WO2010110150A1 - Permanent magnet-embedded motor - Google Patents

Permanent magnet-embedded motor Download PDF

Info

Publication number
WO2010110150A1
WO2010110150A1 PCT/JP2010/054583 JP2010054583W WO2010110150A1 WO 2010110150 A1 WO2010110150 A1 WO 2010110150A1 JP 2010054583 W JP2010054583 W JP 2010054583W WO 2010110150 A1 WO2010110150 A1 WO 2010110150A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
embedded
rotation axis
electric motor
Prior art date
Application number
PCT/JP2010/054583
Other languages
French (fr)
Japanese (ja)
Inventor
浩忠 長野
Original Assignee
三相電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三相電機株式会社 filed Critical 三相電機株式会社
Publication of WO2010110150A1 publication Critical patent/WO2010110150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotor in a permanent magnet embedded type electric motor including a stator and a rotor that rotates in the stator, in particular, a permanent magnet embedded having a rotor in which a permanent magnet is embedded in a rotor core constituting the rotor.
  • the present invention relates to a built-in electric motor.
  • a rotor of a conventional embedded permanent magnet electric motor has a plurality of magnet accommodation holes for accommodating permanent magnets in the direction of the rotation axis of a rotor core constituting the rotor, and each of the magnet accommodation holes has a permanent magnet.
  • As the shape of the permanent magnet housing hole various shapes considered for improving efficiency and suppressing vibration and noise are considered.
  • the shape of these permanent magnet accommodation holes is a circular arc shape in which the permanent magnet accommodation holes are convex on the rotation axis side and both ends are extended to the outer periphery on a plane perpendicular to the rotation axis of the rotor.
  • the width between the two permanent magnet housing holes toward the inner peripheral side in the radial direction of the rotor on a surface perpendicular to the rotation axis of the rotor (for example, see Patent Document 1) On the surface that is narrow and convex toward the rotating shaft and has a substantially V-shape (see, for example, Patent Document 2), or in a plane perpendicular to the rotating shaft of the rotor, A substantially V-shaped permanent magnet housing hole which is convex toward the outer peripheral side, and between this substantially V-shaped permanent magnet housing hole and another substantially V-shaped permanent magnet housing hole adjacent in the circumferential direction.
  • one having a shape in which one permanent magnet housing hole in the radial direction is additionally provided (see, for example, Patent Document 3). Etc. there is.
  • the amount of the permanent magnet that works effectively is increased in order to increase the torque and improve the efficiency while maintaining the mechanical strength of the rotor. Yes.
  • the rotor of the permanent magnet embedded motor as described above does not have P permanent magnets with respect to the number P of magnetic poles. Basically, if there are P permanent magnets, a P-pole magnetic pole can be formed. Therefore, compared with a shape in which a plurality of permanent magnets are arranged in the circumferential direction of the rotor, these embedded permanent magnet electric motors The number of permanent magnets used in the rotor will increase.
  • the cost of the permanent magnet includes not only the material cost but also the molding cost and processing cost required when forming the individual permanent magnets. In particular, a material with a low permanent magnet material cost is used. In this case, the ratio of the above cost increase becomes large. For this reason, even if the material used is a permanent magnet having the same volume, the cost increases as the number of permanent magnets increases.
  • the present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is to improve performance while making the number of permanent magnets of a rotor of an embedded permanent magnet motor the same as the number of magnetic poles.
  • An object of the present invention is to provide a permanent magnet embedded type electric motor having a rotor.
  • a rotor core having a plurality of permanent magnet housing holes in the direction of the rotation axis of the rotor, and a surface perpendicular to the rotation axis of the rotor.
  • the permanent magnet housing hole in FIG. 1 has a rotor in which a permanent magnet is inserted in which the longitudinal surfaces of permanent magnets adjacent in the circumferential direction are inserted with the same polarity. Further, the number of the plurality of permanent magnet housing holes is the same as the number of the plurality of magnetic poles of the rotor.
  • the longitudinal surfaces of all the permanent magnet accommodation holes in the plane perpendicular to the rotation axis of the rotor are in a direction extending from the rotor inner circumference side to the rotor outer circumference side and in a range not interfering with the adjacent permanent magnet accommodation holes.
  • the rotor outer peripheral side of the permanent magnet housing hole is inclined in the same circumferential direction with respect to the radial direction of the rotor, and the rotor has a rotor in which the permanent magnet is embedded in the permanent magnet housing hole. This is a permanent magnet embedded electric motor.
  • the permanent magnet accommodation hole has a flat plate shape in a plane perpendicular to the rotation axis of the rotor.
  • the flat plate-shaped permanent magnet receiving hole in which the flat plate-shaped permanent magnets are arranged on the plane perpendicular to the rotation axis of the rotor is long from the longitudinal end surface of the permanent magnet to at least one side of the longitudinal end surface.
  • the air gap extending in the longitudinal direction from the flat-plate-shaped permanent magnet accommodation hole on the plane perpendicular to the rotation axis of the rotor extends from at least one of the ends to the longitudinal surface side of the permanent magnet accommodation hole. 4.
  • a part of the outer periphery of the rotor facing the teeth at the tip of the slot of the stator on the plane perpendicular to the rotation axis is the end of the permanent magnet housing hole on the outer periphery side of the rotor. 5.
  • the longitudinal surfaces of the permanent magnets adjacent to each other in the circumferential direction of the rotor are made of the same poles in the plane perpendicular to the rotation axis of the rotor.
  • the number of permanent magnet housing holes for embedding a plurality of permanent magnets is the same as the number of magnetic poles of the rotor.
  • the motor can be reduced in size as compared with a conventional motor having a surface magnet type (SPM) rotor.
  • SPM surface magnet type
  • the permanent magnet accommodation hole is formed in a flat plate shape on a surface perpendicular to the rotation axis direction of the rotor, and the shape of the permanent magnet disposed in the permanent magnet accommodation hole is a flat plate.
  • the permanent magnet is eliminated from the longitudinal end surface of the permanent magnet accommodation hole in which the permanent magnet is disposed, and this portion is formed as a gap extending in the longitudinal direction, thereby forming an end surface portion of the permanent magnet accommodation hole. Since a region having a low magnetic permeability is formed, short-circuiting of magnetic flux can be limited, and the amount of permanent magnets in the portions where the permanent magnets at the end portions of the permanent magnets are not working effectively can be reduced.
  • the short-circuit of the permanent magnet's magnetic flux is the longitudinal end of the permanent magnet.
  • the degree of short-circuiting of the magnetic flux was increased.
  • the slit extending from the outer peripheral side gap extending from the longitudinal direction of the permanent magnet housing hole to the outer peripheral direction of the rotor is provided on the surface perpendicular to the rotation axis of the rotor, the cogging torque increased with the torque. Torque ripple can be suppressed, and noise and vibration of the permanent magnet embedded motor can be efficiently suppressed by the slit length of the outer peripheral slit. Furthermore, since it has an inner peripheral side slit that extends in the outer peripheral direction of the rotor from one end of the inner peripheral side gap that extends in the inner peripheral direction of the rotor, a short circuit of magnetic flux in the inner peripheral portion of the rotor of the permanent magnet is further reduced.
  • the increase in torque and the improvement in efficiency can be achieved by the slit length of the inner peripheral slit.
  • the slit length of the inner slit is increased, the strength of the rotor core also decreases, so the torque length and efficiency can be improved efficiently by optimizing the slit length of the inner slit. Is possible.
  • the means of claim 5 in order to drive the rotor, it is used by being incorporated in a stator facing the rotor with a gap in a plane perpendicular to the rotor, but a part of the outer periphery of the rotor Is formed in a flat shape, the width of the gap between the rotor and the stator in this part is increased, the magnetic resistance is increased, and the teeth portion of the stator slot that opposes the rotor and the gap.
  • produces via can be suppressed.
  • FIG. 1 is a view showing a plane perpendicular to the rotation axis of an embedded permanent magnet rotor according to an embodiment of the present invention.
  • the stator 1 In a plane perpendicular to the rotation axis 9 of the rotor 6, the stator 1 is opposed to the rotor 6 through a gap 12 in the center direction from a substantially annular ring portion 2 that forms the outer diameter of the stator core 1 a.
  • the extending 12 radial teeth 3 are formed in an annular shape.
  • a slot 4 that is a space for winding a copper wire on both sides of each tooth 3 and an insulator (not shown) for securing insulation between the iron core of the stator 1 and the winding wire 5 when forming the winding wire 5 are provided.
  • the wire 5 in which a copper wire is wound is provided in the space of the slot 4. This winding 5 is made by Y-connection, and the U-phase, V-phase, and W-phase windings are connected in series and connected at a neutral point.
  • the rotor 6 includes a rotor core 7, a rotating shaft 9 that fixes the rotor core 7, a permanent magnet 10 that is inserted into a permanent magnet accommodation hole 8 that exists inside the rotor core 7, and the rotor core 7.
  • the fixed plates are fixed by rivets that penetrate the rotor 6 in the direction of the rotary shaft 9. Formed from different shapes.
  • the rotor core 7 is formed by laminating electromagnetic steel plates in the direction of the rotation shaft 9, and the rotation shaft 9 is inserted into and fixed to a rotation shaft insertion hole (not shown) formed in the center portion. 9 is supported inside the stator 1 in a rotatable state. Further, on the rotor core 7, the longitudinal surfaces of all the permanent magnet housing holes 8 are adjacent to each other in a direction extending from the inner peripheral side to the outer peripheral side of the rotor 6 on a plane perpendicular to the rotary shaft 9.
  • Eight receiving holes 8 corresponding to the number of magnetic poles are formed at equal intervals in the circumferential direction.
  • the rotor core 7 are provided with rivet holes 7a through which rivets for fixing fixing plates (not shown) provided at both ends of the rotor core 7 in the direction of the rotating shaft 9 are passed.
  • the permanent magnet 10 is magnetized perpendicularly to the longitudinal surface in the radial direction on a surface perpendicular to the rotation axis 9 of the rotor 6, and the longitudinal surfaces of the adjacent permanent magnet accommodation holes 8 are N poles or S poles. It is inserted so as to be the same polarity.
  • the flat permanent magnet 10 shown in FIG. 6A that can be manufactured at the lowest cost is used.
  • the permanent magnet amount can be further increased by making the shape of the permanent magnet 10 not the flat plate shape but the arc plate shape shown in FIG.
  • a high torque embedded permanent magnet electric motor can be realized. In these FIG.
  • the inner peripheral side gap 8c on the rotor inner peripheral side 8b at the end of the permanent magnet, the outer peripheral side gap 8d on the rotor outer peripheral side 8a, the inner peripheral side slit 8f, the outer peripheral side slit 8h, and the outer peripheral side 8i is abbreviate
  • the rotor core 7 has a large degree of short-circuiting of magnetic flux at the longitudinal end portions of the permanent magnets 10 of the permanent magnet receiving holes 8 on the surface perpendicular to the rotation axis 9 of the rotor 6. Therefore, in order to limit the short circuit of the magnetic flux, as the gap extending from both end portions of the permanent magnet 10 in the longitudinal direction, the inner circumference side gap 8c on the inner circumference side of the rotor 6 and the outer circumference side gap on the rotor outer circumference side 8a. 8d is provided.
  • the inner circumferential side gap 8c is extended in a range not contacting the adjacent permanent magnet accommodation hole 8.
  • the width of the inner peripheral side bridge iron core 8e sandwiched between the adjacent permanent magnet accommodation holes 8 becomes narrower and the strength of the rotor core 7 decreases. Therefore, the rotor core 7 is formed by leaving the width of the sandwiched inner peripheral bridge core 8e so that the strength does not decrease.
  • the inner circumferential side slit 8f is formed in the rotor outer circumferential side 8a extending from a part of the inner circumferential side gap 8c, and the efficiency is improved by changing the slit length Lc of the inner circumferential side slit 8f. Can be improved.
  • the slit length Lc of the inner peripheral side slit 8f becomes longer, the strength of the rotor core 7 decreases, and the improvement in efficiency is saturated as shown in FIG. For this reason, the slit length Lc of the inner peripheral side slit 8f is formed to a length that becomes a saturation point of efficiency.
  • the outer peripheral side gap 8 d of the permanent magnet housing hole 8 extends to the vicinity of the outer periphery of the rotor 6 within a range not contacting the outer periphery of the rotor 6.
  • the strength of the rotor core 7 decreases as the width of the outer peripheral bridge core 8g at the outer peripheral portion of the rotor 6 decreases. Therefore, the rotor core 7 is formed while leaving the width of the outer peripheral bridge core 8g at the outer peripheral portion of the rotor 6 as thin as the strength does not drop.
  • an outer peripheral side slit 8h and an outer peripheral side slit 8i extending from the outer peripheral side gap 8d to both sides in the circumferential direction of the rotor 6 are formed.
  • the slit length La of the outer slit 8h and the slit length Lb of the outer slit 8i are optimized.
  • the flat shape portion 11 provided on the rotor outer peripheral side 8 a on the surface perpendicular to the rotation shaft 9 is formed by the center of the end surface of the outer peripheral portion of the rotor 6 of the permanent magnet 10 and the rotor.
  • the tangent line translated and the outer periphery and intersection of the rotor 6 are formed in the rounded portion 13 without corners in order to increase the durability of the mold shape during mass production. .
  • the permanent magnet 10 shown in FIG. 1 is not divided with respect to the direction of the rotating shaft 9, and the number of magnetic poles of the rotor 6 and the number of permanent magnets 10 completely coincide with each other. It has become.
  • the size of the permanent magnet 10 in the direction of the rotary shaft 9 is also large, so that the production yield of the permanent magnet 10 may be deteriorated. Therefore, when the production yield of the permanent magnet 10 is deteriorated as described above, there is no problem even if the permanent magnet 10 is divided in the direction of the rotating shaft 9.
  • FIG. 7 is a shaft output showing the efficiency characteristics at a rotational speed of 1200 rpm, respectively, of an electric motor composed of an embedded permanent magnet (IPM) rotor of the present invention and an electric motor composed of a conventional surface magnet type (SPM) rotor. It is a graph which shows the relationship between efficiency.
  • the outer diameter of the stator (stator) is ⁇ 122 mm
  • the stator thickness is 65 mm
  • the length of the permanent magnet is 75 mm
  • the volume of the permanent magnet is 10705 mm 3 .
  • the outer diameter of the stator is 112 mm
  • the stator thickness is 55 mm
  • the length of the permanent magnet The thickness is 60 mm
  • the volume of the permanent magnet is 8006 mm 3 . That is, in the permanent magnet embedded type electric motor of the present invention, when the performance is substantially the same as that of the conventional surface magnet type electric motor, the size of the embedded permanent magnet electric motor of the present invention is the same as that of the conventional surface magnet.
  • the outer diameter of the stator can be reduced to 6.6%, the stator thickness can be reduced to 15.4%, the length of the permanent magnet can be 20%, and the volume of the permanent magnet can be reduced to 25%.
  • the permanent magnet embedded type electric motor of the invention is small in size and high in performance.

Abstract

A permanent magnet-embedded motor which has improved performance despite the fact that the number of permanent magnets is the same as the number of magnetic poles. A permanent magnet-embedded motor comprising; a rotor core (7) having permanent magnet containing holes (8) formed along a rotating shaft (9); and a rotor (6) provided with permanent magnets (10) inserted in the permanent magnet containing holes (8) in such a manner that, in a plane perpendicular to the rotating shaft (9), the longitudinal end surfaces of permanent magnets (10) located adjacent to each other in the circumferential direction of the rotor (6) have the same polarity. The number of the magnetic poles and the number of the permanent magnet containing holes (8) are the same, and in a plane perpendicular to the rotating shaft (9), the longitudinal surfaces of all the permanent magnet containing holes (8) are extended from the inner peripheral side to the outer peripheral side of the rotor (6) in such a manner that adjacent permanent magnet containing holes (8) do not interfere with each other and that those portions of the permanent magnet containing holes which are on the outer peripheral side (8a) of the rotor are tilted in the same circumferential direction relative to the radial direction. Thus, the permanent magnet containing holes (8) have a shape which can increase the amount of the permanent magnets. The permanent magnets (10) are provided in the permanent magnet containing holes (8).

Description

永久磁石埋込型電動機Permanent magnet embedded motor
 本発明は、固定子と固定子の中で回転する回転子からなる永久磁石埋込型電動機における回転子、特に回転子を構成する回転子鉄心に永久磁石を埋め込んだ回転子を有する永久磁石埋込型電動機に関する。 The present invention relates to a rotor in a permanent magnet embedded type electric motor including a stator and a rotor that rotates in the stator, in particular, a permanent magnet embedded having a rotor in which a permanent magnet is embedded in a rotor core constituting the rotor. The present invention relates to a built-in electric motor.
 従来の永久磁石埋込型電動機の回転子は、回転子を構成する回転子鉄心の回転軸方向に永久磁石を収容する磁石収容孔が複数形成されており、前記の各磁石収容孔に永久磁石が挿入された回転子を備えている。この永久磁石収容孔の形状には、効率の改善や振動や騒音を抑えるために考慮された様々な形状が考えられている。 A rotor of a conventional embedded permanent magnet electric motor has a plurality of magnet accommodation holes for accommodating permanent magnets in the direction of the rotation axis of a rotor core constituting the rotor, and each of the magnet accommodation holes has a permanent magnet. Has a rotor inserted. As the shape of the permanent magnet housing hole, various shapes considered for improving efficiency and suppressing vibration and noise are considered.
 これらの永久磁石収容孔の形状には、回転子の回転軸に直角な面において、前記の永久磁石収容孔が回転軸側に凸で、両端部が外周部まで延長して設けられた円弧形状となったもの(例えば、特許文献1参照。)や、回転子の回転軸に直角な面において、回転子の径方向の内周側に向けて2本の永久磁石収容孔の間の幅が狭くなり、かつ、回転軸側に凸となって略V字形状となっているもの(例えば、特許文献2参照。)や、回転子の回転軸に直角な面において、回転子の径方向の外周側に凸となって略V字形状の永久磁石収容孔となり、かつ、この略V字形状の永久磁石収容孔と周方向で隣り合う他の略V字形状の永久磁石収容孔との間に径方向の1本の永久磁石収容孔を追加して有する形状からなるもの(例えば、特許文献3参照。)などがある。 The shape of these permanent magnet accommodation holes is a circular arc shape in which the permanent magnet accommodation holes are convex on the rotation axis side and both ends are extended to the outer periphery on a plane perpendicular to the rotation axis of the rotor. The width between the two permanent magnet housing holes toward the inner peripheral side in the radial direction of the rotor on a surface perpendicular to the rotation axis of the rotor (for example, see Patent Document 1) On the surface that is narrow and convex toward the rotating shaft and has a substantially V-shape (see, for example, Patent Document 2), or in a plane perpendicular to the rotating shaft of the rotor, A substantially V-shaped permanent magnet housing hole which is convex toward the outer peripheral side, and between this substantially V-shaped permanent magnet housing hole and another substantially V-shaped permanent magnet housing hole adjacent in the circumferential direction. In addition, one having a shape in which one permanent magnet housing hole in the radial direction is additionally provided (see, for example, Patent Document 3). Etc. there is.
 上記のように、従来の永久磁石埋込型電動機の回転子の例では、回転子の機械的強度を保ちながら、トルクの増大や効率の改善のため、有効に働く永久磁石の量を増やしている。 As described above, in the example of the rotor of the conventional embedded permanent magnet electric motor, the amount of the permanent magnet that works effectively is increased in order to increase the torque and improve the efficiency while maintaining the mechanical strength of the rotor. Yes.
 しかしながら、上記のような永久磁石埋込型電動機の回転子は磁極数Pに対して永久磁石の数がP個になっていない。基本的には、永久磁石がP個あればP極の磁極を形成可能であることから単に回転子の周方向に複数の永久磁石を並べた形状に比べ、これらの永久磁石埋込型電動機の回転子で使用する永久磁石の個数は増えることとなる。ところで、永久磁石のコストには材料費だけでなく、個々の永久磁石を形成するときに必要となる成型費と加工費も含まれており、特に永久磁石の材料費が安価な材料を使用する場合には、上記のコスト増大の比率が大きくなる。このため、使用される材料が同一体積の永久磁石であっても、永久磁石の個数が増えるほどコストを増大させる原因となる。 However, the rotor of the permanent magnet embedded motor as described above does not have P permanent magnets with respect to the number P of magnetic poles. Basically, if there are P permanent magnets, a P-pole magnetic pole can be formed. Therefore, compared with a shape in which a plurality of permanent magnets are arranged in the circumferential direction of the rotor, these embedded permanent magnet electric motors The number of permanent magnets used in the rotor will increase. By the way, the cost of the permanent magnet includes not only the material cost but also the molding cost and processing cost required when forming the individual permanent magnets. In particular, a material with a low permanent magnet material cost is used. In this case, the ratio of the above cost increase becomes large. For this reason, even if the material used is a permanent magnet having the same volume, the cost increases as the number of permanent magnets increases.
 また、製品組立時の回転子の永久磁石収容孔へ永久磁石を挿入する工程においても、永久磁石の個数が少ない方が、組立時間の短縮になり、組立コストの低減が可能となる。 Also, in the process of inserting permanent magnets into the permanent magnet accommodation holes of the rotor during product assembly, the smaller the number of permanent magnets, the shorter the assembly time and the lower the assembly cost.
 上記のように永久磁石埋込型電動機の回転子では、永久磁石の使用個数が少ない方がコスト面で有利となるが、同時に永久磁石を回転子内部に埋め込む際の埋込形状の自由度が低下し、使用する永久磁石量が減少する傾向にあるため、性能面を満たせない場合がある。 As described above, in a rotor of an embedded permanent magnet electric motor, it is advantageous in terms of cost to use a small number of permanent magnets, but at the same time, there is a degree of freedom in the embedded shape when the permanent magnet is embedded in the rotor. Since it tends to decrease and the amount of permanent magnets to be used tends to decrease, the performance may not be satisfied.
特開平8-331783号公報JP-A-8-331783 特開2008-17633号公報JP 2008-17633 A 特開2008-199794号公報JP 2008-199794 A
 本発明は上記の事情に鑑みてなされたもので、本発明が解決しようとする課題は、永久磁石埋込型電動機の回転子の永久磁石の個数を磁極数と同一としながら、性能面を改善した回転子を有する永久磁石埋込型電動機の提供することを目的とする。 The present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is to improve performance while making the number of permanent magnets of a rotor of an embedded permanent magnet motor the same as the number of magnetic poles. An object of the present invention is to provide a permanent magnet embedded type electric motor having a rotor.
 上記の課題を解決するための本発明の手段は、請求項1の発明では、回転子の回転軸方向に複数の永久磁石収容孔を有する回転子鉄心と、回転子の回転軸に直角な面における永久磁石収容孔に周方向で隣り合う永久磁石の長手面を同極どうしとして挿入した永久磁石を配設した回転子を有する。さらに、この回転子の複数の磁極数の個数に対して上記の複数の永久磁石収容孔の個数は同数となっている。しかも、回転子の回転軸に直角な面における全ての永久磁石収容孔の長手面は回転子内周側から回転子外周側へと延びる方向で、かつ、隣り合う永久磁石収容孔を干渉しない範囲で、永久磁石収容孔の回転子外周側を回転子の径方向に対して同一の周方向へ傾けており、この永久磁石収容孔に永久磁石を埋込んだ回転子を有することを特徴とする永久磁石埋込型電動機である。 According to the first aspect of the present invention for solving the above-described problems, in the first aspect of the present invention, a rotor core having a plurality of permanent magnet housing holes in the direction of the rotation axis of the rotor, and a surface perpendicular to the rotation axis of the rotor. The permanent magnet housing hole in FIG. 1 has a rotor in which a permanent magnet is inserted in which the longitudinal surfaces of permanent magnets adjacent in the circumferential direction are inserted with the same polarity. Further, the number of the plurality of permanent magnet housing holes is the same as the number of the plurality of magnetic poles of the rotor. In addition, the longitudinal surfaces of all the permanent magnet accommodation holes in the plane perpendicular to the rotation axis of the rotor are in a direction extending from the rotor inner circumference side to the rotor outer circumference side and in a range not interfering with the adjacent permanent magnet accommodation holes. The rotor outer peripheral side of the permanent magnet housing hole is inclined in the same circumferential direction with respect to the radial direction of the rotor, and the rotor has a rotor in which the permanent magnet is embedded in the permanent magnet housing hole. This is a permanent magnet embedded electric motor.
 請求項2の発明では、回転子の回転軸に直角な面において永久磁石収容孔は平板形状からなっている。さらに、この永久磁石収容孔に配設している永久磁石は平板形状からなっていることを特徴とする請求項1の手段の永久磁石埋込型電動機である。 In the invention of claim 2, the permanent magnet accommodation hole has a flat plate shape in a plane perpendicular to the rotation axis of the rotor. 2. The permanent magnet embedded type electric motor according to claim 1, wherein the permanent magnet disposed in the permanent magnet housing hole has a flat plate shape.
 請求項3の発明では、回転子の回転軸に直角な面において平板形状の永久磁石を配設の平板形状の永久磁石収容孔は、長手方向端面の少なくとも片側に永久磁石の長手方向端面から長手方向に延びる空隙を有することを特徴とする請求項2の手段の永久磁石埋込型電動機である。 According to a third aspect of the present invention, the flat plate-shaped permanent magnet receiving hole in which the flat plate-shaped permanent magnets are arranged on the plane perpendicular to the rotation axis of the rotor is long from the longitudinal end surface of the permanent magnet to at least one side of the longitudinal end surface. 3. The permanent magnet embedded type electric motor according to claim 2, which has a gap extending in the direction.
 請求項4の発明では、回転子の回転軸に直角な面にいて平板形状の永久磁石収容孔から長手方向に延びる空隙は、その端部の少なくとも一方から永久磁石収容孔の長手面側に延びたスリットを有することを特徴とする請求項3の手段の永久磁石埋込型電動機である。 According to a fourth aspect of the present invention, the air gap extending in the longitudinal direction from the flat-plate-shaped permanent magnet accommodation hole on the plane perpendicular to the rotation axis of the rotor extends from at least one of the ends to the longitudinal surface side of the permanent magnet accommodation hole. 4. A permanent magnet embedded type electric motor according to claim 3, further comprising a slit.
 請求項5の発明では、回転子は回転軸に直角な面において固定子のスロットの先端部のティースに対向する回転子の外周部の一部が永久磁石収容孔の回転子外周側の端部の付近で平坦形状に形成されていることを特徴とする請求項4の手段の永久磁石埋込型電動機である。 In the invention according to claim 5, a part of the outer periphery of the rotor facing the teeth at the tip of the slot of the stator on the plane perpendicular to the rotation axis is the end of the permanent magnet housing hole on the outer periphery side of the rotor. 5. The permanent magnet embedded type electric motor according to claim 4, wherein the electric motor is formed in a flat shape in the vicinity of.
 本発明の効果は、請求項1の発明の手段では、回転子の回転軸に直角な面において、回転子の周方向で隣り合う永久磁石の長手面は同極どうしからなるものとし、回転子に複数の永久磁石を埋め込む永久磁石収容孔の個数は回転子の磁極数と同一数としたままでありながら、永久磁石収容孔の回転子外周側を回転子の径方向に対して同一の周方向へ干渉しない範囲で傾けて永久磁石を埋め込んで有するので、単に回転子の径方向に沿って永久磁石を配置した場合や、単に周方向に沿って永久磁石を並べた形状に比べて、より一層長い永久磁石を回転子鉄心の内部に埋め込むことができるので、従来の表面磁石型(SPM)の回転子からなる電動機に比して小型化が図れ、さらに従来の永久磁石埋込型電動機の回転子に比しても永久磁石量の増加が図れ、同時に長手方向端部の磁束の短絡を抑えながらトルクの増大と効率の改善が図られている。 According to the first aspect of the present invention, the longitudinal surfaces of the permanent magnets adjacent to each other in the circumferential direction of the rotor are made of the same poles in the plane perpendicular to the rotation axis of the rotor. The number of permanent magnet housing holes for embedding a plurality of permanent magnets is the same as the number of magnetic poles of the rotor. Since it has a permanent magnet embedded with tilting in a range that does not interfere with the direction, compared to the case where the permanent magnet is simply arranged along the radial direction of the rotor or compared to the shape in which the permanent magnet is simply arranged along the circumferential direction, Since a longer permanent magnet can be embedded in the rotor core, the motor can be reduced in size as compared with a conventional motor having a surface magnet type (SPM) rotor. Compared to the rotor, the amount of permanent magnets Pressure is Hakare have improved the growth and the efficiency of the torque is achieved while suppressing the short-circuiting of the magnetic flux in the longitudinal ends simultaneously.
 請求項2の発明の手段では、回転子の回転軸方向に直角な面において、永久磁石収容孔は平板形状からなるものとし、さらに、この永久磁石収容孔に配設の永久磁石の形状を平板形状からなるものとすることで、円弧板形状などの曲面形状を持つ永久磁石に比べると回転子内部に埋め込み可能な永久磁石量は減少するものの、トルクの増大と効率の改善を図りながら永久磁石の製造コストを引き下げが図られている。 In the means of the invention of claim 2, the permanent magnet accommodation hole is formed in a flat plate shape on a surface perpendicular to the rotation axis direction of the rotor, and the shape of the permanent magnet disposed in the permanent magnet accommodation hole is a flat plate. Although the amount of permanent magnets that can be embedded in the rotor is reduced compared to permanent magnets with curved surface shapes such as arc plate shapes, the permanent magnets are designed to increase torque and improve efficiency. The manufacturing cost is reduced.
 請求項3の発明の手段では、永久磁石を配設の永久磁石収容孔の長手方向端面から永久磁石を無くし、この部位を長手方向に延びる空隙とすることによって、永久磁石収容孔の端面部に透磁率の低い領域が形成されるため、磁束の短絡を制限することができ、永久磁石端部の永久磁石が有効に働いていない部分の永久磁石量を削減することができる。これに対して、従来の回転子の回転軸に直角な面において、長手方向面に対して垂直な方向に着磁された永久磁石では、永久磁石の磁束の短絡が永久磁石の長手方向端部に近いほど大きくなり、特に透磁率の高い材質に囲まれた状態では、磁束の短絡の度合いが大きくなっていた。 In the means of the invention of claim 3, the permanent magnet is eliminated from the longitudinal end surface of the permanent magnet accommodation hole in which the permanent magnet is disposed, and this portion is formed as a gap extending in the longitudinal direction, thereby forming an end surface portion of the permanent magnet accommodation hole. Since a region having a low magnetic permeability is formed, short-circuiting of magnetic flux can be limited, and the amount of permanent magnets in the portions where the permanent magnets at the end portions of the permanent magnets are not working effectively can be reduced. On the other hand, in a permanent magnet that is magnetized in a direction perpendicular to the longitudinal plane on a plane perpendicular to the rotational axis of the conventional rotor, the short-circuit of the permanent magnet's magnetic flux is the longitudinal end of the permanent magnet. In the state surrounded by a material with high magnetic permeability, the degree of short-circuiting of the magnetic flux was increased.
 請求項4の手段では、回転子の回転軸に直角な面において、永久磁石収容孔の長手方向から回転子の外周方向に延びる外周側空隙から延びるスリットを設けているので、トルクと共に増大したコギントルクやトルクリプルを抑止でき、また、外周側スリットのスリット長さによって永久磁石埋込型電動機の騒音と振動を効率よく抑えることができる。さらに、回転子の内周方向に延びる内周側空隙の一方の端部から回転子の外周方向へ延びる内周側スリットを有するので、永久磁石の回転子の内周部における磁束の短絡をより効果的に抑制することができる。また、前記の内周側スリットのスリット長さによって、トルクの増大と効率の改善が図れる。しかし、内周側スリットのスリット長さを長くすると回転子鉄心の強度も低下するため、内周側スリットのスリット長さを最適化することによって、トルクの増大と効率の改善を効率よく行うことが可能である。 According to the fourth aspect of the present invention, since the slit extending from the outer peripheral side gap extending from the longitudinal direction of the permanent magnet housing hole to the outer peripheral direction of the rotor is provided on the surface perpendicular to the rotation axis of the rotor, the cogging torque increased with the torque. Torque ripple can be suppressed, and noise and vibration of the permanent magnet embedded motor can be efficiently suppressed by the slit length of the outer peripheral slit. Furthermore, since it has an inner peripheral side slit that extends in the outer peripheral direction of the rotor from one end of the inner peripheral side gap that extends in the inner peripheral direction of the rotor, a short circuit of magnetic flux in the inner peripheral portion of the rotor of the permanent magnet is further reduced. It can be effectively suppressed. Further, the increase in torque and the improvement in efficiency can be achieved by the slit length of the inner peripheral slit. However, if the slit length of the inner slit is increased, the strength of the rotor core also decreases, so the torque length and efficiency can be improved efficiently by optimizing the slit length of the inner slit. Is possible.
 請求項5の手段では、回転子を駆動するため、回転子に直角な面において、回転子に空隙を挟んで対向する固定子に組み込まれて使用されるが、回転子の外周部の一部が平坦形状に形成されているので、この部分の回転子と固定子の間の空隙の幅が大きくなって磁気抵抗が高くなり、回転子と空隙を挟んで対抗する固定子のスロットのティース部を介して発生する磁束の短絡が抑制できる。 In the means of claim 5, in order to drive the rotor, it is used by being incorporated in a stator facing the rotor with a gap in a plane perpendicular to the rotor, but a part of the outer periphery of the rotor Is formed in a flat shape, the width of the gap between the rotor and the stator in this part is increased, the magnetic resistance is increased, and the teeth portion of the stator slot that opposes the rotor and the gap. The short circuit of the magnetic flux which generate | occur | produces via can be suppressed.
本実施の形態における固定子および固定板を除去して示す回転子の回転軸に直角な面を示す図である。It is a figure which shows the surface at right angles to the rotating shaft of the rotor shown by removing the stator and fixed plate in this Embodiment. 本実施の形態における外周側空隙付近の回転軸に直角な面の拡大図である。It is an enlarged view of a surface perpendicular to the rotation axis in the vicinity of the outer peripheral side gap in the present embodiment. 本実施の形態における内周側空隙付近の回転軸に直角な面の拡大図である。It is an enlarged view of a surface perpendicular to the rotation axis in the vicinity of the inner circumferential side gap in the present embodiment. 本実施の形態における内周側スリットのスリット長さLcと効率の関係を示すグラフである。It is a graph which shows the relationship between the slit length Lc of the inner peripheral side slit in this Embodiment, and efficiency. 本実施の形態における外周側スリットのスリット長さLaと、スリット長さLbの関係およびコギングトルク特性を示すグラフである。It is a graph which shows the relationship between the slit length La of the outer periphery side slit in this Embodiment, the slit length Lb, and a cogging torque characteristic. (a)は平板形状の永久磁石を使用した回転子の回転軸に直角な面の部分図で、(b)は円弧板形状の永久磁石を使用した回転子の回転軸に直角な面の部分図である。(A) is a partial view of a plane perpendicular to the rotor rotation axis using a plate-shaped permanent magnet, (b) is a portion of a plane perpendicular to the rotor rotation axis using a circular plate-shaped permanent magnet FIG. 本発明の永久磁石埋込型(IPM)の回転子からなる電動機と従来品である表面磁石型(SPM)の回転子からなる電動機の効率特性を示す軸出力と効率の関係を示すグラフである。It is a graph which shows the relationship between the shaft output and the efficiency which show the efficiency characteristic of the electric motor which consists of a permanent magnet embedded type (IPM) rotor of the present invention, and the electric motor which consists of a conventional surface magnet type (SPM) rotor. .
 本発明を実施するための形態について、図面を参照して説明する。本発明はこの実施の形態に限定されるものではない。 Embodiments for carrying out the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.
 図1は、本発明の実施の形態を示す永久磁石埋込型の回転子の回転軸に直角な面を示す図である。 FIG. 1 is a view showing a plane perpendicular to the rotation axis of an embedded permanent magnet rotor according to an embodiment of the present invention.
 回転子6の回転軸9に直角な面において、固定子1は固定子鉄心1aの外径を形成する略環状の環状部2から中心方向に空隙12を介して回転子6に対向するように延びている12本の放射状のティース3が環状に形成されている。各ティース3の両側に銅線を巻回するための空間であるスロット4と、捲線5を形成する際に固定子1の鉄心と捲線5の絶縁を確保するためのインシュレーター(図示略)を有し、スロット4の空間に銅線を巻回した捲線5を備えている。この捲線5はY結線にて行われ、各U相、V相、W相の捲線は直列に結線されて中性点で接続されている。 In a plane perpendicular to the rotation axis 9 of the rotor 6, the stator 1 is opposed to the rotor 6 through a gap 12 in the center direction from a substantially annular ring portion 2 that forms the outer diameter of the stator core 1 a. The extending 12 radial teeth 3 are formed in an annular shape. A slot 4 that is a space for winding a copper wire on both sides of each tooth 3 and an insulator (not shown) for securing insulation between the iron core of the stator 1 and the winding wire 5 when forming the winding wire 5 are provided. In addition, the wire 5 in which a copper wire is wound is provided in the space of the slot 4. This winding 5 is made by Y-connection, and the U-phase, V-phase, and W-phase windings are connected in series and connected at a neutral point.
 回転子6は、回転子鉄心7と、回転子鉄心7を固定する回転軸9と、回転子鉄心7の内部に存在する永久磁石収容孔8に挿入される永久磁石10と、回転子鉄心7の回転軸9の方向の両端部に、永久磁石10の脱落を防止する固定板(図示略)で構成されており、固定板は回転子6を回転軸9の方向に貫通するリベットで固定された形状から形成されている。 The rotor 6 includes a rotor core 7, a rotating shaft 9 that fixes the rotor core 7, a permanent magnet 10 that is inserted into a permanent magnet accommodation hole 8 that exists inside the rotor core 7, and the rotor core 7. At both ends in the direction of the rotary shaft 9, there are fixed plates (not shown) that prevent the permanent magnet 10 from falling off. The fixed plates are fixed by rivets that penetrate the rotor 6 in the direction of the rotary shaft 9. Formed from different shapes.
 回転子鉄心7は、電磁鋼板を回転軸9の方向に積層して形成され、中心部に形成された回転軸挿入孔(図示略)に回転軸9を挿入して固定することで、回転軸9と一体で回転自在な状態で固定子1の内側に支持されている。また、回転子鉄心7には、回転軸9に直角な面において、全ての永久磁石収容孔8の長手面が、回転子6の内周側から外周側へと延びる方向で、かつ、隣り合う永久磁石収容孔8に干渉しない範囲で、回転子外周側8aの永久磁石収容孔8を回転子6の径方向に対して同一周方向へ傾けた形状として、永久磁石10の挿入可能な永久磁石収容孔8が周方向に等間隔で磁極数の個数分である8個が形成されている。また、回転軸9に直角な面において、電動機の回転時に永久磁石収容孔8に挿入された永久磁石10が回転子鉄心7の回転軸方向端面からの脱落を防止するために、回転子鉄心7には、回転子鉄心7の回転軸9の方向の両端部に備えた固定板(図示略)を固定するリベットを通すリベット孔7aが設けられている。 The rotor core 7 is formed by laminating electromagnetic steel plates in the direction of the rotation shaft 9, and the rotation shaft 9 is inserted into and fixed to a rotation shaft insertion hole (not shown) formed in the center portion. 9 is supported inside the stator 1 in a rotatable state. Further, on the rotor core 7, the longitudinal surfaces of all the permanent magnet housing holes 8 are adjacent to each other in a direction extending from the inner peripheral side to the outer peripheral side of the rotor 6 on a plane perpendicular to the rotary shaft 9. A permanent magnet into which the permanent magnet 10 can be inserted in a shape in which the permanent magnet accommodation hole 8 on the rotor outer peripheral side 8a is inclined in the same circumferential direction with respect to the radial direction of the rotor 6 within a range not interfering with the permanent magnet accommodation hole 8. Eight receiving holes 8 corresponding to the number of magnetic poles are formed at equal intervals in the circumferential direction. Further, in order to prevent the permanent magnet 10 inserted into the permanent magnet housing hole 8 on the surface perpendicular to the rotating shaft 9 from dropping from the end surface in the rotating shaft direction of the rotor core 7 when the electric motor rotates, the rotor core 7 Are provided with rivet holes 7a through which rivets for fixing fixing plates (not shown) provided at both ends of the rotor core 7 in the direction of the rotating shaft 9 are passed.
 永久磁石10は、回転子6の回転軸9に直角な面において、径方向面における長手方向面に垂直に着磁され、隣り合う永久磁石収容孔8の長手方向面がN極どうしあるいはS極どうしからなる同極どうしとなるように挿入されている。また、この実施の形態においては、最終的な製品のコストを考慮し、最も安価に製造可能な図6の(a)に見られる平板形状の永久磁石10により形成されている。しかし、さらに高トルクを実現したい場合には、永久磁石10の形状を平板形状ではなく、図6の(b)に見られる円弧板形状にすることによって、永久磁石量をさらに増加することが可能となり、高トルクの永久磁石埋込型電動機を実現できる。なお、これらの図6では、永久磁石端部の回転子内周側8bの内周側空隙8cや回転子外周側8aの外周側空隙8dおよび内周側スリット8fや外周側スリット8hおよび外周側8iを省略して永久磁石端部を延ばした状態で模式的に示している。 The permanent magnet 10 is magnetized perpendicularly to the longitudinal surface in the radial direction on a surface perpendicular to the rotation axis 9 of the rotor 6, and the longitudinal surfaces of the adjacent permanent magnet accommodation holes 8 are N poles or S poles. It is inserted so as to be the same polarity. In this embodiment, in consideration of the cost of the final product, the flat permanent magnet 10 shown in FIG. 6A that can be manufactured at the lowest cost is used. However, if it is desired to achieve higher torque, the permanent magnet amount can be further increased by making the shape of the permanent magnet 10 not the flat plate shape but the arc plate shape shown in FIG. Thus, a high torque embedded permanent magnet electric motor can be realized. In these FIG. 6, the inner peripheral side gap 8c on the rotor inner peripheral side 8b at the end of the permanent magnet, the outer peripheral side gap 8d on the rotor outer peripheral side 8a, the inner peripheral side slit 8f, the outer peripheral side slit 8h, and the outer peripheral side 8i is abbreviate | omitted and it has shown typically in the state which extended the permanent magnet edge part.
 回転子鉄心7には、回転子6の回転軸9に直角な面において、各永久磁石収容孔8の永久磁石10の長手方向の両端部分では、磁束の短絡の度合いが大きい。そこで、磁束の短絡を制限するために、永久磁石10の長手方向の両端部分から延びた空隙として、回転子6の内周側に内周側空隙8cと、回転子外周側8aに外周側空隙8dを設けている。また、永久磁石10の回転子外周部付近において、固定子1と回転子6の間の空隙12と固定子1のティース3の先端部を介して発生する磁束の短絡を抑制するために、回転子6の外周部である環状部分の一部を切り取って図2に示す平坦形状部11に形成している。 The rotor core 7 has a large degree of short-circuiting of magnetic flux at the longitudinal end portions of the permanent magnets 10 of the permanent magnet receiving holes 8 on the surface perpendicular to the rotation axis 9 of the rotor 6. Therefore, in order to limit the short circuit of the magnetic flux, as the gap extending from both end portions of the permanent magnet 10 in the longitudinal direction, the inner circumference side gap 8c on the inner circumference side of the rotor 6 and the outer circumference side gap on the rotor outer circumference side 8a. 8d is provided. Further, in the vicinity of the outer periphery of the rotor of the permanent magnet 10, in order to suppress a short circuit of magnetic flux generated through the gap 12 between the stator 1 and the rotor 6 and the tip of the tooth 3 of the stator 1, A part of the annular portion which is the outer peripheral portion of the child 6 is cut out to form a flat portion 11 shown in FIG.
 さらに、回転軸9に直角な面において、図3に示すように、前記の内周側空隙8cは隣り合う永久磁石収容孔8に接触しない範囲で延ばされている。しかし、このように内周側空隙8cを延ばすにつれて、隣り合う永久磁石収容孔8に挟まれた内周側ブリッジ鉄心8eの幅が細くなって回転子鉄心7の強度が落ちてくる。そこで挟まれた内周側ブリッジ鉄心8eの幅を強度が落ちない程度に残して回転子鉄心7を形成している。また、前記の内周側空隙8cの一部から延ばして回転子外周側8aへ内周側スリット8fを形成しており、この内周側スリット8fのスリット長さLcを変更することで、効率の改善が可能である。ところで、内周側スリット8fのスリット長さLcが長くなるにつれて、回転子鉄心7の強度は低下し、図4に示すように効率の改善も飽和してくる。このために内周側スリット8fのスリット長さLcは効率の飽和点になる長さで形成されている。 Furthermore, on the surface perpendicular to the rotation shaft 9, as shown in FIG. 3, the inner circumferential side gap 8c is extended in a range not contacting the adjacent permanent magnet accommodation hole 8. However, as the inner peripheral side gap 8c is extended in this manner, the width of the inner peripheral side bridge iron core 8e sandwiched between the adjacent permanent magnet accommodation holes 8 becomes narrower and the strength of the rotor core 7 decreases. Therefore, the rotor core 7 is formed by leaving the width of the sandwiched inner peripheral bridge core 8e so that the strength does not decrease. Further, the inner circumferential side slit 8f is formed in the rotor outer circumferential side 8a extending from a part of the inner circumferential side gap 8c, and the efficiency is improved by changing the slit length Lc of the inner circumferential side slit 8f. Can be improved. By the way, as the slit length Lc of the inner peripheral side slit 8f becomes longer, the strength of the rotor core 7 decreases, and the improvement in efficiency is saturated as shown in FIG. For this reason, the slit length Lc of the inner peripheral side slit 8f is formed to a length that becomes a saturation point of efficiency.
 また、回転軸9に直角な面において、図2に示すように、前記の永久磁石収容孔8の外周側空隙8dは回転子6の外周と接触しない範囲で回転子6の外周近傍まで延ばされている。しかし、回転子6の外周部の外周側ブリッジ鉄心8gの幅が細くなるにつれて、回転子鉄心7の強度が落ちてくる。そこで回転子6の外周部の外周側ブリッジ鉄心8gの幅を強度が落ちない程度の細さとして残して回転子鉄心7を形成している。また、前記の外周側空隙8dから回転子6の周方向の両側に延びた外周側スリット8hと外周側スリット8iが形成されている。外周側スリット8hのスリット長さLaと外周側スリット8iのスリット長さLbをそれぞれ変化させることで、図5に示すように、回転子6のコギングトルクとトルクリプルを改善することが可能である。したがって、外周側スリット8hのスリット長さLaと外周側スリット8iのスリット長さLbを最適化した形状で形成している。 Further, as shown in FIG. 2, on the surface perpendicular to the rotating shaft 9, the outer peripheral side gap 8 d of the permanent magnet housing hole 8 extends to the vicinity of the outer periphery of the rotor 6 within a range not contacting the outer periphery of the rotor 6. Has been. However, the strength of the rotor core 7 decreases as the width of the outer peripheral bridge core 8g at the outer peripheral portion of the rotor 6 decreases. Therefore, the rotor core 7 is formed while leaving the width of the outer peripheral bridge core 8g at the outer peripheral portion of the rotor 6 as thin as the strength does not drop. Further, an outer peripheral side slit 8h and an outer peripheral side slit 8i extending from the outer peripheral side gap 8d to both sides in the circumferential direction of the rotor 6 are formed. By changing the slit length La of the outer slit 8h and the slit length Lb of the outer slit 8i, respectively, the cogging torque and torque ripple of the rotor 6 can be improved as shown in FIG. Therefore, the slit length La of the outer slit 8h and the slit length Lb of the outer slit 8i are optimized.
 さらに、図2に示すように、回転軸9に直角な面において、回転子外周側8aに備えられた平坦形状部11は、永久磁石10の回転子6の外周部の端面の中央と回転子6の中心を通る線と回転子6の外周の交点における接線を径方向の回転子6の内周部に平行移動した線により回転子6の外周円の環状部分の一部を切り取った直線形状に形成されており、さらに平行移動された接線と回転子6の外周と交点の部分は、量産時の金型形状の耐久性を上げるために角部を無くしてアール部13に形成されている。 Further, as shown in FIG. 2, the flat shape portion 11 provided on the rotor outer peripheral side 8 a on the surface perpendicular to the rotation shaft 9 is formed by the center of the end surface of the outer peripheral portion of the rotor 6 of the permanent magnet 10 and the rotor. A linear shape in which a part of the annular portion of the outer circumference circle of the rotor 6 is cut out by a line obtained by translating a tangent at the intersection of the line passing through the center of the rotor 6 and the outer circumference of the rotor 6 to the inner circumference of the rotor 6 in the radial direction. Further, the tangent line translated and the outer periphery and intersection of the rotor 6 are formed in the rounded portion 13 without corners in order to increase the durability of the mold shape during mass production. .
 上記の実施の形態では、図1に示す永久磁石10は回転軸9の方向に対して分割されておらず、完全に回転子6の磁極数と永久磁石10の個数が8個で一致する構成になっている。しかし、電動機の回転軸9方向の寸法が大きい場合、永久磁石10の回転軸9方向の寸法も大きくなるために、永久磁石10の製造歩留りが悪くなる場合がある。そこで、このように永久磁石10の製造歩留りが悪くなる場合には、回転軸9の方向で永久磁石10を分割しても問題はない。 In the above embodiment, the permanent magnet 10 shown in FIG. 1 is not divided with respect to the direction of the rotating shaft 9, and the number of magnetic poles of the rotor 6 and the number of permanent magnets 10 completely coincide with each other. It has become. However, when the dimension of the electric motor in the direction of the rotary shaft 9 is large, the size of the permanent magnet 10 in the direction of the rotary shaft 9 is also large, so that the production yield of the permanent magnet 10 may be deteriorated. Therefore, when the production yield of the permanent magnet 10 is deteriorated as described above, there is no problem even if the permanent magnet 10 is divided in the direction of the rotating shaft 9.
 図7は本発明の永久磁石埋込型(IPM)の回転子からなる電動機と従来品である表面磁石型(SPM)の回転子からなる電動機のそれぞれ回転数1200rpm時の効率特性を示す軸出力と効率の関係を示すグラフである。この場合、従来品のSPMの電動機では、固定子(ステータ)の外径をφ122mm、固定子の積厚を65mm、永久磁石の長さを75mm、永久磁石の体積を10705mm3としている。この従来品のSPMの電動機と略同様の出力と効率となる本発明の永久磁石埋込型(IPM)電動機では、固定子の外径をφ112mm、固定子の積厚を55mm、永久磁石の長さを60mm、永久磁石の体積を8006mm3としている。すなわち、本発明の永久磁石埋込型の電動機では、従来品の表面磁石型の電動機と略同性能とするとき、本発明の永久磁石埋込型の電動機の大きさは、従来品の表面磁石型の電動機に比して固定子の外径で6.6%、固定子の積厚で15.4%、永久磁石の長さで20%、永久磁石の体積で25%と縮小でき、本発明の永久磁石埋込型の電動機は小型で高性能化が図れる。 FIG. 7 is a shaft output showing the efficiency characteristics at a rotational speed of 1200 rpm, respectively, of an electric motor composed of an embedded permanent magnet (IPM) rotor of the present invention and an electric motor composed of a conventional surface magnet type (SPM) rotor. It is a graph which shows the relationship between efficiency. In this case, in the conventional SPM motor, the outer diameter of the stator (stator) is φ122 mm, the stator thickness is 65 mm, the length of the permanent magnet is 75 mm, and the volume of the permanent magnet is 10705 mm 3 . In the embedded permanent magnet (IPM) motor of the present invention, which has substantially the same output and efficiency as the conventional SPM motor, the outer diameter of the stator is 112 mm, the stator thickness is 55 mm, the length of the permanent magnet The thickness is 60 mm, and the volume of the permanent magnet is 8006 mm 3 . That is, in the permanent magnet embedded type electric motor of the present invention, when the performance is substantially the same as that of the conventional surface magnet type electric motor, the size of the embedded permanent magnet electric motor of the present invention is the same as that of the conventional surface magnet. The outer diameter of the stator can be reduced to 6.6%, the stator thickness can be reduced to 15.4%, the length of the permanent magnet can be 20%, and the volume of the permanent magnet can be reduced to 25%. The permanent magnet embedded type electric motor of the invention is small in size and high in performance.
 1 固定子
 1a 固定子鉄心
 2 環状部
 3 ティース
 4 スロット
 5 捲線
 6 回転子
 7 回転子鉄心
 7a リベット孔
 8 永久磁石収容孔
 8a 回転子外周側
 8b 回転子内周側
 8c 内周側空隙
 8d 外周側空隙
 8e 内周側ブリッジ鉄心
 8f 内周側スリット
 8g 外周側ブリッジ鉄心
 8h 外周側スリット
 8i 外周側スリット
 9 回転軸
 10 永久磁石
 11 平坦形状部
 12 空隙
 13 アール部
 La スリット長さ
 Lb スリット長さ
 Lc スリット長さ
DESCRIPTION OF SYMBOLS 1 Stator 1a Stator iron core 2 Annular part 3 Teeth 4 Slot 5 Winding 6 Rotor 7 Rotor iron core 7a Rivet hole 8 Permanent magnet accommodation hole 8a Rotor outer peripheral side 8b Rotor inner peripheral side 8c Inner peripheral side gap 8d Outer peripheral side Air gap 8e Inner peripheral side bridge iron core 8f Inner peripheral side slit 8g Outer peripheral side bridge iron core 8h Outer peripheral side slit 8i Outer peripheral side slit 9 Rotating shaft 10 Permanent magnet 11 Flat shape part 12 Air gap 13 Round part La Slit length Lb Slit length Lc Slit length

Claims (5)

  1.  回転子の回転軸方向に複数の永久磁石収容孔を有する回転子鉄心と、回転子鉄心の回転軸に直角な面における永久磁石収容孔に周方向で隣り合う永久磁石の長手面を同極どうしとして挿入した永久磁石を配設した回転子を有し、該回転子の複数の磁極数の個数に対して該複数の永久磁石収容孔の個数は同数であり、さらに回転子の回転軸に直角な面における全ての永久磁石収容孔の長手面が回転子内周側から回転子外周側へと延びる方向で、かつ、隣り合う永久磁石収容孔を干渉しない範囲で、永久磁石収容孔の回転子外周側を径方向に対して同一の周方向へ傾け、該永久磁石収容孔に永久磁石を埋込んだ回転子を有することを特徴とする永久磁石埋込型電動機。 A rotor core having a plurality of permanent magnet accommodation holes in the direction of the rotation axis of the rotor and a longitudinal surface of a permanent magnet adjacent in the circumferential direction to the permanent magnet accommodation hole in a plane perpendicular to the rotation axis of the rotor core are made to have the same polarity. The number of the plurality of permanent magnet receiving holes is the same as the number of the plurality of magnetic poles of the rotor, and is perpendicular to the rotation axis of the rotor. The rotors of the permanent magnet accommodation holes are such that the longitudinal surfaces of all the permanent magnet accommodation holes in the same surface extend from the rotor inner circumference side to the rotor outer circumference side and do not interfere with adjacent permanent magnet accommodation holes. An embedded permanent magnet electric motor comprising a rotor in which an outer peripheral side is inclined in the same circumferential direction with respect to a radial direction and a permanent magnet is embedded in the permanent magnet housing hole.
  2.  回転子鉄心の回転軸に直角な面における永久磁石収容孔は平板形状からなり、該永久磁石収容孔に配設の永久磁石は平板形状からなることを特徴とする請求項1に記載の永久磁石埋込型電動機。 2. The permanent magnet according to claim 1, wherein the permanent magnet accommodation hole in a plane perpendicular to the rotation axis of the rotor core has a flat plate shape, and the permanent magnet disposed in the permanent magnet accommodation hole has a flat plate shape. Embedded electric motor.
  3.  回転子鉄心の回転軸に直角な面における平板形状の永久磁石を配設の平板形状の永久磁石収容孔は、長手方向端面の少なくとも片側に永久磁石の長手方向端面から長手方向に延びる空隙を有することを特徴とする請求項2に記載の永久磁石埋込型電動機。 The flat-plate-shaped permanent magnet housing hole in which flat-plate-shaped permanent magnets are arranged in a plane perpendicular to the rotation axis of the rotor core has a gap extending in the longitudinal direction from the longitudinal end surface of the permanent magnet on at least one side of the longitudinal end surface. The embedded permanent magnet electric motor according to claim 2.
  4.  回転子の回転軸に直角な面における平板形状の永久磁石収容孔から長手方向に延びる空隙は、その端部の少なくとも一方から永久磁石収容孔の長手面側に延びたスリットを有することを特徴とする請求項3に記載の永久磁石埋込型電動機。 The air gap extending in the longitudinal direction from the flat plate-shaped permanent magnet accommodation hole in a plane perpendicular to the rotation axis of the rotor has a slit extending from at least one of its ends to the longitudinal surface side of the permanent magnet accommodation hole. The embedded permanent magnet electric motor according to claim 3.
  5.  回転子は回転軸に直角な面において固定子のスロットの先端部のティースに対向する回転子の外周部の一部が永久磁石収容孔の回転子外周側の端部の付近で平坦形状に形成されていることを特徴とする請求項4に記載の永久磁石埋込型電動機。 The rotor has a flat part near the rotor outer peripheral end of the permanent magnet housing hole that faces the teeth at the tip of the stator slot on a plane perpendicular to the rotation axis. The embedded permanent magnet electric motor according to claim 4, wherein the motor is embedded in the permanent magnet.
PCT/JP2010/054583 2009-03-25 2010-03-17 Permanent magnet-embedded motor WO2010110150A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009075201A JP2012114970A (en) 2009-03-25 2009-03-25 Interior permanent magnet motor
JP2009-075201 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010110150A1 true WO2010110150A1 (en) 2010-09-30

Family

ID=42780843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054583 WO2010110150A1 (en) 2009-03-25 2010-03-17 Permanent magnet-embedded motor

Country Status (2)

Country Link
JP (1) JP2012114970A (en)
WO (1) WO2010110150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208872A (en) * 2012-01-16 2013-07-17 三星电子株式会社 Rotor and motor including the same
CN111919360A (en) * 2018-03-23 2020-11-10 爱信艾达株式会社 Rotor for rotating electrical machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101573690B1 (en) 2013-09-26 2015-12-03 주식회사 효성 Rotor of Interior Permanent Magnet Motor
JP2016123236A (en) * 2014-12-25 2016-07-07 株式会社富士通ゼネラル Permanent magnet electric motor
KR102407352B1 (en) * 2016-12-15 2022-06-13 한국전자기술연구원 Rotor having a skewed rotor core and motor of flux concentrate type comprising the same
KR102058872B1 (en) * 2019-06-17 2019-12-26 (주) 코모텍 Rotor of Spoke Type Motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245419A (en) * 1993-02-10 1994-09-02 Honda Motor Co Ltd Yoke for motor or generator
JPH0974729A (en) * 1995-09-06 1997-03-18 Seiko Epson Corp Rotor of brushless motor
JP2001211582A (en) * 2000-01-26 2001-08-03 Fujitsu General Ltd Permanent magnet motor
JP2002519976A (en) * 1998-06-25 2002-07-02 バレオ、エキプマン、エレクトリック、モートゥール Rotating machines such as alternators for motor vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245419A (en) * 1993-02-10 1994-09-02 Honda Motor Co Ltd Yoke for motor or generator
JPH0974729A (en) * 1995-09-06 1997-03-18 Seiko Epson Corp Rotor of brushless motor
JP2002519976A (en) * 1998-06-25 2002-07-02 バレオ、エキプマン、エレクトリック、モートゥール Rotating machines such as alternators for motor vehicles
JP2001211582A (en) * 2000-01-26 2001-08-03 Fujitsu General Ltd Permanent magnet motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208872A (en) * 2012-01-16 2013-07-17 三星电子株式会社 Rotor and motor including the same
EP2615724A3 (en) * 2012-01-16 2015-04-15 Samsung Electronics Co., Ltd. Rotor and motor including the same
US9831729B2 (en) 2012-01-16 2017-11-28 Samsung Electronics Co., Ltd. Electric motor's sectional rotor with asymmetric poles having permanent magnets
CN111919360A (en) * 2018-03-23 2020-11-10 爱信艾达株式会社 Rotor for rotating electrical machine
CN111919360B (en) * 2018-03-23 2023-09-12 株式会社爱信 Rotor for rotating electrical machine

Also Published As

Publication number Publication date
JP2012114970A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP4561770B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
US7768171B2 (en) Rotor of permanent magnet rotating electric machine
JP5385076B2 (en) Motor with lobe rotor with uniform and non-uniform air gap
JP4396537B2 (en) Permanent magnet type motor
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP2012120326A (en) Interior magnet rotor, motor, and method for assembling motor
JP5957767B2 (en) Motor rotor and fan driving motor having the same
JP4844570B2 (en) Permanent magnet type motor
JP2005176424A (en) Rotor for dynamo-electric machine
JP5208088B2 (en) Permanent magnet embedded motor and blower
KR100624381B1 (en) Rotor for interior permanent magnet synchronous motor and method for manufacturing the rotor
JP2006340487A (en) Brushless motor
WO2010110150A1 (en) Permanent magnet-embedded motor
JP5511921B2 (en) Electric motor, blower and compressor
JP5491298B2 (en) Rotor, motor, and method of manufacturing rotor
JP5248048B2 (en) Rotating electric machine rotor and rotating electric machine
JP4855747B2 (en) Permanent magnet type reluctance rotating electric machine
CN113169596B (en) Rotor and rotating electrical machine including the same
JP4080273B2 (en) Permanent magnet embedded motor
JP5264551B2 (en) Electric motor, blower and compressor
JP2007053864A (en) Permanent magnet embedded rotor
JP2010081676A (en) Rotor of rotating electrical machine, and rotating electrical machine
JP2003009477A (en) Rotor structure of permanent magnet type dynamo- electric machine
WO2017042886A1 (en) Permanent magnet-type rotating electric motor and compressor using same
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP