JP2008278648A - Axial gap rotary electric machine and manufacturing method thereof - Google Patents

Axial gap rotary electric machine and manufacturing method thereof Download PDF

Info

Publication number
JP2008278648A
JP2008278648A JP2007119789A JP2007119789A JP2008278648A JP 2008278648 A JP2008278648 A JP 2008278648A JP 2007119789 A JP2007119789 A JP 2007119789A JP 2007119789 A JP2007119789 A JP 2007119789A JP 2008278648 A JP2008278648 A JP 2008278648A
Authority
JP
Japan
Prior art keywords
steel plate
axial gap
field element
gap type
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007119789A
Other languages
Japanese (ja)
Other versions
JP4561770B2 (en
Inventor
Yoshinari Asano
能成 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007119789A priority Critical patent/JP4561770B2/en
Publication of JP2008278648A publication Critical patent/JP2008278648A/en
Application granted granted Critical
Publication of JP4561770B2 publication Critical patent/JP4561770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To configure a field magnetic element for improving accuracy of an air gap using a laminated steel plate while preventing demagnetization of a permanent magnet and having high magnetic permeability and low iron loss. <P>SOLUTION: The axial gap rotary electric machine is provided with a field magnetic element 20, and two armatures provided with an air gap on both sides of the field magnetic element 20. The field magnetic element 20 is provided with a plurality of permanent magnets 22 disposed around a rotary shaft 18a, and a field magnetic element laminated steel plate portion 24 having a plurality of steel plates laminated in the diameter direction of a circle centered at the rotary shaft 18a. A plurality of magnet holding concave portions 27 each housing and holding each of the magnets 22 are formed in the field magnetic element laminating steel plate portion 24, and the permanent magnets 22 are each housed and held in each of the magnet holding concave portions 27 and face the armatures via a portion facing the armatures in the field magnetic element laminating plate portion 24. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、回転軸に略垂直な面に沿って広がるギャップを介して電機子と界磁子とが対向するアキシャルギャップ型回転電機に関する。   The present invention relates to an axial gap type rotating electric machine in which an armature and a field element face each other through a gap that extends along a plane substantially perpendicular to a rotating shaft.

アキシャルギャップ型回転電機は、回転軸方向で対向する界磁子と電機子とを備えており、薄型化し易く、また、磁極面積を大きくすることでトルク密度を向上できるという利点を有している。   An axial gap type rotating electric machine has a field element and an armature that are opposed to each other in the rotation axis direction, and has an advantage that the torque density can be improved by increasing the magnetic pole area. .

このようなアキシャルギャップ型回転電機では、回転軸方向に沿ってスラスト力が発生する。そこで、例えば、2つの界磁子を1つの電機子に対して互いに反対側に設けたり、2つの電機子を1つの界磁子に対して互いに反対側に設けることで、回転電機に生じるスラスト力を打消し合うことができる。これらの中でも、1つの回転子としての界磁子の回転軸方向両側に、2つの固定子としての電機子を設けるタイプが、風損を低減できるという観点からは好ましい。   In such an axial gap type rotating electrical machine, a thrust force is generated along the rotation axis direction. Therefore, for example, by providing two field elements on opposite sides with respect to one armature or providing two armatures on opposite sides with respect to one field element, thrust generated in the rotating electric machine is generated. Can cancel each other out. Among these, a type in which armatures as two stators are provided on both sides in the rotation axis direction of a field element as one rotor is preferable from the viewpoint of reducing windage loss.

上述したタイプのアキシャルギャップ型モータを開示する先行技術としては、例えば特許文献1及び2に記載のものがある。   For example, Patent Documents 1 and 2 disclose prior arts that disclose an axial gap type motor of the type described above.

特許文献1では、互いに極性が異なる2つの磁極面を有する磁石を複数有する界磁子が開示されており、その磁石の一方の磁極面は一方の電機子に直接対向し、他方の磁極面は他方の電機子に直接対向している。   Patent Document 1 discloses a field element having a plurality of magnets having two magnetic pole faces having different polarities, one magnetic pole face of the magnet directly facing one armature, and the other magnetic pole face being Directly opposite the other armature.

特許文献2では、磁石の両側に積層鋼板からなるコアを2つ配置し、当該2つのコアで磁石を挟込んで固定する構成が開示されている。また、磁石を圧粉鉄心で覆うようにして固定した構成も開示されている。   Patent Document 2 discloses a configuration in which two cores made of laminated steel plates are arranged on both sides of a magnet, and the magnet is sandwiched and fixed between the two cores. A configuration in which the magnet is fixed so as to be covered with a dust core is also disclosed.

特開2001−136721号公報JP 2001-136721 A 特開2005−094955号公報JP 2005-094955 A

しかしながら、特許文献1に開示のモータでは、電機子に対向する磁石の磁極面は、電機子に対して直接露出している。このため、当該磁石は減磁界の影響を受け易く、減磁してしまう恐れがあった。   However, in the motor disclosed in Patent Document 1, the magnetic pole surface of the magnet facing the armature is directly exposed to the armature. For this reason, the magnet is easily affected by a demagnetizing field and may be demagnetized.

また、特許文献2に開示された構成のうち、積層鋼板からなる2つのコアで磁石を挟込んで固定する構成では、両コアを如何に合体締結させるかが問題となるし、また、磁石の寸法精度や2つのコアの寸法精度及びそれらの組合わせ精度が要因で、エアギャップ精度が悪くなる恐れがあった。また、磁石を圧粉鉄心で覆うようにして固定した構成では、透磁率が低く特に低速での鉄損が大きい点と、強度不足及び遠心力による飛散等の課題があった。   In addition, among the configurations disclosed in Patent Document 2, in the configuration in which the magnet is sandwiched and fixed by two cores made of laminated steel plates, there is a problem of how to combine and fasten both cores. The air gap accuracy may be deteriorated due to the dimensional accuracy, the dimensional accuracy of the two cores, and the combination accuracy thereof. Moreover, in the configuration in which the magnet is fixed so as to be covered with the dust core, there are problems such as low magnetic permeability, large iron loss particularly at low speed, insufficient strength, and scattering due to centrifugal force.

そこで、本発明は、永久磁石の減磁を防止しつつ、積層鋼板を用いて、エアギャップ精度を良好にでき、さらに、特に中低速領域において(例えば、凡そ駆動周波数500Hz〜1kHz以下)、高透磁率かつ低鉄損の界磁子を構成することを目的とする。   Therefore, the present invention can improve the air gap accuracy by using laminated steel sheets while preventing demagnetization of the permanent magnet, and further, particularly in the medium to low speed range (for example, approximately 500 Hz to 1 kHz or less). An object is to construct a magnetic element having low magnetic loss and low iron loss.

上記課題を解決するため、第1の態様に係るアキシャルギャップ型回転電機は、界磁子(20,120,320,820,920,1020)と、前記前記界磁子の両側にエアギャップを隔てて設けられた2つの電機子(30、40)とを備え、前記界磁子が前記2つの電機子に対して相対的に回転軸(18a)周りに回転するアキシャルギャップ型回転電機であって、前記界磁子は、前記回転軸周りに配設され、それぞれ前記2つの電機子のうちの一方又は双方に対して磁極を呈する複数の永久磁石(22,122,322,822,922)と、前記回転軸を中心とする円の径方向に積層された複数の鋼板を有する界磁子積層鋼板部(24,124,324,824,924,1024)と、を備え、前記界磁子積層鋼板部に前記各永久磁石を収容保持可能な磁石保持凹部(27,127,327,927,1027)が複数形成され、前記各永久磁石が前記エアギャップに実質的に露出しないで前記界磁子積層鋼板部が前記エアギャップに露出する態様で、前記各永久磁石が前記各磁石保持凹部内に収容保持されて前記界磁子積層鋼板部のうちいずれかの前記各電機子への対向部分(26a,226a,326a)を介して前記2つの電機子のうちの一方又は双方に対して対向するものである。   In order to solve the above problem, an axial gap type rotating electrical machine according to a first aspect includes a field element (20, 120, 320, 820, 920, 1020) and an air gap on both sides of the field element. Two axial armatures (30, 40), and the field element rotates relative to the two armatures around a rotation axis (18a). The field element is disposed around the rotation axis, and a plurality of permanent magnets (22, 122, 322, 822, 922) each having a magnetic pole with respect to one or both of the two armatures; A field element laminated steel plate portion (24, 124, 324, 824, 924, 1024) having a plurality of steel sheets laminated in a radial direction of a circle centered on the rotation axis, and the field element lamination Each permanent on the steel plate A plurality of magnet holding recesses (27, 127, 327, 927, 1027) capable of accommodating and holding stones are formed, and the field element laminated steel plate portion is not exposed to the air gap without the permanent magnets being substantially exposed to the air gap. Each of the permanent magnets is accommodated and held in each of the magnet holding recesses so as to be exposed to the gap, and the field element laminated steel plate portion is opposed to any one of the armatures (26a, 226a, 326a). Is opposed to one or both of the two armatures.

第2の態様のように、第1の態様において、前記界磁子積層鋼板部(24,124,324,824)は、前記回転軸周りに分割された複数の界磁子分割積層鋼板部(26,126,226,326,426,526,626,826)を有するものであってもよい。   As in the second aspect, in the first aspect, the field element laminated steel sheet portions (24, 124, 324, 824) are divided into a plurality of field element divided laminated steel sheet parts (around the rotation axis) ( 26, 126, 226, 326, 426, 526, 626, 826).

第3の態様のように、第2の態様において、前記各界磁子分割積層鋼板部(26,126,226)のそれぞれに1つの永久磁石を挿入可能な前記磁石保持凹部(27,127)が形成されていてもよい。   As in the third aspect, in the second aspect, the magnet holding recesses (27, 127) into which one permanent magnet can be inserted into each of the field element split laminated steel plate parts (26, 126, 226). It may be formed.

第4の態様のように、第3の態様において、前記各界磁子分割積層鋼板部(126,226)は、略同一形状に打抜かれた鋼板を積層することで形成されてもよい。   As in the fourth aspect, in the third aspect, each field element split laminated steel plate portion (126, 226) may be formed by laminating steel plates punched in substantially the same shape.

第5の態様のように、第3又は第4の態様において、前記各界磁子分割積層鋼板部(26,126,226)の各間に、前記各永久磁石及び前記各界磁子分割積層鋼板部に対して実質的に磁気的に独立する磁性体部(28,128)が設けられていてもよい。   As in the fifth aspect, in the third or fourth aspect, the permanent magnets and the field-element-divided laminated steel plate portions are interposed between the field-element-divided laminated steel plate portions (26, 126, 226). In contrast, magnetic body portions (28, 128) that are substantially magnetically independent from each other may be provided.

第6の態様のように、第5の態様において、前記各磁性体部(28,128)のうち前記各界磁子分割積層鋼板部に対して対向する面と、前記各界磁子分割積層鋼板部(26,126,226)のうち前記各磁性体部に対して対向する面とは、略平行であってもよい。   As in the sixth aspect, in the fifth aspect, a surface of each of the magnetic body portions (28, 128) that faces the field-element-divided laminated steel plate portion and each field-element-divided laminated steel plate portion (26, 126, 226) may be substantially parallel to the surface facing each of the magnetic body portions.

第7の態様のように、第5又は第6の態様において、前記各磁性体部(128)は、圧粉鉄心で形成されていてもよい。   As in the seventh aspect, in the fifth or sixth aspect, each of the magnetic parts (128) may be formed of a dust core.

第8の態様のように、第5又は第6の態様において、前記各第2磁性体部(28)は、前記回転軸と略直交する方向に鋼板が積層された積層鋼板で形成されていてもよい。   As in the eighth aspect, in the fifth or sixth aspect, each of the second magnetic body portions (28) is formed of a laminated steel plate in which steel plates are laminated in a direction substantially orthogonal to the rotation axis. Also good.

第9の態様のように、第2の態様において、前記各界磁子分割積層鋼板部(326,426,526,626,826)のそれぞれに、前記各永久磁石のうち前記回転軸を中心とする円の周方向における略半分部分を収容保持可能な磁石部分保持凹部(327a,427a)が形成され、隣設する2つの前記各界磁子分割積層鋼板部に設けられた2つの前記磁石部分保持凹部が前記磁石保持凹部(327)として前記永久磁石を保持するものであってもよい。   As in the ninth aspect, in the second aspect, each of the field element split laminated steel plate portions (326, 426, 526, 626, 826) is centered on the rotation axis of the permanent magnets. Magnet part holding recesses (327a, 427a) capable of accommodating and holding a substantially half part in the circumferential direction of the circle are formed, and the two magnet part holding recesses provided in the two adjacent field element split laminated steel plate parts However, the permanent magnet may be held as the magnet holding recess (327).

第10の態様のように、第9の態様において、前記各永久磁石(322)は前記周方向における略中央部で前記回転軸を中心とする円の径方向長さが最大になる形状に形成されていてもよい。   As in the tenth aspect, in the ninth aspect, each of the permanent magnets (322) is formed in a shape that maximizes the radial length of the circle centered on the rotation axis at the substantially central portion in the circumferential direction. May be.

第11の態様のように、第9又は第10の態様において、前記各磁石部分保持凹部(427a)は、前記界磁子の内周側及び外周側の少なくとも一方で狭くなっていてもよい。   As in the eleventh aspect, in each of the ninth and tenth aspects, each of the magnet partial holding recesses (427a) may be narrowed at least one of the inner peripheral side and the outer peripheral side of the field element.

第12の態様のように、第2〜第11のいずれかの態様において、前記各界磁子分割積層鋼板部(824)を構成する各鋼板は、弧状に曲げられていてもよい。   As in the twelfth aspect, in any one of the second to eleventh aspects, each steel plate constituting each field element split laminated steel plate portion (824) may be bent in an arc shape.

第13の態様のように、第2〜第12のいずれかの態様において、前記各界磁子分割積層鋼板部は、非磁性体ホルダ(50,150,350、352)で保持されていてもよい。   As in the thirteenth aspect, in any one of the second to twelfth aspects, each field element split laminated steel plate portion may be held by a non-magnetic material holder (50, 150, 350, 352). .

第14の態様のように、第2〜第12のいずれかの態様において、前記各界磁子分割積層鋼板部と一体的に金型成形された非磁性体ホルダ(150)を備えていてもよい。   As in the fourteenth aspect, in any one of the second to twelfth aspects, the non-magnetic material holder (150) integrally molded with each of the field element split laminated steel plate portions may be provided. .

第15の態様のように、第1の態様において、前記界磁子積層鋼板部(924)は、帯状の鋼板(960)を巻回することで形成されていてもよい。   As in the fifteenth aspect, in the first aspect, the field element laminated steel sheet portion (924) may be formed by winding a belt-shaped steel sheet (960).

第16の態様のように、第9〜第11、第15のいずれかの態様において、前記各永久磁石(322,822,922)間に磁気障壁部(326c,626c,926c)が設けられていてもよい。   As in the sixteenth aspect, in any of the ninth to eleventh and fifteenth aspects, magnetic barrier portions (326c, 626c, 926c) are provided between the permanent magnets (322, 822, 922). May be.

第17の態様のように、第16の態様において、前記各永久磁石(322,822,922)の各間に2つの磁気障壁部(326c,626c,926c)が設けられ、その2つの磁気障壁部間に磁性体部(328,628,1028)が設けられていてもよい。   As in the seventeenth aspect, in the sixteenth aspect, two magnetic barrier portions (326c, 626c, 926c) are provided between the permanent magnets (322, 822, 922), and the two magnetic barriers are provided. Magnetic parts (328, 628, 1028) may be provided between the parts.

第18の態様のように、第17記の態様において、前記各磁性体部(628)は、前記回転軸方向における両端部で前記回転軸を中心とする円の周方向に幅広(628a)に形成されていてもよい。   As in the eighteenth aspect, in the seventeenth aspect, each magnetic body portion (628) is wide (628a) in the circumferential direction of a circle centering on the rotation axis at both ends in the rotation axis direction. It may be formed.

第19の態様のように、第17又は第18の態様において、前記各磁性体部のうちの少なくとも1つに、積層された鋼板同士を締結する締結部(329)が設けられていてもよい。   As in the nineteenth aspect, in the seventeenth or eighteenth aspect, a fastening portion (329) for fastening the stacked steel plates may be provided in at least one of the magnetic body portions. .

第20の態様のように、第17〜第19のいずれかの態様において、前記各磁気障壁部(326c,626c,926c)は各層で略同一形状であり、前記各磁石保持凹部(327,927)の幅と前記各磁性体部(328,628)の幅のうち一方が各層で略同一で、他方が各層で異なっていてもよい。   As in the twentieth aspect, in any of the seventeenth to nineteenth aspects, the magnetic barrier portions (326c, 626c, 926c) have substantially the same shape in each layer, and the magnet holding recesses (327, 927). ) And the width of each magnetic body portion (328, 628), one of the layers may be substantially the same, and the other may be different in each layer.

第21の態様のように、第1〜第20のいずれかの態様において、前記界磁子積層鋼板部を構成する鋼板に、前記各磁石保持凹部内に向けて突出し、前記各磁石保持凹部内に収容保持された前記永久磁石に係止する係止爪(327b)が形成されていてもよい。   As in the twenty-first aspect, in any one of the first to twentieth aspects, the steel plate constituting the field element laminated steel plate portion protrudes toward the inside of each magnet holding recess, and in each of the magnet holding recesses An engaging claw (327b) that engages with the permanent magnet housed and held in the housing may be formed.

第22の態様のように、第1〜第21のいずれかの態様において、前記界磁子積層鋼板部の内周側及び外周側の少なくとも一方に、前記各磁石保持凹部の開口で前記各永久磁石の移動を規制する鋼板(526d)が積層されていてもよい。   As in the twenty-second aspect, in any one of the first to twenty-first aspects, the permanent magnets are provided on the inner peripheral side and / or the outer peripheral side of the field element laminated steel plate portion through the openings of the magnet holding recesses. A steel plate (526d) that restricts the movement of the magnet may be laminated.

第23の態様のように、第1〜第22のいずれかの態様において、前記界磁子積層鋼板部の内周側及び外周側の少なくとも一方に、前記各磁石保持凹部の開口で前記各永久磁石の移動を規制する非磁性体リング部材(52、54,350,352)が設けられていてもよい。   As in the twenty-third aspect, in any one of the first to twenty-second aspects, the permanent magnets are provided at the inner peripheral side and / or the outer peripheral side of the field element laminated steel plate portion with openings of the magnet holding recesses. Non-magnetic ring members (52, 54, 350, 352) that restrict the movement of the magnet may be provided.

第24の態様のように、第1〜第23のいずれかの態様において、前記各永久磁石(22,122,322,822,922)は、前記回転軸方向において1層に設けられていてもよい。   As in the twenty-fourth aspect, in any of the first to twenty-third aspects, the permanent magnets (22, 122, 322, 822, 922) may be provided in one layer in the rotation axis direction. Good.

第25の態様のように、第1〜第23のいずれかの態様において、前記各永久磁石(1122)は、前記回転軸方向において2層に設けられていてもよい。   As in the twenty-fifth aspect, in any of the first to twenty-third aspects, the permanent magnets (1122) may be provided in two layers in the rotation axis direction.

第26の態様のように、第25の態様において、前記各永久磁石(1122)の層間には磁気障壁が設けられていなくてもよい。   As in the twenty-sixth aspect, in the twenty-fifth aspect, a magnetic barrier may not be provided between the layers of the permanent magnets (1122).

第27の態様は、第1〜第26のいずれかの態様において、鋼板を打抜いてから積層することで、前記界磁子積層鋼板部(924,1024)又は前記各界磁子分割積層鋼板部(26,126,226,326,426,526,626,826)を製造する。   According to a twenty-seventh aspect, in any one of the first to twenty-sixth aspects, the field element laminated steel sheet portion (924, 1024) or each of the field element split laminated steel sheet portions is obtained by punching and laminating steel sheets. (26, 126, 226, 326, 426, 526, 626, 826) is manufactured.

第1の態様に係るアキシャルギャップ型回転電機によると、前記各永久磁石が前記エアギャップに実質的に露出しないで前記界磁子積層鋼板部が前記エアギャップに露出する態様で、前記各永久磁石が前記各磁石保持凹部内に収容保持されて前記界磁子積層鋼板部のうちいずれかの前記各電機子への対向部分を介して前記2つの電機子のうちの一方又は双方に対して対向するので、当該永久磁石の減磁を防止できる。また、前記界磁子積層鋼板部に前記各永久磁石を収容保持可能な磁石保持凹部が複数形成され、前記各永久磁石が前記各磁石保持凹部内に収容保持され、前記界磁子積層鋼板部のうちいずれかの前記各電機子への対向部分を介して前記2つの電機子のうちの一方又は双方に対して対向するので、エアギャップ精度を良好にできる。さらに、積層鋼板を用いて、高透磁率かつ低鉄損の界磁子を構成できる。   According to the axial gap type rotating electrical machine according to the first aspect, the permanent magnets are exposed in the air gap without exposing the permanent magnets in the air gap. Is housed and held in each magnet holding recess and faces one or both of the two armatures through a portion facing the armature of any of the field element laminated steel plate portions. Therefore, demagnetization of the permanent magnet can be prevented. In addition, a plurality of magnet holding recesses capable of accommodating and holding the permanent magnets are formed in the field element laminated steel plate portion, and the permanent magnets are accommodated and held in the magnet holding recesses. The air gap accuracy can be improved because it faces one or both of the two armatures through a portion facing each of the armatures. Furthermore, it is possible to configure a field element having a high magnetic permeability and a low iron loss using a laminated steel sheet.

第2の態様によると、前記界磁子積層鋼板部を複数の界磁子分割積層鋼板部に分割しているので、これを比較的容易に製造できる。   According to the 2nd aspect, since the said field element laminated steel plate part is divided | segmented into the several field element division | segmentation laminated steel plate part, this can be manufactured comparatively easily.

第3の態様によると、永久磁石間での磁束漏洩防止対策が容易である。   According to the 3rd aspect, the countermeasure against magnetic flux leakage prevention between permanent magnets is easy.

第4の態様によると、略同一形状に打抜かれた鋼板を積層すればよいので、各界磁子分割積層鋼板部の製造が容易である。   According to the 4th aspect, since the steel plate punched in the substantially identical shape should just be laminated | stacked, manufacture of each field element division | segmentation laminated steel plate part is easy.

第5の態様によると、前記各界磁子分割積層鋼板部の間に存在する磁性体部によって、マグネットトルクに併せてリラクタンストルクをも有効利用することができる。   According to the fifth aspect, the reluctance torque can be effectively utilized together with the magnet torque by the magnetic body portion existing between the field element split laminated steel plate portions.

第6の態様によると、各界磁子分割積層鋼板部と磁性体部とを磁気的に分離しつつ、それらを面積効率よく配設することができる。   According to the 6th aspect, each field element division | segmentation laminated | stacked steel plate part and a magnetic-body part can be arrange | positioned efficiently in an area, separating magnetically.

第7の態様によると、磁性体部の形状自由度に優れる。   According to the 7th aspect, it is excellent in the shape freedom degree of a magnetic body part.

第8の態様によると、透磁率が高く、比較的低速で回転する動作状態でも鉄損を小さくできる。   According to the eighth aspect, the magnetic loss is high, and the iron loss can be reduced even in an operating state that rotates at a relatively low speed.

第9の態様によると、複数の界磁子分割積層鋼板部同士を永久磁石で連結するようにして組合わせることができる。   According to the 9th aspect, it can combine combining a some field element division | segmentation laminated steel plate part so that it may connect with a permanent magnet.

第10の態様によると、各永久磁石を、前記周方向における略中央部で前記回転軸を中心とする円の径方向長さが最大になる形状に形成することができ、界磁子により呈される磁束密度分布を回転軸周りで正弦波に近づけることができる。また、界磁子積層鋼板部のうち各永久磁石の前記周方向略中央部で前記径方向長さを最大にできるので、上記のような形状の永久磁石を、界磁子積層鋼板部の部分を介して界磁子に対向させることができる。   According to the tenth aspect, each permanent magnet can be formed in a shape that maximizes the radial length of the circle centered on the rotation axis at the substantially central portion in the circumferential direction, and is represented by a field element. The magnetic flux density distribution can be approximated to a sine wave around the rotation axis. Moreover, since the said radial direction length can be maximized in the said circumferential direction substantially central part of each permanent magnet among field element laminated steel plate parts, the above-mentioned permanent magnet is made into the part of a field element laminated steel plate part. It can be made to oppose a field element via.

第11の態様によると、永久磁石の移動、脱落を有効に防止できる。   According to the eleventh aspect, the movement and dropout of the permanent magnet can be effectively prevented.

第12の態様によると、界磁子を円形状に近づけることができ、界磁子が回転する際の風損を低減できる。   According to the twelfth aspect, the field element can be brought into a circular shape, and the windage loss when the field element rotates can be reduced.

第13の態様によると、各界磁子分割積層鋼板部を一定形態で保持することができる。   According to the 13th aspect, each field element division | segmentation laminated steel plate part can be hold | maintained with a fixed form.

第14の態様によると、各界磁子分割積層鋼板部を一定形態で保持することができる。   According to the 14th aspect, each field element division | segmentation laminated steel plate part can be hold | maintained with a fixed form.

第15の態様によると、帯状の鋼板を巻回することで、界磁子積層鋼板部を容易に製造できるとともに、鋼板の分割による微小な空隙をなくすことができる。   According to the fifteenth aspect, by winding the belt-shaped steel plate, the field element laminated steel plate portion can be easily manufactured, and minute voids due to the division of the steel plate can be eliminated.

第16の態様によると、各永久磁石同士を磁気的に分離し、磁束の漏洩を低減することができる。   According to the sixteenth aspect, the permanent magnets can be magnetically separated to reduce magnetic flux leakage.

第17の態様によると、磁気障壁部間の磁性体部によって、マグネットトルクに併せてリラクタンストルクをも有効利用することができる。   According to the seventeenth aspect, the reluctance torque can be effectively utilized in addition to the magnet torque by the magnetic body portion between the magnetic barrier portions.

第18の態様によると、電機子に対する磁性体部の対向面積を大きくして、リラクタンストルクを増大させることができる。   According to the eighteenth aspect, it is possible to increase the reluctance torque by increasing the facing area of the magnetic part to the armature.

第19の態様によると、積層された鋼板同士を積層状態に容易に保持することができ、凹部と磁石間の隙間を小さくできる。   According to the nineteenth aspect, the stacked steel plates can be easily held in a stacked state, and the gap between the recess and the magnet can be reduced.

第20の態様によると、各磁気障壁部(326c,626c,926c)の幅と各磁性体部(328,628)の幅とが各層で略同一であるか、又は、前記各磁気障壁部(326c,626c,926c)の幅と各磁石保持凹部(327,927)の幅とが各層で略同一であるため、これらを比較的少ない種類の金型で打抜き形成することができる。   According to the twentieth aspect, the width of each magnetic barrier portion (326c, 626c, 926c) and the width of each magnetic body portion (328, 628) are substantially the same in each layer, or each magnetic barrier portion ( 326c, 626c, 926c) and the width of each magnet holding recess (327, 927) are substantially the same in each layer, so that they can be stamped and formed with relatively few types of molds.

第21の態様によると、係止爪によって永久磁石の移動、脱落を防止できる。   According to the twenty-first aspect, the permanent magnets can be prevented from moving and dropping off by the locking claws.

第22の態様によると、前記各磁石保持凹部の開口で前記各永久磁石の移動を規制する鋼板によって、永久磁石の移動、脱落を防止できる。   According to the twenty-second aspect, the permanent magnets can be prevented from moving and falling off by the steel plate that restricts the movement of the permanent magnets at the openings of the magnet holding recesses.

第23の態様によると、非磁性体リング部材によって、永久磁石の移動、脱落を防止できる。   According to the twenty-third aspect, the non-magnetic ring member can prevent the permanent magnet from moving and falling off.

第24の態様によると、比較的少ない数の永久磁石によって、両電機子に磁極を呈して回転運動を生じさせることができる。   According to the twenty-fourth aspect, with a relatively small number of permanent magnets, both armatures can be provided with magnetic poles to cause rotational movement.

第25の態様によると、両電機子に対して異なる磁極配置にして、回転むらを増やす等の設計が可能となり、回転運動を生じさせることができる。   According to the twenty-fifth aspect, it is possible to design different arrangements of magnetic poles for both armatures to increase the rotation unevenness, and to generate a rotational motion.

第26の態様によると、前記各永久磁石の層間には磁気障壁が設けられていないので、構成の簡易化、小型化を図ることができる。   According to the twenty-sixth aspect, since no magnetic barrier is provided between the permanent magnets, the configuration can be simplified and the size can be reduced.

第27の態様によると、積層前に鋼板を打抜くので、当該打抜きを容易に行える。   According to the twenty-seventh aspect, since the steel plate is punched before lamination, the punching can be easily performed.

{第1実施形態}
以下、第1実施形態に係るアキシャルギャップ型回転電機について説明する。図1は本実施形態に係るアキシャルギャップ型回転電機を示す分解斜視図であり、図2は同アキシャルギャップ型回転電機の界磁子を示す分解斜視図であり、図3は図2の部分拡大図である。なお、図1において理解を容易にするため界磁子については視野方向が異なりかつ部分的に切り欠いたものを示している。
{First embodiment}
Hereinafter, the axial gap type rotating electrical machine according to the first embodiment will be described. 1 is an exploded perspective view showing an axial gap type rotating electric machine according to the present embodiment, FIG. 2 is an exploded perspective view showing a field element of the axial gap type rotating electric machine, and FIG. 3 is a partially enlarged view of FIG. FIG. In FIG. 1, for easy understanding, the field element has a different viewing direction and is partially cut away.

このアキシャルギャップ型回転電機10は、界磁子20と、回転軸18a方向において界磁子20の両側にエアギャップを隔てて設けられた2つの電機子30,40とを備えている。界磁子20は略円盤状に形成されており、2つの電機子30,40も略円盤状に形成されている。そして、両電機子30,40による回転磁界によって、界磁子20が電機子30,40に対して相対的に回転するようになっている。   The axial gap type rotating electrical machine 10 includes a field element 20 and two armatures 30 and 40 provided on both sides of the field element 20 in the direction of the rotation shaft 18a with an air gap therebetween. The field element 20 is formed in a substantially disk shape, and the two armatures 30 and 40 are also formed in a substantially disk shape. The field element 20 is rotated relative to the armatures 30 and 40 by the rotating magnetic field generated by both armatures 30 and 40.

各部についてより詳細に説明する。   Each part will be described in more detail.

電機子30、40は、回転軸18aの方向において、界磁子20の両側に、当該界磁子20に対してギャップ(ここでは僅かなギャップ)を隔てて対向するように配設されている。これらの電機子30、40は、図示省略のケーシング等に固定されており、本回転電機10において、固定子として機能する。   The armatures 30 and 40 are disposed on both sides of the field element 20 in the direction of the rotation axis 18a so as to face the field element 20 with a gap (here, a slight gap) therebetween. . These armatures 30 and 40 are fixed to a casing (not shown) or the like, and function as a stator in the rotary electric machine 10.

電機子30は、バックヨークコア32と、複数(ここでは12個)のティース34と、各ティース34に巻回された巻線36とを備えている。   The armature 30 includes a back yoke core 32, a plurality of (here, twelve) teeth 34, and a winding 36 wound around each tooth 34.

バックヨークコア32は、略円盤状であり、図示省略のケーシング等に固定されている。複数のティース34は、バックヨークコア32のうち界磁子20側の面に、回転軸18aを中心として略環状に間隔をあけて配設されており、その各先端部にはつば部が設けられている。つば部は、界磁子20の磁束をより多く鎖交できるように、エアギャップにおける磁気抵抗を小さくする役割を有している。これらのバックヨークコア32、ティース34及びその先端部のつば部は、いずれも軟磁性体により形成されており、例えば、圧粉磁心(圧粉鉄心)で形成される。これらは一体として形成してもよく、いずれかを分割して形成後合体して形成してもよい。また、部分的に鋼板で形成してもよい。各ティース34のそれぞれに1つの巻線36が装着されている。つまり、この電機子30は、いわゆる12スロットの集中巻の形態で巻線36が設けられている。また、ここでは、U相、V相、W相の3相の巻線36が、回転軸18a周りにその順で、4組設けられており、界磁子20の8つの磁極に対して回転磁界を発生させて、当該界磁子20を回転させるようになっている。各相の巻線は4個全て直列、または、全て並列、または、直列と並列の組み合わせの、いずれでもよく、U相、V相、W相は、互いに中性点を共有するスター結線で接続される。   The back yoke core 32 has a substantially disk shape and is fixed to a casing or the like (not shown). The plurality of teeth 34 are disposed on the surface of the back yoke core 32 on the field element 20 side at a substantially annular interval with the rotation shaft 18a as a center. It has been. The collar portion serves to reduce the magnetic resistance in the air gap so that more magnetic flux of the field element 20 can be linked. The back yoke core 32, the teeth 34, and the collar portion of the tip thereof are all formed of a soft magnetic material, and are formed of, for example, a dust core (a dust core). These may be formed as a single body, or may be formed by combining any of them after being formed. Moreover, you may form partially with a steel plate. One winding 36 is attached to each of the teeth 34. That is, the armature 30 is provided with the winding 36 in a so-called 12-slot concentrated winding form. Also, here, four sets of three-phase windings 36 of U phase, V phase, and W phase are provided around the rotating shaft 18a in that order, and are rotated with respect to the eight magnetic poles of the field element 20. A magnetic field is generated to rotate the field element 20. All four windings in each phase may be in series, all in parallel, or a combination of series and parallel. U phase, V phase, and W phase are connected with a star connection sharing a neutral point. Is done.

電機子40も、上記電機子30と同様構成で、バックヨークコア42と、複数のティース44と、各ティース44に巻回された巻線46とを備えている。   The armature 40 has the same configuration as the armature 30 and includes a back yoke core 42, a plurality of teeth 44, and a winding 46 wound around each tooth 44.

また、界磁子20から見ると、両電機子30,40における巻線36,46の巻回方向は反対方向である。換言すれば、回転軸18aの一方側から見れば、両電機子30,40の巻線36,46の巻回方向は同一である。ここで、巻線36,46の巻回方向が同一か又は反対とは、実際に線をどの方向に巻いているかということではなく、結線して電源を供給したとき、電源側から中性点に向けて電流が流れる方向が同一であるか反対であるかを意味している。換言すれば、電源側の端子から開始してティース34,44周りを回って中性点側の端子に至る方向をいう。これにより、両側の電機子30,40において例えばU相の巻線36,46に電流が流れたとき、一方(上方)の電機子30には下向きに磁束が流れ、他方(下方)の電機子40には同様に下向きに磁束が流れる。両界磁子20のU相のティース34,44は対向関係にあるので、界磁子20を介して連続する磁気回路が構成される。そして、各巻線36,46に3相交流を流すことで、両電機子30,40間に、界磁子20を介して共通する回転磁界が生じるようになっている。   Further, when viewed from the field element 20, the winding directions of the windings 36 and 46 in both armatures 30 and 40 are opposite directions. In other words, when viewed from one side of the rotating shaft 18a, the winding directions of the windings 36 and 46 of both armatures 30 and 40 are the same. Here, the winding direction of the windings 36 and 46 is the same or opposite is not the direction in which the wire is actually wound, but the neutral point from the power source side when connecting and supplying power. This means whether the direction of current flow is the same or opposite. In other words, the direction starts from the terminal on the power supply side and goes around the teeth 34 and 44 to reach the terminal on the neutral point side. Thus, when a current flows through, for example, the U-phase windings 36 and 46 in the armatures 30 and 40 on both sides, a magnetic flux flows downward in one (upper) armature 30 and the other (lower) armature. Similarly, a magnetic flux flows downward in 40. Since the U-phase teeth 34 and 44 of both the field elements 20 are opposed to each other, a continuous magnetic circuit is configured via the field element 20. A common rotating magnetic field is generated between the armatures 30 and 40 via the field element 20 by passing a three-phase alternating current through the windings 36 and 46.

なお、上記電機子30、40の構成は一例であり、上記に限定されるものではない。例えば、巻線36,46が分布巻又は波巻されていてもよい。   In addition, the structure of the said armatures 30 and 40 is an example, and is not limited above. For example, the windings 36 and 46 may be distributed winding or wave winding.

界磁子20は、軸受によって回転自在に支持されたシャフト(共に図示省略)を介して所定の回転軸18a周りに回転自在に配設されており、回転軸18a方向で上記両電機子30、40とギャップを隔てて対向している。つまり、この界磁子20は、本回転電機10において回転子として機能する。   The field element 20 is rotatably disposed around a predetermined rotation shaft 18a via a shaft (both not shown) that is rotatably supported by bearings, and both armatures 30 in the direction of the rotation shaft 18a. It faces 40 with a gap. That is, the field element 20 functions as a rotor in the rotary electric machine 10.

この界磁子20は、複数の永久磁石22と、複数の界磁子分割積層鋼板部26を有する界磁子積層鋼板部24と、複数の介在磁性体部28とを有している。   The field element 20 includes a plurality of permanent magnets 22, a field element laminated steel plate portion 24 having a plurality of field element split laminated steel plate portions 26, and a plurality of intervening magnetic body portions 28.

各永久磁石22は、回転軸18a周りに間隔をあけて配設されている。より具体的には、各永久磁石22は、略台形板状に形成されており、その2つの平行辺部分のうち短辺部分を内周側に向けると共に長辺部分を外周側に向けた姿勢で、それぞれの間に間隔をあけて回転軸18aを中心とする略環状に配設されている。また、各永久磁石22は、回転軸18aに沿った方向、即ち、永久磁石22の厚み方向に沿って磁化されており、その両面にN極又はS極の磁極を呈する。これらの永久磁石22は、回転軸18aの周りで環状かつ交互の磁極を呈するように配設されており、両電機子30、40に対してそれぞれ回転軸18a周りに交互の磁極を呈する。ここでは、永久磁石22の数は8つであり、本界磁子20は、8極の磁極を呈している。   Each permanent magnet 22 is arranged around the rotation shaft 18a with a space therebetween. More specifically, each permanent magnet 22 is formed in a substantially trapezoidal plate shape, and a posture in which the short side portion is directed to the inner peripheral side and the long side portion is directed to the outer peripheral side among the two parallel side portions. Thus, they are arranged in a substantially annular shape with the rotation shaft 18a as the center with an interval between them. Each permanent magnet 22 is magnetized along the direction along the rotation axis 18a, that is, along the thickness direction of the permanent magnet 22, and exhibits N-pole or S-pole on both surfaces. These permanent magnets 22 are arranged so as to exhibit annular and alternating magnetic poles around the rotating shaft 18a, and exhibit alternating magnetic poles around the rotating shaft 18a with respect to both armatures 30 and 40, respectively. Here, the number of permanent magnets 22 is eight, and the field element 20 has eight magnetic poles.

なお、ここでは、各永久磁石22は、回転軸18a方向において1層に設けられており、両方の電機子30,40に対して磁極を呈しているため、比較的少ない数の永久磁石22によって両電機子30,40に対して磁極を呈することができる。もっとも、各永久磁石22は、必ずしも両方の電機子30,40に対して磁極を呈する必要はなく、電機子30に対して磁極を呈する永久磁石22群と、電機子40に対して磁極を呈する永久磁石22群とが2層に設けられていてもよい。かかる構成の一形態については後にも説明する。   Here, each permanent magnet 22 is provided in one layer in the direction of the rotating shaft 18a and has a magnetic pole with respect to both armatures 30 and 40. Therefore, a relatively small number of permanent magnets 22 are used. Magnetic poles can be provided for both armatures 30 and 40. Of course, each permanent magnet 22 does not necessarily have to exhibit a magnetic pole with respect to both armatures 30 and 40, but a group of permanent magnets 22 that exhibit a magnetic pole with respect to the armature 30 and a magnetic pole with respect to the armature 40. The permanent magnet 22 group may be provided in two layers. One form of such a configuration will be described later.

界磁子積層鋼板部24は、回転軸18aを中心とする円の径方向に積層された複数の鋼板を有している。ここでは、界磁子積層鋼板部24は、回転軸18a周りに分割された複数の界磁子分割積層鋼板部26を有している。各界磁子分割積層鋼板部26は、幅寸法が略同一でかつ長さ寸法が順次大きくなる帯状の鋼板を、所定方向に沿って順次積層していくことで、略台形平板状に形成されている。なお、この界磁子分割積層鋼板部26は、上記永久磁石22よりも大きく(ここでは一回り大きく)なっている。このような各界磁子積層鋼板部24が、2つの平行辺部分のうち短辺部分を内周側に向けると共に長辺部分を外周側に向けた姿勢で、回転軸18aを中心にして各間に隙間をあけつつ略環状に配設されることで、界磁子積層鋼板部24が構成されている。なお、各界磁子分割積層鋼板部26間には、界磁子20の径方向に沿って延びかつそれと略直交する方向においては等幅な隙間が設けられる。この状態では、各界磁子分割積層鋼板部26においては、鋼板は界磁子20の径方向に沿って積層された態様となっている。   The field element laminated steel plate portion 24 has a plurality of steel plates laminated in the radial direction of a circle centered on the rotating shaft 18a. Here, the field element laminated steel plate portion 24 has a plurality of field element divided laminated steel plate portions 26 divided around the rotating shaft 18a. Each field element split laminated steel plate portion 26 is formed in a substantially trapezoidal flat plate shape by sequentially laminating strip-shaped steel plates having substantially the same width dimension and sequentially increasing length dimensions along a predetermined direction. Yes. In addition, this field element division | segmentation laminated steel plate part 26 is larger than the said permanent magnet 22 (here one size larger). Each of these field element laminated steel plate portions 24 has a posture in which the short side portion of the two parallel side portions is directed to the inner peripheral side and the long side portion is directed to the outer peripheral side. The field element laminated steel plate portion 24 is configured by being arranged in a substantially annular shape with a gap in between. In addition, between each field element division | segmentation laminated steel plate part 26, the space | interval with equal width is provided in the direction extended along the radial direction of the field element 20 and substantially orthogonal to it. In this state, in each field element division | segmentation laminated steel plate part 26, it has become the aspect on which the steel plate was laminated | stacked along the radial direction of the field element 20. FIG.

各界磁子分割積層鋼板部26には、それぞれ1つの永久磁石22を挿入可能な磁石保持凹部27が形成されている。つまり、各界磁子分割積層鋼板部26を構成する鋼板には、永久磁石22を挿入可能な孔部が形成されており、この孔部の幅(界磁子20の周方向における幅)は、内周側から外周側に向かうに従って徐々に大きくなっている。これにより、各界磁子分割積層鋼板部26には、永久磁石22を挿入可能な略台形板状に広がる磁石保持凹部27が形成されている。そして、各界磁子分割積層鋼板部26の磁石保持凹部27内に永久磁石22を挿入することで、上記各永久磁石22が上記配設形態で保持される。   Each field element split laminated steel plate portion 26 is formed with a magnet holding recess 27 into which one permanent magnet 22 can be inserted. That is, the steel plate constituting each field element split laminated steel plate portion 26 has a hole portion into which the permanent magnet 22 can be inserted, and the width of this hole portion (the width in the circumferential direction of the field element 20) is: It gradually increases from the inner circumference side toward the outer circumference side. Thereby, each field element division | segmentation laminated steel plate part 26 is formed with the magnet holding | maintenance recessed part 27 extended in the substantially trapezoid plate shape in which the permanent magnet 22 can be inserted. And each permanent magnet 22 is hold | maintained with the said arrangement | positioning form by inserting the permanent magnet 22 in the magnet holding | maintenance recessed part 27 of each field element division | segmentation laminated steel plate part 26. FIG.

このような界磁子分割積層鋼板部26は、例えば、予め鋼板を長さ寸法及び孔幅が異なる各種形状に打抜いてからそれらを積層することで製造することができる。鋼板の打抜き自体は、公知方法を含む各種方法にて行うことができる。このように、積層前に打抜くことで、当該鋼板の打抜きを容易に行える。   Such a field element division | segmentation lamination | stacking steel plate part 26 can be manufactured by, for example, punching a steel plate beforehand in various shapes from which a length dimension and a hole width differ, and laminating them. The punching of the steel sheet itself can be performed by various methods including a known method. Thus, by punching before lamination, the steel sheet can be easily punched.

また、上記のように界磁子分割積層鋼板部26の磁石保持凹部27内に永久磁石22が収容保持された状態で、永久磁石22のうち電機子30,40との対向部分は、界磁子分割積層鋼板部26のうち電機子30,40との対向部分26aによって覆われている。また、永久磁石22のうち周方向における側方部分は界磁子分割積層鋼板部26のうちその周方向における側方部分26bによって覆われている。   In addition, in the state where the permanent magnet 22 is housed and held in the magnet holding recess 27 of the field element split laminated steel plate portion 26 as described above, the portion of the permanent magnet 22 facing the armatures 30 and 40 is the field magnet. Of the child split laminated steel plate portion 26, it is covered with a portion 26 a facing the armatures 30 and 40. In addition, a side portion in the circumferential direction of the permanent magnet 22 is covered with a side portion 26 b in the circumferential direction of the field element split laminated steel plate portion 26.

界磁子分割積層鋼板部26のうち側方部分26bの厚み寸法(界磁子20の周方向における厚み寸法)は、回転軸18a方向における永久磁石22の両極間で容易に磁気飽和する程度に小さく設定されており、永久磁石22の両極間で磁束の短絡が防止されている。   The thickness dimension of the side portion 26b (the thickness dimension in the circumferential direction of the field element 20) of the field element split laminated steel plate portion 26 is such that it is easily magnetically saturated between the two poles of the permanent magnet 22 in the direction of the rotating shaft 18a. It is set small, and short circuit of magnetic flux is prevented between the two poles of the permanent magnet 22.

また、界磁子分割積層鋼板部26のうち対向部分26aは、前記側方部分26bよりも大きな所定厚み寸法(回転軸18a方向における厚み寸法)を有しており、各永久磁石22がエアギャップに実質的に露出しないで界磁子積層鋼板部26の対向部分26aがエアギャップに露出する態様で、各永久磁石22は、当該対向部分26aを介して電機子30,40に対向する。そして、この対向部分26aは、励磁された電機子30、40の外部磁界によって永久磁石22に減磁界が作用した場合に、各永久磁石22に作用する減磁界の影響を緩和し、もって、各永久磁石22が減磁するのを防止する。また、永久磁石22内部の高調波磁束による渦電流を抑制する役割をも有している。さらに、各永久磁石22の厚み寸法が異なっていても、磁石保持凹部27にある程度の余裕を持たせることで、当該差異を吸収することができる。これにより、ギャップ精度については、永久磁石22の厚み寸法精度に関係なく、電機子30,40のティース34,44及び界磁子分割積層鋼板部26の寸法精度によって確保でき、結果的にギャップ精度を良好にしてエアギャップ長を最小かつばらつきを少なくできる。   Moreover, the opposing part 26a of the field element division | segmentation laminated steel plate part 26 has a larger predetermined thickness dimension (thickness dimension in the rotating shaft 18a direction) than the said side part 26b, and each permanent magnet 22 is an air gap. The permanent magnets 22 face the armatures 30 and 40 through the facing portions 26a in such a manner that the facing portions 26a of the field element laminated steel plate portion 26 are exposed to the air gap without being substantially exposed. And this opposing part 26a alleviates the influence of the demagnetizing field acting on each permanent magnet 22 when the demagnetizing field acts on the permanent magnet 22 by the external magnetic field of the excited armatures 30, 40, The permanent magnet 22 is prevented from demagnetizing. Further, it also has a role of suppressing eddy currents due to the harmonic magnetic flux inside the permanent magnet 22. Furthermore, even if the thickness dimension of each permanent magnet 22 is different, the difference can be absorbed by giving the magnet holding recess 27 some allowance. As a result, the gap accuracy can be ensured by the dimensional accuracy of the teeth 34 and 44 of the armatures 30 and 40 and the field element split laminated steel plate portion 26 regardless of the thickness dimensional accuracy of the permanent magnet 22, resulting in gap accuracy. The air gap length can be minimized and the variation can be reduced.

各介在磁性体部28(q軸磁性体ともいう)は、界磁子20の周方向において隣設する各界磁子分割積層鋼板部26間に、当該各界磁子分割積層鋼板部26にとは磁気的に独立する態様で設けられている。この介在磁性体部28は、基本的には、永久磁石22の磁極中心を示すd軸のインダクタンスLdよりも、極間を示すq軸のインダクタンスLqを大きくすることで、逆突極性を呈し、いわゆるマグネットトルクに、いわゆるリラクタンストルクを更に加えて界磁子20を回転させる役割を有している。   Each intervening magnetic body portion 28 (also referred to as a q-axis magnetic body) is adjacent to each field element split laminated steel plate portion 26 adjacent in the circumferential direction of the field element 20. It is provided in a magnetically independent manner. This intervening magnetic body portion 28 basically exhibits reverse saliency by increasing the q-axis inductance Lq indicating the gap between the d-axis inductance Ld indicating the magnetic pole center of the permanent magnet 22, The field element 20 is rotated by further adding a so-called reluctance torque to the so-called magnet torque.

この介在磁性体部28は、回転軸18aに略直交する平面において、断面形状が略長方形状である略直方体形状に形成されている。そして、介在磁性体部28のうち界磁子分割積層鋼板部26に対向する面と、界磁子分割積層鋼板部26のうち介在磁性体部28に対して対向する面とが略平行になるようになるように配設されている。かかる配設形態は、界磁子分割積層鋼板部26と介在磁性体部28とを磁気的に分離しつつ、それらを面積効率(体積効率)より配設することができる形態である。もっとも、界磁子分割積層鋼板部26を略台形板状にし、介在磁性体部28を略直方体状にする形態に限らず、例えば、界磁子分割積層鋼板部26を略長方形板状にし、介在磁性体部28を略扇板状又は略三角板状に形成する形態によっても、界磁子分割積層鋼板部と介在磁性体部との間に略等幅な隙間を形成して、それら界磁子分割積層鋼板部と介在磁性体部とを効率よく配置することができる。これらの形態については後でも説明する。   The intervening magnetic body portion 28 is formed in a substantially rectangular parallelepiped shape whose cross-sectional shape is a substantially rectangular shape on a plane substantially orthogonal to the rotation shaft 18a. The surface of the intervening magnetic body portion 28 facing the field element split laminated steel plate portion 26 and the surface of the field element splitting laminated steel plate portion 26 facing the intervening magnetic body portion 28 are substantially parallel. It arrange | positions so that it may become. Such an arrangement is a form in which the field element split laminated steel plate portion 26 and the intervening magnetic body portion 28 can be arranged from the area efficiency (volume efficiency) while magnetically separating them. However, the field-element-divided laminated steel plate portion 26 has a substantially trapezoidal plate shape, and the intervening magnetic body portion 28 has a substantially rectangular parallelepiped shape. For example, the field-element-divided laminated steel plate portion 26 has a substantially rectangular plate shape, Even in the form in which the intervening magnetic body portion 28 is formed in a substantially fan plate shape or a substantially triangular plate shape, a substantially equal width gap is formed between the field element split laminated steel plate portion and the intervening magnetic body portion, and these field magnets are formed. The child split laminated steel plate portion and the intervening magnetic body portion can be efficiently arranged. These forms will be described later.

また、上記介在磁性体部28は、回転軸18aに対して略直交する方向に鋼板が積層された積層鋼板で、より具体的には、略長方形状に打抜いた鋼板を回転軸18aを中心とする円の径方向に積層することで形成されている。介在磁性体部28は、略直方体形状であるため、界磁子20の径方向又はそれに直交する方向に鋼板を積層することで、略同一形状の鋼板を積層することでかかる介在磁性体部28を製造することができる。   The intervening magnetic body portion 28 is a laminated steel plate in which steel plates are laminated in a direction substantially orthogonal to the rotation shaft 18a, more specifically, a steel plate punched in a substantially rectangular shape is centered on the rotation shaft 18a. It is formed by laminating in the radial direction of the circle. Since the intervening magnetic body portion 28 has a substantially rectangular parallelepiped shape, the intervening magnetic body portion 28 is formed by laminating steel plates having substantially the same shape by laminating steel plates in the radial direction of the field element 20 or in a direction perpendicular thereto. Can be manufactured.

介在磁性体部28は、必ずしも積層鋼板で形成される必要はなく、圧粉磁心で形成されていてもよい。もっとも、上記電機子30、40による磁束の通過方向は、回転軸18a方向成分が主であるため、回転軸18aに対して略直交する方向に鋼板が積層された積層鋼板で介在磁性体部28を形成することで、電機子30、40による磁束に対する透磁率を低くして、リラクタンストルクをより向上させることができ、また、本アキシャルギャップ型回転電機10が比較的低速で運転される場合でも鉄損を小さくできる。   The intervening magnetic body portion 28 is not necessarily formed of a laminated steel plate, and may be formed of a dust core. However, the magnetic flux passing directions by the armatures 30 and 40 are mainly components in the direction of the rotating shaft 18a. Therefore, the intervening magnetic body portion 28 is a laminated steel plate in which steel plates are stacked in a direction substantially perpendicular to the rotating shaft 18a. The reluctance torque can be further improved by lowering the magnetic permeability with respect to the magnetic flux by the armatures 30 and 40, and even when the axial gap rotating electrical machine 10 is operated at a relatively low speed. Iron loss can be reduced.

鋼板の積層方向としては、界磁子20の径方向であっても、それに直交する方向であってもよい。鋼板の積層方向が界磁子20の径方向である場合、電機子30、40による磁束の通過方向は、主として回転軸18a方向成分と、部分的な周方向成分とを有しているため、電機子30、40による磁束に対する透磁率をより低くして、リラクタンストルクをより向上させることができる。鋼板の積層方向が界磁子20の径方向に対して略直交する方向である場合、界磁子20の径方向に長い介在磁性体部28を比較的少ない鋼板で容易に形成することができる。   The stacking direction of the steel plates may be the radial direction of the field element 20 or a direction orthogonal thereto. When the laminating direction of the steel plate is the radial direction of the field element 20, the magnetic flux passing direction by the armatures 30 and 40 mainly includes a rotation axis 18a direction component and a partial circumferential direction component. The reluctance torque can be further improved by lowering the magnetic permeability with respect to the magnetic flux by the armatures 30 and 40. When the lamination direction of the steel plates is a direction substantially orthogonal to the radial direction of the field element 20, the intervening magnetic body portion 28 that is long in the radial direction of the field element 20 can be easily formed with a relatively small number of steel plates. .

上記各界磁子分割積層鋼板部26及び各介在磁性体部28は、非磁性体ホルダ50によって所定位置及び所定姿勢で保持されている。非磁性体ホルダ50は、内周ボス部52と、外周リング部材54とを有しており、内周ボス部52は回転軸18a方向において分割内周ボス部52aに2分割されている。分割内周ボス部52aは、各界磁子分割積層鋼板部26及び各介在磁性体部28の内周部を、回転軸18a方向において両側から挟込むように保持した状態で、図示省略のシャフトに固定される。また、外周リング部材54は、各界磁子分割積層鋼板部26及び各介在磁性体部28の外周側面に対応する内周形状を有しており、環状に配設された各界磁子分割積層鋼板部26及び各介在磁性体部28の外周部に外嵌めされる。これにより、上記各界磁子分割積層鋼板部26及び各介在磁性体部28が環状配列形態で、位置決め保持される。この際、各界磁子分割積層鋼板部26の内周側及び外周側が内周ボス部52と外周リング部材54とによって覆われるため、内周側及び外周側のそれぞれにおいて各永久磁石22の脱落を防止できる。   Each field element split laminated steel plate portion 26 and each intervening magnetic body portion 28 are held in a predetermined position and a predetermined posture by a non-magnetic body holder 50. The nonmagnetic holder 50 includes an inner peripheral boss portion 52 and an outer peripheral ring member 54, and the inner peripheral boss portion 52 is divided into two divided inner peripheral boss portions 52a in the direction of the rotation shaft 18a. The divided inner peripheral boss portion 52a is attached to a shaft (not shown) in a state where the inner peripheral portions of each field element divided laminated steel plate portion 26 and each intervening magnetic body portion 28 are held so as to be sandwiched from both sides in the direction of the rotation shaft 18a. Fixed. The outer peripheral ring member 54 has an inner peripheral shape corresponding to the outer peripheral side surface of each field element split laminated steel plate portion 26 and each intervening magnetic body portion 28, and each field element split laminated steel plate disposed in an annular shape. The outer periphery of the part 26 and each intervening magnetic body part 28 is fitted. Thereby, each said field element division | segmentation laminated steel plate part 26 and each intervening magnetic body part 28 are positioned and hold | maintained by the annular arrangement | sequence form. At this time, since the inner peripheral side and the outer peripheral side of each field element split laminated steel plate portion 26 are covered by the inner peripheral boss portion 52 and the outer peripheral ring member 54, the permanent magnets 22 are removed from each of the inner peripheral side and the outer peripheral side. Can be prevented.

なお、上記非磁性体ホルダ50として、非磁性体金属を用いることで、強度を得ることができる。もっとも、この場合、渦電流が発生してしまうので、磁界が非磁性体ホルダ50を通過しないようにすることが望ましく、そのためには、非磁性体ホルダ50が電機子30,40と対向しないようにするとよい。   In addition, strength can be obtained by using a nonmagnetic metal as the nonmagnetic holder 50. However, in this case, since an eddy current is generated, it is desirable to prevent the magnetic field from passing through the nonmagnetic holder 50, and for this purpose, the nonmagnetic holder 50 does not face the armatures 30 and 40. It is good to.

以上のように構成されたアキシャルギャップ型回転電機10によると、各永久磁石22が各磁石保持凹部27内に収容保持されて界磁子分割積層鋼板部26のうちの対向部分26aを介して電機子30,40に対向するので、当該永久磁石22の減磁を防止できる。また、各永久磁石22は磁石保持凹部27内に収容保持され、前記対向部分26aと両電機子30,40との間にエアギャップが形成されるので、永久磁石22の厚み精度と関係なくエアギャップを設定でき、当該エアギャップ精度を良好にできる。さらに、界磁子積層鋼板部24及び界磁子分割積層鋼板部26は、積層鋼板で形成されているので、高透磁率、即ち、永久磁石22の動作点磁束密度を大きくでき、かつ、低鉄損の界磁子20を構成できる。   According to the axial gap type rotating electrical machine 10 configured as described above, each permanent magnet 22 is housed and held in each magnet holding recess 27 and the electric machine is interposed via the facing portion 26a of the field element split laminated steel plate portion 26. Since it opposes the child | child 30 and 40, the demagnetization of the said permanent magnet 22 can be prevented. Further, each permanent magnet 22 is housed and held in the magnet holding recess 27, and an air gap is formed between the facing portion 26a and both armatures 30 and 40. Therefore, the air is independent of the thickness accuracy of the permanent magnet 22. A gap can be set, and the air gap accuracy can be improved. Furthermore, since the field element laminated steel plate portion 24 and the field element split laminated steel plate portion 26 are formed of laminated steel plates, high magnetic permeability, that is, the operating point magnetic flux density of the permanent magnet 22 can be increased, and low The iron loss field element 20 can be configured.

また、界磁子積層鋼板部24を複数の界磁子分割積層鋼板部26に分割しているので、各界磁子分割積層鋼板部26を比較的容易に製造できる。   Moreover, since the field element laminated steel plate portion 24 is divided into a plurality of field element divided laminated steel plate portions 26, each field element divided laminated steel plate portion 26 can be manufactured relatively easily.

また、各界磁子分割積層鋼板部26で1つの永久磁石22を保持しているので、各界磁子分割積層鋼板部26間に隙間等を設けることで、各永久磁石22間の磁束漏洩対策が容易である。   Moreover, since each field element division | segmentation laminated steel plate part 26 hold | maintains one permanent magnet 22, by providing a clearance gap between each field element division | segmentation laminated steel plate part 26, the magnetic flux leakage countermeasure between each permanent magnet 22 is taken. Easy.

なお、界磁子積層鋼板部24による永久磁石22の保持形態は上記例に限られず、一体化された界磁子積層鋼板部で複数の永久磁石を保持する態様、界磁子積層鋼板部を複数の界磁子分割積層鋼板部に分割し、それぞれで又は複数の界磁子分割積層鋼板部で永久磁石を保持する態様等、種々の変形が可能である。それらの保持形態のいくつかの態様については、後述する実施形態でも説明する。   In addition, the holding form of the permanent magnet 22 by the field element laminated steel plate part 24 is not limited to the above example, the aspect in which a plurality of permanent magnets are held by the integrated field element laminated steel sheet part, Various modifications are possible, such as an aspect in which the magnet is divided into a plurality of field-element-divided laminated steel plate portions and the permanent magnet is held by each or a plurality of field-element-divided laminated steel plate portions. Some aspects of these holding forms will also be described in the embodiments described later.

図4及び図5は上記第1実施形態の変形例に係る界磁子を示す図であり、図4は界磁子分割積層鋼板部、永久磁石及び介在磁心の形状を示す図であり、図5はこれらを非磁性体ホルダで保持した状態を示す図である。   4 and 5 are views showing a field element according to a modification of the first embodiment, and FIG. 4 is a view showing shapes of a field element split laminated steel plate portion, a permanent magnet, and an intervening core. 5 is a view showing a state in which these are held by a non-magnetic holder.

この変形例では、上記界磁子分割積層鋼板部26に対応する界磁子分割積層鋼板部126は、回転軸18aに略直交する平面における平面視形状及び断面外形状が略長方形状の板状に形成されており、その内部に回転軸18aに略直交する平面における形状が略長方形状である磁石保持凹部127が形成されている。また、永久磁石22に対応する永久磁石122は、回転軸18aに略直交する平面における平面視形状及び断面外形状が略長方形状である板状に形成されている。そして、各永久磁石122がそれぞれ界磁子分割積層鋼板部126の磁石保持凹部127内に収容保持されている。この界磁子分割積層鋼板部126が複数略環状に配設されることで、界磁子積層鋼板部124が構成される。   In this modification, the field-element-divided laminated steel plate portion 126 corresponding to the field-element-divided laminated steel plate portion 26 is a plate having a substantially rectangular shape in plan view and a cross-sectional outer shape in a plane substantially orthogonal to the rotation shaft 18a. A magnet holding recess 127 having a substantially rectangular shape in a plane substantially perpendicular to the rotation shaft 18a is formed therein. In addition, the permanent magnet 122 corresponding to the permanent magnet 22 is formed in a plate shape in which a planar view shape and a cross-sectional outer shape in a plane substantially orthogonal to the rotation shaft 18a are substantially rectangular. Each permanent magnet 122 is housed and held in the magnet holding recess 127 of the field element split laminated steel plate portion 126. The field element laminated steel plate portion 124 is configured by arranging a plurality of the field element divided laminated steel plate portions 126 in a substantially annular shape.

上記のような形状の界磁子分割積層鋼板部126は、略長方形板状でかつ略中央部に略長方形孔が形成された略同一形状の鋼板を、界磁子120の径方向に略直交する方向に積層することで形成することができる。特に、界磁子分割積層鋼板部126の周方向幅が介在磁性体部128の周方向幅より十分に大きい場合、本構造は、界磁子分割積層鋼板部126の周方向端部が径方向に対して傾斜することとなり、スキューの効果が得られ、コギングの低減が可能である。   The field element split laminated steel plate portion 126 having the above-described shape is a substantially rectangular plate shape, and a substantially identical shape steel plate having a substantially rectangular hole formed in a substantially central portion is substantially orthogonal to the radial direction of the field element 120. It can form by laminating in the direction to do. In particular, when the circumferential width of the field element split laminated steel plate portion 126 is sufficiently larger than the circumferential width of the intervening magnetic body portion 128, the present structure is such that the circumferential end of the field element split laminated steel plate portion 126 is in the radial direction. As a result, the effect of skew is obtained and cogging can be reduced.

また、介在磁性体部28に対応する介在磁性体部128は、その界磁子分割積層鋼板部126側の側面が当該界磁子分割積層鋼板部126に対して略平行となるように、回転軸18aに略直交する平面における形状が略扇形状となる板状に形成されている。なお、介在磁性体部128は、回転軸18aに略直交する平面における形状が略三角形状であってもよい。   Further, the intervening magnetic body portion 128 corresponding to the intervening magnetic body portion 28 rotates so that the side surface on the field element split laminated steel plate portion 126 side is substantially parallel to the field element split laminated steel plate portion 126. The shape in the plane substantially orthogonal to the shaft 18a is formed in a plate shape having a substantially fan shape. The intervening magnetic body 128 may have a substantially triangular shape on a plane substantially orthogonal to the rotation shaft 18a.

このような介在磁性体部128は、互いに異なる形状に打抜いた鋼板を回転軸18aに略直交する方向に積層することで形成できるし、また、圧粉鉄心等の圧粉磁心でも製造することができる。介在磁性体部128を圧粉磁心で製造した方が形状自由度に優れ容易に製造できるという点で好ましい。   Such intervening magnetic body portion 128 can be formed by stacking steel plates punched into different shapes in a direction substantially perpendicular to the rotating shaft 18a, and can also be manufactured with a dust core such as a dust core. Can do. It is preferable that the intervening magnetic body portion 128 is manufactured with a powder magnetic core in terms of excellent shape flexibility and easy manufacturing.

上記各界磁子分割積層鋼板部126及び介在磁性体部128は、非磁性体ホルダ150によって所定の配列形態で保持される(図5参照)。非磁性体ホルダ150は、界磁子分割積層鋼板部126及び介在磁性体部128とは別途形成され、後から組込まれた界磁子分割積層鋼板部126及び介在磁性体部128を保持する構成であってもよい。或は、非磁性体ホルダ150は、界磁子分割積層鋼板部126及び介在磁性体部128を金型内に配設した状態で、それらと一体的に金型成型されたもの、すなわち、インサート成型されたものであってもよい。後者の場合、界磁子分割積層鋼板部126及び介在磁性体部128のうちエアギャップ側の面は、当該エアギャップに対して露出するか、或は、極めて薄く非磁性体で覆われているようにするとよい。   Each field element division | segmentation laminated steel plate part 126 and the interposition magnetic body part 128 are hold | maintained by the nonmagnetic body holder 150 by the predetermined arrangement | sequence form (refer FIG. 5). The non-magnetic material holder 150 is formed separately from the field element split laminated steel plate portion 126 and the intervening magnetic body portion 128, and holds the field element split laminated steel plate portion 126 and the intervening magnetic body portion 128 incorporated later. It may be. Alternatively, the non-magnetic holder 150 is formed by integrally molding the field element split laminated steel plate portion 126 and the intervening magnetic body portion 128 in the mold, that is, the insert. It may be molded. In the latter case, the air gap side surface of the field element split laminated steel plate portion 126 and the intervening magnetic body portion 128 is exposed to the air gap or is extremely thin and covered with a nonmagnetic material. It is good to do so.

この変形例によると、略同一形状に打抜かれた鋼板を積層することで界磁子分割積層鋼板部126を形成することができるので、界磁子分割積層鋼板部126の製造が容易となる。   According to this modification, the field element split laminated steel plate portion 126 can be formed by laminating steel plates punched in substantially the same shape, and therefore the field element split laminated steel plate portion 126 can be easily manufactured.

図6は界磁子分割積層鋼板部の変形例を示す図である。この変形例では、上記界磁子分割積層鋼板部126に対応する界磁子分割積層鋼板部226のうち電機子30,40に対する対向部分226aが、回転軸18aを中心とする円の周方向略中間部で最も厚みが大で、当該周方向両端部に向うに従って徐々に厚みが小さくなるように形成されている。これにより、界磁子分割積層鋼板部226と電機子30,40間のエアギャップが、永久磁石122の磁極中心(前記周方向における磁極中心)が最も小さくなり、当該周方向端部へ向うに従って大きくなるようになっている。   FIG. 6 is a view showing a modification of the field element split laminated steel plate portion. In this modification, a portion 226a facing the armatures 30 and 40 of the field element split laminated steel plate portion 226 corresponding to the field element split laminated steel plate portion 126 is substantially in the circumferential direction of a circle centered on the rotation shaft 18a. It is formed so that the thickness is greatest at the intermediate portion, and the thickness gradually decreases toward both ends in the circumferential direction. Thereby, as for the air gap between the field element division | segmentation laminated | stacked steel plate part 226 and the armatures 30 and 40, the magnetic pole center (magnetic pole center in the said circumferential direction) of the permanent magnet 122 becomes the smallest, and it goes to the said circumferential direction edge part. It is getting bigger.

この変形例では、各ギャップで、回転軸18aを中心とする周方向に沿って略正弦波化された磁束密度分布を呈するため、磁束密度分布の高調波成分を抑制して、鉄損を小さくすることができると共に、コギングをも低減することができる。   In this modified example, each gap exhibits a magnetic flux density distribution that is substantially sinusoidal along the circumferential direction centering on the rotation shaft 18a, so that the harmonic component of the magnetic flux density distribution is suppressed and the iron loss is reduced. And cogging can be reduced.

{第2実施形態}
第2実施形態に係るアキシャルギャップ型回転電機について説明する。図7は本実施形態に係るアキシャルギャップ型回転電機の界磁子を示す斜視図であり、図8は同界磁子の永久磁石及び界磁子分割積層鋼板部を示す分解斜視図であり、図9及び図10は同界磁子の製造工程を示す図である。なお、界磁子320の両側に設けられる2つの電機子30,40については第1実施形態と同様構成であるためその説明を省略し、ここでは界磁子320を中心に説明する。
{Second Embodiment}
An axial gap type rotating electrical machine according to the second embodiment will be described. FIG. 7 is a perspective view showing a field element of an axial gap type rotating electric machine according to the present embodiment, and FIG. 8 is an exploded perspective view showing a permanent magnet and a field element split laminated steel sheet portion of the same field magnet, 9 and 10 are diagrams showing a manufacturing process of the field element. Note that the two armatures 30 and 40 provided on both sides of the field element 320 have the same configuration as in the first embodiment, and therefore description thereof will be omitted. Here, the field element 320 will be mainly described.

界磁子320は、略円盤状(より具体的には略正多角形状、ここでは略正8角形状)に形成されており、シャフトを介して所定の回転軸18a周りに回転自在に配設されている。   The field element 320 is formed in a substantially disc shape (more specifically, a substantially regular polygonal shape, here, a substantially regular octagonal shape), and is arranged rotatably around a predetermined rotation axis 18a via a shaft. Has been.

この界磁子320は、複数の永久磁石322と、複数の界磁子分割積層鋼板部326を有する界磁子積層鋼板部324とを有している。   The field element 320 includes a plurality of permanent magnets 322 and a field element laminated steel plate portion 324 having a plurality of field element split laminated steel plate portions 326.

各永久磁石322は、回転軸18a周りに間隔をあけて配設されている。より具体的には、永久磁石322は、回転軸18aに対して略直交する平面において、全体として略V字状をなす帯板状部材である。この各永久磁石322は、その略V字状凹み部分を内周側に向けると共にその略V字状突出部分を外周側に向けた姿勢で、それぞれの間に間隔をあけて回転軸18aを中心とする略環状に配設されている。この各永久磁石322も、上記各永久磁石22と同様に着磁されており、両電機子30、40に対してそれぞれ回転軸18a周りに交互の磁極を呈するようになっている。   Each permanent magnet 322 is disposed around the rotating shaft 18a with a space therebetween. More specifically, the permanent magnet 322 is a belt-plate-like member having a substantially V shape as a whole on a plane substantially orthogonal to the rotation shaft 18a. Each of the permanent magnets 322 is oriented so that the substantially V-shaped dent portion is directed toward the inner peripheral side and the substantially V-shaped protruding portion is directed toward the outer peripheral side, and the rotation shaft 18a is centered with a gap therebetween. It is arranged in a substantially annular shape. The permanent magnets 322 are also magnetized in the same manner as the permanent magnets 22, and exhibit alternating magnetic poles around the rotary shaft 18 a with respect to the armatures 30 and 40.

この各永久磁石322は、回転軸18aを中心とする円の周方向における略中央部で当該円の径方向長さが最大となり、その周方向における両端部に向うに従って当該円の径方向長さが徐々に短くなる形状である。これにより、本界磁子320により呈される磁束密度分布を回転軸18a周りで正弦波に近づけることができ、磁束密度分布の高調波成分を抑制して、鉄損を小さくすることができると共に、コギングをも低減することができる。   Each permanent magnet 322 has the maximum radial length of the circle at the substantially central portion in the circumferential direction of the circle centered on the rotation shaft 18a, and the radial length of the circle toward both ends in the circumferential direction. Is a shape that gradually becomes shorter. As a result, the magnetic flux density distribution exhibited by the main field element 320 can be approximated to a sine wave around the rotation axis 18a, and the harmonic component of the magnetic flux density distribution can be suppressed to reduce the iron loss. Cogging can also be reduced.

界磁子積層鋼板部324は、回転軸18aを中心とする円の径方向に積層された複数の鋼板を有している。ここでは、界磁子積層鋼板部324は、回転軸18a周りに分割された複数の界磁子分割積層鋼板部326を有している。各界磁子分割積層鋼板部326は、幅寸法が順次大きくなる帯状の鋼板を所定方向に沿って順次積層することで、略台形平板状に形成されている。このような界磁子分割積層鋼板部326が、2つの平行辺部分のうち短辺部分を内周側に向けると共に長辺部分を外周側に向けた姿勢で、回転軸18aを中心にして密接状に略環状に配設されることで、界磁子積層鋼板部324が構成されている。この状態では、各界磁子分割積層鋼板部326において、鋼板は界磁子320の径方向に沿って積層された態様となっている。   The field element laminated steel plate portion 324 has a plurality of steel plates laminated in the radial direction of a circle centered on the rotation shaft 18a. Here, the field element laminated steel plate portion 324 has a plurality of field element divided laminated steel plate portions 326 divided around the rotating shaft 18a. Each of the field element split laminated steel plate portions 326 is formed in a substantially trapezoidal flat plate shape by sequentially laminating strip-shaped steel plates whose width dimensions are sequentially increased along a predetermined direction. Such a field element split laminated steel plate portion 326 is in close contact with the rotary shaft 18a as a center with the short side portion of the two parallel side portions facing the inner peripheral side and the long side portion facing the outer peripheral side. The field element laminated steel plate portion 324 is configured by being arranged in a substantially annular shape. In this state, in each field element split laminated steel plate portion 326, the steel plates are stacked along the radial direction of the field element 320.

また、各界磁子分割積層鋼板部326には、各永久磁石322のうち回転軸18aを中心とする円の周方向における略半分部分を収容保持可能な磁石部分保持凹部327aが形成されている。この磁石部分保持凹部327aは、界磁子分割積層鋼板部326の周方向端部に開口しており、内周側から外周側に向けて前記周方向における凹部深さが徐々に深くなる形状に形成されており、上記界磁子分割積層鋼板部326のうち前記周方向の両端部に形成されている。そして、隣設する2つの界磁子分割積層鋼板部326の磁石部分保持凹部327aによって、永久磁石322全体を収容保持可能な磁石保持凹部327が構成されるようになっている。また、全ての界磁子分割積層鋼板部326が上記のように環状に配設されることによって、複数の磁石保持凹部327が環状に配設され、上記各永久磁石322が環状配設形態で保持されるようになっている。ここで、各界磁子分割積層鋼板部326は略台形板状に形成されているので、永久磁石322の保持部分の周方向略中央部でその径方向長さを最大にすることができる。従って、上記のように、回転軸18aを中心とする円の周方向における略中央部で当該円の径方向長さが最大となり、その周方向における両端部に向うに従って当該円の径方向長さが徐々に短くなる形状を有する永久磁石322を収容するのに適した空間を持つ磁石保持凹部327を構成することができる。これにより、後述するように永久磁石322の磁極面全体を界磁子分割積層鋼板部326で覆うことができる。   Further, each field element split laminated steel plate portion 326 is formed with a magnet portion holding recess 327a capable of receiving and holding a substantially half portion of each permanent magnet 322 in the circumferential direction of the circle centering on the rotating shaft 18a. The magnet portion holding recess 327a is open at the circumferential end of the field element split laminated steel plate 326, and the recess depth in the circumferential direction gradually increases from the inner periphery toward the outer periphery. The field element split laminated steel plate portion 326 is formed at both ends in the circumferential direction. And the magnet holding recessed part 327 which can accommodate and hold the whole permanent magnet 322 is comprised by the magnet part holding recessed part 327a of the two field element division | segmentation laminated steel plate parts 326 adjacently provided. Further, since all the field element split laminated steel plate portions 326 are annularly arranged as described above, a plurality of magnet holding recesses 327 are annularly arranged, and each of the permanent magnets 322 is annularly arranged. It is supposed to be retained. Here, since each field element division | segmentation laminated steel plate part 326 is formed in the substantially trapezoid plate shape, the radial direction length can be maximized in the circumferential direction approximate center part of the holding part of the permanent magnet 322. FIG. Therefore, as described above, the radial length of the circle is maximized at a substantially central portion in the circumferential direction of the circle centering on the rotation shaft 18a, and the radial length of the circle toward both ends in the circumferential direction. Thus, the magnet holding recess 327 having a space suitable for accommodating the permanent magnet 322 having a gradually shortening shape can be formed. Thereby, the whole magnetic pole surface of the permanent magnet 322 can be covered with the field element division | segmentation laminated steel plate part 326 so that it may mention later.

上記のような磁石部分保持凹部327aは、積層される鋼板に当該磁石部分保持凹部327aに応じた凹部形状を打抜き形成しておくことで、形成することができる。   The magnet part holding recess 327a as described above can be formed by punching and forming a concave shape corresponding to the magnet part holding recess 327a on the laminated steel sheet.

また、上記のように永久磁石322が各磁石保持凹部327内に収容された状態で、永久磁石322のうち電機子30,40との対向部分は、界磁子分割積層鋼板部326のうち電機子30,40との対向部分326aによって覆われている。そして、永久磁石322の磁極面略全体が、当該対向部分326aを介して電機子30,40に対向するようになっている。なお、永久磁石322の磁極面は、界磁子分割積層鋼板部326にほぼ覆われており実質的にエアギャップに露出していなければば良いので、永久磁石322の一部がはみ出していてもよい。例えば、永久磁石322が円弧板状であってもよい。   Further, in the state where the permanent magnet 322 is accommodated in each magnet holding recess 327 as described above, the portion of the permanent magnet 322 facing the armatures 30 and 40 is the electric field of the field element split laminated steel plate portion 326. It is covered with a portion 326 a facing the child 30, 40. The substantially entire magnetic pole surface of the permanent magnet 322 is opposed to the armatures 30 and 40 via the facing portion 326a. In addition, since the magnetic pole surface of the permanent magnet 322 is almost covered with the field element split laminated steel plate portion 326 so long as it is not substantially exposed to the air gap, a part of the permanent magnet 322 may protrude. . For example, the permanent magnet 322 may be an arc plate.

界磁子分割積層鋼板部326の対向部分326aは、上記対向部分26aと同様に、各永久磁石322が減磁するのを防止すると共に、永久磁石322内部の高調波磁束による渦電流を抑制する役割を有している。さらに、各永久磁石322の厚み寸法が異なっていた場合でも、磁石保持凹部327にある程度の余裕を持たせることで、当該差異を吸収し、電機子30,40のティース34,44及び界磁子分割積層鋼板部326の寸法精度によってギャップ精度を確保することで、ギャップ精度を良好にしてエアギャップ長を最小かつばらつきを少なくできる。   Similar to the facing portion 26a, the facing portion 326a of the field element split laminated steel plate portion 326 prevents each permanent magnet 322 from demagnetizing and suppresses eddy currents due to harmonic magnetic flux inside the permanent magnet 322. Have a role. Further, even when the thickness dimension of each permanent magnet 322 is different, the magnet holding recess 327 is given a certain margin to absorb the difference, and the teeth 34 and 44 of the armatures 30 and 40 and the field element. By ensuring the gap accuracy by the dimensional accuracy of the divided laminated steel plate portion 326, the gap accuracy can be improved and the air gap length can be minimized and the variation can be reduced.

また、上記界磁子分割積層鋼板部326には、各永久磁石322間に位置して磁気障壁部326cが設けられている。この磁気障壁部326cは、永久磁石322及び両電機子30,40に十分に近接する領域まで形成された孔(ここでは略角孔)であり、磁気障壁部326cを囲む部分は容易に磁気飽和できる程度に十分断面積が小さくなっている。この磁気障壁部326cにより、隣設する各永久磁石322同士が磁気的に分離されると共に、後述する介在磁性体部328と永久磁石322とが磁気的に分離されている。なお、永久磁石322のうち周方向における側方部分は、磁石部分保持凹部327aと磁気障壁部326c間の側方部分326bによって覆われている。この側方部分326bの厚み寸法(界磁子320の周方向における厚み寸法)は、回転軸18a方向における永久磁石322の両極間で容易に磁気飽和する程度に小さく設定されており、永久磁石22の両極間で磁束の短絡が防止されている。   The field element split laminated steel plate portion 326 is provided with a magnetic barrier portion 326 c located between the permanent magnets 322. The magnetic barrier portion 326c is a hole (substantially a square hole here) formed to a region sufficiently close to the permanent magnet 322 and both armatures 30 and 40, and the portion surrounding the magnetic barrier portion 326c is easily magnetically saturated. The cross-sectional area is sufficiently small as much as possible. The magnetic barrier portion 326c magnetically separates adjacent permanent magnets 322 from each other, and magnetically separates an intervening magnetic body portion 328 and a permanent magnet 322, which will be described later. A side portion in the circumferential direction of the permanent magnet 322 is covered with a side portion 326b between the magnet portion holding recess 327a and the magnetic barrier portion 326c. The thickness dimension of the side portion 326b (thickness dimension in the circumferential direction of the field element 320) is set to be small enough to cause magnetic saturation between both poles of the permanent magnet 322 in the direction of the rotation shaft 18a. A short circuit of the magnetic flux is prevented between the two poles.

また、ここでは、各永久磁石322間に、界磁子320の周方向に間隔をあけて2つの磁気障壁部326cが設けられており、2つの磁気障壁部326c間に略直方体状の介在磁性体部328が設けられている。   Here, two magnetic barrier portions 326c are provided between the permanent magnets 322 in the circumferential direction of the field element 320, and a substantially rectangular parallelepiped intervening magnetism is provided between the two magnetic barrier portions 326c. A body part 328 is provided.

この介在磁性体部328は、各永久磁石322間に配設されると共に、界磁子320の回転軸18a方向両端に達する程度の大きさに形成されている。そして、本介在磁性体部328は、上記介在磁性体部28と同様に、永久磁石322の中心を示すd軸のインダクタンスLdよりも、極間を示すq軸のインダクタンスLqを大きくすることで、逆突極性を呈し、いわゆるマグネットトルクに、いわゆるリラクタンストルクを更に加えて界磁子320を回転させる役割を有している。   The intervening magnetic body portion 328 is disposed between the permanent magnets 322 and is formed to a size that reaches both ends of the field element 320 in the direction of the rotation axis 18a. The intervening magnetic body portion 328, like the intervening magnetic body portion 28, has a larger q-axis inductance Lq indicating the gap than the d-axis inductance Ld indicating the center of the permanent magnet 322. It exhibits reverse saliency and has a role of rotating the field element 320 by further adding so-called reluctance torque to so-called magnet torque.

上記のような磁気障壁部326cは、積層される鋼板に当該形状に応じた孔部形状を打抜き形成しておくことで、形成することができる。   The magnetic barrier portion 326c as described above can be formed by punching and forming a hole shape corresponding to the shape of the laminated steel plate.

このような界磁子320は、例えば、次のようにして製造される。まず、複数の界磁子分割積層鋼板部326及び複数の永久磁石322を準備し、各永久磁石322の略半分部分をそれぞれ磁石部分保持凹部327a内に挿入し、永久磁石322で各界磁子分割積層鋼板部326を略環状に連結する(図9参照)。この後、内周側に非磁性体で形成された内周側リング部材350を内嵌めすると共に(図10参照)、外周側に非磁性体で形成された外周側リング部材352外嵌めする(図7参照)。これらのリング部材350,352は非磁性体ホルダを構成する。なお、内周側リング部材350はシャフトに連結固定される。また、外周側リング部材352は、略多角形状(より具体的には略正8角形状)のリング状に形成されている。これにより、上記各界磁子分割積層鋼板部326が上記所定の配設形態で保持される。   Such a field element 320 is manufactured as follows, for example. First, a plurality of field element split laminated steel plate portions 326 and a plurality of permanent magnets 322 are prepared, and approximately half of each permanent magnet 322 is inserted into the magnet part holding recess 327a, and each field magnet is split by the permanent magnet 322. The laminated steel plate portions 326 are connected in a substantially annular shape (see FIG. 9). Thereafter, an inner ring member 350 made of a nonmagnetic material is fitted on the inner circumference side (see FIG. 10), and an outer ring member 352 made of a nonmagnetic material is fitted on the outer circumference side (see FIG. 10). (See FIG. 7). These ring members 350 and 352 constitute a nonmagnetic holder. The inner ring member 350 is connected and fixed to the shaft. Moreover, the outer peripheral side ring member 352 is formed in a ring shape having a substantially polygonal shape (more specifically, a substantially regular octagonal shape). Thereby, each said field element division | segmentation laminated steel plate part 326 is hold | maintained with the said predetermined arrangement | positioning form.

本実施形態に係る界磁子320によると、上記第1実施形態と同様の効果を得ることができる。また、複数の界磁子分割積層鋼板部326を永久磁石322で連結するようにして組合わせることができる。   According to the field element 320 according to the present embodiment, the same effects as those of the first embodiment can be obtained. Further, a plurality of field element split laminated steel plate portions 326 can be combined by being connected by permanent magnets 322.

本実施形態を前提にして変形例ないしより具体的な構成について説明する。なお、下記の説明で既に説明したものと同様構成については同一符号を付してその説明を省略する。   A modified example or a more specific configuration will be described based on the present embodiment. In addition, the same code | symbol is attached | subjected about the structure similar to what was already demonstrated by the following description, and the description is abbreviate | omitted.

図11〜図13は鋼板の積層状態での固定及び永久磁石の保持に係る変形例を示す図である。図12及び図13は、回転軸18aに略直交する平面における断面を示している。   FIGS. 11-13 is a figure which shows the modification concerning the fixation in the lamination | stacking state of a steel plate, and holding | maintenance of a permanent magnet. 12 and 13 show cross sections in a plane substantially orthogonal to the rotation shaft 18a.

本変形例では、界磁子分割積層鋼板部326を構成する鋼板に、各磁石保持凹部327内に向けて突出し、その内部に収容保持された永久磁石322に係止する係止爪327bが形成されている。係止爪327bは、鋼板を所定形状に打抜く際に、各磁石部分保持凹部327a形成用の凹部内に向けて一体的に突出するように形成された延設片であり、ここでは、界磁子分割積層鋼板部326を構成する鋼板のうち積層方向両端部及び積層方向略中央部のものに、係止爪327bが形成されている。そして、係止爪327bを撓み変形させつつ、各磁石保持凹部327内に永久磁石322を挿入できるようになっている(図11参照)。なお、磁石保持凹部327内に永久磁石322に挿入する際、その挿入方向の前方の開口部にある係止爪327bについては撓み変形させる必要はない。また、永久磁石322が磁石保持凹部327内に収容された状態では、鋼板の積層方向両端部では係止爪327bは原姿勢に弾性復帰し、永久磁石322の内周側端面及び外周側端面に当接して当該永久磁石322の脱落を防止している(図12参照)。また、鋼板の積層方向略中央部では係止爪327bは弾性復元力により永久磁石322の側面に押し当てられ、当該永久磁石322の移動を抑制している(図12参照)。これらの各係止爪327bによって、永久磁石322の脱落、移動を有効に防止することができる。なお、これらの各係止爪327b全てを設ける必要はなく、内周側及び外周側、及びその中間部の少なくとも一箇所に設けられていてもよい。   In the present modification, a locking claw 327b that protrudes into each magnet holding recess 327 and locks to the permanent magnet 322 accommodated and held therein is formed on the steel plate constituting the field element split laminated steel plate portion 326. Has been. The locking claw 327b is an extending piece formed so as to protrude integrally into the recess for forming each magnet portion holding recess 327a when the steel plate is punched into a predetermined shape. Locking claws 327b are formed on the steel plate constituting the magneton-split laminated steel plate portion 326 at both ends in the stacking direction and substantially in the center in the stacking direction. And the permanent magnet 322 can be inserted in each magnet holding | maintenance recessed part 327, bending the deformation | transformation nail | claw 327b (refer FIG. 11). When the permanent magnet 322 is inserted into the magnet holding recess 327, it is not necessary to bend and deform the locking claw 327b in the opening in the front in the insertion direction. Further, in a state where the permanent magnet 322 is accommodated in the magnet holding recess 327, the locking claws 327 b are elastically returned to the original posture at both ends in the stacking direction of the steel plates, and are formed on the inner peripheral end surface and the outer peripheral end surface of the permanent magnet 322. The permanent magnet 322 is prevented from falling off due to contact (see FIG. 12). In addition, the latching claw 327b is pressed against the side surface of the permanent magnet 322 by an elastic restoring force at a substantially central portion in the stacking direction of the steel plates to suppress the movement of the permanent magnet 322 (see FIG. 12). These locking claws 327b can effectively prevent the permanent magnet 322 from falling off and moving. In addition, it is not necessary to provide all these latching claws 327b, and it may be provided in at least one place on the inner peripheral side, the outer peripheral side, and an intermediate portion thereof.

また、ここでは、各介在磁性体部328に、積層された鋼板同士を締結する締結部329が設けられている。締結部329としては、各鋼板にダボ状又は切り起し状の凹凸部を形成し、これらを積層された鋼板間で相互に絡ませるようにして鋼板を積層状態に保つ構成(カラマセ、金型方式クランプ、カシメ等とも呼ばれる)や、ボルト等を用いた構成を採用することができる。   Here, each intervening magnetic body portion 328 is provided with a fastening portion 329 that fastens the stacked steel plates. As the fastening portion 329, dowel-shaped or cut-up uneven portions are formed on each steel plate, and the steel plates are kept in a laminated state so as to be entangled between the laminated steel plates (Kalamase, mold) It is also possible to adopt a configuration using a method clamp, a caulking or the like) or a bolt.

これにより、各鋼板を積層状態で保持することができる。特に、界磁子分割積層鋼板部326では、介在磁性体部328部分が最も面積が大きい部分であるため、このような介在磁性体部328部分に比較的容易に締結部329を組込むことができる。   Thereby, each steel plate can be held in a laminated state. In particular, in the field element split laminated steel plate portion 326, since the intervening magnetic body portion 328 is the portion having the largest area, the fastening portion 329 can be incorporated into such an intervening magnetic body portion 328 relatively easily. .

図14は永久磁石の保持に係る他の変形例を示す図である。この変形例では、界磁子分割積層鋼板部426の磁石部分保持凹部427aの深さ寸法が内周側及び外周側で深さ寸法が小さくなるように設定されており、一対の磁石部分保持凹部427aで構成される磁石部分保持凹部の内周側部分及び内周側部分がそれよりも中間側部分よりも狭くなるように形成されている。これにより、永久磁石322が当該狭くなった部分で位置決めされ、永久磁石322の移動、脱落を有効に防止できる。   FIG. 14 is a view showing another modification example related to holding of a permanent magnet. In this modification, the depth dimension of the magnet part holding recess 427a of the field element split laminated steel plate part 426 is set so that the depth dimension becomes smaller on the inner peripheral side and the outer peripheral side, and a pair of magnet part holding recesses The inner peripheral side portion and the inner peripheral side portion of the magnet portion holding recess configured by 427a are formed to be narrower than the intermediate side portion. Thereby, the permanent magnet 322 is positioned at the narrowed portion, and the movement and dropping of the permanent magnet 322 can be effectively prevented.

なお、上記永久磁石322は、上記磁石部分保持凹部427aの形状に応じて、内周側及び外周側で幅が狭まる形状であってもよい。   The permanent magnet 322 may have a shape whose width is narrowed on the inner peripheral side and the outer peripheral side in accordance with the shape of the magnet part holding recess 427a.

また、このような界磁子分割積層鋼板部426を用いた場合、複数の界磁子分割積層鋼板部426を実際の外径よりも大きい外径を描くように配設しておき、各界磁子分割積層鋼板部426に永久磁石322を嵌め込んだ後、各界磁子分割積層鋼板部426を内周側に向けて移動させることで、界磁子を組立てることができる。特に、各界磁子分割積層鋼板部426には、各永久磁石322のうち回転軸18aを中心とする円の周方向における略半分部分を収容保持可能な磁石部分保持凹部427aが形成されている構造であるので、上記組立が可能となる。   Further, when such a field element split laminated steel plate portion 426 is used, a plurality of field element split laminated steel plate portions 426 are arranged so as to draw an outer diameter larger than the actual outer diameter, and each field magnet is provided. After the permanent magnet 322 is fitted into the child split laminated steel plate portion 426, the field element can be assembled by moving each field element split laminated steel plate portion 426 toward the inner peripheral side. In particular, each field element split laminated steel plate portion 426 is formed with a magnet portion holding recess 427a capable of receiving and holding a substantially half portion of each permanent magnet 322 in the circumferential direction of the circle centering on the rotating shaft 18a. Therefore, the above assembly is possible.

また、一対の磁石部分保持凹部427aで構成される上記磁石部分保持凹部の内周側部分及び内周側部分の一方側だけで狭くなるように形成されていてもよい。このとき、他方は非磁性ホルダを用いて保持していても良い。   Further, it may be formed so as to be narrowed only on one side of the inner peripheral side portion and the inner peripheral side portion of the magnet part holding concave portion constituted by the pair of magnet portion holding concave portions 427a. At this time, the other may be held using a nonmagnetic holder.

図15は永久磁石の保持に係る他の変形例を示す図である。この変形例では、上記界磁子分割積層鋼板部526の内周側及び外周側に、各磁石部分保持凹部327aの開口で永久磁石322の移動を規制する鋼板526dが積層されている。ここでは、鋼板526dは孔が無い帯状の部材である。永久磁石322の移動を規制する鋼板としては、永久磁石322の開口からの脱落を抑制できればよく、上記磁気障壁部326cに対応する部分については孔が形成されていてもよく、また、磁石部分保持凹部327aの開口に対応する部分に永久磁石322が通過できない程度の孔が形成されていてもよい。また、鋼板526dは内周側及び外周側の一方だけに設けられていてもよく、また、内周側及び外周側のそれぞれにおいて複数枚設けられていてもよい。もちろん、非磁性体の金属(ステンレスや真鍮等)を用いても良い。この場合、材質が異なるため製造が煩雑になるが、漏れ磁束の低減という効果を有することとなる。   FIG. 15 is a diagram showing another modification example related to holding of a permanent magnet. In this modification, a steel plate 526d that restricts the movement of the permanent magnet 322 through the opening of each magnet partial holding recess 327a is laminated on the inner peripheral side and the outer peripheral side of the field element split laminated steel plate portion 526. Here, the steel plate 526d is a band-shaped member having no holes. As a steel plate for restricting the movement of the permanent magnet 322, it is only necessary to prevent the permanent magnet 322 from dropping from the opening, and a hole may be formed in a portion corresponding to the magnetic barrier portion 326c. A hole to the extent that the permanent magnet 322 cannot pass may be formed in a portion corresponding to the opening of the recess 327a. Further, the steel plate 526d may be provided only on one of the inner peripheral side and the outer peripheral side, or a plurality of steel plates may be provided on each of the inner peripheral side and the outer peripheral side. Of course, a non-magnetic metal (stainless steel, brass, etc.) may be used. In this case, since the materials are different, the manufacturing becomes complicated, but it has an effect of reducing the leakage magnetic flux.

この変形例では、上記鋼板526dによって永久磁石322の移動、脱落を防止できる。   In this modified example, the steel plate 526d can prevent the permanent magnet 322 from moving and falling off.

図16は介在磁性体部に係る変形例を示す図である。この変形例に係る界磁子分割積層鋼板部626では、上記磁気障壁部326cに対応する磁気障壁部626cと上記介在磁性体部328に対応する介在磁性体部628とを有している。磁気障壁部626cのうち介在磁性体部628側の部分が回転軸18a方向の両端側に向けて磁石部分保持凹部327a側に傾斜しており、介在磁性体部628に、回転軸18a方向における両端側で回転軸18aを中心とする円の周方向に幅広となる幅広部628aが形成されている。   FIG. 16 is a view showing a modification of the intervening magnetic body portion. The field element split laminated steel plate portion 626 according to this modification includes a magnetic barrier portion 626c corresponding to the magnetic barrier portion 326c and an intervening magnetic body portion 628 corresponding to the intervening magnetic body portion 328. Of the magnetic barrier portion 626c, the portion on the intervening magnetic body portion 628 side is inclined toward the magnet portion holding recess 327a toward the both end sides in the direction of the rotating shaft 18a, and A wide portion 628a that is wide in the circumferential direction of a circle centering on the rotation shaft 18a is formed on the side.

この幅広部628aにより、電機子30,40に対向する介在磁性体部628の対向面積を大きくすることができ、介在磁性体部628により多くの磁束を導くことで、q軸インダクタンスを大きくし、もって、リラクタンストルクを増大させることができる。なお、この変形例でも、介在磁性体部628に締結部329を設けている。   By this wide portion 628a, the facing area of the intervening magnetic body portion 628 facing the armatures 30 and 40 can be increased. By introducing a large amount of magnetic flux through the intervening magnetic body portion 628, the q-axis inductance is increased, Accordingly, the reluctance torque can be increased. In this modification as well, a fastening portion 329 is provided in the intervening magnetic body portion 628.

図17は第2実施形態に係る界磁子分割積層鋼板部を構成する鋼板の打抜き形状例を示す図である。すなわち、上記界磁子分割積層鋼板部326では、介在磁性体部328及び各磁気障壁部326cの形状は各層で略同一形状に形成されており、各磁石部分保持凹部327aの幅が各層で異なっている。そこで、長尺帯状の鋼板760を準備し、これに介在磁性体部328及び各磁気障壁部326c形成用の孔762と、磁石部分保持凹部327a形成用の孔763とを所定ピッチで打抜いておく。この後、磁石部分保持凹部327a形成用の孔763部分で、鋼板を分断する場合に、カットする位置をそれぞれ異ならせる。例えば、内周側の位置で積層される鋼板を分断する場合には、磁石部分保持凹部327a形成用の孔763の両端側近傍のカットラインC1で分断する。また、外周側の位置で積層される鋼板を分断する場合は、磁石部分保持凹部327a形成用の孔763の中央部近傍のカットラインC3で分断する。さらに、これらの中間の位置で積層される鋼板を分断する場合には、磁石部分保持凹部327a形成用の孔763の端部と中央の間のカットラインC2で分断する。これにより、介在磁性体部328及び各磁気障壁部326c形成用の孔762については同一形状で、かつ、幅寸法及び磁石部分保持凹部327a形成用の凹部763aの幅が異なる複数の鋼板を得ることができる。そして、これらを積層することで、界磁子分割積層鋼板部326を製造することができる。   FIG. 17 is a view showing an example of a punched shape of a steel plate constituting the field element split laminated steel plate portion according to the second embodiment. That is, in the field element split laminated steel plate portion 326, the shapes of the intervening magnetic body portion 328 and each magnetic barrier portion 326c are formed in substantially the same shape in each layer, and the width of each magnet portion holding recess 327a is different in each layer. ing. Therefore, a long strip-shaped steel plate 760 is prepared, and holes 762 for forming intervening magnetic body portions 328 and magnetic barrier portions 326c and holes 763 for forming magnet portion holding recesses 327a are punched out at a predetermined pitch. deep. Thereafter, when the steel plate is divided at the hole 763 portion for forming the magnet portion holding recess 327a, the cutting positions are made different. For example, when the steel plates laminated at the position on the inner peripheral side are divided, the steel plates are divided at the cut lines C1 in the vicinity of both ends of the hole 763 for forming the magnet part holding recess 327a. Moreover, when dividing the steel plate laminated | stacked on the outer peripheral side position, it cuts with the cut line C3 near the center part of the hole 763 for magnet part holding | maintenance recessed part 327a formation. Further, when the steel plates laminated at these intermediate positions are divided, they are divided at the cut line C2 between the end and the center of the hole 763 for forming the magnet part holding recess 327a. As a result, a plurality of steel plates having the same shape with respect to the interposition magnetic body portion 328 and the holes 762 for forming the magnetic barrier portions 326c, and different width dimensions and widths of the recess portions 763a for forming the magnet portion holding recess portions 327a are obtained. Can do. And the field element division | segmentation laminated steel plate part 326 can be manufactured by laminating | stacking these.

これにより、比較的種類の少ない金型で異なる形状の鋼板を得ることができる。   Thereby, steel plates having different shapes can be obtained with relatively few types of molds.

なお、上記実施形態において介在磁性体部328は必ずしも設ける必要はない。この場合、磁気障壁部を1つだけ設ければよく、界磁子分割積層鋼板部を構成する鋼板726dとしては、図18に示すように、1つの磁気障壁部形成用の孔部726eを有するものを用いればよい。この場合、永久磁石をより多く埋設できるようになる。   In the above embodiment, the intervening magnetic body portion 328 is not necessarily provided. In this case, it is only necessary to provide one magnetic barrier portion, and the steel plate 726d constituting the field element split laminated steel plate portion has one magnetic barrier portion forming hole 726e as shown in FIG. What is necessary is just to use. In this case, more permanent magnets can be embedded.

図19〜図21は界磁子分割積層鋼板部に係る変形例を示す図である。   19-21 is a figure which shows the modification concerning a field element division | segmentation laminated steel plate part.

この変形例に係る界磁子820では、弧状に曲げられた鋼板を積層することで、扇板状の界磁子分割積層鋼板部826を構成している。また、この界磁子分割積層鋼板部826を環状に連結することで、略円盤状の界磁子積層鋼板部824を構成している。また、永久磁石822も界磁子分割積層鋼板部826の内周形状及び外周形状に対応させて略扇板状に形成されている。そして、界磁子積層鋼板部824に外周囲にリング状部材850(好ましくは薄いリング状部材)を外嵌めすることで、界磁子積層鋼板部824を略円盤状に保持し、かつ、永久磁石822をも外周側に抜けでないように保持している。   In the field element 820 according to this modification, a fan-shaped field element split laminated steel plate portion 826 is configured by laminating steel plates bent in an arc shape. The field element split laminated steel plate portion 826 is connected in an annular shape to constitute a substantially disc-shaped field element laminated steel plate portion 824. The permanent magnet 822 is also formed in a substantially fan plate shape corresponding to the inner peripheral shape and the outer peripheral shape of the field element split laminated steel plate portion 826. Then, by ring-fitting a ring-shaped member 850 (preferably a thin ring-shaped member) around the outer periphery of the field-element laminated steel plate portion 824, the field-element-laminated steel plate portion 824 is held in a substantially disc shape and is permanently The magnet 822 is also held on the outer peripheral side so as not to come off.

この変形例では、界磁子820の外周形状を凹凸の無い円形状に近づけることができ、界磁子820が回転する際の風損を低減できる。   In this modification, the outer peripheral shape of the field element 820 can be brought close to a circular shape without unevenness, and the windage loss when the field element 820 rotates can be reduced.

なお、第1実施形態においても同様に鋼板を弧状に曲げて、界磁子20の外形状を略円形状に近づけることができる。   In the first embodiment, the outer shape of the field element 20 can be brought close to a substantially circular shape by similarly bending the steel plate into an arc shape.

{第3実施形態}
第3実施形態に係るアキシャルギャップ型回転電機について説明する。図22は本実施形態に係るアキシャルギャップ型回転電機の界磁子を示す一部分解斜視図である。なお、界磁子920の両側に設けられる2つの電機子30,40については第1実施形態と同様構成であるためその説明を省略し、ここでは界磁子920を中心に説明する。界磁子920は、略円盤状に形成されており、シャフトを介して所定の回転軸18a周りに回転自在に配設されている。
{Third embodiment}
An axial gap type rotating electrical machine according to the third embodiment will be described. FIG. 22 is a partially exploded perspective view showing the field element of the axial gap type rotating electric machine according to the present embodiment. Note that the two armatures 30 and 40 provided on both sides of the field element 920 have the same configuration as in the first embodiment, and thus the description thereof will be omitted. Here, the field element 920 will be mainly described. The field element 920 is formed in a substantially disc shape, and is disposed so as to be rotatable around a predetermined rotation axis 18a via a shaft.

界磁子920は、略円盤状(より具体的には略正多角形状、ここでは略正8角形状)に形成されており、シャフトを介して所定の回転軸18a周りに回転自在に配設されている。   The field element 920 is formed in a substantially disc shape (more specifically, a substantially regular polygonal shape, here, a substantially regular octagonal shape), and is arranged rotatably around a predetermined rotation axis 18a via a shaft. Has been.

この界磁子920は、複数の永久磁石922と、界磁子積層鋼板部924とを有している。   The field element 920 includes a plurality of permanent magnets 922 and a field element laminated steel plate portion 924.

各永久磁石922は、回転軸18a周りに間隔をあけて配設されている。より具体的には、永久磁石922は、回転軸18aに対して略直交する平面において、略扇板状に形成されている。各永久磁石922は、その幅狭部分を内周側に向けると共にその幅広部分を外周側に向けた姿勢で、それぞれの間に間隔をあけて回転軸18aを中心とする略環状に配設されている。この各永久磁石922も、上記各永久磁石22と同様に着磁されており、両電機子30、40に対してそれぞれ回転軸18a周りに交互の磁極を呈するようになっている。   Each permanent magnet 922 is disposed around the rotation shaft 18a with a space therebetween. More specifically, the permanent magnet 922 is formed in a substantially fan shape on a plane that is substantially orthogonal to the rotation shaft 18a. The permanent magnets 922 are arranged in a substantially annular shape centering on the rotating shaft 18a with the narrow portion facing the inner peripheral side and the wide portion facing the outer peripheral side with a gap therebetween. ing. The permanent magnets 922 are also magnetized in the same manner as the permanent magnets 22 and exhibit alternating magnetic poles around the rotary shaft 18a with respect to the armatures 30 and 40, respectively.

界磁子積層鋼板部924は、一枚の帯状の鋼板960を、回転軸18a周りに巻回してその径方向に積層することで形成されている。より具体的には、一枚の帯状の鋼板960に、各永久磁石922を収容する磁石保持凹部927を形成するための孔と、上記磁気障壁部326cと同様構成の磁気障壁部926cを形成するための孔とを、それらの形成位置に応じた位置に打抜き形成し、これを回転軸18a周りに巻回することで、界磁子積層鋼板部924が形成される。そして、巻回を終了し、各鋼板960の積層状態を図示省略の保持部で保持することで、一体化された界磁子積層鋼板部924を得ることができる。この界磁子積層鋼板部924には、上記永久磁石922を収容可能な略扇板状の磁石保持凹部927が形成され、また、各永久磁石922間に、上記磁気障壁部326c及び介在磁性体部328と同様構成の磁気障壁部926c及び介在磁性体部928が設けられる。つまり、本実施形態では、永久磁石922は、界磁子920の径方向に略直交する方向の幅が外周側に向けて順次大きくなっており、磁気障壁部926c及び介在磁性体部928は、界磁子920の径方向においてその径方向に略直交する方向の幅が略等幅である。   The field element laminated steel plate portion 924 is formed by winding a single strip-shaped steel plate 960 around the rotary shaft 18a and laminating it in the radial direction. More specifically, a hole for forming a magnet holding recess 927 for accommodating each permanent magnet 922 and a magnetic barrier portion 926c having the same configuration as the magnetic barrier portion 326c are formed in one strip-shaped steel plate 960. The field element laminated steel plate portion 924 is formed by punching and forming holes for forming the holes at positions corresponding to the formation positions and winding the holes around the rotation shaft 18a. And winding is complete | finished and the integrated field element laminated steel plate part 924 can be obtained by hold | maintaining the lamination | stacking state of each steel plate 960 with a holding part abbreviate | omitting illustration. The field element laminated steel plate portion 924 is formed with a substantially fan-shaped magnet holding recess 927 capable of accommodating the permanent magnet 922, and between the permanent magnets 922, the magnetic barrier portion 326c and the intervening magnetic body. A magnetic barrier portion 926c and an intervening magnetic body portion 928 having the same configuration as the portion 328 are provided. That is, in the present embodiment, the permanent magnet 922 has a width in the direction substantially perpendicular to the radial direction of the field element 920 that gradually increases toward the outer peripheral side, and the magnetic barrier portion 926c and the intervening magnetic body portion 928 are In the radial direction of the field element 920, the width in a direction substantially orthogonal to the radial direction is substantially equal.

この実施形態では、帯状の鋼板960を巻回することで、界磁子積層鋼板部924を容易に製造することができる。   In this embodiment, the field element laminated steel plate portion 924 can be easily manufactured by winding the belt-shaped steel plate 960.

特に、帯状の鋼板960の巻回状態を保持するだけでよいので、積層状態の保持も比較的簡易である。   In particular, since it is only necessary to maintain the winding state of the strip-shaped steel plate 960, it is relatively easy to maintain the laminated state.

また、界磁子積層鋼板部を分割することによる利点等を除いて、実施形態1と同様の作用効果を奏する。   In addition, the same effects as those of the first embodiment can be obtained except for the advantage of dividing the field element laminated steel sheet.

なお、必ずしも一枚の帯状の鋼板で界磁子積層鋼板部924を形成する必要はなく、複数枚の帯状の鋼板を順次巻回して界磁子積層鋼板部924を形成してもよい。   Note that it is not always necessary to form the field element laminated steel plate portion 924 with a single strip-shaped steel plate, and the field element laminated steel plate portion 924 may be formed by sequentially winding a plurality of strip shaped steel plates.

また、図23に示す変形例のように、磁石保持凹部1027及び永久磁石1022、磁気障壁部1026cを、界磁子1020の径方向に沿って、当該径方向に略直交する幅寸法を略等幅にすると共に、介在磁性体部1028を、内周側から外周側に向けて順次幅を大きくするようにしてもよい。この場合、介在磁性体部1028は回転軸18aに略直交する方向において略扇形状を呈するようになる。つまり、磁気障壁部1026c及び磁石保持凹部1027は各層で略同一形状であり、介在磁性体部1028の幅が各層で異なっている。   Further, as in the modification shown in FIG. 23, the magnet holding recess 1027, the permanent magnet 1022, and the magnetic barrier portion 1026c are substantially equal in width dimension substantially perpendicular to the radial direction along the radial direction of the field element 1020. In addition to increasing the width, the width of the intervening magnetic body portion 1028 may be sequentially increased from the inner peripheral side toward the outer peripheral side. In this case, the intervening magnetic body portion 1028 has a substantially fan shape in a direction substantially orthogonal to the rotation shaft 18a. That is, the magnetic barrier portion 1026c and the magnet holding recess 1027 have substantially the same shape in each layer, and the width of the intervening magnetic body portion 1028 is different in each layer.

この場合、界磁子積層鋼板部1024を構成する帯状の鋼板1060としては、図24及び図24に示すように、磁石保持凹部1027を形成するための孔1062及び磁気障壁部1026cを形成するための孔1064を一組として同一形状で打抜くと共に、介在磁性体部1028の幅に応じて鋼板の送り量を変えて打抜き位置を変更したものを用いることができる。このため、打抜き用の金型の刃形状として、1種類を準備すればよく、製造設備を簡略化できる。   In this case, as the strip-shaped steel plate 1060 constituting the field element laminated steel plate portion 1024, as shown in FIGS. 24 and 24, the hole 1062 for forming the magnet holding recess 1027 and the magnetic barrier portion 1026c are formed. The hole 1064 can be punched in the same shape as a set, and the punching position can be changed by changing the feed amount of the steel sheet according to the width of the intervening magnetic body portion 1028. For this reason, what is necessary is just to prepare one type as a blade shape of the metal mold | die for punching, and a manufacturing facility can be simplified.

なお、上記各実施形態では、永久磁石が回転軸方向において1層に設けられた例で説明したが、永久磁石が回転軸方向において2層に設けられ、各層の各永久磁石がそれぞれ電機子30,40に対して磁極を呈するようにしてもよい。永久磁石を2層に配置することで、両電機子30,40に対して異なる磁極配置にして、回転運動を生じさせることができる。   In each of the above embodiments, the permanent magnets are provided in one layer in the rotation axis direction. However, the permanent magnets are provided in two layers in the rotation axis direction, and each permanent magnet in each layer is armature 30. , 40 may be provided with magnetic poles. By disposing the permanent magnets in two layers, different magnetic pole arrangements can be made for both armatures 30 and 40, and rotational motion can be generated.

本実施形態に係る上記変形例において、永久磁石が回転軸方向において2層に設けられた構成を適用すると、図26に示すように、帯状の鋼板1160の両側のそれぞれに、磁石保持凹部を形成するための孔1162及び磁気障壁部を形成するための孔1164を形成するとよい。この場合、各層の永久磁石1122(図26の2点鎖線参照)で挟まれる部分は、バックヨークとして働くため、その部分に磁気障壁を設ける必要はない。磁気障壁を設けない構成とすることで、構成の簡易化及び小型化を図ることができる。なお、この場合、各層の永久磁石1122はそれぞれ異なる磁気回路を構成することになるので、各層で永久磁石1122の位置が同じである必要はない。この場合にも、各永久磁石1122はエアギャップに実質的に露出しないで界磁子積層鋼板部がエアギャップに露出する態様で、各永久磁石1122が当該界磁子積層鋼板部の対向部分を介して電機子に対向している。   In the above modification according to the present embodiment, when a configuration in which the permanent magnets are provided in two layers in the rotation axis direction is applied, magnet holding recesses are formed on both sides of the strip-shaped steel plate 1160 as shown in FIG. And a hole 1164 for forming a magnetic barrier portion may be formed. In this case, the portion sandwiched between the permanent magnets 1122 (see the two-dot chain line in FIG. 26) of each layer serves as a back yoke, and therefore it is not necessary to provide a magnetic barrier at that portion. By adopting a configuration in which no magnetic barrier is provided, the configuration can be simplified and downsized. In this case, since the permanent magnets 1122 in each layer constitute different magnetic circuits, the positions of the permanent magnets 1122 do not have to be the same in each layer. Also in this case, each permanent magnet 1122 is not exposed to the air gap and the field element laminated steel plate portion is exposed to the air gap. Via the armature.

この場合に、帯状の鋼板1260に形成される磁石保持凹部を形成するための孔1262及び磁気障壁部を形成するための孔1264とが連なって一体となっていてもよい。この場合、永久磁石1122が移動しないように、永久磁石1122が当接可能な段部1266を設ける等、位置決め部を設けるとよい。   In this case, the hole 1262 for forming the magnet holding recess formed in the belt-shaped steel plate 1260 and the hole 1264 for forming the magnetic barrier portion may be integrated and integrated. In this case, it is preferable to provide a positioning part such as a step 1266 on which the permanent magnet 1122 can abut so that the permanent magnet 1122 does not move.

{変形例}
なお、上記した各実施形態及び各変形例に係る構成は、互いに相反しない限りにおいて適宜組合わせることができる。
{Modifications}
Note that the configurations according to the above-described embodiments and modifications can be appropriately combined as long as they do not conflict with each other.

また、上記説明では、界磁子が回転子であり、電機子が固定子である場合で説明したが、界磁子が固定子であり、電機子が固定子であってもよい。つまり、界磁子が電機子に対して相対的に回転すればよい。   In the above description, the field element is a rotor and the armature is a stator. However, the field element may be a stator and the armature may be a stator. That is, the field element may be rotated relative to the armature.

第1実施形態に係るアキシャルギャップ型回転電機を示す分解斜視図である。It is a disassembled perspective view which shows the axial gap type rotary electric machine which concerns on 1st Embodiment. 同上のアキシャルギャップ型回転電機の界磁子を示す分解斜視図である。It is a disassembled perspective view which shows the field element of an axial gap type rotary electric machine same as the above. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 第1実施形態の変形例に係る界磁子を示す図である。It is a figure which shows the field element which concerns on the modification of 1st Embodiment. 同上の変形例に係る界磁子分割積層鋼板部、永久磁石及び介在磁心の形状を示す図である。It is a figure which shows the shape of the field element division | segmentation laminated steel plate part which concerns on a modification same as the above, a permanent magnet, and an intervening magnetic core. 同上の変形例に係る界磁子分割積層鋼板部、永久磁石及び介在磁心非磁性体ホルダで保持した状態を示す図である。It is a figure which shows the state hold | maintained by the field element division | segmentation laminated steel plate part which concerns on a modification same as the above, a permanent magnet, and an intervening core nonmagnetic material holder. 第2実施形態に係るアキシャルギャップ型回転電機の界磁子を示す斜視図である。It is a perspective view which shows the field element of the axial gap type rotary electric machine which concerns on 2nd Embodiment. 同上の界磁子の永久磁石及び界磁子分割積層鋼板部を示す分解斜視図である。It is a disassembled perspective view which shows the permanent magnet of a field element same as the above, and a field element division | segmentation laminated steel plate part. 同上の界磁子の製造工程を示す図である。It is a figure which shows the manufacturing process of a field element same as the above. 同上の界磁子の製造工程を示す図である。It is a figure which shows the manufacturing process of a field element same as the above. 鋼板の積層状態での固定及び永久磁石の保持に係る変形例を示す図である。It is a figure which shows the modification which concerns on fixation in the lamination | stacking state of a steel plate, and holding | maintenance of a permanent magnet. 同上の変形例を示す図である。It is a figure which shows the modification same as the above. 同上の変形例を示す図である。It is a figure which shows the modification same as the above. 永久磁石の保持に係る他の変形例を示す図である。It is a figure which shows the other modification which concerns on holding | maintenance of a permanent magnet. 永久磁石の保持に係る他の変形例を示す図である。It is a figure which shows the other modification which concerns on holding | maintenance of a permanent magnet. 介在磁性体部に係る変形例を示す図である。It is a figure which shows the modification concerning an intervening magnetic body part. 第2実施形態に係る界磁子分割積層鋼板部を構成する鋼板の打抜き形状例を示す図である。It is a figure which shows the punching shape example of the steel plate which comprises the field element division | segmentation laminated steel plate part which concerns on 2nd Embodiment. 磁気障壁部を1つだけ設けた場合の鋼板の形状例を示す図である。It is a figure which shows the example of a shape of the steel plate at the time of providing only one magnetic barrier part. 界磁子分割積層鋼板部に係る変形例を示す図である。It is a figure which shows the modification which concerns on a field element division | segmentation laminated steel plate part. 同上の変形例の製造工程を示す図である。It is a figure which shows the manufacturing process of the modification same as the above. 同上の変形例の製造工程を示す図である。It is a figure which shows the manufacturing process of the modification same as the above. 第3実施形態に係るアキシャルギャップ型回転電機の界磁子を示す一部分解斜視図である。It is a partially exploded perspective view which shows the field element of the axial gap type rotary electric machine which concerns on 3rd Embodiment. 第3実施形態の変形例を示す図である。It is a figure which shows the modification of 3rd Embodiment. 同上の変形例の鋼板の打抜き形状例を示す図である。It is a figure which shows the punching shape example of the steel plate of the modification same as the above. 同上の変形例の鋼板の打抜き形状例を示す図である。It is a figure which shows the punching shape example of the steel plate of the modification same as the above. 2層に永久磁石を設けた場合において鋼板の打抜き形状例を示す図である。It is a figure which shows the punching shape example of a steel plate in the case of providing a permanent magnet in two layers. 2層に永久磁石を設けた場合において鋼板の他の打抜き形状例を示す図である。It is a figure which shows the other punching shape example of a steel plate in the case of providing a permanent magnet in two layers.

符号の説明Explanation of symbols

10 アキシャルギャップ型回転電機
18a 回転軸
20,120,320,820,920,1020 界磁子
22,122,322,822,922 永久磁石
24,124,324,824,924,1024 界磁子積層鋼板部
26,126,226,326,426,526,626,826 界磁子分割積層鋼板部
26a,226a,326a 対向部分
26b,326b 側方部分
27,127,327,927,1027 磁石保持凹部
28,128,328,628,1028 介在磁性体部
30,40 電機子
50,150 非磁性体ホルダ
326c,626c,926c 磁気障壁部
327a,427a 磁石部分保持凹部
327b 係止爪
329 締結部
350 内周側リング部材
352 外周側リング部材
526d 鋼板
628a 幅広部
726d 鋼板
760,1060,1160,1260 鋼板
960 鋼板
DESCRIPTION OF SYMBOLS 10 Axial-gap type rotary electric machine 18a Rotating shaft 20, 120, 320, 820, 920, 1020 Field element 22, 122, 322, 822, 922 Permanent magnet 24, 124, 324, 824, 924, 1024 Field element laminated steel sheet Portions 26, 126, 226, 326, 426, 526, 626, 826 Field element split laminated steel plate portions 26a, 226a, 326a Opposing portions 26b, 326b Side portions 27, 127, 327, 927, 1027 Magnet holding recesses 28, 128, 328, 628, 1028 Intervening magnetic part 30, 40 Armature 50, 150 Non-magnetic holder 326c, 626c, 926c Magnetic barrier part 327a, 427a Magnet part holding recess 327b Locking claw 329 Fastening part 350 Inner ring Member 352 Outer ring member 526d Steel plate 62 a wide portion 726d steel 760,1060,1160,1260 steel plate 960 steel plate

Claims (27)

界磁子(20,120,320,820,920,1020)と、前記前記界磁子の両側にエアギャップを隔てて設けられた2つの電機子(30、40)とを備え、前記界磁子が前記2つの電機子に対して相対的に回転軸(18a)周りに回転するアキシャルギャップ型回転電機であって、
前記界磁子は、
前記回転軸周りに配設され、それぞれ前記2つの電機子のうちの一方又は双方に対して磁極を呈する複数の永久磁石(22,122,322,822,922)と、
前記回転軸を中心とする円の径方向に積層された複数の鋼板を有する界磁子積層鋼板部(24,124,324,824,924,1024)と、
を備え、
前記界磁子積層鋼板部に前記各永久磁石を収容保持可能な磁石保持凹部(27,127,327,927,1027)が複数形成され、前記各永久磁石が前記エアギャップに実質的に露出しないで前記界磁子積層鋼板部が前記エアギャップに露出する態様で、前記各永久磁石が前記各磁石保持凹部内に収容保持されて前記界磁子積層鋼板部のうちいずれかの前記各電機子への対向部分(26a,226a,326a)を介して前記2つの電機子のうちの一方又は双方に対して対向する、アキシャルギャップ型回転電機(10)。
A field element (20, 120, 320, 820, 920, 1020) and two armatures (30, 40) provided on both sides of the field element with an air gap therebetween, An axial gap type rotating electric machine in which a child rotates around a rotation axis (18a) relative to the two armatures,
The field element is
A plurality of permanent magnets (22, 122, 322, 822, 922) disposed around the rotation axis and exhibiting magnetic poles for one or both of the two armatures,
A field element laminated steel plate portion (24, 124, 324, 824, 924, 1024) having a plurality of steel plates laminated in a radial direction of a circle around the rotation axis;
With
A plurality of magnet holding recesses (27, 127, 327, 927, 1027) capable of accommodating and holding the permanent magnets are formed in the field element laminated steel plate portion, and the permanent magnets are not substantially exposed to the air gap. In the aspect in which the field element laminated steel plate portion is exposed to the air gap, each of the armatures of the field element laminated steel plate portions is stored and held in the magnet holding recesses. An axial gap type rotating electrical machine (10) facing one or both of the two armatures via a facing portion (26a, 226a, 326a).
請求項1記載のアキシャルギャップ型回転電機であって、
前記界磁子積層鋼板部(24,124,324,824)は、前記回転軸周りに分割された複数の界磁子分割積層鋼板部(26,126,226,326,426,526,626,826)を有する、アキシャルギャップ型回転電機。
The axial gap type rotating electrical machine according to claim 1,
The field element laminated steel plate parts (24, 124, 324, 824) are divided into a plurality of field element divided laminated steel sheet parts (26, 126, 226, 326, 426, 526, 626, 626) divided around the rotation axis. 826), an axial gap type rotating electrical machine.
請求項2記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部(26,126,226)のそれぞれに1つの永久磁石を挿入可能な前記磁石保持凹部(27,127)が形成されている、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 2,
The axial gap type rotating electrical machine in which the magnet holding recesses (27, 127) into which one permanent magnet can be inserted are formed in each of the field element split laminated steel plate portions (26, 126, 226).
請求項3記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部(126,226)は、略同一形状に打抜かれた鋼板を積層することで形成された、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 3,
Each field element division laminated steel plate part (126, 226) is an axial gap type rotating electrical machine formed by laminating steel plates punched in substantially the same shape.
請求項3又は請求項4記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部(26,126,226)の各間に、前記各永久磁石及び前記各界磁子分割積層鋼板部に対して実質的に磁気的に独立する磁性体部(28,128)が設けられた、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 3 or claim 4,
Between each said field element division | segmentation laminated steel plate part (26,126,226), each magnetic body part (28, substantially magnetically independent with respect to each said permanent magnet and each said field element division lamination steel plate part) 128), an axial gap type rotating electrical machine.
請求項5記載のアキシャルギャップ型回転電機であって、
前記各磁性体部(28,128)のうち前記各界磁子分割積層鋼板部に対して対向する面と、前記各界磁子分割積層鋼板部(26,126,226)のうち前記各磁性体部に対して対向する面とは、略平行である、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 5,
A surface of each of the magnetic body portions (28, 128) that faces the field-element-divided laminated steel plate portion, and each magnetic body portion of the field-element-divided laminated steel plate portion (26, 126, 226). An axial gap type rotating electrical machine that is substantially parallel to the surface facing the.
請求項5又は請求項6記載のアキシャルギャップ型回転電機であって、
前記各磁性体部(128)は、圧粉鉄心で形成された、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 5 or 6,
Each said magnetic body part (128) is an axial gap type rotary electric machine formed with the dust core.
請求項5又は請求項6記載のアキシャルギャップ型回転電機であって、
前記各第2磁性体部(28)は、前記回転軸と略直交する方向に鋼板が積層された積層鋼板で形成された、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 5 or 6,
Each said 2nd magnetic body part (28) is an axial gap type rotary electric machine formed with the laminated steel plate with which the steel plate was laminated | stacked in the direction substantially orthogonal to the said rotating shaft.
請求項2記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部(326,426,526,626,826)のそれぞれに、前記各永久磁石のうち前記回転軸を中心とする円の周方向における略半分部分を収容保持可能な磁石部分保持凹部(327a,427a)が形成され、
隣設する2つの前記各界磁子分割積層鋼板部に設けられた2つの前記磁石部分保持凹部が前記磁石保持凹部(327)として前記永久磁石を保持する、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 2,
Each of the field element split laminated steel plate portions (326, 426, 526, 626, 826) can accommodate and hold approximately half of the permanent magnets in the circumferential direction of the circle around the rotation axis. Partial holding recesses (327a, 427a) are formed,
An axial gap type rotating electrical machine in which the two magnet partial holding recesses provided in the two adjacent field element split laminated steel plate portions hold the permanent magnet as the magnet holding recess (327).
請求項9記載のアキシャルギャップ型回転電機であって、
前記各永久磁石(322)は前記周方向における略中央部で前記回転軸を中心とする円の径方向長さが最大になる形状に形成された、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 9,
Each said permanent magnet (322) is an axial gap type rotary electric machine formed in the shape where the radial direction length of the circle | round | yen centering on the said rotating shaft becomes the maximum at the approximate center part in the said circumferential direction.
請求項9又は請求項10記載のアキシャルギャップ型回転電機であって、
前記各磁石部分保持凹部(427a)は、前記界磁子の内周側及び外周側の少なくとも一方で狭くなっている、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 9 or 10,
Each said magnet part holding | maintenance recessed part (427a) is an axial gap type rotary electric machine with which at least one of the inner peripheral side and the outer peripheral side of the said field element is narrow.
請求項2〜請求項11のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部(824)を構成する各鋼板は、弧状に曲げられている、アキシャルギャップ型回転電機。
It is an axial gap type rotary electric machine in any one of Claims 2-11,
Each steel plate constituting each field element split laminated steel plate portion (824) is an axial gap type rotating electrical machine, which is bent in an arc shape.
請求項2〜請求項12のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部は、非磁性体ホルダ(50,150,350、352)で保持された、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 2 to 12,
Each field element division | segmentation laminated steel plate part is an axial gap type rotary electric machine hold | maintained with the nonmagnetic material holder (50,150,350,352).
請求項2〜請求項12のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各界磁子分割積層鋼板部と一体的に金型成形された非磁性体ホルダ(150)を備えたアキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 2 to 12,
An axial gap type rotating electrical machine comprising a non-magnetic holder (150) molded integrally with each field element split laminated steel plate portion.
請求項1記載のアキシャルギャップ型回転電機であって、
前記界磁子積層鋼板部(924)は、帯状の鋼板(960)を巻回することで形成された、アキシャルギャップ型回転電機。
The axial gap type rotating electrical machine according to claim 1,
The field element laminated steel plate portion (924) is an axial gap type rotating electrical machine formed by winding a strip-shaped steel plate (960).
請求項9〜請求項11、請求項15記載のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各永久磁石(322,822,922)間に磁気障壁部(326c,626c,926c)が設けられた、アキシャルギャップ型回転電機。
It is an axial gap type rotary electric machine in any one of Claims 9-11, Claim 15,
An axial gap type rotating electrical machine in which a magnetic barrier portion (326c, 626c, 926c) is provided between the permanent magnets (322, 822, 922).
請求項16記載のアキシャルギャップ型回転電機であって、
前記各永久磁石(322,822,922)の各間に2つの磁気障壁部(326c,626c,926c)が設けられ、その2つの磁気障壁部間に磁性体部(328,628,1028)が設けられた、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 16,
Two magnetic barrier portions (326c, 626c, 926c) are provided between the permanent magnets (322, 822, 922), and a magnetic body portion (328, 628, 1028) is provided between the two magnetic barrier portions. An axial gap type rotating electrical machine provided.
請求項17記載のアキシャルギャップ型回転電機であって、
前記各磁性体部(628)は、前記回転軸方向における両端部で前記回転軸を中心とする円の周方向に幅広(628a)に形成されている、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 17,
Each of the magnetic body portions (628) is an axial gap type rotating electrical machine formed so as to have a wide width (628a) in a circumferential direction of a circle centered on the rotation axis at both ends in the rotation axis direction.
請求項17又は請求項18記載のアキシャルギャップ型回転電機であって、
前記各磁性体部のうちの少なくとも1つに、積層された鋼板同士を締結する締結部(329)が設けられた、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 17 or 18,
An axial gap type rotating electrical machine in which a fastening portion (329) for fastening laminated steel plates is provided on at least one of the magnetic body portions.
請求項17〜請求項19のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各磁気障壁部(326c,626c,926c)は各層で略同一形状であり、
前記各磁石保持凹部(327,927)の幅と前記各磁性体部(328,628)の幅のうち一方が各層で略同一で、他方が各層で異なる、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 17 to 19,
Each of the magnetic barrier portions (326c, 626c, 926c) has substantially the same shape in each layer,
One of the widths of the magnet holding recesses (327, 927) and the width of the magnetic body portions (328, 628) is substantially the same in each layer, and the other is different in each layer.
請求項1〜請求項20のいずれかに記載のアキシャルギャップ型回転電機であって、
前記界磁子積層鋼板部を構成する鋼板に、前記各磁石保持凹部内に向けて突出し、前記各磁石保持凹部内に収容保持された前記永久磁石に係止する係止爪(327b)が形成された、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 1 to 20,
The steel plate constituting the field element laminated steel plate portion is formed with a locking claw (327b) that protrudes into the magnet holding recess and locks with the permanent magnet housed and held in the magnet holding recess. An axial gap type rotating electrical machine.
請求項1〜請求項21のいずれかに記載のアキシャルギャップ型回転電機であって、
前記界磁子積層鋼板部の内周側及び外周側の少なくとも一方に、前記各磁石保持凹部の開口で前記各永久磁石の移動を規制する鋼板(526d)が積層された、アキシャルギャップ型回転電機。
The axial gap type rotating electrical machine according to any one of claims 1 to 21,
An axial gap type rotating electrical machine in which a steel plate (526d) for restricting the movement of each permanent magnet is laminated on at least one of the inner peripheral side and the outer peripheral side of the field element laminated steel plate portion through the opening of each magnet holding recess. .
請求項1〜請求項22のいずれかに記載のアキシャルギャップ型回転電機であって、
前記界磁子積層鋼板部の内周側及び外周側の少なくとも一方に、前記各磁石保持凹部の開口で前記各永久磁石の移動を規制する非磁性体リング部材(52、54,350,352)が設けられた、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 1 to 22,
A non-magnetic ring member (52, 54, 350, 352) that restricts the movement of each permanent magnet through the opening of each magnet holding recess on at least one of the inner peripheral side and the outer peripheral side of the field element laminated steel plate part An axial gap type rotating electrical machine provided with
請求項1〜請求項23のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各永久磁石(22,122,322,822,922)は、前記回転軸方向において1層に設けられた、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 1 to 23,
Each said permanent magnet (22,122,322,822,922) is an axial gap type rotary electric machine provided in one layer in the said rotating shaft direction.
請求項1〜請求項23のいずれかに記載のアキシャルギャップ型回転電機であって、
前記各永久磁石(1122)は、前記回転軸方向において2層に設けられた、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to any one of claims 1 to 23,
Each permanent magnet (1122) is an axial gap type rotating electrical machine provided in two layers in the direction of the rotation axis.
請求項25記載のアキシャルギャップ型回転電機であって、
前記各永久磁石(1122)の層間には磁気障壁が設けられていない、アキシャルギャップ型回転電機。
An axial gap type rotating electrical machine according to claim 25,
An axial gap type rotating electrical machine in which no magnetic barrier is provided between the layers of the permanent magnets (1122).
請求項1〜請求項26のいずれかに記載のアキシャルギャップ型回転電機の製造方法であって、
鋼板を打抜いてから積層することで、前記界磁子積層鋼板部(924,1024)又は前記各界磁子分割積層鋼板部(26,126,226,326,426,526,626,826)を製造する、アキシャルギャップ型回転電機の製造方法。
A method for manufacturing an axial gap rotating electrical machine according to any one of claims 1 to 26, wherein:
By punching and laminating the steel plates, the field element laminated steel plate portions (924, 1024) or the field element split laminated steel plate portions (26, 126, 226, 326, 426, 526, 626, 826) are formed. A manufacturing method of an axial gap type rotating electrical machine to be manufactured.
JP2007119789A 2007-04-27 2007-04-27 Axial gap type rotating electrical machine and manufacturing method thereof Expired - Fee Related JP4561770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119789A JP4561770B2 (en) 2007-04-27 2007-04-27 Axial gap type rotating electrical machine and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119789A JP4561770B2 (en) 2007-04-27 2007-04-27 Axial gap type rotating electrical machine and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010093914A Division JP5353804B2 (en) 2010-04-15 2010-04-15 Axial gap type rotating electrical machine and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008278648A true JP2008278648A (en) 2008-11-13
JP4561770B2 JP4561770B2 (en) 2010-10-13

Family

ID=40055957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119789A Expired - Fee Related JP4561770B2 (en) 2007-04-27 2007-04-27 Axial gap type rotating electrical machine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4561770B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124916A (en) * 2007-11-19 2009-06-04 Daikin Ind Ltd Rotor and manufacturing method thereof, rotating electrical machine, and compressor
WO2010064510A1 (en) * 2008-12-03 2010-06-10 本田技研工業株式会社 Axial gap motor and method of manufacturing rotor for same
JP2010136501A (en) * 2008-12-03 2010-06-17 Honda Motor Co Ltd Axial gap-type motor and its rotor manufacturing method
JP2010148315A (en) * 2008-12-22 2010-07-01 Honda Motor Co Ltd Axial gap type motor, and method of manufacturing rotor thereof
WO2010087103A1 (en) * 2009-01-30 2010-08-05 本田技研工業株式会社 Axial gap motor and method of manufacturing rotor for same
JP2010183777A (en) * 2009-02-06 2010-08-19 Honda Motor Co Ltd Axial gap motor and manufacturing method of rotor thereof
JP2010283923A (en) * 2009-06-02 2010-12-16 Honda Motor Co Ltd Axial gap motor and method of manufacturing the same
JP2011055618A (en) * 2009-09-01 2011-03-17 Daikin Industries Ltd Method for manufacturing rotor core for axial-gap type rotating electrical machine
JP2011130529A (en) * 2009-12-15 2011-06-30 Honda Motor Co Ltd Axial gap motor and method of manufacturing rotor of the same
JP2011130531A (en) * 2009-12-15 2011-06-30 Honda Motor Co Ltd Axial gap motor
JP2011135626A (en) * 2009-12-22 2011-07-07 Daikin Industries Ltd Method for manufacturing stator core for axial gap type rotary electric machine
JP2011151980A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Rotor core for axial gap rotary-electric machine and method of manufacturing the same
JP2011151982A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Rotor core for axial gap rotary-electric machine and method of manufacturing the same
FR2996378A1 (en) * 2012-10-03 2014-04-04 Renault Sas Rotor for radial flow electric machine, has radial structure whose thickness along rotation axis and/or length are strictly less than corresponding dimension of adjacent side edges of two adjacent pole pieces
JP2018082578A (en) * 2016-11-17 2018-05-24 株式会社日立産機システム Axial gap rotary electric machine and compressor
EP3480930A1 (en) * 2017-11-03 2019-05-08 Miba Sinter Austria GmbH Axial flow machine
WO2021026575A1 (en) * 2019-08-09 2021-02-18 Miba Sinter Austria Gmbh Rotor
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
WO2022200379A1 (en) * 2021-03-24 2022-09-29 Renault S.A.S. Rotor for an axial flux electric machine, and methods for assembling and removing such a rotor
CN115395752A (en) * 2022-10-26 2022-11-25 中国科学院大学 Double-layer permanent magnet axial flux generator permanent magnet rotor disc and power generation method
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121176U (en) * 1982-02-09 1983-08-18 高橋 義照 Disc type brushless motor
JP2004289904A (en) * 2003-03-20 2004-10-14 Isuzu Motors Ltd Permanent magnet retaining structure for rotor
JP2005269778A (en) * 2004-03-18 2005-09-29 Equos Research Co Ltd Axial-gap rotating electric machine
JP2005341696A (en) * 2004-05-26 2005-12-08 Nissan Motor Co Ltd Axial gap type rotating electric machine
JP2006158092A (en) * 2004-11-29 2006-06-15 Nidec Shibaura Corp Rotor of motor
JP2006166635A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Dynamo-electric machine
JP2006304539A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Rotor structure of axial gap rotating electric machine
JP2007089270A (en) * 2005-09-20 2007-04-05 Toyota Central Res & Dev Lab Inc Axial motor and its rotor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121176U (en) * 1982-02-09 1983-08-18 高橋 義照 Disc type brushless motor
JP2004289904A (en) * 2003-03-20 2004-10-14 Isuzu Motors Ltd Permanent magnet retaining structure for rotor
JP2005269778A (en) * 2004-03-18 2005-09-29 Equos Research Co Ltd Axial-gap rotating electric machine
JP2005341696A (en) * 2004-05-26 2005-12-08 Nissan Motor Co Ltd Axial gap type rotating electric machine
JP2006158092A (en) * 2004-11-29 2006-06-15 Nidec Shibaura Corp Rotor of motor
JP2006166635A (en) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd Dynamo-electric machine
JP2006304539A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Rotor structure of axial gap rotating electric machine
JP2007089270A (en) * 2005-09-20 2007-04-05 Toyota Central Res & Dev Lab Inc Axial motor and its rotor

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124916A (en) * 2007-11-19 2009-06-04 Daikin Ind Ltd Rotor and manufacturing method thereof, rotating electrical machine, and compressor
CN101978584A (en) * 2008-12-03 2011-02-16 本田技研工业株式会社 Axial gap type motor and method of manufacturing rotor of motor
WO2010064510A1 (en) * 2008-12-03 2010-06-10 本田技研工業株式会社 Axial gap motor and method of manufacturing rotor for same
JP2010136501A (en) * 2008-12-03 2010-06-17 Honda Motor Co Ltd Axial gap-type motor and its rotor manufacturing method
EP2355313A1 (en) * 2008-12-03 2011-08-10 Honda Motor Co., Ltd. Axial gap motor and method of manufacturing rotor for same
US8278794B2 (en) 2008-12-03 2012-10-02 Honda Motor Co., Ltd. Axial gap type motor and method of manufacturing rotor of motor
EP2355313A4 (en) * 2008-12-03 2012-10-03 Honda Motor Co Ltd Axial gap motor and method of manufacturing rotor for same
JP2010148315A (en) * 2008-12-22 2010-07-01 Honda Motor Co Ltd Axial gap type motor, and method of manufacturing rotor thereof
US8395292B2 (en) 2009-01-30 2013-03-12 Honda Motor Co., Ltd. Axial gap motor and method of manufacturing rotor for same
JP2010178563A (en) * 2009-01-30 2010-08-12 Honda Motor Co Ltd Axial gap motor and method of manufacturing rotor for the same
WO2010087103A1 (en) * 2009-01-30 2010-08-05 本田技研工業株式会社 Axial gap motor and method of manufacturing rotor for same
JP2010183777A (en) * 2009-02-06 2010-08-19 Honda Motor Co Ltd Axial gap motor and manufacturing method of rotor thereof
JP2010283923A (en) * 2009-06-02 2010-12-16 Honda Motor Co Ltd Axial gap motor and method of manufacturing the same
JP2011055618A (en) * 2009-09-01 2011-03-17 Daikin Industries Ltd Method for manufacturing rotor core for axial-gap type rotating electrical machine
JP2011130531A (en) * 2009-12-15 2011-06-30 Honda Motor Co Ltd Axial gap motor
JP2011130529A (en) * 2009-12-15 2011-06-30 Honda Motor Co Ltd Axial gap motor and method of manufacturing rotor of the same
JP2011135626A (en) * 2009-12-22 2011-07-07 Daikin Industries Ltd Method for manufacturing stator core for axial gap type rotary electric machine
JP2011151982A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Rotor core for axial gap rotary-electric machine and method of manufacturing the same
JP2011151980A (en) * 2010-01-22 2011-08-04 Daikin Industries Ltd Rotor core for axial gap rotary-electric machine and method of manufacturing the same
FR2996378A1 (en) * 2012-10-03 2014-04-04 Renault Sas Rotor for radial flow electric machine, has radial structure whose thickness along rotation axis and/or length are strictly less than corresponding dimension of adjacent side edges of two adjacent pole pieces
JP2018082578A (en) * 2016-11-17 2018-05-24 株式会社日立産機システム Axial gap rotary electric machine and compressor
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
EP3480930A1 (en) * 2017-11-03 2019-05-08 Miba Sinter Austria GmbH Axial flow machine
US11398755B2 (en) 2017-11-03 2022-07-26 Miba Sinter Austria Gmbh Axial-flow machine having a dimensionally stable assembly
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
WO2021026575A1 (en) * 2019-08-09 2021-02-18 Miba Sinter Austria Gmbh Rotor
FR3121295A1 (en) * 2021-03-24 2022-09-30 Renault S.A.S. rotor for an axial flux electric machine, methods of assembling and disassembling such a rotor
WO2022200379A1 (en) * 2021-03-24 2022-09-29 Renault S.A.S. Rotor for an axial flux electric machine, and methods for assembling and removing such a rotor
CN115395752A (en) * 2022-10-26 2022-11-25 中国科学院大学 Double-layer permanent magnet axial flux generator permanent magnet rotor disc and power generation method

Also Published As

Publication number Publication date
JP4561770B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4561770B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP5709907B2 (en) Permanent magnet embedded rotary electric machine for vehicles
CN112838693B (en) Rotary electric machine
JP6280970B2 (en) Rotor and motor
JP5774081B2 (en) Rotating electric machine
CN108370178B (en) Axial gap type rotating electric machine and method for manufacturing same
JP5382012B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
EP3080896B1 (en) Rotary electric machine rotor
JP6460159B2 (en) Rotor and motor
JP2006509483A (en) Electric machines, especially brushless synchronous motors
WO2014162804A1 (en) Rotating electrical machine with embedded permanent magnet
JP6025998B2 (en) Magnetic inductor type electric motor
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP4640373B2 (en) Rotating electric machine
JP2014147254A (en) Rotor of permanent magnet dynamo-electric machine, and permanent magnet dynamo-electric machine
WO2010110150A1 (en) Permanent magnet-embedded motor
JPWO2020194390A1 (en) Rotating machine
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP2013176267A (en) Rotor
JP2013201865A (en) Brushless motor
JP2017143663A (en) Embedded magnet type rotary machine
JP2017046386A (en) Permanent magnet electric motor
JP5309609B2 (en) Axial gap type rotating electrical machine and field element core
JP6285019B2 (en) Axial gap type rotating electrical machine
JP2015106946A (en) Dynamo-electric machine rotor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees