半径方向への異方性をつけておくことが望ましい。Fe-Ta-C合金に代えて他の軟磁性体を用いることもできる。また、スパッタ蒸着以外の他の成長方法を採用することもできる。図示はしていないが、必要に応じてガラス基板101とSUL 102の間に、両者の密着性を高めるための密着層、SUL 102の結晶性を制御する中間層などを設けてもよい。SUL 102上に液状の光硬化レジスト202をスピン塗布もしくは他の手法によりディスク全面に渡り均一に塗布する。塗布中および他の作業中の光暴露により光硬化レジスト202が固化することを避けるため、作業は紫外線カット蛍光灯下で行う。本プロセスにおいては、スピンコートによりレジストを塗布し、その際のスピンコータの回転数は7000rpmとした。このようにして作製した構成体をディスク基板200と呼ぶことにする。
ディスク基板200のレジスト面を上にして、この面に石英モールド300を対向させ、図7(b)に示すように、インプリントチャンバー505に導入する。インプリントチャンバー505内においてディスク基板200は緩衝層514を介して移動機構508に設置することが望ましい。石英モールド300はインプリントチャンバー505に設置する。石英モールド300の作成法は後述する。また、インプリントチャンバー505上部には上部真空室506を設置することが望ましい。石英モールド300中に予めパターニングされた位置決めマークを利用してディスク基板200と石英モールド300の中心位置アライメントを行う。アライメントを行うためにはインプリント装置内に設置されたCCDカメラ507によりディスク基板200及び石英モールド300を観察しながら、移動機構508を使用してディスク基板200の位置を動かす。CCDカメラ507は複数台あることが望ましい。移動機構508は、水平面内移動、上下移動、回転、傾き補正が可能である。また、中心位置アライメントにおいては光学式手法以外に中心穴を利用した機械的アライメントでも構わない。機械的アライメントの場合、中心穴に対して正確な同心円状パターンを有するモールド204を用意する必要があるが、インプリントプロセス時のスループットは向上する。
位置決め終了後、バルブ509、バルブ510及びバルブ511を開き、エアバルブ512を閉じてインプリントチャンバー505中の大気を真空ポンプ513によって引く。両チャンバー505,506の圧力が十分に低くなったら、移動機構508を用いてディスク基板200を移動させ石英モールド300と密着させる。ここで真空は103Paを目安とした。石英モールド204とディスク基板200が必要な圧力で接触した後に、図7(c)に示すように光源515から光を照射した。本プロセスにおいては光源515として100mW/cm2の高圧水銀灯を使用した。照射量はレジストの種類に依存するが本プロセスに於いては0.3mJ/cm2とした。この値は使用するレジストや照射条件などに応じて変更する必要がある。光の強度は予め測定しておき、必要なエネルギーに達するまで時間で制御した。もちろん、チャンバー内に光検出器を設置し、実時間で光量をモニターしドーズ量を測定しても構わない。
光硬化後、ディスク基板200と石英モールド300をそれぞれ裏面から真空吸着し、ディスク基板面に垂直方向に引っ張り応力を印加することにより剥離を行う。石英モールド300は波状形状(のこぎり波形状)なので、剥離時に欠陥が生じることが少ない。従って高歩留まりで剥離を行うことが可能である。パターン形成されたディスク基板200をインプリントチャンバー505から取り出し、イオンミリング装置に搬入し、図7(d)に示すように上方からイオン516にてミリングする。本プロセスにおいてはイオン種はArを使用したが、他のイオン種を使用してもよい。またイオンミリングではなくリアクティブイオンエッチング(RIE)やウエットエッチングなどによりパターン転写を行っても構わない。この工程により、光レジスト202に形成されたパターンがSUL 102上に転写される。
さらに必要に応じSUL 102上をクリーニングした後、図7(e)に示すように記録層103を真空中にてスパッタリングにより成長させる。本プロセスにおいては記録層103として平均粒径が7nmのCo-Cr-Pt合金膜を製膜した。この材料は成長方向に対し垂直方向に磁化容易軸を有する特徴を有する。従って本プロセスにおいては粒子の入射方向は基板面104に対して垂直とし、磁気異方性の軸が基板面104に対しほぼ垂直となるようにスパッタ条件を選んだ。記録層103として用いる磁性材料はCo-Cr-Pt合金に限らず、他の材料でも構わない。特にグラニュラ膜と呼ばれるSiを含有した記録層は本プロセスと相性がよい。斜面の角度はインプリントプロセス、特に石英モールド300形状に強く依存する。適切な石英金型、プロセス条件を選ぶことにより、実施例1で説明したように、磁化容易軸方向と記録磁場方向を斜めに向けることが可能となる。本プロセスにおいては斜面角度θ=20°となるように選んだ。垂直方向のミリングが可能であったため、光硬化レジスト202のインプリント時の斜面角度も20°とした。
図7(e)では示していないが、記録層103を形成した後は、図2に示したように、記録層103の凹部に非磁性体(SiO2)107を充填し、表面を化学的機械的研磨(CMP)により平坦化した後、その上にカーボン保護膜108をスパッタリングにて形成し、その上に潤滑材(PFPE)を塗布して潤滑膜109を形成した。本プロセスにおいては、ガラス基板101の片面にパターンを作製する方法について述べたが、ガラス基板101の両面に光硬化樹脂202を塗布し、両面に石英モールド300を接触させて、上がから光を照射することにより両面媒体を作製することも可能である。本プロセスにおいては光硬化レジストを使用した光インプリント方式について説明したが、熱によるインプリントでも同様に作製することができる。熱インプリントの場合、モールド材料を透光性の材料に限らず、Si, DLC, 金属、樹脂及びその他の複合材料など他の材料を使用することが可能である。
以上説明したように、上記プロセスによれば、インプリント方式により、軟磁性裏打ち層(SUL)を波状形状に形成し、その斜面に記録層をスパッタリングで製膜するだけで、磁場印加方向に対して記録層の磁気異方性の軸が実効的に斜めである磁気記録媒体を作製することができる。
次に、図8を参照して、上記インプリントプロセスにおいて使用するモールドを作製するプロセスを説明する。上記インプリントプロセスにおいてはモールド材料として石英を使用したが、光インプリントを使用する場合、使用する波長に対し透光性を有する材料であれば他の物質でも構わない。また、光インプリントに代えて熱インプリントを使用する場合は、透光性を有する必要はなく、Si、SiO2、金属など他の材料を使用しても構わない。図8(a)を参照するに、石英基板301上にTaのエッチングマスク層302を成長させる。本プロセスにおいてはTaを使用したが、エッチングマスク層は石英に対し選択比の大きい材料であれば他の材料でも構わない。特に金属をエッチングマスク材料として選ぶことにより、次工程における電子線描画時にチャージアップの影響も少なくなるという利点を有する。この層の上に電子線(EB)レジスト303を回転塗布する。EBレジスト303は必要に応じプリベークを行ってもよい。これらをEB描画機に導入し、電子線(EB)604によりパターンの描画を行う。EB描画機は、回転および面内移動のできるステージを採用していることが望ましい。本プロセスに於いてはいわゆるガウシアンビーム型のEB描画機を採用し、細く絞ったEBでパターンの描画を行った。もちろん、必要な分解能を得ることが可能であれば、矩形ビーム機を用いてもよい。また、液浸リソグラフィー、LEEPLなど他の描画方式を用いても構わないが、このときは使用するレジストが必要なエッチング耐性を有するだけの厚さを確保する必要がある。
描画パターンは、使用される記録媒体に応じて設計する。本プロセスに於いてはDTMを作製するために同心円状のトラックパターンを描画した。また同心円状パターン以外に、従来の記録媒体と同様に円周を幾つかのセクタに分割し、セクタ毎にサーボ信号に相当するパターンを描画した。即ち、従来媒体では磁気的な情報として記録されていたサーボ情報が凹凸の形状で形成されることになる。また、媒体作成後に非記憶領域となる部分に、インプリント時にはモールドと媒体の、またドライブ組み込み時には媒体とスピンドルのアライメントを行うためのマークも描画した。アライメントマークは同心円状トラックパターンの回転中心を指示するパターンを用いる。本プロセスに於いてはアライメントマークは記録領域よりも内周側に、120°ずつ離れた3箇所の十字状マークとして描画した。ただし、必要に応じて他のパターンを使用してもよく、また記録領域外周側に作製しても構わない。内周側、外周側の両方に描画しても構わない(図8(b))。
パターン描画後、図8(c)に示すように、基板を取り出して現像を行う。続いて、図8(d)に示すように、現像により形成されたEBレジストパターン303′をマスクとして、Arイオン605によるミリングを行う。本工程によりEB描画された構造がエッチングマスク層302に転写される。更に図8(e)に示すように、パターニングされたエッチングマスク302′をマスクとして、石英基板601をArイオン606によりミリングを行う。このとき、Arイオン606の入射角度を変化させることにより斜面の角度を調整する。本プロセスにおいては45度程度傾けて斜め方向からイオンが入射するようにした。このとき、石英基板301を効果的にエッチングするため、フッ素系のガス、例えばCF4ガスを混入させてもよい。エッチング時には通常パターンの細りなどが発生するため、エッチング時の構造変化を考慮して描画パターンを形成しておくことが望ましい。本工程により斜面を有する波状溝が形成される。続いて、図8(f)に示すように、エッチングマスク302′を除去し、必要な洗浄を行う。洗浄が必要ない場合は本工程は省略しても構わない。引き続き波状溝が形成された石英基板301の表面に、レジストとの剥離性を上げるために、必要に応じ離型処理を施す。これにより石英モールド300は完成する。プロセス中もしくは完成後に必要に応じて検査を施す。検査は原子間力顕微鏡(AFM)やレーザー走査顕微鏡などを使用し、非破壊で行うことが望ましい。
石英モールドに300に変えて、他の材料を用いる場合は上記の条件を変更する必要がある。例えばモールド材料としてシリコンを使用した場合、モールド作成時のイオンミリングを異方性エッチングに変えることも可能である。但し、シリコンなど光を透過しない物質のモールドの場合は、上記の光インプリント方式に代えて熱インプリント方式を採用するか、もしくは基板101側から光を照射する必要がある。また、ガラスなど透光性の材料を用いた場合は、上記の光インプリントプロセスにおいて、レジスト202の硬化に必要な波長領域の光強度に応じて露光時間を調整する。また、斜面構造を形成するエッチングプロセスに代えて研磨を利用すると形成される斜面はランダムパターンになるが、後述するように斜面角度を維持することが可能で、必要な構造が形成できれば問題はない。
図9に上記プロセスによって得られた実施例1による磁気ディスク100を搭載した磁気記録装置(磁気ディスク装置)の模式図を示す。磁気ディスク100はスピンドル702に取り付けられ、スピンドルを中心に回転することができる。ここで、上記の媒体製造プロセスで説明した位置決めマーク708を使用して、磁気ディスク100の中心とスピンドル702の回転中心を一致させて固定することができる。磁気ディスクの回転軸とトラックパターン中心のずれは、30um程度であればサーボ信号を用いた制御により、磁気ヘッドスライダ703を記録トラックに追従させることが可能である。
磁気ヘッドスライダ703は、記録ヘッド111と再生ヘッドを搭載している。記録ヘッド111としては軟磁性体よりなる主磁極、副磁極および銅合金よりなるコイルなどより構成される、いわゆる単磁極型(SPT)垂直ヘッドを使用した。主磁極先端部には飽和磁束密度Bs=2.4Tを有する軟磁性Co系合金を採用した。再生ヘッドとしては巨大磁気抵抗効果(GMR)膜を利用したセンサを採用した。但し、トンネル磁気抵抗効果膜など他の再生センサ膜を使用しても構わない。記録ヘッドおよび再生ヘッドには信号の入出力を行うためのケーブル707が取り付けてあり、信号は信号処理系706との間でやり取りされる。磁気ヘッドスライダ703はサスペンション704に固定されている。サスペンション704はアクチュエータ705に取り付けられている。アクチュエータ705及びスピンドル702により磁気ヘッドスライダ703は磁気ディスク100上の必要な場所に移動することができる。図示していないが本ドライブにはロードアンロード機構が備えられており、非動作時には磁気ヘッドスライダ703は磁気ディスク100上の記録面から退避させられている。
スピンドル702により磁気ディスク100を回転させ、必要な回転数になった後、磁気ヘッドスライダ703を磁気ディスク100上にロードする。磁気ヘッドスライダ703の浮上面にはレールが形成されており、空力的な効果により必要な浮上量Fhを得ることができる。ここで磁気ヘッドスライダ703が走査する面は、基板面104に対し平行である。上記実施例で説明した磁束の流れが得られるよう、かつ磁気ヘッドスライダ703がクラッシュしないよう、浮上量Fhを決定する必要がある。
記録動作時に、信号処理系706からの指示に応じ、記録ヘッド111から発生した記録磁場は、記録ヘッドABS面では基板面104に対し垂直方向を向いている。しかしながら上記実施例で説明したとおり、記録磁場が斜面状の記録層103を通過し、SUL 102に至るときに、記録層103内では記録磁場はディスク面法線方向からずれが生じる。従って記録層103の結晶異方性方向と記録磁場方向には傾きが生じる。本ドライブにおいて、記録再生試験を行った結果、媒体内部において実効的に各磁性粒子の磁化回転が容易となり、結果として従来媒体に比べ良好なオーバーライト特性を得ることができた。
上記実施例1による磁気ディスク100においては、磁気情報を担う全てのトラック、サーボ信号などを、記録層の斜面上に形成したが、部分的に斜面を有する石英金型を使用すれば、あるトラックのみ斜面状に形成し、他の部分は凸部状に形成することも可能である。この技術を採用すれば、例えば追記の必要な情報トラックのみを斜面状に形成し、サーボ信号は斜面のない凸部状に形成することも可能となる。このような形状を採用することにより、サーボ信号はディスク面に垂直な外部磁場による擾乱に対して安定となるため、磁気ディスク装置の信頼性を高めることが可能である。
また、上記磁気ディスク装置においては、SPTヘッドを使用した。SPTヘッドにおいては記録磁場が記録層下部のSULに向かって直進するため磁場の垂直成分が大きい。ここでSPTヘッドにおいて、特許文献4などに提案されているラップアラウンドシールド(WRS)構造、トレーディングシールド(TS)構造を採用すると、主磁極先端部から出た記録磁場は、SULだけでなく前記シールドに向かう成分があるため、実効的に記録層内での磁場の面内成分が増える。これらTS, WASを備えた記録ヘッドを上記実施例による磁気ディスクと組み合わせることにより、記録層内での磁場方向をより効率的に斜めに向けることが可能となる。
次に、図10を参照して、実施例2による磁気ディスクを説明する。図10は断面模式図である。実施例2による磁気ディスク800は、基板801上に軟磁性裏打ち層(SUL) 802および記録層803を有する。基板面804は磁気記録装置内においてヘッド浮上の基準となる面である。基板801はガラス、SUL802は軟磁性材料、記録層803は高磁性材料よりなる。基板801はガラスに代えてアルミニウム、Si、ポリカーボネイト樹脂などを使用することができる。基板801とSUL 802の間やSUL 802と記録層803の間にはそれぞれ密着層や中間層などが、また記録層803の上には保護膜や潤滑層などがあるが図では省略してある。また、記録層803の上に平坦化のための非磁性体が充填されているが図では省略してある。SUL 802は形状的にはのこぎり波形状の下に凸部のある形状であり、平坦部805、凸部806および波状部807よりなる。それぞれの高さは、平坦部高さt1、凸部高さt2、波状部高さhである。波状部807はトラックピッチTpを1周期とする周期構造である。この1周期は斜面部幅Twおよび平面部幅Bwに分けることができる。斜面部幅Twは非零の値を持つ。斜面角度θは、波状部高さh及び斜面部幅Twの逆正接で決まる値である。本実施例においては平坦部高さt1=300nm, 凸部高さt2=10nm, θ=20°とした。なお、実施例2による磁気ディスクは、上記製造方法により製造することができる。
本実施例2に対する比較(参考)例として、本願発明者らによる特許文献5(特開2004-259306号公報)が挙げられる。特に本実施例2のように有限の凸部高さt2を有する構成を用いる場合、SPT記録ヘッドと組み合わせて使用することにより、特許文献5に示される磁束の収束効果に加え、実効的に記録磁場と磁気異方性の軸を傾かせる効果から、記録特性の向上が顕著となる。
図11は、実施例3による磁気ディスクの断面模式図である。基板901上に軟磁性裏打ち層(SUL)902および記録層903がある。基板面904は磁気記録装置内においてヘッド浮上の基準となる面である。基板901はガラス、SUL 902は軟磁性材料、記録層103は硬磁性材料よりなる。SUL 902は形状的にはトラック中心に対して対称の山型形状であり、平坦部905および山型部906よりなる。それぞれの高さは、平坦部高さt、山型部高さhである。山型部906はトラックピッチTpを1周期とする周期構造である。この1周期は斜面部幅Twおよび平面部幅Bwに分けることができ、斜面部幅Twは非零の値を持つ。斜面角度θは、山型部高さh及び斜面部幅Twの2分の1の逆正接で決まる値で、θ=arctan(2h/Tw)で求めることができる。本実施例3においては平坦部高さt=300nm, Tp=100nm, θ=30°とした。本図に示される構造は各トラックが左右対称となるため、金型作製が特に容易であるという特徴を有する。
図12は、実施例4による磁気ディスクの断面模式図である。基板1001上に軟磁性裏打ち層(SUL)1002および記録層1003がある。基板面1004は磁気記録装置内においてヘッド浮上の基準となる面である。基板1001はガラス、SUL 1002は軟磁性材料、記録層1003は硬磁性材料よりなる。本実施例4においては、記録層1003として垂直異方性を有するアモルファス材料であるGd-Fe-Co系材料を使用した。SUL 1002は形状的には山型波形の下に凸部のあるホームベース型であり、平坦部1005、凸部1006および山型部1007よりなる。それぞれの高さは、平坦部高さt1、凸部高さt2、山型部高さhである。山型部1007はトラックピッチTpを1周期とする周期構造である。この1周期は斜面部幅Twおよび平面部幅Bwに分けることができる。斜面部幅Twは非零の値を持つ。斜面角度θは、山型部高さh及び斜面部幅Twの2分の1の逆正接で決まる値でθ=arctan(2h/Tw)で求めることができる。本図に示される構造は各トラックが左右対称となるため、金型作製が特に容易であるという特徴を有する。
上記各実施例による磁気ディスクは、記録層としてCo-Cr-Pt合金あるいはGd-Fe-Co系材料を使用したが、記録層材料として垂直異方性を有するCo/Pd多層膜を使用することができる。本材料は積層膜面垂直方向に磁気異方性を有する(例えば非特許文献7)。このため印加磁場と磁気異方性の関係は実施例1で説明したCo-Cr-Pt合金とは異なるが、印加磁場と磁気異方性が実効的に斜め方向であることは同様である。また、Co/Pd多層膜以外の多層膜系材料でも同様であり、他の材料を用いてもよい。
次に、図13を参照して、実施例3による磁気ディスクの製造方法を説明する。図7を用いて説明した方法で使用した、波状形状(のこぎり波形状)の斜面を有する石英モールド300に代えて、垂直に近い壁面を有する石英金型1204を使用する。このような形状の金型の場合は、金型の作成が簡便で低コスト化が可能である。このような石英モールド1204の形状をディスク基板200に転写する(図13(a)、(b))。
転写後のレジスト103を含むディスク基板200をインプリントチャンバーから取り出し、ミリング又はRIE 1216により垂直もしくは垂直に近い角度で必要量を削る(図13(c))。本プロセスにおいては、イオンビームエッチング(IBE)を使用し、該工程でのSULミリング量は10nmとした。IBE深さは、予め他の基板を用いてエッチングレートを測定しておき、時間で制御した。引き続き基板を取り出し、マスクとして使用されたレジスト103を除去する(図13(d))。本工程においては有機溶媒中での洗浄、酸素アッシャー等を使用した。但し、前工程中においてレジストが表面からなくなっている場合は本工程は省略してもよい。引き続き、基板を斜め入射のイオンビーム1217でミリングもしくはIBEを行う(図13(e))。本プロセスにおいてはイオンビームの基板法線方向の入射角は20°とした。もちろん、装置の特性等により前記のSUL角度が得られる範囲で調整してもよい。また、本ミリング工程中に入射角度を変更してもよい。前述の通り本プロセスでは最初のRIE後、ディスク基板200を取り出してからレジスト除去、再度ミリングとしたが、第一のRIE工程でレジスト103が除去できる条件を選択した場合、途中での取り出し、レジスト除去は廃して第一のミリングと第二のミリングは一貫工程としてもよい。また、本プロセッスにおいてミリングに代えて、化学機械研磨(CMP)を行っても構わない。CMPを用いた場合、各斜面の構造はランダムに近くなり正確な構造は規定できないが、記録領域において実効的に斜面角度θが0°以外の有限の値となっていれば構わない。このようにランダム斜面を形成した試料に記録層1218を堆積する(図13(f))。引き続く工程は図7を用いて説明した製法と同じである。なお、この製造方法は、実施例4による磁気ディスクの製造に適用することができる。
次に、図14を参照して、実施例5による磁気ディスクおよびその製造方法を説明する。まず、ガラス基板1301上にスパッタ堆積によりSUL 1302を成長させる(図14(a))。この試料(ディスク基板)1300をイオンミリング、RIE 1317でSUL表面部に斜面が形成されるように削る(図14(b))。このときイオンの入射方向、エネルギーを調整し、記録領域において実効的に斜面角度θが0°以外の有限の値となるように条件を選ぶ(図14(c))。各斜面の構造はランダムとなっても構わない。また、イオンミリングに代えてCMPにより斜面構造を形成することができる。更に、SUL 1302の作製時に堆積条件を適当に選ぶことにより上記範囲の斜面構造が得られるのであればイオンミリングもしくはCMP工程を省略することも可能である。このようにランダム斜面を形成した試料に記録層1318をスパッタにより堆積する(図14(d))。引き続く工程は図7を用いて説明した製法と同じである。
図15は実施例6による磁気ディスクを示す図で、図15(a)は断面図、図15(b)は1トラックを示す拡大断面図である。本実施例においては図15(a)に示すように1つの記録トラックを複数の斜面で構成することを特徴とする。基板1101上に軟磁性裏打ち層(SUL)1102および記録層1103がある。基板面1104は磁気記録装置内においてヘッド浮上の基準となる面である。基板1101はアルミニウム、SUL 1102は軟磁性材料、記録層1103は硬磁性材料よりなる。本実施例においては記録層材料として垂直異方性を有するCo/Pd多層膜を使用した。本材料は積層膜面垂直方向に異方性を有する。このため、印加磁場と磁気異方性の関係は実施例1で説明したCo-Cr-Pt合金とは異なるが、印加磁場と磁気異方性が実効的に斜め方向であることは同様である。また、Co/Pd多層膜以外の多層膜系材料でも同様であり、他の材料を用いてもよい。SUL 1102は形状的には平坦部および波状部よりなる。本実施例においてトラックピッチ1108は波状部及び平坦部よりなる。ここで波状部幅1109内には複数の微凸部1113が形成されている。ここで斜面角度(θ)1112は斜面幅1111および微凸部高さ1107より決定される。微凸部1113の下の凸部高さ1106は本実施例では5nmとしたが、より大きくても小さくても構わない。また凸部高さ1106が0nmとなった場合、平坦部上に直接微凸部1113が形成され、また凸部高さ1106が0nm以下となった場合、平坦部上に凹部が形成され、その上に微凸部1113が形成されることになるがそれでも構わない。なお、平坦部高さ1105はディスク面において概ね一定であるとする。ここで、図15(b)に示すように本実施例においては、トラックピッチ1108は100nm、平坦部幅1110は10nmで、90nmの波状部幅1109内には6つの微凸部を有する形状とした。微凸部高さ1107は2nmであり、斜面幅1111は7.5nmである。従って斜面角度1112は15°となる。このように1トラックを複数の波状部で形成することにより、本媒体をドライブに組み込みリードライト動作をさせる際に実効的に浮上量の増加を実施例1の場合と比較して小さくすることが可能となる。即ち斜面角度1112を所望の値に保ちつつ、微凸部高さ1107を抑えることが可能となる。本実施例の説明においては各斜面の角度は等しいものとしたが、実際には微凸部ごとに微凸部高さ1107、斜面幅1111が異なっても構わない。勿論、1つの微凸部内で左右の斜面幅1111が異なる非対称形状でも構わない。このように微凸部形状が異なることを許容することにより媒体製造が容易になるという特徴がある。また本実施例においては6つの微凸部により波状部を構成したが、記録再生時に必要な特性が得られるように波状部内の微凸部の数は調整してよい。このとき、斜面角度θおよび波状部さ1107のばらつきも考慮した上で必要な設計値内に収まるように微凸部の数を調整するとよい。
実施例1による磁気ディスクの断面模式図である。 実施例1による磁気ディスクの断面図である。 実施例1による磁気ディスクの全体構成を示す上面図と部分断面鳥瞰図である。 軟磁性裏打ち層の斜面に入射する記録磁場のシミュレーション結果と模式図である。 軟磁性裏打ち層の斜面角度θと、磁場方向の斜面に垂直なZ軸に対する角度φとの関係を示す図である。 Stoner-Wolfarthモデルの模式図と、磁場印加方向と反転磁場の関係図である。 実施例1による磁気ディスクの製造方法を示す工程図である 実施例1による磁気ディスクの製造方法で使用する石英モールドの製造方法を示す工程図である 各実施例による磁気ディスクを搭載する磁気ディスク装置の模式図である。 実施例2による磁気ディスクの断面模式図である。 実施例3による磁気ディスクの断面模式図である。 実施例4による磁気ディスクの断面模式図である。 実施例3による磁気ディスクの製造方法を示す工程図である 実施例5による磁気ディスクの製造方法を示す工程図である。 実施例6による磁気ディスクの断面図と拡大断面図である。
符号の説明
20…内径、30…外径、40…磁気記録面、50…データ領域、60…サーボパターン領域、100…磁気ディスク、101…基板、102…軟磁性裏打ち層(SUL)、103…記録層、104…基板面、105…平坦部、106…波状部、107…非磁性体、108…カーボン保護膜、109…潤滑膜、111…単磁極(SPT)ヘッド、112…記録磁場、200…ディスク基板、202…光硬化樹脂、300…石英モールド、505…インプリントチャンバー、506…上部真空室、507…CCDカメラ、508…移動機構、509,510,511…バルブ、512…エアバルブ、513…真空ポンプ、514…緩衝層、515…光源、516…イオン、702…スピンドル、703…磁気ヘッドスライダ、704…サスペンション、705…アクチュエータ、706…信号処理系、708…アライメントマーク、801…基板、802…軟磁性裏打ち層(SUL)、803…記録層、804…基板面、805…平坦部、806…凸部、807…波状部、901…基板、902…軟磁性裏打ち層(SUL)、903…記録層、904…基板面、905…平坦部、906…山型部、1001…基板、1002…軟磁性裏打ち層(SUL)、1003…記録層、1004…基板面、1005…平坦部、1006…凸部、1007…山型部、1101…基板、1102…軟磁性裏打ち層(SUL)、1103…記録層、1104…基板面、1105…平坦部高さ、1106…凸部高さ、1204…石英金型、1216,1217…イオンビーム、1300…ディスク基板、1317…イオンビーム、1318…記録層。

Claims (10)

  1. 基板と、
    前記基板上に形成され、少なくともデータ部においてトラック幅方向に波状形状を有する軟磁性層と、
    前記軟磁性層上に形成され、前記基板面の鉛直方向に磁気異方性を有する記録層とを備え、
    前記軟磁性層の波状形状の少なくとも一表面は、前記基板面に対して鋭角に傾斜していることを特徴とする磁気記録媒体。
  2. 請求項1記載の磁気記録媒体において、前記記録層は前記軟磁性層と同じ形状を有し、前記記録層の波状形状の少なくとも一表面は、前記基板面に対して鋭角に傾斜していることを特徴とする磁気記録媒体。
  3. 請求項1記載の磁気記録媒体において、前記波状形状の1周期がトラックピッチに相当することを特徴とする磁気記録媒体。
  4. 請求項1記載の磁気記録媒体において、前記波状形状の少なくとも1周期を超える構造がトラックピッチに相当することを特徴とする磁気記録媒体。
  5. 請求項1記載の磁気記録媒体において、前記軟磁性層はビット長方向に凸部および凹部を有することを特徴とする磁気記録媒体。
  6. 請求項1の磁気記録媒体において、前記傾斜角度θは8゜以上82゜以下であることを特徴とする磁気記録媒体。
  7. 請求項1の磁気記録媒体において、前記データ部においては傾斜構造を有し、サーボ信号部では傾斜角度が前記基板面に対して概ね平行であることを特徴とする磁気記録媒体。
  8. 基板と、
    前記基板上に形成され、少なくともデータ部においてトラック幅方向に波状形状を有する軟磁性層と、
    前記軟磁性層上に形成された積層膜であり、積層膜面の鉛直方向に磁気異方性を有する記録層とを備え、
    前記軟磁性層の波状形状の少なくとも一表面は、前記基板面に対して鋭角に傾斜していることを特徴とする磁気記録媒体。
  9. 基板上に軟磁性層を形成する工程と、
    前記軟磁性層上にレジストを塗布する工程と、
    前記レジストに、波状形状の凹部を有する金型を押し付け、該金型の波状形状を前記レジストに転写する工程と、
    前記波状形状が転写されたレジストをマスクとして前記軟磁性層をエッチングして、前記波状形状を転写する工程と、
    前記波状形状が転写された軟磁性層上に、前記基板の面に鉛直方向に磁気異方性を有する記録層を形成する工程と、
    を含むことを特徴とする磁気記録媒体の製造方法。
  10. 基板と、
    前記基板上に形成され、少なくともデータ部においてトラック幅方向に波状形状を有する軟磁性層と、
    前記軟磁性層上に形成され、前記基板の面に対して鉛直方向に磁気異方性を有する記録層とを備え、前記軟磁性層の波状形状の少なくとも一表面は、前記基板面に対して鋭角に傾斜している磁気記録媒体と、
    前記記録媒体に対して磁気記録を行う単磁極型記録ヘッドと、
    を有することを特徴とする磁気記録装置。
JP2007126010A 2007-05-10 2007-05-10 磁気記録媒体及びその及び製造方法、磁気記録装置 Pending JP2008282478A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126010A JP2008282478A (ja) 2007-05-10 2007-05-10 磁気記録媒体及びその及び製造方法、磁気記録装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126010A JP2008282478A (ja) 2007-05-10 2007-05-10 磁気記録媒体及びその及び製造方法、磁気記録装置

Publications (1)

Publication Number Publication Date
JP2008282478A true JP2008282478A (ja) 2008-11-20

Family

ID=40143169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126010A Pending JP2008282478A (ja) 2007-05-10 2007-05-10 磁気記録媒体及びその及び製造方法、磁気記録装置

Country Status (1)

Country Link
JP (1) JP2008282478A (ja)

Similar Documents

Publication Publication Date Title
Dobisz et al. Patterned media: nanofabrication challenges of future disk drives
JP3886802B2 (ja) 磁性体のパターニング方法、磁気記録媒体、磁気ランダムアクセスメモリ
JP4322096B2 (ja) レジストパターン形成方法並びに磁気記録媒体及び磁気ヘッドの製造方法
US7881011B2 (en) Perpendicular pole structure and method of fabricating the same
JP4381444B2 (ja) 磁気記録媒体、磁気記録媒体の製造方法、および磁気記録装置
JP2004164692A (ja) 磁気記録媒体及びその製造方法
US7998605B2 (en) Magnetic recording medium and method for production thereof
US7139153B2 (en) Magnetic pole tip for perpendicular magnetic recording
JP2012033249A (ja) 磁気転写用マスター基板、それを用いた磁気転写方法および磁気転写媒体
JP2012195046A (ja) スイッチング磁場分布を減少した極薄酸化膜を有するパターン化垂直磁気記録媒体
JP2004303302A (ja) 記録媒体、記録再生装置、記録媒体の製造装置、及び記録媒体の製造方法
JP4042107B2 (ja) 磁気転写用マスタディスクの製造方法
US20090067093A1 (en) Perpendicular Magnetic Recording Medium and Magnetic Recording Apparatus
JP2010092550A (ja) 磁気記録ヘッド、その製造方法及び磁気記録再生装置
US20130319850A1 (en) Nanoimprint lithography method for making a bit-patterned media magnetic recording disk using imprint resist with enlarged feature size
JP2008016086A (ja) 磁気記録媒体および磁気記録装置
US20090244785A1 (en) Magnetic recording medium, magnetic recording/reproduction device, and method of manufacturing magnetic recording medium
JP2010192016A (ja) 磁気記録媒体、磁気記録再生ヘッド、磁気記録再生装置、及び磁気記録媒体の製造方法
JP4006400B2 (ja) 磁気ディスク媒体及びその製造方法並びに磁気記録装置
JP4557994B2 (ja) 磁気記録媒体の製造方法
JP2008282478A (ja) 磁気記録媒体及びその及び製造方法、磁気記録装置
US7170699B2 (en) Master disk having grooves of different depths for magnetic printing and manufacturing method therefor
US7251103B2 (en) Perpendicular pole having and adjacent non-magnetic CMP resistant structure
US20040161925A1 (en) Method of manufacturing master disc
JP2009048752A (ja) インプリント用モールド構造体、及び該インプリント用モールド構造体を用いたインプリント方法、並びに、磁気記録媒体、及びその製造方法