JP2008280497A - Polyimide composition and flexible wiring board - Google Patents

Polyimide composition and flexible wiring board Download PDF

Info

Publication number
JP2008280497A
JP2008280497A JP2007181531A JP2007181531A JP2008280497A JP 2008280497 A JP2008280497 A JP 2008280497A JP 2007181531 A JP2007181531 A JP 2007181531A JP 2007181531 A JP2007181531 A JP 2007181531A JP 2008280497 A JP2008280497 A JP 2008280497A
Authority
JP
Japan
Prior art keywords
polyimide
polyimide composition
composition
compound
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181531A
Other languages
Japanese (ja)
Other versions
JP5242958B2 (en
Inventor
Hiroki Kanaya
紘希 金谷
Tomoyasu Sunaga
友康 須永
Mamiko Nomura
麻美子 野村
Junichi Ishii
淳一 石井
Yoshio Omori
良男 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2007181531A priority Critical patent/JP5242958B2/en
Priority to TW97109857A priority patent/TWI392706B/en
Priority to CN2008800076200A priority patent/CN101657506B/en
Priority to PCT/JP2008/055538 priority patent/WO2008132914A1/en
Publication of JP2008280497A publication Critical patent/JP2008280497A/en
Application granted granted Critical
Publication of JP5242958B2 publication Critical patent/JP5242958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide composition that contains a polyimide compound high in alkali solubility and a resol resin, and is improved in its plating resistance, as well as does not cause loss of film at the time of development using an aqueous alkali solution, and to provide a flexible wiring board using the polyimide composition. <P>SOLUTION: The polyimide compound formed by polymerizing 3,3',4,4'-diphenylsulphone-tetracarboxylic acid dianhaydride with 3,3'-diamino-4,4'-dihydroxydiphenyl sulphone is high in alkali solubility, and is capable of being alkali-developed in a good state by adding a photosensitizer. Addition of a resol resin of 1-4 pts.wt. to the polyimide compound can provide the polyimide composition that can form a prescribed pattern in a good state by alkali development using the aqueous alkali solution, has plating resistance, and provides the flexible wiring board. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポリイミド組成物及びそのポリイミド組成物により形成されたポリイミド層を有するフレキシブル配線板に関するものである。   The present invention relates to a flexible wiring board having a polyimide composition and a polyimide layer formed from the polyimide composition.

絶縁フィルムや多層配線板の作製において、組成物の一部として、エポキシ樹脂・アクリル樹脂にフェノール樹脂を添加した感光性樹脂組成物がある(例えば、特許文献1参照)。この感光性樹脂組成物は、フェノール樹脂の添加によりアルカリ溶解性が向上する。中でも、レゾール樹脂は、酸触媒による自己縮合反応によって感光性樹脂組成物の架橋密度を増加させることで、ガラス転移点をより高くさせるとともに、残存するフェノール性水酸基の量を減少させることで、耐めっき性を向上させる。   In the production of insulating films and multilayer wiring boards, there is a photosensitive resin composition in which a phenol resin is added to an epoxy resin / acrylic resin as a part of the composition (see, for example, Patent Document 1). This photosensitive resin composition is improved in alkali solubility by adding a phenol resin. Among them, the resole resin increases the glass transition point by increasing the crosslinking density of the photosensitive resin composition by an acid-catalyzed self-condensation reaction, and reduces the amount of phenolic hydroxyl groups remaining. Improves plating properties.

特開平11−49847号公報JP 11-49847 A

しかしながら、上記のようにアルカリ溶解性を向上させるフェノール樹脂の1つであり、フェノール樹脂よりもフェノール性水酸基を多く有するレゾール樹脂を、元来アルカリ溶解性の高い樹脂に対して多量に添加すると、レゾール樹脂中のフェノール性の水酸基によって、アルカリ溶解性が高くなりすぎる。そのため、アルカリ現像時に樹脂の膜減りが起こり、かえって悪影響を引き起こすおそれがある。   However, it is one of the phenol resins that improve alkali solubility as described above, and when a resol resin having more phenolic hydroxyl groups than phenol resin is added in a large amount to a resin that is originally highly alkali soluble, The alkali solubility becomes too high due to the phenolic hydroxyl group in the resole resin. Therefore, the resin film is reduced during alkali development, which may cause adverse effects.

そこで、本発明は、上記実状に鑑み、アルカリ溶解性の高いポリイミド化合物とレゾール樹脂とを含有するポリイミド組成物であって、耐めっき性を向上させると共に、アルカリ溶液による現像時に膜減りを起こさないポリイミド組成物を提供することを目的とする。そして、そのポリイミド組成物を用いたフレキシブル配線板を提供することを目的とする。   Therefore, in view of the above situation, the present invention is a polyimide composition containing a highly alkali-soluble polyimide compound and a resole resin, which improves plating resistance and does not cause film loss during development with an alkaline solution. An object is to provide a polyimide composition. And it aims at providing the flexible wiring board using the polyimide composition.

本発明のポリイミド組成物は、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、及び、シロキサンジアミンの重合により合成されるポリイミド化合物と、該ポリイミド化合物100重量部に対して1重量部以上4重量部以下のレゾール樹脂と、感光剤とを含有することを特徴とする。   The polyimide composition of the present invention is obtained by polymerization of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′-diamino-4,4′-dihydroxydiphenylsulfone, and siloxane diamine. It contains a polyimide compound to be synthesized, a resol resin in an amount of 1 to 4 parts by weight with respect to 100 parts by weight of the polyimide compound, and a photosensitizer.

本発明のポリイミド組成物によれば、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンとを重合させることで形成されるポリイミド化合物は、アルカリ水溶液に対する溶解性が向上し、感光剤の添加により光照射で良好な現像性を有する。このポリイミド化合物に1重量部から4重量部のレゾール樹脂を添加させることで、ポリイミド組成物を成膜してなるポリイミド膜の膜減りを起こすことなく、ポリイミド組成物の耐めっき性を向上させることができる。   According to the polyimide composition of the present invention, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and 3,3′-diamino-4,4′-dihydroxydiphenylsulfone are polymerized. The polyimide compound formed in (1) has improved solubility in an alkaline aqueous solution, and has good developability when irradiated with light by addition of a photosensitizer. By adding 1 part by weight to 4 parts by weight of a resole resin to this polyimide compound, the plating resistance of the polyimide composition is improved without causing film loss of the polyimide film formed by forming the polyimide composition. Can do.

本発明のフレキシブル配線板は、導体と、上記導体上に、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、及び、シロキサンジアミンの重合により合成されるポリイミド化合物と、該ポリイミド化合物100重量部に対して1重量部以上4重量部以下のレゾール樹脂と、感光剤とを含有するポリイミド組成物からなるポリイミド層とを有することを特徴とする。   The flexible wiring board of the present invention comprises a conductor and 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′-diamino-4,4′-dihydroxydiphenylsulfone on the conductor and the conductor. And a polyimide layer comprising a polyimide composition containing a polyimide compound synthesized by polymerization of siloxane diamine, a resol resin of 1 part by weight to 4 parts by weight with respect to 100 parts by weight of the polyimide compound, and a photosensitizer. It is characterized by having.

本発明のフレキシブル配線板によれば、上記のように、レゾール樹脂によってアルカリ水溶液による膜減りを起こさずに、耐めっき性が付与されたポリイミド組成物からなるポリイミド層を有している。したがって、本発明のフレキシブル配線板は、レゾール樹脂が添加されていても、露光及びアルカリ水溶液によるアルカリ現像によって良好に所定のパターンを形成することができる。また、ポリイミド組成物に添加されたレゾール樹脂によってポリイミド層と導体との密着性が向上し、パターン形成後のめっきにおいて、ポリイミド層の端部が導体から浮く現象を最小限とすることができる。   According to the flexible wiring board of the present invention, as described above, it has a polyimide layer made of a polyimide composition to which plating resistance is imparted without causing film loss due to an alkaline aqueous solution by a resol resin. Therefore, even if the resole resin is added, the flexible wiring board of this invention can form a predetermined pattern satisfactorily by exposure and alkali development with an aqueous alkali solution. Further, the adhesion between the polyimide layer and the conductor is improved by the resol resin added to the polyimide composition, and the phenomenon in which the end portion of the polyimide layer floats from the conductor can be minimized in plating after pattern formation.

本発明のポリイミド組成物によれば、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホンとを重合させることで形成されるポリイミド化合物は、アルカリ溶解性が高く、感光剤を添加することで、良好なアルカリ現像が可能である。このポリイミド化合物に1重量部から4重量部のレゾール樹脂を添加させることで、膜減りを起こすことなく、ポリイミド組成物に耐めっき性を付与することができる。   According to the polyimide composition of the present invention, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and 3,3′-diamino-4,4′-dihydroxydiphenylsulfone are polymerized. The polyimide compound formed in (1) has high alkali solubility, and good alkali development is possible by adding a photosensitizer. By adding 1 to 4 parts by weight of a resole resin to this polyimide compound, it is possible to impart plating resistance to the polyimide composition without causing film loss.

そして、本発明のフレキシブル配線板によれば、このポリイミド組成物を用いることで、レゾール樹脂が添加されていても、露光及びアルカリ水溶液によるアルカリ現像によって良好に所定のパターンを形成することができる。また、ポリイミド組成物に添加されたレゾール樹脂によってポリイミド層と導体との密着性が向上し、パターン形成後のめっきにおいて、ポリイミド層の端部が導体から浮く現象を最小限とすることができる。   And according to the flexible wiring board of this invention, even if a resol resin is added, a predetermined pattern can be favorably formed by exposure and alkali development by aqueous alkali solution by using this polyimide composition. Further, the adhesion between the polyimide layer and the conductor is improved by the resol resin added to the polyimide composition, and the phenomenon in which the end portion of the polyimide layer floats from the conductor can be minimized in plating after pattern formation.

以下、本発明のポリイミド組成物及びポリイミド組成物の製造方法について説明する。なお、本発明は、以下の説明に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。   Hereinafter, the polyimide composition of this invention and the manufacturing method of a polyimide composition are demonstrated. Note that the present invention is not limited to the following description, and can be appropriately changed without departing from the spirit of the present invention.

本発明のポリイミド組成物は、アルカリ溶解性が高いポリイミド化合物にレゾール樹脂を少量添加させたものであって、アルカリ水溶液によってポリイミド組成物を成膜してなるポリイミド膜の膜減りを起こさずに、耐めっき性を付与することができる。本発明において、耐めっき性とは、めっき液に対するポリイミド組成物自身の耐性だけではなく、例えばフレキシブル配線板のように、ポリイミド組成物からなるポリイミド膜を有する導体上にめっきする際、ポリイミド膜の端部が導体から浮く現象を抑制し、例えば浮きの大きさが20μm程度といったように、その浮きを最小限にとどめることができる性質のことも示す。すなわち、耐めっき性を有するポリイミド組成物は、形成されるポリイミド膜の浮きが小さいポリイミド膜を形成することができる。このポリイミド組成物は、ポリイミド化合物と、感光剤と、レゾール樹脂と、架橋剤と、オキサジン化合物と、防錆剤とを含有している。   The polyimide composition of the present invention is obtained by adding a small amount of a resole resin to a polyimide compound having a high alkali solubility, without causing a film loss of the polyimide film formed by forming the polyimide composition with an alkaline aqueous solution, Plating resistance can be imparted. In the present invention, the plating resistance is not only the resistance of the polyimide composition itself to the plating solution, but also, for example, when plating on a conductor having a polyimide film made of a polyimide composition, such as a flexible wiring board, It also shows the property that the phenomenon that the end portion is lifted from the conductor can be suppressed and the floating can be minimized, for example, the size of the floating is about 20 μm. That is, the polyimide composition having plating resistance can form a polyimide film in which the formed polyimide film has a small float. This polyimide composition contains a polyimide compound, a photosensitizer, a resole resin, a crosslinking agent, an oxazine compound, and a rust inhibitor.

本発明のポリイミド組成物を構成するポリイミド化合物は、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)と、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン(BSDA)と、シロキサンジアミンとを重合させて合成することができる。   The polyimide compound constituting the polyimide composition of the present invention includes 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA) and 3,3′-diamino-4,4′-dihydroxydiphenyl. It can be synthesized by polymerizing sulfone (BSDA) and siloxane diamine.

このDSDAは、合成されるポリイミドのアルカリ溶解性を向上させることができる。このDSDAは、電気陰性度が大きい硫黄原子、酸素原子を有しており、これら原子が共役を介してイミドカルボニル炭素までおよび、塩基の求核攻撃を受けやすくなるため、アルカリ溶解性が向上するものであると考えられる。   This DSDA can improve the alkali solubility of the polyimide to be synthesized. This DSDA has sulfur and oxygen atoms with high electronegativity, and these atoms reach the imide carbonyl carbon through conjugation and are susceptible to base nucleophilic attack, so that alkali solubility is improved. It is thought to be a thing.

BSDAは、シロキサンジアミンと共にDSDAと重合し、ポリイミド化合物を合成する。このBSDAは、分子内に水酸基を有することで、アルカリ溶解性が高くなる。   BSDA polymerizes with DSDA together with siloxane diamine to synthesize a polyimide compound. This BSDA has high alkali solubility by having a hydroxyl group in the molecule.

シロキサンジアミンは、BSDAと共にDSDAと重合し、ポリイミド化合物を合成する。このシロキサンジアミンとしては、合成されるポリイミド化合物のアルカリ溶解性を著しく低下させることがないものであればどのようなものであってもよいが、例えば、少なくとも分子内にジメチルシリレン骨格を有している下記構造式1(構造式1中mは0又は1以上の整数を示し、nは1以上の整数を示す)に示されるシロキサンジアミンが好ましい。   Siloxane diamine is polymerized with DSDA together with BSDA to synthesize a polyimide compound. The siloxane diamine may be any siloxane diamine as long as it does not significantly reduce the alkali solubility of the synthesized polyimide compound. For example, the siloxane diamine has at least a dimethylsilylene skeleton in the molecule. A siloxane diamine represented by the following structural formula 1 (wherein m represents 0 or an integer of 1 or more and n represents an integer of 1 or more) is preferable.

このジメチルシリレン骨格を有することで、低い弾性率を有するポリイミド膜を形成することができる。この膜をフレキシブル配線板に使用することで、反りがなく、難燃性が良好なフレキシブル配線板となる。特に分子内にジメチルシリレン骨格及びジフェニルシリレン骨格を有している上記構造式1(構造式1中mは1以上の整数を示し、nは1以上の整数を示す)に示されるシロキサンジアミンがさらに好ましい。ジフェニルシリレン骨格は、ポリイミド組成物をさらに難燃化させることができる。すなわち、ポリイミド組成物に難燃剤を加える必要がなく、ノンハロゲン化、ノンリン化に適応したポリイミド組成物を提供できるようになる。このようなシロキサンジアミンの具体例としては、KF−8010、X−22−9409(いずれも信越化学工業製)などが挙げられる。   By having this dimethylsilylene skeleton, a polyimide film having a low elastic modulus can be formed. By using this film for a flexible wiring board, a flexible wiring board having no warpage and good flame retardancy is obtained. In particular, a siloxane diamine represented by the above structural formula 1 having a dimethylsilylene skeleton and a diphenylsilylene skeleton in the molecule (wherein m represents an integer of 1 or more and n represents an integer of 1 or more) preferable. The diphenylsilylene skeleton can further make the polyimide composition flame-retardant. That is, it is not necessary to add a flame retardant to the polyimide composition, and a polyimide composition suitable for non-halogenation and non-phosphorization can be provided. Specific examples of such siloxane diamines include KF-8010, X-22-9409 (both manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.

ポリイミド組成物は、酸二無水物としてのDSDAと、ジアミンとしてのBSDA及びシロキサンジアミンとを重合させることで合成される。この合成に使用される酸二無水物とジアミンとの量は、同じであっても、何れか一方が過剰であっても良い。また、ジアミンであるBSDAとシロキサンジアミンとの割合も任意である。この酸二無水物とジアミンとを反応させ、アミック酸(イミド前駆体)成分を生成させた後、加熱し、溶液中にてイミド化を進めることでアミック酸成分が閉環(溶液イミド化)し、ポリイミド化合物を合成することができる。   The polyimide composition is synthesized by polymerizing DSDA as an acid dianhydride, BSDA as a diamine, and siloxane diamine. The amounts of acid dianhydride and diamine used in this synthesis may be the same or either one may be excessive. Moreover, the ratio of BSDA which is diamine and siloxane diamine is also arbitrary. This acid dianhydride and diamine are reacted to form an amic acid (imide precursor) component, and then heated, and the imidization in the solution proceeds to close the amic acid component (solution imidization). A polyimide compound can be synthesized.

溶液イミド化の手段としては、環化脱水反応が行える条件であればよく、例えば、溶液中での加熱イミド化や脱水剤による化学イミド化が挙げられる。例えば、加熱イミド化は、イミド前駆体中にトルエン、キシレン等の共沸剤を添加し、180℃以上に加熱撹拌することで、アミック酸成分の脱水反応を行い、閉環したイミド成分を形成することができる。このとき、必要に応じてトリエチルアミン等の3級アミン、芳香族系イソキノリン、ピリジン等の塩基性触媒や、安息香酸、パラヒドロキシ安息香酸等の酸触媒をイミド化の触媒として添加しても良い。また、例えば、脱水環化試薬である無水酢酸/ピリジン系やジシクロヘキシルカルボジイミド等の化学イミド化剤によってもアミック酸を閉環することができる。   The solution imidization means may be any conditions as long as the cyclization dehydration reaction can be performed, and examples thereof include heating imidization in a solution and chemical imidization with a dehydrating agent. For example, in heat imidization, an azeotropic agent such as toluene and xylene is added to an imide precursor, and the mixture is heated and stirred at 180 ° C. or higher to perform a dehydration reaction of an amic acid component to form a ring-closed imide component. be able to. At this time, a tertiary catalyst such as triethylamine, a basic catalyst such as aromatic isoquinoline and pyridine, and an acid catalyst such as benzoic acid and parahydroxybenzoic acid may be added as a catalyst for imidization, if necessary. Further, for example, the amic acid can also be closed by a chemical imidizing agent such as acetic anhydride / pyridine or dicyclohexylcarbodiimide which is a dehydrating cyclization reagent.

このポリイミド化合物は、γ−ブチロラクトン(GBL)等の溶媒に上記のような酸二無水物とジアミンとを溶解させて溶媒中の酸二無水物とジアミンとを重縮合させることで合成する。ここで、使用される溶媒としては、GBLに限られるものではなく、例えばトリグライム(TriGL)やN−メチル−2−ピロリドン(NMP)又はN,N−ジメチルアセトアミド等の非プロトン性アミド溶媒やクレゾール等のフェノール系溶媒が使用可能であるが、安全性の点からGBL、TriGL、NMP又はその混合溶媒の使用が好ましい。又、キシレン、トルエン、エチレングリコールモノエチルエーテル等も混合して使用してもよい。   This polyimide compound is synthesized by dissolving the above acid dianhydride and diamine in a solvent such as γ-butyrolactone (GBL) and polycondensing the acid dianhydride and diamine in the solvent. Here, the solvent used is not limited to GBL. For example, an aprotic amide solvent such as triglyme (TriGL), N-methyl-2-pyrrolidone (NMP), or N, N-dimethylacetamide, or cresol. Phenol-based solvents such as can be used, but GBL, TriGL, NMP or a mixed solvent thereof is preferably used from the viewpoint of safety. Further, xylene, toluene, ethylene glycol monoethyl ether and the like may be mixed and used.

ポリイミド組成物には、感光剤が含有される。この感光剤の含有により、形成されるポリイミド組成物に感光性を付与することができる。その感光剤としては、例えば、ジアゾナフトキノン化合物が挙げられる。上記のジアゾナフトキノン化合物を含有したポリイミド組成物は、露光によりアルカリ溶解性が変化する。露光する前は、アルカリ水溶液への溶解性が低い。一方、露光された後は、ジアゾナフトキノン化合物の分子構造が変化してケテンが生じ、アルカリ水溶液と反応してカルボン酸が生じる。そして、生成したカルボン酸が水とさらに反応して溶解する。したがって、光照射することで、アルカリ水溶液への溶解性が高くなる。   The polyimide composition contains a photosensitizer. By containing this photosensitizer, photosensitivity can be imparted to the formed polyimide composition. Examples of the photosensitizer include a diazonaphthoquinone compound. The polyimide composition containing the diazonaphthoquinone compound changes its alkali solubility upon exposure. Before exposure, the solubility in an alkaline aqueous solution is low. On the other hand, after the exposure, the molecular structure of the diazonaphthoquinone compound changes to produce ketene, which reacts with an alkaline aqueous solution to produce carboxylic acid. The produced carboxylic acid is further reacted with water and dissolved. Therefore, the solubility in alkaline aqueous solution becomes high by irradiating light.

感光剤であるジアゾナフトキノン化合物を含有することにより、ヒドロキシル基を有することでアルカリ溶解性が比較的高いポリイミド化合物は、このヒドロキシル基とジアゾナフトキノン化合物が水素結合する。これにより、アルカリに溶解し易いヒドロキシル基が保護され、アルカリ溶解性が低下する。この状態のポリイミド化合物に露光を行うと、ジアゾナフトキノン化合物の分子構造が変化し、アルカリ溶解性が発現する。したがって、感光剤としてジアゾナフトキノン化合物を含有させることで、フレキシブル配線板への露光後、水酸化ナトリウム(NaOH)、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ水溶液によってパターンを形成することができる。   By containing a diazonaphthoquinone compound as a photosensitizer, a polyimide compound having a hydroxyl group and relatively high alkali solubility has a hydrogen bond between the hydroxyl group and the diazonaphthoquinone compound. Thereby, the hydroxyl group which is easily dissolved in alkali is protected, and the alkali solubility is lowered. When the polyimide compound in this state is exposed to light, the molecular structure of the diazonaphthoquinone compound changes and alkali solubility is exhibited. Therefore, by containing a diazonaphthoquinone compound as a photosensitizer, sodium hydroxide (NaOH), potassium hydroxide, sodium carbonate, sodium bicarbonate, tetramethylammonium hydroxide (TMAH), etc. after exposure to the flexible wiring board. The pattern can be formed with an alkaline aqueous solution.

感光剤のジアゾナフトキノン化合物としては、ジアゾナフトキノン骨格を有する化合物であれば特に限定されるものではないが、例えば、2,3,4−トリヒドロキシベンゾフェノンo−ナフトキノンジアジド−4−スルホン酸エステル、2,3,4−トリヒドロキシベンゾフェノンo−ナフトキノンジアジド−5−スルホン酸エステル、2,3,4−トリヒドロキシベンゾフェノンo−ベンゾキノンジアジド−4−スルホン酸エステル等が挙げられる。   The diazonaphthoquinone compound of the photosensitizer is not particularly limited as long as it is a compound having a diazonaphthoquinone skeleton. For example, 2,3,4-trihydroxybenzophenone o-naphthoquinonediazide-4-sulfonic acid ester, 2 3,4-trihydroxybenzophenone o-naphthoquinonediazide-5-sulfonic acid ester, 2,3,4-trihydroxybenzophenone o-benzoquinonediazide-4-sulfonic acid ester, and the like.

ポリイミド組成物には、レゾール樹脂が含有される。このレゾール樹脂は、自己縮合するため、ポリイミド組成物の硬化時に架橋密度が高くなり、例えば導体との密着性を高くすることができる。これにより、ポリイミド組成物に耐めっき性を付与させることができる。すなわち、本発明のポリイミド組成物にレゾール樹脂を含有させることで、例えば導体上に備えられるポリイミド膜の端部の浮きが小さくなる。   The polyimide composition contains a resol resin. Since this resol resin is self-condensed, the crosslink density is increased when the polyimide composition is cured, and for example, the adhesion to the conductor can be increased. Thereby, plating resistance can be provided to a polyimide composition. That is, when the resol resin is contained in the polyimide composition of the present invention, for example, the floating of the end portion of the polyimide film provided on the conductor is reduced.

ポリイミド組成物にこのレゾール樹脂を含有させる量としては、ポリイミド化合物100重量部に対して、1重量部以上4重量部以下であることが好ましい。この範囲であれば膜減りが起こらず、良好なアルカリ現像が可能である。レゾール樹脂は、フェノール性の水酸基を多く含むものである。そのため、例えば、上記のポリイミド化合物のようなアルカリ溶解性の高いポリマーに添加すると、アルカリ溶解性がさらに高くなり、露光しない箇所においてもアルカリ水溶液によって溶解してしまい、パターニングができなくなってしまう。また、アルカリ溶解性の向上により、ポリイミド組成物からなるポリイミド層が膜減りしてしまう可能性がある。しかしながら、上記のポリイミド化合物にレゾール樹脂を添加しても、1重量部以上4重量部以下であれば、膜減りが起こらず、アルカリ水溶液による良好な現像が可能となる。   The amount of the resol resin contained in the polyimide composition is preferably 1 part by weight or more and 4 parts by weight or less with respect to 100 parts by weight of the polyimide compound. Within this range, film reduction does not occur and good alkali development is possible. The resol resin contains a lot of phenolic hydroxyl groups. Therefore, for example, if it is added to a polymer having a high alkali solubility such as the above polyimide compound, the alkali solubility is further increased, and even in a portion not exposed to light, it is dissolved by the aqueous alkali solution and patterning becomes impossible. Moreover, the polyimide layer which consists of a polyimide composition may reduce a film | membrane by the improvement of alkali solubility. However, even if a resol resin is added to the above polyimide compound, film thickness reduction does not occur as long as it is 1 part by weight or more and 4 parts by weight or less, and good development with an alkaline aqueous solution becomes possible.

ポリイミド組成物に含有させるレゾール樹脂は、特に限定するものではない。例えば、レゾール樹脂自身が固体であっても液状であってもよいが、液状のものであることが好ましい。レゾール樹脂自身が液状であれば、少量のレゾール樹脂であっても、ポリイミド組成物からなるポリイミド膜に均一に分散させることが容易である。   The resol resin contained in the polyimide composition is not particularly limited. For example, the resol resin itself may be solid or liquid, but is preferably liquid. If the resol resin itself is liquid, even a small amount of resol resin can be easily dispersed uniformly in the polyimide film made of the polyimide composition.

また、ポリイミド組成物に含有させるレゾール樹脂としては、レゾール樹脂自身の粘度が13000mPa・s以上であることが好ましい。レゾール樹脂の粘度が13000mPa・s以下である場合、重合度が低く、その多くが重合せずにモノマーとして残存しているものである。そのため、粘度が13000mPa・s以下のレゾール樹脂をポリイミド組成物に含有させても、現像時にその多くのモノマーがアルカリ水溶液に溶解してしまう。したがって、ポリイミド組成物からなるポリイミド膜の膜減りが起こる可能性がある。   Moreover, as a resol resin contained in a polyimide composition, it is preferable that the viscosity of the resol resin itself is 13000 mPa · s or more. When the viscosity of the resol resin is 13000 mPa · s or less, the degree of polymerization is low, and many of them remain as monomers without being polymerized. Therefore, even when a resol resin having a viscosity of 13000 mPa · s or less is contained in the polyimide composition, many monomers are dissolved in the alkaline aqueous solution during development. Accordingly, there is a possibility that the polyimide film made of the polyimide composition is reduced.

さらに、粘度が測定できないような固形のレゾール樹脂を含有させると、レゾール樹脂をポリイミド組成物からなるポリイミド膜に均一に分散させるには、長い時間を要する。例えば、ポリイミド組成物中や、形成されるポリイミド膜の表面に固形のレゾール樹脂の微粒子が残ってしまうため、ポリイミド膜にレゾール樹脂を短時間で均一に分散させることが難しくなる。   Furthermore, when a solid resol resin whose viscosity cannot be measured is contained, it takes a long time to uniformly disperse the resol resin in the polyimide film made of the polyimide composition. For example, solid resol resin fine particles remain in the polyimide composition or on the surface of the polyimide film to be formed, making it difficult to uniformly disperse the resol resin in the polyimide film in a short time.

ポリイミド組成物には、複数のエポキシ基を有する架橋剤が含有される。この架橋剤は、複数のエポキシ基がポリイミドと反応し、ポリイミド化合物を架橋する。この架橋剤により、例えば銅箔等の導体とポリイミドとの密着性を向上させることができる。また、上記のレゾール樹脂が架橋剤の架橋・架橋プロモータとして作用するため、架橋剤が含有されることで、より複雑な3次元構造を構築する。したがって、例えばポリイミド膜の導体への密着性が向上し、ポリイミド組成物の耐めっき性をより向上させることができる。   The polyimide composition contains a crosslinking agent having a plurality of epoxy groups. In this crosslinking agent, a plurality of epoxy groups react with polyimide to crosslink the polyimide compound. With this cross-linking agent, for example, the adhesion between a conductor such as a copper foil and polyimide can be improved. Further, since the above-mentioned resol resin acts as a crosslinking / crosslinking promoter of the crosslinking agent, a more complicated three-dimensional structure is constructed by containing the crosslinking agent. Therefore, for example, the adhesion of the polyimide film to the conductor is improved, and the plating resistance of the polyimide composition can be further improved.

ポリイミド組成物にこの架橋剤を含有させる量としては、ポリイミド化合物100重量部に対して、20重量部以下であることが好ましい。架橋剤が20重量部以上含有させた場合、ポリイミド組成物の安定性が悪くなり、粘度が上昇してしまうため、ポリイミド組成物の取り扱いが悪くなる。また、感光性が低下してしまうため、アルカリ現像が難しくなる。また、エポキシ基もアルカリ水溶液による加水分解を起こすおそれががあるため、架橋効果を維持させるには、1重量部以上添加することが望ましい。   As a quantity which makes this polyimide composition contain this crosslinking agent, it is preferable that it is 20 weight part or less with respect to 100 weight part of polyimide compounds. When the crosslinking agent is contained in an amount of 20 parts by weight or more, the stability of the polyimide composition is deteriorated and the viscosity is increased, so that the handling of the polyimide composition is deteriorated. Moreover, since photosensitivity falls, alkali development becomes difficult. Moreover, since there exists a possibility that an epoxy group may also hydrolyze with aqueous alkali solution, in order to maintain a crosslinking effect, adding 1 weight part or more is desirable.

エポキシ基を有する架橋剤は、形成されるポリイミド組成物に対して相溶性がよいものであれば特に限定するものではないが、例えば下記のような化合物を挙げることができる。架橋剤としては、ビスF型エポキシ化合物、ビスA型エポキシ化合物、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート等の脂環式エポキシ化合物、ソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ヒドロキノンジグリシジルエーテル等のグリシジルエーテル化合物、フタル酸ジグリシジルエステル、テレフタル酸グリシジルエステル等のグリシジルエステル化合物、ジブロモネオペンチルグリコールグリシジルエーテル等のハロゲン化された難燃性エポキシ化合物、クレゾールノボラックエポキシ樹脂、フェノールノボラックエポキシ樹脂等が挙げられる。   The crosslinking agent having an epoxy group is not particularly limited as long as it has good compatibility with the polyimide composition to be formed, and examples thereof include the following compounds. Examples of the crosslinking agent include bis-type epoxy compounds, bis-A type epoxy compounds, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate and other alicyclic epoxy compounds, sorbitol polyglycidyl ether, poly Glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, trimethylolpropane polyglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether , Hydrogenated bisphenol A diglycidyl ether, polyethylene glycol glycidyl ether, polypropylene glycol diglycidyl Glycidyl ether compounds such as ether, hydroquinone diglycidyl ether, glycidyl ester compounds such as diglycidyl phthalate and glycidyl terephthalate, halogenated flame retardant epoxy compounds such as dibromoneopentylglycol glycidyl ether, cresol novolac epoxy resin And phenol novolac epoxy resins.

ポリイミド組成物には、オキサジン化合物が含有されていてもよい。オキサジン化合物は、分子内のオキサジン骨格が熱によって開環し、硬化する。このオキサジン化合物を本発明のポリイミド組成物に含有させることで、架橋剤として作用し、ポリイミド組成物に難燃性と、銅等の金属に対する密着性を向上させることができる。その添加量は、例えばポリイミド化合物100重量部に対して、5重量部以下といった少量でよい。   The polyimide composition may contain an oxazine compound. In the oxazine compound, the oxazine skeleton in the molecule is opened by heat and cured. By containing this oxazine compound in the polyimide composition of the present invention, it acts as a crosslinking agent, and the flame retardancy and adhesion to a metal such as copper can be improved in the polyimide composition. The addition amount may be as small as 5 parts by weight or less with respect to 100 parts by weight of the polyimide compound, for example.

このオキサジン化合物としては、例えば、ビスフェノールF型ベンゾオキサジン(6,6’−(1−メチリデン)ビス[3,4−ジヒドロ−3−フェニル−2H−1,3−ベンゾオキサジン])、ビスフェノールS型ベンゾオキサジン(6,6’−スルホニルビス[3,4−ジヒドロ−3−フェニル−2H−1,3−ベンゾオキサジン])、ビスフェノールA型ベンゾオキサジン(下記構造式2)、フェノールノボラック型ベンゾオキサジン(下記構造式3)等が挙げられる。   Examples of the oxazine compound include bisphenol F-type benzoxazine (6,6 ′-(1-methylidene) bis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]), bisphenol S-type. Benzoxazine (6,6′-sulfonylbis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine]), bisphenol A type benzoxazine (the following structural formula 2), phenol novolac type benzoxazine ( The following structural formula 3) and the like can be mentioned.

ポリイミド組成物には、防錆剤が含有されていてもよい。この防錆剤としては、例えば、ヒドラジド系の金属不活性剤である2,3−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]プロピオノヒドラジド(CDA−10)が挙げられ、フレキシブル配線板に使用する場合に、金属と接触するポリイミド組成物の樹脂劣化を防止することができる。   The polyimide composition may contain a rust preventive agent. Examples of the rust preventive include 2,3-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] propionohydrazide (CDA-), which is a hydrazide-based metal deactivator. 10), and when used for a flexible wiring board, resin deterioration of the polyimide composition in contact with the metal can be prevented.

CDA−10以外の防錆剤としては、ヒドラジド系のものとしてデカメチレンカルボン酸ジサリチロイルヒドラジド、トリアゾール系のものとして3−(N−サリチロイル)アミノ−1,2,4−トリアゾール等が挙げられるが、これらに限定されるものではない。   Examples of rust preventives other than CDA-10 include decamethylenecarboxylic acid disalicyloyl hydrazide as hydrazide-based compounds, and 3- (N-salicyloyl) amino-1,2,4-triazole as triazole-based compounds. However, it is not limited to these.

本発明のポリイミド組成物は、DSDA、BSDA、シロキサンジアミンの重合により合成されたポリイミド組成物がGBL等に溶解した溶液に、感光剤、レゾール樹脂を添加することで、形成することができる。このポリイミド組成物には、架橋剤やベンゾオキサジンが添加されていても良い。   The polyimide composition of the present invention can be formed by adding a photosensitizer and a resole resin to a solution in which a polyimide composition synthesized by polymerization of DSDA, BSDA, and siloxane diamine is dissolved in GBL or the like. A crosslinking agent or benzoxazine may be added to this polyimide composition.

このように、本発明のポリイミド組成物は、アルカリ水溶液による溶解性が高いポリイミド化合物にレゾール樹脂を添加することで起こると考えられていた膜減りという問題を引き起こさずに、耐めっき性を向上させることが可能である。   As described above, the polyimide composition of the present invention improves the plating resistance without causing the problem of film reduction, which was thought to occur by adding a resole resin to a polyimide compound that is highly soluble in an alkaline aqueous solution. It is possible.

このポリイミド組成物は、図1乃至図4のように、フレキシブル配線板に使用することができる。この場合、銅箔2などの導体に公知のコーティング法でポリイミド組成物を塗布する。そして、ポリイミド組成物を乾燥させて、図1のように、銅箔2上にポリイミド層3を形成する。   This polyimide composition can be used for a flexible wiring board as shown in FIGS. In this case, a polyimide composition is applied to a conductor such as copper foil 2 by a known coating method. Then, the polyimide composition is dried to form a polyimide layer 3 on the copper foil 2 as shown in FIG.

このフレキシブル配線板1に対して、図2のように、ポリイミド層3にマスク層4を備えて露光し、その後アルカリ水溶液に浸漬してアルカリ現像を行う。これにより、図3のように、マスク層4に対応するポジパターンを銅箔2上のポリイミド層3に形成することができる。このポリイミド層3は、上記のポリイミド組成物からなることで、膜減りが起こらない。   As shown in FIG. 2, the flexible wiring board 1 is exposed with a polyimide layer 3 provided with a mask layer 4, and then immersed in an aqueous alkali solution to perform alkali development. Thereby, a positive pattern corresponding to the mask layer 4 can be formed on the polyimide layer 3 on the copper foil 2 as shown in FIG. The polyimide layer 3 is made of the above polyimide composition, so that no film reduction occurs.

ポジパターンが形成されたポリイミド層3を有する銅箔2は、例えば約200℃でポストベーキングし、耐めっき性を有するポリイミド層3を有するフレキシブル配線板1を製造する。この製造されたフレキシブル配線板1を、例えば無電解ニッケル金めっきや無電解金めっき等を行うためのめっき液に浸漬させ、図4のように、銅箔2上にめっき層5を形成する。   The copper foil 2 having the polyimide layer 3 on which the positive pattern is formed is post-baked at about 200 ° C., for example, to manufacture the flexible wiring board 1 having the polyimide layer 3 having plating resistance. The manufactured flexible wiring board 1 is immersed in a plating solution for performing electroless nickel gold plating, electroless gold plating, etc., for example, and a plating layer 5 is formed on the copper foil 2 as shown in FIG.

このポリイミド層3は、上記のポリイミド組成物からなることで、耐めっき性を有している。したがって、銅箔2が露出している部分のみがめっきされ、ポリイミド層3の端部の浮きを最小限に留めることができる。すなわち、レゾール樹脂が添加されたポリイミド組成物からなるポリイミド層3の膜減りという問題を引き起こさずに、耐めっき性を向上させることができる。   This polyimide layer 3 has plating resistance by being made of the above polyimide composition. Therefore, only the portion where the copper foil 2 is exposed is plated, and the floating of the end portion of the polyimide layer 3 can be minimized. That is, the plating resistance can be improved without causing the problem of film loss of the polyimide layer 3 made of the polyimide composition to which the resole resin is added.

本発明を適用したポリイミド組成物の具体的な実施例について、実験結果に基づいて説明する。本実施例では、実施例1乃至4に示されるレゾールを含有するポリイミド組成物と、比較例に示されるレゾール樹脂を含有しないポリイミド組成物とを比較した。   Specific examples of the polyimide composition to which the present invention is applied will be described based on experimental results. In this example, the polyimide composition containing the resole shown in Examples 1 to 4 was compared with the polyimide composition containing no resol resin shown in the comparative example.

実施例1のポリイミド組成物は、下記のように調製した。ディーン・スターク・トラップ(Dean−Stark−Trap)を取り付けた500mlの四つ口セパラブルフラスコに、131.61g(97.05mmol)の上記構造式1に示されるシロキサンジアミン(X22−9409)、15.58g(55.30mmol)のBSDA(純度99.5%)を投入し、窒素雰囲気下、γ−ブチロラクトン(GBL)で完全に溶解させた。その溶液に、55.3g(153.8mmol)のDSDA(純度99.7%)を加え、80℃で2時間撹拌させた後、イミド化縮合水を除去するための共沸剤であるトルエンを70ml加え、オイルバスにて180℃で撹拌しながら5時間保持還流し、ポリイミド化合物を合成した。   The polyimide composition of Example 1 was prepared as follows. In a 500 ml four-necked separable flask equipped with a Dean-Stark-Trap, 131.61 g (97.05 mmol) of the siloxane diamine (X22-9409), 15 .58 g (55.30 mmol) of BSDA (purity 99.5%) was added and completely dissolved with γ-butyrolactone (GBL) under a nitrogen atmosphere. 55.3 g (153.8 mmol) of DSDA (purity 99.7%) was added to the solution, and the mixture was stirred at 80 ° C. for 2 hours. Then, toluene as an azeotropic agent for removing imidized condensed water was added. 70 ml was added and refluxed for 5 hours while stirring at 180 ° C. in an oil bath to synthesize a polyimide compound.

得られたポリイミド化合物100重量部に対して、感光剤として15重量部のジアゾナフトキノン(4NT−300)と、架橋剤として2重量部のエポキシ樹脂(EP807)と、オキサジン化合物として5重量部の6,6’−(1−メチリデン)ビス[3,4−ジヒドロ−3−フェニル−2H−1,3−ベンゾオキサジン](BF−BXZ)及び0.3重量部の防錆剤(CDA−10)とを添加した。さらに、ポリイミド化合物100重量部に対して、固形のレゾール樹脂を粉砕したレゾール樹脂(PS6115)を2重量部添加し、ポリイミド組成物を調製した。このレゾール樹脂(PS6115)を添加したポリイミド組成物を観察したところ、レゾール樹脂(PS6115)は、完全に溶解せずに粒子が残っているような状態であった。   With respect to 100 parts by weight of the obtained polyimide compound, 15 parts by weight of diazonaphthoquinone (4NT-300) as a photosensitizer, 2 parts by weight of an epoxy resin (EP807) as a crosslinking agent, and 5 parts by weight of 6 as an oxazine compound. , 6 '-(1-methylidene) bis [3,4-dihydro-3-phenyl-2H-1,3-benzoxazine] (BF-BXZ) and 0.3 parts by weight of a rust inhibitor (CDA-10) And were added. Furthermore, 2 parts by weight of a resole resin (PS6115) obtained by pulverizing a solid resole resin was added to 100 parts by weight of a polyimide compound to prepare a polyimide composition. When the polyimide composition to which the resole resin (PS6115) was added was observed, the resole resin (PS6115) was in a state where particles were not dissolved but remained.

そして、室温で30秒間、2%の硫酸によって基材である銅箔を洗浄したのち、乾燥後のポリイミド層が厚さ9〜10μmとなるように、洗浄後の銅箔上に上記のポリイミド組成物を塗布した。そして、80℃で4分間予備乾燥し、銅箔上にポリイミド層を有する試験片を作成した。   And after washing | cleaning the copper foil which is a base material with 2% sulfuric acid for 30 seconds at room temperature, said polyimide composition on the copper foil after washing | cleaning so that the polyimide layer after drying may be 9-10 micrometers in thickness. The object was applied. And it pre-dried at 80 degreeC for 4 minute (s), and the test piece which has a polyimide layer on copper foil was created.

試験片のポリイミド層に対して、ポジイメージのマスクを介し、超高圧水銀ランプにて2500mJ/cmで光照射(露光)した。その後、銅箔上のポリイミド層は、40℃、3%の水酸化ナトリウム水溶液に浸漬することでアルカリ現像し、40℃、120秒にて湯洗を行い、ポリイミド層にポジパターンを形成させた。ポジパターンの形成後、ポリイミド層の水酸化ナトリウム水溶液を中和するために、試験片を10%硫酸に浸漬の後、さらに水洗した。水洗後、ポリイミド層を有する試験片を、窒素雰囲気下、200℃で1時間加熱し、ポリイミド層を架橋させた。加熱後、無電解ニッケルめっき用のめっき液に試験片を投入し、8分間無電解ニッケルめっき(NPR−4)を行った後、無電解金めっき用のめっき液(TKK−51)に試験片を投入し、無電解ニッケル金めっきを行った。 The polyimide layer of the test piece was irradiated with light (exposed) at 2500 mJ / cm 2 with an ultrahigh pressure mercury lamp through a positive image mask. Thereafter, the polyimide layer on the copper foil was alkali-developed by being immersed in a 3% sodium hydroxide aqueous solution at 40 ° C., and washed with hot water at 40 ° C. for 120 seconds to form a positive pattern on the polyimide layer. . After the positive pattern was formed, the test piece was immersed in 10% sulfuric acid and further washed with water in order to neutralize the sodium hydroxide aqueous solution in the polyimide layer. After washing with water, the test piece having the polyimide layer was heated at 200 ° C. for 1 hour in a nitrogen atmosphere to crosslink the polyimide layer. After heating, the test piece is put into a plating solution for electroless nickel plating, subjected to electroless nickel plating (NPR-4) for 8 minutes, and then applied to a plating solution for electroless gold plating (TKK-51). Was introduced and electroless nickel gold plating was performed.

実施例2のポリイミド組成物は、上記実施例1の粉砕したレゾール樹脂(PS6115)を、透明な固形のレゾール樹脂(BRM−470)に代えて、ポリイミド化合物100重量部に対して2重量部添加し、ポリイミド組成物を調製した。このポリイミド組成物を用いて、実施例1と同様に試験片を作成し、露光、現像、中和洗浄、加熱、無電解ニッケルめっき及び無電解ニッケル金めっきを行った。   In the polyimide composition of Example 2, the pulverized resol resin (PS6115) of Example 1 was replaced with a transparent solid resol resin (BRM-470), and 2 parts by weight was added to 100 parts by weight of the polyimide compound. Then, a polyimide composition was prepared. Using this polyimide composition, a test piece was prepared in the same manner as in Example 1, and exposure, development, neutralization washing, heating, electroless nickel plating and electroless nickel gold plating were performed.

実施例3のポリイミド組成物は、上記実施例1の粉砕したレゾール樹脂(PS6115)を、紛状のレゾール樹脂(BRP−2444)に代えて、ポリイミド化合物100重量部に対して2重量部添加し、ポリイミド組成物を調製した。このポリイミド組成物を用いて、実施例1と同様に試験片を作成し、露光、現像、中和洗浄、加熱、無電解ニッケルめっき及び無電解ニッケル金めっきを行った。   In the polyimide composition of Example 3, 2 parts by weight of the pulverized resol resin (PS6115) of Example 1 above was added to 100 parts by weight of the polyimide compound in place of the powdered resole resin (BRP-2444). A polyimide composition was prepared. Using this polyimide composition, a test piece was prepared in the same manner as in Example 1, and exposure, development, neutralization washing, heating, electroless nickel plating and electroless nickel gold plating were performed.

実施例4のポリイミド組成物は、上記実施例1の粉砕したレゾール樹脂(PS6115)を、液状のレゾール樹脂(BRL−274)に代えて、ポリイミド化合物100重量部に対して2重量部添加し、ポリイミド組成物を調製した。ここで添加される液状のレゾール樹脂(BRL−274)は、上記のレゾール樹脂(PS6115、BRM−470、BRP−2444)と比べて低分子量のレゾール樹脂が多く存在する液状のもので、その粘度は13000mPa・s以上である。このポリイミド組成物を用いて、実施例1と同様に試験片を作成し、露光、現像、中和洗浄、加熱、無電解ニッケルめっき及び無電解ニッケル金めっきを行った。無電解ニッケル金めっき後のこのポリイミド層の端部の様子を示す写真を図5に示す。また、実施例4のポリイミド層の端部の浮きを確認するために、端部断面のSEM像を図6に示し、その拡大SEM像を図7に示す。   In the polyimide composition of Example 4, the pulverized resol resin (PS6115) of Example 1 was replaced with a liquid resol resin (BRL-274), and 2 parts by weight was added to 100 parts by weight of the polyimide compound. A polyimide composition was prepared. The liquid resol resin (BRL-274) added here is a liquid that contains more low-molecular-weight resol resins than the above-mentioned resol resins (PS6115, BRM-470, BRP-2444), and its viscosity. Is 13000 mPa · s or more. Using this polyimide composition, a test piece was prepared in the same manner as in Example 1, and exposure, development, neutralization washing, heating, electroless nickel plating and electroless nickel gold plating were performed. The photograph which shows the mode of the edge part of this polyimide layer after electroless nickel gold plating is shown in FIG. Moreover, in order to confirm the float of the edge part of the polyimide layer of Example 4, the SEM image of an edge part cross section is shown in FIG. 6, and the enlarged SEM image is shown in FIG.

比較例のポリイミド組成物は、上記実施例1乃至4で添加したレゾール樹脂を添加せずに調製した。そして、このポリイミド組成物を用いて、実施例1と同様に試験片を作成し、露光、現像、中和洗浄、加熱、無電解ニッケルめっき及び無電解ニッケル金めっきを行った。無電解ニッケル金めっき後のこのポリイミド層の端部の様子を示す写真を図8に示す。   The polyimide composition of the comparative example was prepared without adding the resole resin added in Examples 1 to 4 above. And using this polyimide composition, the test piece was created similarly to Example 1, and exposure, image development, neutralization washing | cleaning, heating, electroless nickel plating, and electroless nickel gold plating were performed. The photograph which shows the mode of the edge part of this polyimide layer after electroless nickel gold plating is shown in FIG.

上記実施例1乃至4及び比較例における、無電解ニッケルめっき、無電解ニッケル金めっきに対する耐性、すなわち無電解ニッケルめっき、無電解ニッケル金めっきによってポリイミド層端部の浮きや変色の観点で耐無電解めっき性ついて評価し、下記表に示す。尚、無電解ニッケルめっきの欄の○は試験片のポリイミド層の変色が20μm以下で、その端部の浮きが20μm以下であったことを示す。また、無電解ニッケルめっきの欄の×は試験片のポリイミド層の変色が50μm以上確認された、あるいは、その端部に50μm以上の大きな浮きが確認されたことを示している。無電解ニッケル金めっきの欄も無電解ニッケルめっきと同様で、○はポリイミド層の変色が20μm以下で、その端部の浮きが20μm以下であったことを示し、×はポリイミド層の変色が50μm以上確認された、あるいは、その端部に50μm以上の大きな浮きが確認されたことを示している。   Resistance to electroless nickel plating and electroless nickel gold plating in Examples 1 to 4 and Comparative Example, that is, electroless resistance from the viewpoint of floating and discoloration of the end of the polyimide layer by electroless nickel plating and electroless nickel gold plating The plating properties were evaluated and are shown in the following table. In the electroless nickel plating column, o indicates that the color change of the polyimide layer of the test piece was 20 μm or less, and the float at the end was 20 μm or less. Further, x in the column of electroless nickel plating indicates that the discoloration of the polyimide layer of the test piece was confirmed to be 50 μm or more, or a large float of 50 μm or more was confirmed at the end. The electroless nickel gold plating column is also the same as the electroless nickel plating, where ◯ indicates that the color change of the polyimide layer is 20 μm or less and the float at the end thereof is 20 μm or less, and × indicates the color change of the polyimide layer is 50 μm. It has been confirmed above, or a large float of 50 μm or more has been confirmed at the end.

実施例1乃至4及び比較例において、それぞれのポリイミド層は、現像前のポリイミド層の厚みが減少する膜減りを起こすことなく、アルカリ水溶液による現像を良好に行うことができた。また、実施例1乃至4及び比較例での無電解ニッケルめっきにおいて、それぞれのポリイミド層の端部には、浮きや変色が確認されなかった。実施例3においては、浮きや変色が確認されなかったが、ポリイミド層の表面にレゾール樹脂の微粒子が確認された。さらに、実施例1乃至4での無電解ニッケル金めっきにおいて、それぞれのポリイミド層の端部には、浮きや変色が確認されなかった。比較例は、図8のように、ポリイミド層の端部に120μmの変色域が確認された。   In each of Examples 1 to 4 and the comparative example, each polyimide layer was able to be well developed with an alkaline aqueous solution without causing film loss in which the thickness of the polyimide layer before development was reduced. Further, in the electroless nickel plating in Examples 1 to 4 and the comparative example, no floating or discoloration was confirmed at the end of each polyimide layer. In Example 3, no floating or discoloration was confirmed, but fine particles of resole resin were confirmed on the surface of the polyimide layer. Furthermore, in the electroless nickel gold plating in Examples 1 to 4, no floating or discoloration was observed at the end of each polyimide layer. In the comparative example, as shown in FIG. 8, a 120 μm discoloration region was confirmed at the end of the polyimide layer.

まず、実施例1乃至実施例4のアルカリ現像性について検討する。比較例に示される組成のポリイミド組成物からなるポリイミド層は、アルカリ水溶液によって良好な現像が可能である。そのポリイミド組成物に、フェノール性の水酸基を有するレゾール樹脂が含まれることで、アルカリ性の現像液によってポリイミド層の膜減りが予想された。特に、低分子量の液状のレゾール樹脂(BRL−274)は、フェノール性の水酸基がより多く存在するため、その傾向が顕著となると予想された。しかしながら、実施例1乃至実施例4に示される組成のようなポリイミド組成物では、ポリイミド層の膜減りが確認されなかった。すなわち、DSDA、BSDA、ジアミノシロキサンを主骨格とするポリイミド組成物に、2重量部のレゾール樹脂を添加しても、アルカリ現像性の低下がないことがことが分かった。   First, the alkali developability of Examples 1 to 4 will be examined. The polyimide layer made of the polyimide composition having the composition shown in the comparative example can be satisfactorily developed with an alkaline aqueous solution. Since the polyimide composition contains a resole resin having a phenolic hydroxyl group, the polyimide layer was expected to be reduced by an alkaline developer. In particular, the liquid resol resin (BRL-274) having a low molecular weight was expected to have a prominent tendency due to the presence of more phenolic hydroxyl groups. However, in the polyimide compositions such as the compositions shown in Examples 1 to 4, no film loss of the polyimide layer was confirmed. That is, it was found that even when 2 parts by weight of a resole resin was added to a polyimide composition having DSDA, BSDA, or diaminosiloxane as a main skeleton, there was no decrease in alkali developability.

次に、実施例1乃至実施例4の耐めっき性について検討する。上記のように、レゾール樹脂が添加されていない比較例では、ポリイミド層の端部に図8のような幅120μmの変色域が確認されたことにより、比較例に示した組成のポリイミド組成物は、無電解ニッケル金めっきに対する耐性が低いことがわかった。   Next, the plating resistance of Examples 1 to 4 will be examined. As described above, in the comparative example to which no resol resin is added, the polyimide composition having the composition shown in the comparative example is obtained by confirming a discoloration region having a width of 120 μm as shown in FIG. 8 at the end of the polyimide layer. It was found that the resistance to electroless nickel gold plating is low.

図6のように、実施例4の組成のポリイミド組成物は、無電解ニッケル金めっき後においても銅箔上のポリイミド層の端部に変色が確認できない。また、図7及び図8のように、ポリイミド層の浮きも20μm程度であり、ポリイミド層と銅箔との間がめっきされるめっきの差込みの現象も確認されなかった。実施例4で示される組成のポリイミド組成物は、比較例のような変色もなく、浮きも極めて少ない。すなわち、実施例4に示される組成のポリイミド組成物は、比較例と比較して、無電解ニッケル金めっきによる浮きが劇的に改善され、無電解ニッケルめっき及び無電解ニッケル金めっきに対する耐めっき性を向上させることができることがわかった。なお、UL94−V−0を満たす25μm厚原反ポリイミドに、実施例4のポリイミド組成物を20μm厚で両面に塗布した試験片を用いて、UL規格(UL94「機器の部品用プラスチック材料の燃焼試験方法」)に準じ、燃焼性試験を行ったところ、VTM−0の基準を満たすことが分かった。   As shown in FIG. 6, the polyimide composition having the composition of Example 4 cannot confirm discoloration at the end of the polyimide layer on the copper foil even after electroless nickel gold plating. Further, as shown in FIGS. 7 and 8, the floating of the polyimide layer was about 20 μm, and the phenomenon of plating insertion in which the polyimide layer and the copper foil were plated was not confirmed. The polyimide composition having the composition shown in Example 4 has no discoloration as in the comparative example and has very little floating. That is, the polyimide composition having the composition shown in Example 4 has dramatically improved floating due to electroless nickel gold plating as compared with the comparative example, and is resistant to electroless nickel plating and electroless nickel gold plating. It was found that can be improved. In addition, by using a test piece in which the polyimide composition of Example 4 was applied to both sides with a thickness of 20 μm on a 25 μm-thick raw fabric polyimide satisfying UL94-V-0, the UL standard (UL94 “flammability test of plastic material for equipment parts” was used. According to the method "), a flammability test was conducted, and it was found that the VTM-0 standard was satisfied.

実施例1乃至実施例3に示される組成のポリイミド組成物は、実施例4の組成物と同様に、無電解ニッケルめっき及び無電解ニッケル金めっきによるポリイミド層の端部の変色や浮きは確認されなかった。したがって、実施例4と同様に実施例1乃至3に示される組成のポリイミド組成物は、比較例と比較して無電解ニッケル金めっきによる浮きが劇的に改善され、無電解ニッケルめっき及び無電解ニッケル金めっきに対する耐めっき性を向上させることができることがわかった。   As in the composition of Example 4, the polyimide compositions having the compositions shown in Examples 1 to 3 were confirmed to be discolored and floated at the ends of the polyimide layer by electroless nickel plating and electroless nickel gold plating. There wasn't. Therefore, the polyimide composition having the composition shown in Examples 1 to 3 as in Example 4 has dramatically improved floating due to electroless nickel gold plating compared to the comparative example, and electroless nickel plating and electroless It was found that the plating resistance against nickel gold plating can be improved.

この結果を受けて、実施例1乃至4で使用したレゾール樹脂の添加量を代えて、実施例1と同様に試験片を作成し、露光、現像、中和洗浄、加熱、無電解ニッケルめっき及び無電解ニッケル金めっきを行った。そのレゾール樹脂の添加量は、ポリイミド化合物100重量部に対して1重量部又は4重量部である。   In response to this result, the amount of the resole resin used in Examples 1 to 4 was changed, and test pieces were prepared in the same manner as in Example 1, and exposure, development, neutralization washing, heating, electroless nickel plating and Electroless nickel gold plating was performed. The amount of the resole resin added is 1 part by weight or 4 parts by weight with respect to 100 parts by weight of the polyimide compound.

いずれの例においても、アルカリ水溶液によって良好に現像することができた。また、無電解ニッケルめっき及び無電解ニッケル金めっきを行っても、ポリイミド層の端部の浮きや変色が確認されず、無電解ニッケルめっき及び無電解ニッケル金めっきに対する耐性が比較例に比べて向上していることが分かった。すなわち、ポリイミド化合物100重量部に対し、1重量部以上4重量部以下の範囲でレゾール樹脂を添加することによって、アルカリ水溶液による現像性を低下させることなく、耐めっき性を向上させることができる。   In any of the examples, it was possible to develop well with an alkaline aqueous solution. Also, even when electroless nickel plating and electroless nickel gold plating are performed, the end of the polyimide layer is not lifted or discolored, and the resistance to electroless nickel plating and electroless nickel gold plating is improved compared to the comparative example. I found out that That is, by adding the resol resin in the range of 1 part by weight or more and 4 parts by weight or less with respect to 100 parts by weight of the polyimide compound, the plating resistance can be improved without deteriorating the developability with the alkaline aqueous solution.

上記のように実施例1は、レゾール樹脂の微粒子がポリイミド組成物中に残るような状態であった。また、実施例3は、無電解ニッケルめっき後にポリイミド層を観察したところ、レゾール樹脂の微粒子が確認された。一方、実施例4は、液状であったため、ポリイミド組成物中に均一に分散させることができた。したがって、ポリイミド層に均一にレゾール樹脂を分散させることができた。このことから、実施例4のように、レゾール樹脂自身の粘度が13000mPa・s以上で、液状であることで、容易にレゾール樹脂をポリイミド層に分散させることができ、取り扱いが容易となる。   As described above, Example 1 was in a state where fine particles of the resole resin remained in the polyimide composition. In Example 3, when the polyimide layer was observed after electroless nickel plating, fine particles of resole resin were confirmed. On the other hand, since Example 4 was liquid, it could be uniformly dispersed in the polyimide composition. Therefore, the resole resin could be uniformly dispersed in the polyimide layer. Therefore, as in Example 4, the resole resin itself has a viscosity of 13000 mPa · s or more and is in a liquid state, so that the resole resin can be easily dispersed in the polyimide layer, and the handling becomes easy.

本発明のフレキシブル配線板の断面図である。It is sectional drawing of the flexible wiring board of this invention. 露光時の本発明のフレキシブル配線板を示す図である。It is a figure which shows the flexible wiring board of this invention at the time of exposure. アルカリ水溶液による現像後の本発明のフレキシブル配線板を示す図である。It is a figure which shows the flexible wiring board of this invention after image development by alkaline aqueous solution. めっき後の本発明のフレキシブル配線板を示す図である。It is a figure which shows the flexible wiring board of this invention after plating. 実施例4における無電解ニッケル金めっき後のポリイミド層の端部を示す写真である。It is a photograph which shows the edge part of the polyimide layer after the electroless nickel gold plating in Example 4. FIG. 実施例4における無電解ニッケル金めっき後のポリイミド層の端部の断面のSEM像である。It is a SEM image of the cross section of the edge part of the polyimide layer after the electroless nickel gold plating in Example 4. FIG. 図6の拡大SEM像である。It is an enlarged SEM image of FIG. 比較例における無電解ニッケル金めっき後のポリイミド層の端部を示す写真である。It is a photograph which shows the edge part of the polyimide layer after the electroless nickel gold plating in a comparative example.

符号の説明Explanation of symbols

1 フレキシブル配線板
2 銅箔
3 ポリイミド層
4 マスク層
5 めっき層
DESCRIPTION OF SYMBOLS 1 Flexible wiring board 2 Copper foil 3 Polyimide layer 4 Mask layer 5 Plating layer

Claims (8)

3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、及び、シロキサンジアミンの重合により合成されるポリイミド化合物と、
該ポリイミド化合物100重量部に対して1重量部以上4重量部以下のレゾール樹脂と、
感光剤とを含有することを特徴とするポリイミド組成物。
3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′-diamino-4,4′-dihydroxydiphenylsulfone, and a polyimide compound synthesized by polymerization of siloxane diamine,
1 to 4 parts by weight of a resole resin with respect to 100 parts by weight of the polyimide compound;
A polyimide composition comprising a photosensitizer.
上記レゾール樹脂は、該レゾール樹脂自身の粘度が13000mPa・s以上であることを特徴とする請求項1に記載のポリイミド組成物。   2. The polyimide composition according to claim 1, wherein the resol resin has a viscosity of 13000 mPa · s or more. 上記レゾール樹脂は、該レゾール樹脂自身が液状であることを特徴とする請求項1に記載のポリイミド組成物。   The polyimide composition according to claim 1, wherein the resol resin itself is in a liquid state. 上記シロキサンジアミンは、下記構造式1
(上記構造式1中のmは0又は1以上の整数であり、nは1以上の整数である)で示されるシロキサンジアミンであることを特徴とする請求項1に記載のポリイミド組成物。
The siloxane diamine has the following structural formula 1
2. The polyimide composition according to claim 1, wherein the polyimide composition is a siloxane diamine represented by (wherein m in the structural formula 1 is 0 or an integer of 1 or more and n is an integer of 1 or more).
上記構造式1中のmは1以上の整数であることを特徴とする請求項4に記載のポリイミド組成物。   The polyimide composition according to claim 4, wherein m in the structural formula 1 is an integer of 1 or more. 当該ポリイミド組成物には、オキサジン化合物が含有することを特徴とする請求項1に記載のポリイミド組成物。   The polyimide composition according to claim 1, wherein the polyimide composition contains an oxazine compound. 当該ポリイミド組成物には、複数のエポキシ基を有する架橋剤が含有することを特徴とする請求項1に記載のポリイミド組成物。   The polyimide composition according to claim 1, wherein the polyimide composition contains a crosslinking agent having a plurality of epoxy groups. 導体と、
上記導体上に、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’−ジアミノ−4,4’−ジヒドロキシジフェニルスルホン、及び、シロキサンジアミンの重合により合成されるポリイミド化合物と、該ポリイミド化合物100重量部に対して1重量部以上4重量部以下のレゾール樹脂と、感光剤とを含有するポリイミド組成物からなるポリイミド層とを有することを特徴とするフレキシブル配線板。
Conductors,
Synthesized by polymerization of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′-diamino-4,4′-dihydroxydiphenylsulfone, and siloxane diamine on the conductor. A flexible wiring board comprising: a polyimide compound; a polyimide layer comprising a polyimide composition containing 1 to 4 parts by weight of a resole resin with respect to 100 parts by weight of the polyimide compound; and a photosensitive agent. .
JP2007181531A 2007-04-13 2007-07-10 Polyimide composition and flexible wiring board Active JP5242958B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007181531A JP5242958B2 (en) 2007-04-13 2007-07-10 Polyimide composition and flexible wiring board
TW97109857A TWI392706B (en) 2007-04-13 2008-03-20 Polyalkylene Amides composition and a flexible circuit board
CN2008800076200A CN101657506B (en) 2007-04-13 2008-03-25 Polyimide composition and flexible wiring board
PCT/JP2008/055538 WO2008132914A1 (en) 2007-04-13 2008-03-25 Polyimide composition and flexible wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007106115 2007-04-13
JP2007106115 2007-04-13
JP2007181531A JP5242958B2 (en) 2007-04-13 2007-07-10 Polyimide composition and flexible wiring board

Publications (2)

Publication Number Publication Date
JP2008280497A true JP2008280497A (en) 2008-11-20
JP5242958B2 JP5242958B2 (en) 2013-07-24

Family

ID=40141582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181531A Active JP5242958B2 (en) 2007-04-13 2007-07-10 Polyimide composition and flexible wiring board

Country Status (3)

Country Link
JP (1) JP5242958B2 (en)
CN (1) CN101657506B (en)
TW (1) TWI392706B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038543A1 (en) * 2008-09-30 2010-04-08 ソニーケミカル&インフォメーションデバイス株式会社 Photosensitive siloxane polyimide resin composition
WO2010092824A1 (en) * 2009-02-13 2010-08-19 住友ベークライト株式会社 Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
JP2011006650A (en) * 2009-06-29 2011-01-13 Sony Chemical & Information Device Corp Novel thioether group-containing siloxane polyimide and wiring board
KR101786085B1 (en) 2011-04-05 2017-10-17 도레이첨단소재 주식회사 Adhesive composition for semiconductor appatus and adhesive film the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295792B (en) * 2015-08-26 2017-12-29 北京化工大学 A kind of cross-linking modified epoxy resin of high-performance polyimide and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093816A (en) * 2002-08-30 2004-03-25 Toray Ind Inc Positive photosensitive resin composition, method for manufacturing semiconductor device and semiconductor device
JP2005250161A (en) * 2004-03-04 2005-09-15 Kyocera Chemical Corp Negative photosensitive resin composition and cured object thereof
JP2005250160A (en) * 2004-03-04 2005-09-15 Kyocera Chemical Corp Positive photosensitive resin composition and cured object thereof
JP2006323128A (en) * 2005-05-19 2006-11-30 Sumitomo Electric Ind Ltd Positive photosensitive resin composition, and positive photosensitive adhesive, resin film and photosensitive cover lay using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190834B1 (en) * 1997-05-15 2001-02-20 Hitachi, Ltd. Photosensitive resin composition, and multilayer printed circuit board using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093816A (en) * 2002-08-30 2004-03-25 Toray Ind Inc Positive photosensitive resin composition, method for manufacturing semiconductor device and semiconductor device
JP2005250161A (en) * 2004-03-04 2005-09-15 Kyocera Chemical Corp Negative photosensitive resin composition and cured object thereof
JP2005250160A (en) * 2004-03-04 2005-09-15 Kyocera Chemical Corp Positive photosensitive resin composition and cured object thereof
JP2006323128A (en) * 2005-05-19 2006-11-30 Sumitomo Electric Ind Ltd Positive photosensitive resin composition, and positive photosensitive adhesive, resin film and photosensitive cover lay using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038543A1 (en) * 2008-09-30 2010-04-08 ソニーケミカル&インフォメーションデバイス株式会社 Photosensitive siloxane polyimide resin composition
JP2010083951A (en) * 2008-09-30 2010-04-15 Sony Chemical & Information Device Corp Photosensitive siloxane polyimide resin composition
WO2010092824A1 (en) * 2009-02-13 2010-08-19 住友ベークライト株式会社 Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
EP2397902A1 (en) * 2009-02-13 2011-12-21 Sumitomo Bakelite Co., Ltd. Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
CN102317861A (en) * 2009-02-13 2012-01-11 住友电木株式会社 Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
JPWO2010092824A1 (en) * 2009-02-13 2012-08-16 住友ベークライト株式会社 Positive photosensitive resin composition, and cured film, protective film, insulating film, semiconductor device and display device using the same
EP2397902A4 (en) * 2009-02-13 2014-01-15 Sumitomo Bakelite Co Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
JP2011006650A (en) * 2009-06-29 2011-01-13 Sony Chemical & Information Device Corp Novel thioether group-containing siloxane polyimide and wiring board
KR101786085B1 (en) 2011-04-05 2017-10-17 도레이첨단소재 주식회사 Adhesive composition for semiconductor appatus and adhesive film the same

Also Published As

Publication number Publication date
TW200848470A (en) 2008-12-16
JP5242958B2 (en) 2013-07-24
CN101657506B (en) 2012-07-04
CN101657506A (en) 2010-02-24
TWI392706B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5439765B2 (en) Novel polyimide resin and photosensitive polyimide resin composition
JP5343494B2 (en) Photosensitive siloxane polyimide resin composition
TWI386433B (en) Polyimide compounds and flexible wiring boards
JP5426851B2 (en) Polyimide composition, flexible wiring board, and method for producing flexible wiring board
US20090075198A1 (en) Photosensitive Polyimide Resin Composition
JP5362811B2 (en) Raw material liquid for protective film formation, protective film, wiring board with protective film
JP5242958B2 (en) Polyimide composition and flexible wiring board
JP5332456B2 (en) Printed wiring board and manufacturing method thereof
JP5053972B2 (en) Composition for thermosetting solder resist, film for forming solder resist, method for forming solder resist, and circuit board
JP5196148B2 (en) Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP6240471B2 (en) Reaction development image forming method
JP2008038031A (en) Polyimide composition, flexible wiring board and method of producing flexible wiring board
JP5354443B2 (en) Polyimide ink composition, protective film, and flexible printed wiring board
JP2009053646A (en) Photosensitive resin composition and photosensitive film using the same
JP5068629B2 (en) Photosensitive resin composition, photosensitive dry film, photosensitive laminated film, and coverlay using the same
JP5140758B2 (en) Wiring board
JP5505215B2 (en) Photosensitive polyimide resin composition, flexible printed wiring board and method for producing the same
WO2009125845A1 (en) Method for manufacturing flexible wiring board
JP4969941B2 (en) Polyimide composition, flexible wiring board and method for producing flexible wiring board
JP5319103B2 (en) Photosensitive resin composition and photosensitive film using the same
JP5179844B2 (en) Photosensitive resin composition and photosensitive film using the same
JP2010139930A (en) Positive photosensitive polyimide resin composition
JP2009269936A (en) Terminal-modified, alkali dissolvable polyimide and photosensitive resin composition containing the same
JP2013147598A (en) Uncuring adhesive resin, laminate, and method for manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250