JP2008280601A - Joining method and joining structure - Google Patents

Joining method and joining structure Download PDF

Info

Publication number
JP2008280601A
JP2008280601A JP2007128440A JP2007128440A JP2008280601A JP 2008280601 A JP2008280601 A JP 2008280601A JP 2007128440 A JP2007128440 A JP 2007128440A JP 2007128440 A JP2007128440 A JP 2007128440A JP 2008280601 A JP2008280601 A JP 2008280601A
Authority
JP
Japan
Prior art keywords
bonding material
metal nanoparticles
joining
bonding
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007128440A
Other languages
Japanese (ja)
Other versions
JP4766273B2 (en
Inventor
Yoshinori Shibata
義範 柴田
Yoshimune Ishikawa
善統 石川
Teruyoshi Ichiyanagi
輝好 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007128440A priority Critical patent/JP4766273B2/en
Publication of JP2008280601A publication Critical patent/JP2008280601A/en
Application granted granted Critical
Publication of JP4766273B2 publication Critical patent/JP4766273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method using metal nanoparticles by which the joinability of a joining material is increased while evading the resistance value of joined parts from increasing and also cost from raising. <P>SOLUTION: By tightly sticking the surface of a member 10 to be joined with a first joining material 12A in which the containing ratio of metal nanoparticles 18S with relatively small particle sizes is increased, the joinability between the member 10 and the metal nanoparticles 18S increases. Further, the relatively small metal nanoparticles 18S largely comprised in the first joining material 12A can not absorb the ruggedness in the surface of the member 10 since the size of the metal nanoparticles is smaller than that of the ruggedness in the surface of the member 10, but the ruggedness can be absorbed by a second joining material 12B having excellent ruggedness absorbability owing to the incorporation of metal nanoparticles 18L with relatively large particle sizes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属ナノ粒子を被接合部材間の所定の位置に保持した状態で加熱・焼成することにより、被接合部材同士を接合する接合方法に関するものである。   The present invention relates to a joining method for joining joined members by heating and firing in a state where metal nanoparticles are held at predetermined positions between the joined members.

従来から、部材同士を接合する手法として、ソルダリング、ボンディング、ウェルディング等様々な手法が用いられている。一方で、近年、環境汚染に対するより一層の配慮が求められていることや、被接合部材の性質如何によっては、これら従来の接合手法が不適切となる場合がある点を考慮して、従来とは異なる、金属ナノ粒子を用いた接合技術が用いられるようになっている(例えば、特許文献1参照。)。
この、金属ナノ粒子を用いた接合技術は、有機保護膜で被覆された金属ナノ粒子とバインダーとが含まれる接合材料を、被接合部材の所定の位置に塗布して被接合部材間に保持した状態で、被接合部材及び接合材料を加熱・加圧して接合部材を焼成することにより、被接合部材同士を接合する接合方法である。ここで用いられる金属ナノ粒子は、各粒子の同士の付着を防ぐために有機保護膜によって覆われ、更に、バインダー及び溶剤が混合されることにより、常温ではペースト状の接合材料として取り扱われている。そして、接合部材を焼成する際には、被接合部材及び接合材料を加熱すると共に被接合部材同士を加圧することによって、バインダー、溶剤及び有機保護膜を分解、蒸発させ、金属ナノ粒子同士を密着、接合させるものである。
Conventionally, various methods such as soldering, bonding, and welding have been used as methods for joining members together. On the other hand, in consideration of the fact that in recent years, further consideration for environmental pollution has been demanded and depending on the nature of the members to be joined, these conventional joining methods may be inappropriate. Are different from each other, and a joining technique using metal nanoparticles is used (see, for example, Patent Document 1).
In this bonding technique using metal nanoparticles, a bonding material containing metal nanoparticles coated with an organic protective film and a binder is applied to a predetermined position of a member to be bonded and held between the members to be bonded. In this state, the members to be joined are bonded to each other by heating and pressurizing the members to be joined and the joining material and firing the joining members. The metal nanoparticles used here are covered with an organic protective film to prevent the particles from adhering to each other, and are further treated as a paste-like bonding material at room temperature by mixing a binder and a solvent. And when baking a joining member, by heating a to-be-joined member and joining material, and pressurizing to-be-joined members, a binder, a solvent, and an organic protective film are decomposed | disassembled and evaporated, and metal nanoparticles are closely_contact | adhered , To be joined.

特開2004−130371号公報JP 2004-130371 A

金属ナノ粒子を用いた接合技術における具体的接合手順は、図4に示される通りである。
(i)塗布工程:被接合部材10(10A)の接合面に、有機保護膜16で被覆された金属ナノ粒子18と、バインダー20と、溶剤22とが混合された接合材料12を塗布する。なお、図示の例では、被接合部材10は銅板、金属ナノ粒子18は銀ナノ粒子、バインダー20にははんだ用樹脂系フラックス、溶剤22にはアルコールが用いられている。
(ii)乾燥工程:塗布工程にて被接合部材10の接合面に塗布した接合材料12を乾燥させ、接合材料12から溶剤20を蒸発させる。
(iii)組付工程:接合材料12が塗布された被接合部材10(10A)に、被接合部材10(10B)を重ね合わせ、2枚の被接合部材10(10A、10B)で、接合材料12を挟持する。
(iv)加熱・加圧工程:接合材料12がその接合温度以上となるように加熱しながら、加圧力Pで、被接合部材同士10(10A、10B)を加圧する。
(v)接合工程(接合完了工程):接合材料12がその接合温度以上に維持された状態で、被接合部材10(10A、10B)に、必要な接合強度を得るための圧力を付与することにより、被接合部材10(10A、10B)同士を接合する。
The specific joining procedure in the joining technique using metal nanoparticles is as shown in FIG.
(I) Application process: The bonding material 12 in which the metal nanoparticles 18 covered with the organic protective film 16, the binder 20, and the solvent 22 are mixed is applied to the bonding surface of the member to be bonded 10 (10A). In the illustrated example, the bonded member 10 is a copper plate, the metal nanoparticles 18 are silver nanoparticles, the binder 20 is a resin flux for soldering, and the solvent 22 is alcohol.
(Ii) Drying step: The bonding material 12 applied to the bonding surface of the member to be bonded 10 in the application step is dried, and the solvent 20 is evaporated from the bonding material 12.
(Iii) Assembling step: The member 10 (10B) to be joined is applied to the member 10 (10A) to which the joining material 12 is applied, and the joining material 10 (10A, 10B) is joined by the two members 10 (10A, 10B). 12 is pinched.
(Iv) heating and pressurizing step: bonding material 12 while heating so that the junction temperature or higher, at a pressure P 1, pressurizing the bonded member to each other 10 (10A, 10B).
(V) Joining step (joining completion step): Applying pressure to obtain the required joining strength to the member to be joined 10 (10A, 10B) in a state where the joining material 12 is maintained at or above the joining temperature. Thus, the members 10 (10A, 10B) to be joined are joined together.

上記の金属ナノ粒子を用いた接合方法において、加圧・焼成時には(ステップ(iv))、分解した有機保護膜16が被接合部材10の表面に形成された酸化膜を還元し、被接合部材10の表面が活性化されることで、被接合部材10と金属ナノ粒子18との間には高い接合性を得ることができる。又、金属ナノ粒子18は粒子サイズが小さい程、低温での接合性が向上することから、被接合部材10と金属ナノ粒子18との接合性は、より一層高まることとなる。   In the bonding method using the metal nanoparticles described above, at the time of pressure and firing (step (iv)), the decomposed organic protective film 16 reduces the oxide film formed on the surface of the member to be bonded 10, and the member to be bonded By activating the surface of 10, high bondability can be obtained between the member to be bonded 10 and the metal nanoparticles 18. In addition, the smaller the particle size of the metal nanoparticles 18, the better the bondability at a low temperature. Therefore, the bondability between the member to be bonded 10 and the metal nanoparticles 18 is further enhanced.

一方、金属ナノ粒子18の粒子サイズが小さいと、加圧・焼成時に発生する有機保護膜の分解ガス量が増大し、分解ガスが接合材料から一気に噴出してバインダー20及び金属ナノ粒子18が接合面から吹き飛ばされてしまい、その結果として、接合強度の低下を来たしてしまう。図5には、金属ナノ粒子18を用いて接合された部材同士を剥がして得られる破面が、模式的に示されている。ここで(a)には正常破面が示され、(b)には、金属ナノ粒子18が接合面から吹き飛ばされた場合の不良破面が示されている。(a)の正常破面では、被接合部材10の表面に接合材料12が均一に広がっているのに対し、(b)の不良破面では、ガス噴出痕14によって接合材料12にむらが生じていることがわかる。   On the other hand, when the particle size of the metal nanoparticles 18 is small, the amount of decomposition gas of the organic protective film generated at the time of pressurization / firing increases, and the decomposition gas is ejected from the bonding material at a stretch to bond the binder 20 and the metal nanoparticles 18 together. As a result, the bonding strength is reduced. FIG. 5 schematically shows a fracture surface obtained by peeling the members joined using the metal nanoparticles 18. Here, (a) shows a normal fracture surface, and (b) shows a defective fracture surface when the metal nanoparticles 18 are blown off from the joint surface. In the normal fracture surface of (a), the bonding material 12 spreads uniformly on the surface of the member 10 to be joined. On the other hand, in the defective fracture surface of (b), the gas ejection trace 14 causes unevenness in the bonding material 12. You can see that

一方、粒子サイズの小さい金属ナノ粒子18を用い、なおかつ、有機保護膜の分解ガスの増大を回避するために、接合材料12の塗布厚みを薄くすると、被接合部材10の表面の凹凸よりも金属ナノ粒子18のサイズが小さく、金属ナノ粒子18によって被接合部材10の表面の凹凸を吸収することは不可能となることから、接合性、導電性の何れも低下するといった問題が生じ、焼成状態の如何によっては抵抗値が増大してしまうといった問題が生じることとなる。又、当然に、金属ナノ粒子18の粒子サイズが小さいほど、金属ナノ粒子18の製造コストも増大することとなる。
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、金属ナノ粒子を用いた接合方法において、接合部分の抵抗値増大と、コストの増大とを回避しつつ、接合材料の接合性を高めることにある。
On the other hand, when metal nanoparticles 18 having a small particle size are used, and when the coating thickness of the bonding material 12 is reduced in order to avoid an increase in the decomposition gas of the organic protective film, the metal is larger than the unevenness on the surface of the bonded member 10. Since the size of the nanoparticles 18 is small and it is impossible to absorb the irregularities on the surface of the member to be bonded 10 by the metal nanoparticles 18, there arises a problem that both the bonding property and the conductivity decrease, and the firing state Depending on the above, there arises a problem that the resistance value increases. Of course, the smaller the particle size of the metal nanoparticles 18, the higher the production cost of the metal nanoparticles 18.
The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to join the metal nanoparticle in the joining method while avoiding an increase in the resistance value of the joining portion and an increase in cost. It is to improve the bondability of the material.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。又、各項は、本発明の技術的範囲を限定するものではない。よって、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each item does not limit the technical scope of the present invention. Therefore, the technical aspects of the present invention also apply to those in which some of the constituent elements in each section are replaced, deleted, or other constituent elements are added while taking into account the best mode for carrying out the invention. It can be included in the range.

(1)有機保護膜で被覆された金属ナノ粒子が含まれる接合材料を、2枚の被接合部材間の所定の位置に保持した状態で加熱・焼成することにより被接合部材同士を接合する接合方法であって、
一方の被接合部材の表面に、粒子サイズが比較的小さい金属ナノ粒子の含有比率を高めた第1の接合材料を塗布し、該第1の接合材料に被接合部材表面の凹凸吸収性に優れた第2の接合材料を重ね、更に、前記第1の接合材料を、前記第2の接合材料に重ね若しくはもう一方の被接合部材の表面に塗布し、前記被接合部材同士を重ね合わせ、前記接合材料がその接合温度以上となるように加熱しながら前記被接合部材同士を加圧することを特徴とする接合方法(請求項1)。
(1) Joining joining members to be joined by heating and baking a joining material containing metal nanoparticles coated with an organic protective film in a predetermined position between two joined members. A method,
The surface of one member to be bonded is coated with a first bonding material with a high content ratio of metal nanoparticles having a relatively small particle size, and the surface of the member to be bonded has excellent irregularity absorbability. The second bonding material is further stacked, and further, the first bonding material is stacked on the second bonding material or applied to the surface of the other bonded member, and the bonded members are stacked, A joining method comprising pressurizing the members to be joined together while heating so that the joining material has a temperature equal to or higher than the joining temperature (Claim 1).

本項に記載の接合方法は、被接合部材の表面に、粒子サイズが比較的小さい金属ナノ粒子の含有比率を高めた第1の接合材料が密着することで、被接合部材と金属ナノ粒子との接合性が高まる。一方、第1の接合材料は、そこに多く含まれる金属ナノ粒子のサイズが、被接合部材の表面の凹凸よりも小さく、金属ナノ粒子によって被接合部材の表面の凹凸を吸収することはできないが、その代わりに、当該凹凸を第2の接合材料によって吸収することができる。よって、第1の接合材料の塗布厚みを薄くして、接合材料全体から発生する有機保護膜の分解ガスの過大な増加を回避しつつ、十分な接合性、導電性を確保することができる。   In the bonding method described in this section, the first bonding material having a higher content ratio of metal nanoparticles having a relatively small particle size is in close contact with the surface of the member to be bonded. The bondability of is increased. On the other hand, the size of the metal nanoparticles contained in the first bonding material is smaller than the unevenness on the surface of the member to be bonded, and the metal nanoparticles cannot absorb the unevenness on the surface of the member to be bonded. Instead, the unevenness can be absorbed by the second bonding material. Therefore, it is possible to secure sufficient bondability and conductivity while reducing the coating thickness of the first bonding material and avoiding an excessive increase in the decomposition gas of the organic protective film generated from the entire bonding material.

(2)上記(1)項において、前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、100nm以上の金属ナノ粒子を50vol%以上含む接合材料である接合方法(請求項2)。
本項に記載の接合方法は、第1の接合材料が粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含むことによって、被接合部材の近傍における、被接合部材と金属ナノ粒子との接合性が高まる。又、第2の接合材料が100nm以上の金属ナノ粒子を50vol%以上含むことによって、第1の接合材料に含まれる粒子サイズ50nm以下の金属ナノ粒子では吸収することが不可能な、被接合部材の表面の凹凸を、100nm以上の金属ナノ粒子により吸収するものである。なお、金属ナノ粒子同士の接合性は、粒子サイズの如何に関わらず良好である。
(2) In the above item (1), the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is metal nanoparticles of 100 nm or more. Is a bonding material containing 50 vol% or more (Claim 2).
In the bonding method described in this section, the first bonding material contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, so that the bonding property between the bonded member and the metal nanoparticles in the vicinity of the bonded member is increased. Rise. In addition, since the second bonding material contains 50 vol% or more of metal nanoparticles having a size of 100 nm or more, the metal member having a particle size of 50 nm or less contained in the first bonding material cannot be absorbed. The surface irregularities are absorbed by metal nanoparticles of 100 nm or more. In addition, the bondability between metal nanoparticles is good regardless of the particle size.

(3)上記(1)項において、前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、粗大金属粒子と金属ナノ粒子との混合粒子を含む接合材料である接合方法(請求項3)。
本項に記載の接合方法は、第1の接合材料が粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含むことによって、被接合部材の近傍における、被接合部材と金属ナノ粒子との接合性が高まる。又、第2の接合材料が粗大金属粒子と金属ナノ粒子との混合粒子を含むことによって、被接合部材の表面の凹凸を、粗大金属粒子及び金属ナノ粒子により吸収するものである。なお、粗大金属粒子及び金属ナノ粒子の接合性は、粒子サイズの如何に関わらず良好である。
(3) In the above item (1), the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material includes coarse metal particles and metal nanoparticles. A bonding method which is a bonding material containing mixed particles with particles (claim 3).
In the bonding method described in this section, the first bonding material contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, so that the bonding property between the bonded member and the metal nanoparticles in the vicinity of the bonded member is increased. Rise. In addition, the second bonding material contains mixed particles of coarse metal particles and metal nanoparticles, so that the irregularities on the surface of the member to be joined are absorbed by the coarse metal particles and the metal nanoparticles. Note that the bonding properties of the coarse metal particles and the metal nanoparticles are good regardless of the particle size.

すなわち上記(2)、(3)項は、有機保護膜で被覆された金属ナノ粒子が含まれる接合材料を、2枚の被接合部材間の所定の位置に保持した状態で加熱・焼成することにより被接合部材同士を接合する接合方法であって、
前記接合材料を、被接合部材の表面及びその近傍部分と、それ以外の部分とで、含まれる金属ナノ粒子の粒子サイズの比率が異なるように多層に構成し、前記被接合部材同士を重ね合わせ、前記接合材料がその接合温度以上となるように加熱しながら前記被接合部材同士を加圧するものである。
That is, in the above items (2) and (3), the bonding material containing the metal nanoparticles coated with the organic protective film is heated and fired in a state where the bonding material is held at a predetermined position between the two bonded members. A joining method for joining members to be joined together,
The bonding material is configured in multiple layers so that the ratio of the particle size of the metal nanoparticles contained in the surface of the member to be bonded and its vicinity and the other part are different, and the members to be bonded are overlapped. The members to be joined are pressurized while being heated so that the joining material has a temperature equal to or higher than the joining temperature.

(4)前記(1)項において、前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、金属箔である接合方法(請求項4)。
本項に記載の接合方法は、第1の接合材料が粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含むことによって、被接合部材の近傍における、被接合部材と金属ナノ粒子との接合性が高まる。又、第2の接合材料が金属箔であることによって、被接合部材の表面の凹凸を、金属箔により吸収するものである。なお、金属箔と金属ナノ粒子との接合性は良好である。又、金属箔は、接合性と材料コストとのバランスを考慮すれば、銀箔や銅箔を用いることが望ましい。
(4) In the method (1), the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a metal foil. (Claim 4).
In the bonding method described in this section, the first bonding material contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, so that the bonding property between the bonded member and the metal nanoparticles in the vicinity of the bonded member is increased. Rise. Moreover, the unevenness | corrugation on the surface of a to-be-joined member is absorbed with metal foil because the 2nd joining material is metal foil. In addition, the bondability between the metal foil and the metal nanoparticles is good. Moreover, it is desirable to use a silver foil or a copper foil as the metal foil in consideration of the balance between bondability and material cost.

上記(2)から(4)項は、すなわち、有機保護膜で被覆された金属ナノ粒子が含まれる接合材料を、2枚の被接合部材間の所定の位置に保持した状態で加熱・焼成することにより被接合部材同士を接合する接合方法であって、
一方の被接合部材の表面に、該被接合部材表面の酸化膜の還元性に優れた第1の接合材料を塗布し、該第1の接合材料に被接合部材表面の凹凸吸収性に優れた第2の接合材料を重ね、更に、前記第1の接合材料を、前記第2の接合材料に重ね若しくはもう一方の被接合部材の表面に塗布し、前記被接合部材同士を重ね合わせ、前記接合材料がその接合温度以上となるように加熱しながら前記被接合部材同士を加圧するものである。
In the above items (2) to (4), that is, a bonding material containing metal nanoparticles coated with an organic protective film is heated and fired in a state where the bonding material is held at a predetermined position between two bonded members. A joining method for joining members to be joined together,
A first bonding material excellent in reducing the oxide film on the surface of the member to be bonded is applied to the surface of one member to be bonded, and the surface of the member to be bonded has excellent irregularity absorbability. The second bonding material is stacked, and the first bonding material is stacked on the second bonding material or applied to the surface of the other bonded member, and the bonded members are overlapped with each other, and the bonding is performed. The members to be joined are pressurized while being heated so that the material becomes equal to or higher than the joining temperature.

(5)有機保護膜で被覆された金属ナノ粒子が含まれる接合材料が、2枚の被接合部材間の所定の位置に保持された状態で加熱・焼成されることにより、被接合部材同士が接合されてなる接合構造であって、
一方の被接合部材の表面に、粒子サイズが比較的小さい金属ナノ粒子の含有比率を高めた第1の接合材料が塗布され、該第1の接合材料に被接合部材表面の凹凸吸収性に優れた第2の接合材料が重ねられ、更に、前記第1の接合材料が、前記第2の接合材料に重ねられ若しくはもう一方の被接合部材の表面に塗布され、前記被接合部材同士が重ね合わせられて、前記接合材料がその接合温度以上となるように加熱されながら前記被接合部材同士が加圧されてなることを特徴とする接合構造(請求項5)。
(5) The bonding material containing the metal nanoparticles coated with the organic protective film is heated and fired in a state where the bonding material is held at a predetermined position between the two bonded members, thereby bonding the bonded members to each other. A bonded structure formed by bonding,
A first bonding material having a higher content ratio of metal nanoparticles having a relatively small particle size is applied to the surface of one of the members to be bonded, and the first bonding material has excellent unevenness absorbability on the surface of the member to be bonded. The second bonding material is stacked, and further, the first bonding material is stacked on the second bonding material or applied to the surface of the other bonded member, and the bonded members are stacked. The joining members are pressed while being heated so that the joining material has a temperature equal to or higher than the joining temperature (Claim 5).

本項に記載の接合構造は、被接合部材の表面に、粒子サイズが比較的小さい金属ナノ粒子の含有比率を高めた第1の接合材料が密着することで、被接合部材表面との接合性が向上し、被接合部材と金属ナノ粒子との接合性が高まる。一方、第1の接合材料は、そこに多く含まれる金属ナノ粒子のサイズが、被接合部材の表面の凹凸よりも小さく、金属ナノ粒子によって被接合部材の表面の凹凸を吸収することはできないが、その代わりに、当該凹凸を第2の接合材料によって吸収することができるので、第1の接合材料の塗布厚みを薄くして、接合材料全体から発生する有機保護膜の分解ガスの過大な増加を回避しつつ、十分な接合性、導電性を確保することができる。   In the bonding structure described in this section, the first bonding material having a higher content ratio of metal nanoparticles having a relatively small particle size is in close contact with the surface of the member to be bonded, thereby bonding to the surface of the member to be bonded. Is improved, and the bondability between the member to be bonded and the metal nanoparticles is increased. On the other hand, the size of the metal nanoparticles contained in the first bonding material is smaller than the unevenness on the surface of the member to be bonded, and the metal nanoparticles cannot absorb the unevenness on the surface of the member to be bonded. Instead, since the unevenness can be absorbed by the second bonding material, the coating thickness of the first bonding material is reduced, and the decomposition gas of the organic protective film generated from the entire bonding material is excessively increased. It is possible to ensure sufficient bondability and conductivity while avoiding the above.

(6)前記(5)項において、前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、100nm以上の金属ナノ粒子を50vol%以上含む接合材料である接合構造(請求項6)。
本項に記載の接合構造は、第1の接合材料が粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含むことによって、被接合部材の近傍における、被接合部材と金属ナノ粒子との接合性が高まる。又、第2の接合材料が100nm以上の金属ナノ粒子を50vol%以上含むことによって、第1の接合部材に含まれる粒子サイズ50nm以下の金属ナノ粒子では吸収することが不可能な被接合部材の表面の凹凸を、100nm以上の金属ナノ粒子により吸収するものである。なお、金属ナノ粒子同士の接合性は、粒子サイズの如何に関わらず良好である。
(6) In the item (5), the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is metal nanoparticles of 100 nm or more. Is a bonding structure containing 50 vol% or more.
In the bonding structure described in this section, when the first bonding material contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, the bonding property between the bonded member and the metal nanoparticles in the vicinity of the bonded member is improved. Rise. In addition, since the second bonding material contains 50 vol% or more of metal nanoparticles having a size of 100 nm or more, the bonded member that cannot be absorbed by the metal nanoparticles having a particle size of 50 nm or less contained in the first bonding member. Surface irregularities are absorbed by metal nanoparticles of 100 nm or more. In addition, the bondability between metal nanoparticles is good regardless of the particle size.

(7)前記(5)項において、前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、粗大金属粒子と金属ナノ粒子との混合粒子を含む接合材料である接合構造(請求項7)。
本項に記載の接合構造は、第1の接合材料が粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含むことによって、被接合部材と金属ナノ粒子との接合性が高まる。又、第2の接合材料が粗大金属粒子と金属ナノ粒子との混合粒子(粗大金属粒子と金属ナノ粒子とが混合された粒子)を含むことによって、被接合部材の表面の凹凸を、粗大金属粒子及び金属ナノ粒子により吸収するものである。なお、粗大金属粒子及び金属ナノ粒子の接合性は、粒子サイズの如何に関わらず良好である。
(7) In the item (5), the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material includes coarse metal particles and metal nanoparticles. A bonding structure which is a bonding material containing mixed particles with particles (claim 7).
In the bonding structure described in this section, the first bonding material contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, so that the bonding property between the member to be bonded and the metal nanoparticles is increased. In addition, the second bonding material includes mixed particles of coarse metal particles and metal nanoparticles (particles in which coarse metal particles and metal nanoparticles are mixed), so that irregularities on the surface of the member to be joined can be obtained. It is absorbed by particles and metal nanoparticles. Note that the bonding properties of the coarse metal particles and the metal nanoparticles are good regardless of the particle size.

すなわち、上記(6)、(7)項は、有機保護膜で被覆された金属ナノ粒子が含まれる接合材料が、2枚の被接合部材間の所定の位置に保持された状態で加熱・焼成されることにより被接合部材同士が接合されてなる接合構造であって、
前記接合材料が、被接合部材の表面及びその近傍部分と、それ以外の部分とで、含まれる金属ナノ粒子の粒子サイズの比率が異なるように多層に構成され、前記被接合部材同士が重ね合わせられ、前記接合材料がその接合温度以上となるように加熱されながら前記被接合部材同士が加圧されてなるものである。
That is, in the above items (6) and (7), the joining material containing the metal nanoparticles coated with the organic protective film is heated and fired in a state where the joining material is held at a predetermined position between the two members to be joined. It is a joining structure formed by joining members to be joined,
The bonding material is configured in multiple layers so that the ratio of the particle size of the metal nanoparticles contained in the surface of the member to be bonded and the vicinity thereof and the other parts are different, and the members to be bonded are overlapped. The members to be joined are pressed while being heated so that the joining material has a temperature equal to or higher than the joining temperature.

(8)前記(5)項において、前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、金属箔である接合構造(請求項8)。
本項に記載の接合構造は、第1の接合材料が粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含むことによって、被接合部材と金属ナノ粒子との接合性が高まる。又、第2の接合材料が金属箔であることによって、被接合部材の表面の凹凸を、金属箔により吸収するものである。なお、金属箔と金属ナノ粒子との接合性は良好である。又、金属箔は、接合性と材料コストとのバランスを考慮すれば、銀箔や銅箔を用いることが望ましい。
(8) In the item (5), the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a metal foil. (Claim 8).
In the bonding structure described in this section, the first bonding material contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, so that the bonding property between the member to be bonded and the metal nanoparticles is increased. Moreover, the unevenness | corrugation on the surface of a to-be-joined member is absorbed with metal foil because the 2nd joining material is metal foil. In addition, the bondability between the metal foil and the metal nanoparticles is good. Moreover, it is desirable to use a silver foil or a copper foil as the metal foil in consideration of the balance between bondability and material cost.

すなわち、上記(6)から(8)項は、有機保護膜で被覆された金属ナノ粒子が含まれる接合材料が、2枚の被接合部材間の所定の位置に保持された状態で加熱・焼成されることにより被接合部材同士が接合されてなる接合構造であって、
一方の被接合部材の表面に、該被接合部材表面への接合性に優れた第1の接合材料が塗布され、該第1の接合材料に被接合部材表面の凹凸吸収性に優れた第2の接合材料を重ねられ、更に、前記第1の接合材料が、前記第2の接合材料に重ねられ若しくはもう一方の被接合部材の表面に塗布され、前記被接合部材同士が重ね合わせられ、前記接合材料がその接合温度以上となるように加熱されながら前記被接合部材同士が加圧されてなるものである。
That is, in the above items (6) to (8), the bonding material containing the metal nanoparticles coated with the organic protective film is heated and fired in a state where the bonding material is held at a predetermined position between the two bonded members. It is a joining structure formed by joining members to be joined,
The 1st joining material excellent in the joining property to this to-be-joined member surface is apply | coated to the surface of one to-be-joined member, and the 2nd which was excellent in the uneven | corrugated absorbability of the to-be-joined member surface to this 1st joining material Further, the first bonding material is superimposed on the second bonding material or applied to the surface of the other bonded member, and the bonded members are overlapped with each other, The members to be joined are pressed while being heated so that the joining material has a temperature equal to or higher than the joining temperature.

本発明はこのように構成したので、金属ナノ粒子を用いた接合方法において、接合部分の抵抗値増大と、コストの増大とを回避しつつ、接合材料の接合性を高めることが可能となる。   Since this invention was comprised in this way, in the joining method using a metal nanoparticle, it becomes possible to improve the joining property of joining material, avoiding the increase in resistance value of a junction part, and the increase in cost.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。なお、従来技術と同一部分、若しくは相当する部分には同一符号を付し、詳しい説明を省略する。
本発明の第1の実施の形態に係る、金属ナノ粒子用いた被接合部材同士の接合構造は、図1(a)に示されるように、一方の被接合部材10(10A)の表面に、第1の接合材料12Aが塗布され、第1の接合材料12Aの表面に第2の接合材料12Bが重ねられ、更に、第1の接合材料12Aが第2の接合材料12Bに重ねられ、若しくは、もう一方の被接合部材10(10B)の表面に塗布され、被接合部材10A、10B同士が重ね合わせられたものである。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the part which is the same as that of a prior art, or an equivalent part, and detailed description is abbreviate | omitted.
As shown in FIG. 1 (a), the bonded structure between the bonded members using metal nanoparticles according to the first embodiment of the present invention is on the surface of one bonded member 10 (10A). The first bonding material 12A is applied, the second bonding material 12B is overlapped on the surface of the first bonding material 12A, and the first bonding material 12A is further stacked on the second bonding material 12B, or It is applied to the surface of the other member to be bonded 10 (10B), and the members to be bonded 10A and 10B are superposed.

ここで、第1の接合材料12Aは、粒子サイズが比較的小さい金属ナノ粒子18Sの含有比率を高めたものであり、具体的には、粒子サイズ50nm以下の金属ナノ粒子を、金属ナノ粒子の全質量の75vol%以上含むものである。又、第2の接合材料12Bは、粒子サイズの比較的大きな金属ナノ粒子18Lを主に含むものであり、具体的には、100nm以上の金属ナノ粒子を、金属ナノ粒子の全質量の50vol%以上含むものである。   Here, the first bonding material 12A is obtained by increasing the content ratio of the metal nanoparticles 18S having a relatively small particle size. Specifically, the metal nanoparticles having a particle size of 50 nm or less are used as the metal nanoparticles. It contains 75 vol% or more of the total mass. The second bonding material 12B mainly includes metal nanoparticles 18L having a relatively large particle size. Specifically, the metal nanoparticles having a size of 100 nm or more are mixed with 50 vol% of the total mass of the metal nanoparticles. Including the above.

又、接合作業の手順として、第2の接合材料12Bは、一方の被接合部材10(10A)の表面に塗布された第1の接合材料12Aから溶剤20を蒸発させた後に、第1の接合材料12Aに重ねて塗布される。同様に、第2の接合材料12Bに重ねて、再度、第1の接合材料12Aが塗布される場合には、第2の接合材料12Bから溶剤20を蒸発させた後に、第1の接合材料12Aが塗布される。更に、第2の接合材料12Bに重ねて塗布され、若しくは、もう一方の被接合部材10(10B)の表面に塗布された第1の接合材料12Aから、溶剤20を蒸発させた後に、被接合部材10A、10B同士が重ね合わせられる。そして、接合材料12(12A、12B)がその接合温度以上となるように加熱されながら、被接合部材同士が加圧されることで、バインダー20が分解、蒸発し、最終的には図1(b)に示されるように、被接合部材10と、金属ナノ粒子18S、18Lとが互いに密着した状態で接合される。   Further, as a procedure of the bonding operation, the second bonding material 12B is obtained by evaporating the solvent 20 from the first bonding material 12A applied to the surface of one of the members to be bonded 10 (10A). It is applied over the material 12A. Similarly, when the first bonding material 12A is applied again on the second bonding material 12B, the first bonding material 12A is evaporated after the solvent 20 is evaporated from the second bonding material 12B. Is applied. Furthermore, after evaporating the solvent 20 from the first bonding material 12A applied over the second bonding material 12B or applied to the surface of the other bonded member 10 (10B), the bonded material is bonded. The members 10A and 10B are overlapped. And while joining material 12 (12A, 12B) is heated so that it may become the joining temperature or more, to-be-joined members are pressurized, the binder 20 decomposes | disassembles and evaporates, and finally FIG. 1 ( As shown in b), the member to be bonded 10 and the metal nanoparticles 18S and 18L are bonded in a state of being in close contact with each other.

なお、被接合部材10A、10B同士を重ね合わせて、接合材料12(12A、12B)がその接合温度以上となるように加熱しながら被接合部材同士が加圧する工程については、図4に示される、従来の(iii)組付工程、(iv)加熱・加圧工程、(v)接合工程(接合完了工程)と同様であることから、詳しい説明を省略する。   Note that FIG. 4 illustrates a process in which the members to be bonded are pressed while being superposed on each other and heated so that the bonding material 12 (12A, 12B) is equal to or higher than the bonding temperature. Since it is the same as the conventional (iii) assembly process, (iv) heating / pressurization process, and (v) joining process (joining completion process), detailed description is omitted.

又、本発明の第2の実施の形態に係る、金属ナノ粒子用いた被接合部材同士の接合構造は、図2(a)に示されるように、一方の被接合部材10(10A)の表面に、第1の接合材料12Aが塗布され、第1の接合材料12Aの表面に第2の接合材料12Cが重ねられ、更に、第1の接合材料12Aが第2の接合材料12Cに重ねられ、若しくは、もう一方の被接合部材10(10B)の表面に塗布され、被接合部材10A、10B同士が重ね合わせられたものである。   Moreover, the joining structure of the to-be-joined members using the metal nanoparticle based on the 2nd Embodiment of this invention is the surface of one to-be-joined member 10 (10A), as FIG. 2 (a) shows. In addition, the first bonding material 12A is applied, the second bonding material 12C is superimposed on the surface of the first bonding material 12A, and the first bonding material 12A is further stacked on the second bonding material 12C. Or it apply | coats on the surface of the other to-be-joined member 10 (10B), and the to-be-joined members 10A and 10B are piled up.

ここで、第1の接合材料12Aは、本発明の第1の実施の形態と同様に、粒子サイズが比較的小さい金属ナノ粒子18Sの含有比率を高めたものであり、具体的には、粒子サイズ50nm以下の金属ナノ粒子を、金属ナノ粒子の全質量の75vol%以上含むものである。
一方、第2の接合材料12Cは、本発明の第1の実施の形態と異なり、粗大金属粒子24と金属ナノ粒子18Sとの混合粒子を含むものである。粗大金属粒子24は、銀、銅等の導電性金属からなる粗大粒子(ナノ粒子よりも大きな粒子)であり、粒子の大きさや、第2の接合材料12C中の含有比率については、接合部に要求される導電性、コスト等を勘案して決定されるものである。例えば、粗大金属粒子24の粒子サイズは、被接合部材10の表面の凹凸吸収性を考慮すれば、1〜10μm(ミクロン)程度が適切である。又、この粗大金属粒子24については、金属ナノ粒子18Sと異なり、各粒子の同士の付着を防ぐために有機保護膜で被覆されている必要はない。なお、一般には、粗大金属粒子24のサイズがより大きく、かつ、含有比率が高いほど、低コストかつ導電性が向上する傾向にある。又、第2の接合材料12Cに含まれる金属ナノ粒子については、必要に応じ、粒子サイズが比較的小さい金属ナノ粒子18Sと共に粒子サイズの比較的大きな金属ナノ粒子18Lの含有量を高めることとしても良い。
Here, as in the first embodiment of the present invention, the first bonding material 12A is obtained by increasing the content ratio of the metal nanoparticles 18S having a relatively small particle size. Metal nanoparticles having a size of 50 nm or less are contained by 75 vol% or more of the total mass of the metal nanoparticles.
On the other hand, unlike the first embodiment of the present invention, the second bonding material 12C includes mixed particles of coarse metal particles 24 and metal nanoparticles 18S. The coarse metal particles 24 are coarse particles (particles larger than nanoparticles) made of a conductive metal such as silver or copper, and the size of the particles and the content ratio in the second bonding material 12C are not included in the bonding portion. It is determined in consideration of required conductivity and cost. For example, the particle size of the coarse metal particles 24 is appropriately about 1 to 10 μm (microns) in consideration of the unevenness absorbability of the surface of the bonded member 10. The coarse metal particles 24 need not be covered with an organic protective film in order to prevent the particles from adhering to each other, unlike the metal nanoparticles 18S. In general, the larger the size of the coarse metal particles 24 and the higher the content ratio, the lower the cost and the higher the conductivity. As for the metal nanoparticles contained in the second bonding material 12C, the content of the metal nanoparticles 18L having a relatively large particle size as well as the metal nanoparticles 18S having a relatively small particle size may be increased as necessary. good.

又、接合作業の手順として、第2の接合材料12Cは、一方の被接合部材10(10A)の表面に塗布された第1の接合材料12Aから溶剤20を蒸発させた後に、第1の接合材料12Aに重ねて塗布される。同様に、第2の接合材料12Cに重ねて、再度、第1の接合材料12Aが塗布される場合には、第2の接合材料12Cから溶剤20を蒸発させた後に、第1の接合材料12Aが塗布される。更に、第2の接合材料12Cに重ねて塗布され、若しくは、もう一方の被接合部材10(10B)の表面に塗布された第1の接合材料12Aから、溶剤20を蒸発させた後に、被接合部材10A、10B同士が重ね合わせられる。そして、接合材料12(12A、12B)がその接合温度以上となるように加熱されながら、被接合部材同士が加圧されることで、バインダー20が分解、蒸発し、最終的には図2(b)に示されるように、被接合部材10と、金属ナノ粒子18Sと、粗大金属粒子24とが互いに密着した状態で接合される。   Further, as a procedure of the joining operation, the second joining material 12C is obtained by evaporating the solvent 20 from the first joining material 12A applied to the surface of one of the members to be joined 10 (10A). It is applied over the material 12A. Similarly, when the first bonding material 12A is applied again on the second bonding material 12C, the first bonding material 12A is evaporated after the solvent 20 is evaporated from the second bonding material 12C. Is applied. Furthermore, after evaporating the solvent 20 from the first bonding material 12A applied over the second bonding material 12C or applied to the surface of the other bonded member 10 (10B), the bonded material is bonded. The members 10A and 10B are overlapped. And while joining material 12 (12A, 12B) is heated so that it may become the joining temperature or more, to-be-joined members are pressurized, the binder 20 decomposes | disassembles and evaporates, and finally FIG. 2 ( As shown in b), the member to be joined 10, the metal nanoparticles 18S, and the coarse metal particles 24 are joined in close contact with each other.

なお、本発明の第2の実施の形態においても、被接合部材10A、10B同士を重ね合わせて、接合材料12(12A、12B)がその接合温度以上となるように加熱しながら被接合部材同士が加圧する工程については、図4に示される、従来の(iii)組付工程、(iv)加熱・加圧工程、(v)接合工程(接合完了工程)と同様であることから、詳しい説明を省略する。   Also in the second embodiment of the present invention, the members to be bonded 10A and 10B are overlapped with each other and the members to be bonded are heated while being heated so that the bonding material 12 (12A, 12B) is equal to or higher than the bonding temperature. The pressurizing process is the same as the conventional (iii) assembly process, (iv) heating / pressurizing process, and (v) joining process (joining completion process) shown in FIG. Is omitted.

又、本発明の第3の実施の形態に係る、金属ナノ粒子用いた被接合部材同士の接合構造は、図3(a)に示されるように、一方の被接合部材10(10A)の表面に、第1の接合材料12Aが塗布され、第1の接合材料12Aの表面に、第2の接合材料12Dが重ねられ、更に、第1の接合材料12Aが第2の接合材料12Dに重ねられ、若しくは、もう一方の被接合部材10(10B)の表面に塗布され、被接合部材10A、10B同士が重ね合わせられたものである。   Moreover, the joining structure of the to-be-joined members using the metal nanoparticle based on the 3rd Embodiment of this invention is the surface of one to-be-joined member 10 (10A), as FIG. 3 (a) shows. In addition, the first bonding material 12A is applied, the second bonding material 12D is overlaid on the surface of the first bonding material 12A, and the first bonding material 12A is further stacked on the second bonding material 12D. Or it is apply | coated to the surface of the other to-be-joined member 10 (10B), and the to-be-joined members 10A and 10B are piled up.

ここで、第1の接合材料12Aは、本発明の第1、第2の実施の形態と同様に、粒子サイズが比較的小さい金属ナノ粒子18Sの含有比率を高めたものであり、具体的には、粒子サイズ50nm以下の金属ナノ粒子を、金属ナノ粒子の全質量の75vol%以上含むものである。
一方、第2の接合材料12Dは金属箔26であり、具体的には銀箔や銅箔が用いられる。金属箔26の厚みは、必要とされる導電性、凹凸追従性、それ単体での取り扱い性、コスト等を勘案して決定されるものであり、10〜50μm程度が適切である。
Here, as in the first and second embodiments of the present invention, the first bonding material 12A is obtained by increasing the content ratio of the metal nanoparticles 18S having a relatively small particle size. Contains 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less of the total mass of the metal nanoparticles.
On the other hand, the second bonding material 12D is a metal foil 26, and specifically, a silver foil or a copper foil is used. The thickness of the metal foil 26 is determined in consideration of required conductivity, unevenness followability, handling property of the single piece, cost, and the like, and about 10 to 50 μm is appropriate.

又、接合作業の手順として、第2の接合材料12Dは、一方の被接合部材10(10A)の表面に塗布された第1の接合材料12Aから溶剤20を蒸発させた後に、第1の接合材料12Aに重ねられる。更に、第2の接合材料12Cに重ねて塗布され、若しくは、もう一方の被接合部材10(10B)の表面に塗布された第1の接合材料12Aから、溶剤20を蒸発させた後に、被接合部材10A、10B同士が重ね合わせられる。そして、接合材料12(12A、12B)がその接合温度以上となるように加熱されながら、被接合部材同士が加圧されることで、バインダー20が分解、蒸発し、最終的には図2(b)に示されるように、被接合部材10と、金属ナノ粒子18Sと、金属箔26とが互いに密着した状態で接合される。   Further, as a procedure of the joining operation, the second joining material 12D is obtained by evaporating the solvent 20 from the first joining material 12A applied to the surface of one of the members to be joined 10 (10A). Overlaid on material 12A. Furthermore, after evaporating the solvent 20 from the first bonding material 12A applied over the second bonding material 12C or applied to the surface of the other bonded member 10 (10B), the bonded material is bonded. The members 10A and 10B are overlapped. And while joining material 12 (12A, 12B) is heated so that it may become the joining temperature or more, to-be-joined members are pressurized, the binder 20 decomposes | disassembles and evaporates, and finally FIG. 2 ( As shown in b), the member to be joined 10, the metal nanoparticles 18S, and the metal foil 26 are joined in close contact with each other.

なお、被接合部材10A、10B同士を重ね合わせて、接合材料12(12A、12B)がその接合温度以上となるように加熱しながら被接合部材同士が加圧する工程については、図4に示される、従来の(iii)組付工程、(iv)加熱・加圧工程、(v)接合工程(接合完了工程)と同様であることから、詳しい説明を省略する。   Note that FIG. 4 illustrates a process in which the members to be bonded are pressed while being superposed on each other and heated so that the bonding material 12 (12A, 12B) is equal to or higher than the bonding temperature. Since it is the same as the conventional (iii) assembly process, (iv) heating / pressurization process, and (v) joining process (joining completion process), detailed description is omitted.

上記構成をなす、本発明の実施の形態により得られる作用効果は、以下の通りである。
まず、本発明の第1〜第3の実施の形態の何れにおいても、被接合部材10の表面に、粒子サイズが比較的小さい金属ナノ粒子18Sの含有比率を高めた、第1の接合材料12Aが密着することで、被接合部材10と金属ナノ粒子18Sとの接合性が高まる。一方、第1の接合材料12Aに多く含まれる、比較的小さい金属ナノ粒子18Sは、被接合部材10の表面の凹凸よりも金属ナノ粒子のサイズが小さいことから、金属ナノ粒子18Sによって被接合部材の表面の凹凸を吸収することはできないが、その代わりに、当該凹凸を、凹凸吸収性に優れた第2の接合材料12B(図1)、12C(図2)、12D(図3)によって吸収することができる。よって、第1の接合材料12Aの塗布厚みを薄くして(具体的には5μm程度)、接合材料12の全体から発生する有機保護膜の分解ガスの過大な増加を回避しつつ、十分な接合性、導電性を確保することができる。
The effects obtained by the embodiment of the present invention having the above-described configuration are as follows.
First, in any of the first to third embodiments of the present invention, the first bonding material 12A in which the content ratio of the metal nanoparticles 18S having a relatively small particle size is increased on the surface of the member to be bonded 10. As a result, the bondability between the member to be bonded 10 and the metal nanoparticles 18S is enhanced. On the other hand, the relatively small metal nanoparticles 18 </ b> S contained in the first bonding material 12 </ b> A are smaller in size than the unevenness on the surface of the member to be bonded 10, so that the members to be bonded are formed by the metal nanoparticles 18 </ b> S. However, the unevenness is absorbed by the second bonding material 12B (FIG. 1), 12C (FIG. 2), and 12D (FIG. 3) having excellent unevenness absorbability instead. can do. Therefore, the application thickness of the first bonding material 12A is reduced (specifically, about 5 μm), and sufficient bonding is achieved while avoiding an excessive increase in the decomposition gas of the organic protective film generated from the entire bonding material 12. Property and conductivity can be secured.

又、本発明の第1の実施の形態では、第2の接合材料12Bが、粒子サイズの比較的大きな金属ナノ粒子18Lとして、100nm以上の金属ナノ粒子を50vol%以上含むことによって、被接合部材10の表面の凹凸を、この100nm以上の金属ナノ粒子により十分に吸収し、必要な接合性及び導電性を確保することができる。又、接合材料12の全体における、粒子サイズが比較的小さい金属ナノ粒子18Sの含有比率が低下することから、接合材料12のコストが低減されることとなる。
なお、金属ナノ粒子18S、18L同士の接合性は、粒子サイズの如何に関わらず良好であることから、図1(b)に示される接合完了状態において、2枚の被接合部材10A、10Bは、抵抗値の増大を防ぎつつ確実に接合された状態にある。
In the first embodiment of the present invention, the second bonding material 12B contains 50 vol% or more of metal nanoparticles having a size of 100 nm or more as the metal nanoparticles 18L having a relatively large particle size. The unevenness on the surface of 10 can be sufficiently absorbed by the metal nanoparticles of 100 nm or more, and necessary bonding properties and conductivity can be ensured. Moreover, since the content ratio of the metal nanoparticles 18S having a relatively small particle size in the entire bonding material 12 is reduced, the cost of the bonding material 12 is reduced.
In addition, since the bondability between the metal nanoparticles 18S and 18L is good regardless of the particle size, the two members to be bonded 10A and 10B are in the bonded state shown in FIG. In addition, it is in a state of being securely joined while preventing an increase in resistance value.

又、本発明の第2の実施の形態では、第2の接合材料12Cが、粗大金属粒子24と金属ナノ粒子18Sとの混合粒子を含むことによって、被接合部材10の表面の凹凸を、粗大金属粒子24及び金属ナノ粒子18Sにより十分に吸収し、必要な接合性及び導電性を確保するものである。又、低コストの粗大金属粒子24が含まれることで、接合材料12全体における粒子サイズが比較的小さい金属ナノ粒子18Sの含有比率が低下することから、接合材料12のコストの更なる低減が図られる。なお、粗大金属粒子及び金属ナノ粒子の接合性は、粒子サイズの如何に関わらず良好であり、なおかつ、粗大金属粒子24による抵抗値の低減効果によって、図2(b)に示される接合完了状態において、2枚の被接合部材10A、10Bは、抵抗値の更なる低減を図りつつ、確実に接合された状態にある。   Further, in the second embodiment of the present invention, the second bonding material 12C includes mixed particles of the coarse metal particles 24 and the metal nanoparticles 18S, so that the unevenness on the surface of the member to be joined 10 is coarse. It is sufficiently absorbed by the metal particles 24 and the metal nanoparticles 18S to ensure the necessary bondability and conductivity. In addition, since the low-cost coarse metal particles 24 are included, the content ratio of the metal nanoparticles 18S having a relatively small particle size in the entire bonding material 12 is reduced, so that the cost of the bonding material 12 can be further reduced. It is done. Note that the bonding properties of the coarse metal particles and the metal nanoparticles are good regardless of the particle size, and due to the effect of reducing the resistance value by the coarse metal particles 24, the bonding completion state shown in FIG. The two members to be joined 10A and 10B are in a state of being securely joined while further reducing the resistance value.

又、本発明の第3の実施の形態では、第2の接合材料12Dが金属箔26であることから、被接合部材10の表面の凹凸を、金属箔26により十分に吸収し、必要な接合性及び導電性を確保するものである。又、接合材料12に、金属ナノ粒子18Sを含む接合材料12Aよりも低コストの金属箔26が含まれることで、接合材料12全体のコストの更なる低減が図られる。なお、金属箔26と金属ナノ粒子18Sとの接合性は良好であり、なおかつ、金属箔26の導電性が安定して高いことによる抵抗値の低減効果により、図3(b)に示される接合完了状態において、2枚の被接合部材10A、10Bは、抵抗値の更なる低減を図りつつ、確実に接合された状態にある。   Further, in the third embodiment of the present invention, since the second bonding material 12D is the metal foil 26, the unevenness on the surface of the member to be bonded 10 is sufficiently absorbed by the metal foil 26 and necessary bonding is performed. It ensures the property and conductivity. Further, since the bonding material 12 includes the metal foil 26 having a lower cost than the bonding material 12A including the metal nanoparticles 18S, the cost of the entire bonding material 12 can be further reduced. Note that the bonding property between the metal foil 26 and the metal nanoparticles 18S is good, and the bonding property shown in FIG. 3B is due to the effect of reducing the resistance value due to the stable and high conductivity of the metal foil 26. In the completed state, the two bonded members 10A and 10B are in a state of being securely bonded while further reducing the resistance value.

本発明の第1の実施の形態に係る、金属ナノ粒子用いて被接合部材同士を接合する接合構造を模式的に示すものであり、(a)は加圧・焼成前の状態を示す断面図、(b)は接合完了状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The junction structure which joins to-be-joined members using the metal nanoparticle based on the 1st Embodiment of this invention is shown typically, (a) is sectional drawing which shows the state before pressurization and baking. (B) is sectional drawing which shows a joining completion state. 本発明の第2の実施の形態に係る、金属ナノ粒子用いて被接合部材同士を接合する接合構造を模式的に示すものであり、(a)は加圧・焼成前の状態を示す断面図、(b)は接合完了状態を示す断面図である。The sectional view which shows typically the joined structure which joins to-be-joined members using metal nanoparticles concerning the 2nd embodiment of the present invention, and (a) shows the state before pressurization and baking. (B) is sectional drawing which shows a joining completion state. 本発明の第3の実施の形態に係る、金属ナノ粒子用いて被接合部材同士を接合する接合構造を模式的に示すものであり、(a)は加圧・焼成前の状態を示す断面図、(b)は接合完了状態を示す断面図である。The sectional view which shows typically the joined structure which joins to-be-joined members using metal nanoparticles concerning the 3rd embodiment of the present invention, and (a) shows the state before pressurization and baking. (B) is sectional drawing which shows a joining completion state. 従来の金属ナノ粒子を用いて被接合部材同士を接合する手順を示す模式図である。It is a schematic diagram which shows the procedure which joins to-be-joined members using the conventional metal nanoparticle. 金属ナノ粒子を用いて接合された部材同士を剥がして得られる破面を、模式的に示すものであり、(a)は適切な加圧力が加えられた場合の正常破面を、(b)は過剰な加圧力が加えられた場合の不良破面を示している。The fracture surface obtained by peeling the members joined using metal nanoparticles is schematically shown. (A) shows the normal fracture surface when an appropriate pressure is applied, (b) Indicates a defective fracture surface when excessive pressure is applied.

符号の説明Explanation of symbols

10、10A、10B:被接合部材、12:接合材料、12A:第1の接合材料、 12B、12C、12D:第2の接合材料、16:有機保護膜、18:金属ナノ粒子、18S:粒子サイズが比較的小さい金属ナノ粒子、18L:粒子サイズの比較的大きな金属ナノ粒子、20:バインダー、22:溶剤、24:粗大金属粒子、26:金属箔   10, 10A, 10B: Member to be joined, 12: Joining material, 12A: First joining material, 12B, 12C, 12D: Second joining material, 16: Organic protective film, 18: Metal nanoparticles, 18S: Particles Metal nanoparticles with relatively small size, 18L: Metal nanoparticles with relatively large particle size, 20: Binder, 22: Solvent, 24: Coarse metal particles, 26: Metal foil

Claims (8)

有機保護膜で被覆された金属ナノ粒子が含まれる接合材料を、2枚の被接合部材間の所定の位置に保持した状態で加熱・焼成することにより被接合部材同士を接合する接合方法であって、
一方の被接合部材の表面に、粒子サイズが比較的小さい金属ナノ粒子の含有比率を高めた第1の接合材料を塗布し、該第1の接合材料に被接合部材表面の凹凸吸収性に優れた第2の接合材料を重ね、
更に、前記第1の接合材料を、前記第2の接合材料に重ね若しくはもう一方の被接合部材の表面に塗布し、
前記被接合部材同士を重ね合わせ、前記接合材料がその接合温度以上となるように加熱しながら前記被接合部材同士を加圧することを特徴とする接合方法。
This is a joining method for joining members to be joined by heating and firing a joining material containing metal nanoparticles coated with an organic protective film in a state where the joining material is held at a predetermined position between two members to be joined. And
The surface of one member to be bonded is coated with a first bonding material with a high content ratio of metal nanoparticles having a relatively small particle size, and the surface of the member to be bonded has excellent irregularity absorbability. Layer the second bonding material
Furthermore, the first bonding material is applied to the surface of the other member to be bonded or overlaid on the second bonding material,
A joining method, wherein the members to be joined are overlapped and the members to be joined are pressurized while being heated so that the joining material has a temperature equal to or higher than the joining temperature.
前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、100nm以上の金属ナノ粒子を50vol%以上含む接合材料であることを特徴とする請求項1記載の接合方法。 The first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a bonding material containing 50 vol% or more of metal nanoparticles of 100 nm or more. The bonding method according to claim 1. 前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、粗大金属粒子と金属ナノ粒子との混合粒子を含む接合材料であることを特徴とする請求項1記載の接合方法。 The first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a bonding material containing mixed particles of coarse metal particles and metal nanoparticles. The bonding method according to claim 1, wherein the bonding method is provided. 前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、金属箔であることを特徴とする請求項1記載の接合方法。 2. The bonding method according to claim 1, wherein the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a metal foil. . 有機保護膜で被覆された金属ナノ粒子が含まれる接合材料が、2枚の被接合部材間の所定の位置に保持された状態で加熱・焼成されることにより、被接合部材同士が接合されてなる接合構造であって、
一方の被接合部材の表面に、粒子サイズが比較的小さい金属ナノ粒子の含有比率を高めた第1の接合材料が塗布され、該第1の接合材料に被接合部材表面の凹凸吸収性に優れた第2の接合材料が重ねられ、
更に、前記第1の接合材料が、前記第2の接合材料に重ねられ若しくはもう一方の被接合部材の表面に塗布され、
前記被接合部材同士が重ね合わせられて、前記接合材料がその接合温度以上となるように加熱されながら前記被接合部材同士が加圧されてなることを特徴とする接合構造。
Joining materials containing metal nanoparticles covered with an organic protective film are heated and baked in a state where they are held at a predetermined position between two joined members, so that the joined members are joined together. A joining structure comprising
A first bonding material having a higher content ratio of metal nanoparticles having a relatively small particle size is applied to the surface of one of the members to be bonded, and the first bonding material has excellent unevenness absorbability on the surface of the member to be bonded. The second bonding material is overlaid,
Further, the first bonding material is superimposed on the second bonding material or applied to the surface of the other member to be bonded,
A joining structure in which the members to be joined are superposed and the members to be joined are pressurized while being heated so that the joining material has a temperature equal to or higher than the joining temperature.
前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、100nm以上の金属ナノ粒子を50vol%以上含む接合材料であることを特徴とする請求項5記載の接合構造。 The first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a bonding material containing 50 vol% or more of metal nanoparticles of 100 nm or more. The joint structure according to claim 5. 前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、粗大金属粒子と金属ナノ粒子との混合粒子を含む接合材料であることを特徴とする請求項5記載の接合構造。 The first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a bonding material containing mixed particles of coarse metal particles and metal nanoparticles. The bonding structure according to claim 5, wherein the bonding structure is provided. 前記第1の接合材料は、粒子サイズ50nm以下の金属ナノ粒子を75vol%以上含む接合材料であり、前記第2の接合材料は、金属箔であることを特徴とする請求項5記載の接合構造。 The bonding structure according to claim 5, wherein the first bonding material is a bonding material containing 75 vol% or more of metal nanoparticles having a particle size of 50 nm or less, and the second bonding material is a metal foil. .
JP2007128440A 2007-05-14 2007-05-14 Joining method and joining structure Expired - Fee Related JP4766273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128440A JP4766273B2 (en) 2007-05-14 2007-05-14 Joining method and joining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128440A JP4766273B2 (en) 2007-05-14 2007-05-14 Joining method and joining structure

Publications (2)

Publication Number Publication Date
JP2008280601A true JP2008280601A (en) 2008-11-20
JP4766273B2 JP4766273B2 (en) 2011-09-07

Family

ID=40141669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128440A Expired - Fee Related JP4766273B2 (en) 2007-05-14 2007-05-14 Joining method and joining structure

Country Status (1)

Country Link
JP (1) JP4766273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351326A1 (en) * 2018-09-20 2021-11-11 Shin-Etsu Chemical Co., Ltd. Lid for optical element package, optical element package, and manufacturing method for lid for optical element package and optical element package

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044009A (en) * 2006-07-19 2008-02-28 Honda Motor Co Ltd Method of joining members having different thermal expansion coefficients

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044009A (en) * 2006-07-19 2008-02-28 Honda Motor Co Ltd Method of joining members having different thermal expansion coefficients

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210351326A1 (en) * 2018-09-20 2021-11-11 Shin-Etsu Chemical Co., Ltd. Lid for optical element package, optical element package, and manufacturing method for lid for optical element package and optical element package

Also Published As

Publication number Publication date
JP4766273B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5399110B2 (en) Bonding material and component calculation method for bonding material
JP5958560B2 (en) TREATED LIQUID CRYSTAL POLYMER POWDER, PASTE CONTAINING THE SAME, LIQUID CRYSTAL POLYMER SHEET, LAMINATE, AND METHOD FOR PRODUCING TREATED LIQUID CRYSTAL POLYMER POWDER
JP6656282B2 (en) Method of manufacturing substrate structure, substrate structure, method of bonding electronic component to substrate structure, and electronic component
WO2008094758A8 (en) Method of bonding perfluoroelastomeric materials to a surface
US20160288245A1 (en) Repair method and repair material
WO2013146504A1 (en) Conductive paste for die bonding, and die bonding method using conductive paste for die bonding
WO2013021567A1 (en) Bonding method for metal, and metal bonded structure
JP2012009703A (en) Method for bonding semiconductor device and semiconductor device
JP2008010703A (en) Method for bonding between components of semiconductor device
WO2017134974A1 (en) Bonding material, and bonding method and bonding structure using same
JP2005205696A (en) Joining article
US10413992B2 (en) Method for joining structural material, joining sheet, and joint structure
JP2004128357A5 (en)
JP4766273B2 (en) Joining method and joining structure
JP2011041955A (en) Method for producing joined body, and joined body
TWM497336U (en) Electrode electronic component
US9972597B2 (en) Method of bonding with silver paste
JP5535375B2 (en) Connection sheet
US9589925B2 (en) Method for bonding with a silver paste
JP6944149B2 (en) Laminate manufacturing method and joining equipment
JP4743002B2 (en) Joining method
JP6093633B2 (en) Bonding method of electronic parts
JP4849253B2 (en) Joining method
TWI392582B (en) Method for conglutinating two objects
JP2013041895A (en) Connection sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R151 Written notification of patent or utility model registration

Ref document number: 4766273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees