JP2004289904A - Permanent magnet retaining structure for rotor - Google Patents

Permanent magnet retaining structure for rotor Download PDF

Info

Publication number
JP2004289904A
JP2004289904A JP2003077042A JP2003077042A JP2004289904A JP 2004289904 A JP2004289904 A JP 2004289904A JP 2003077042 A JP2003077042 A JP 2003077042A JP 2003077042 A JP2003077042 A JP 2003077042A JP 2004289904 A JP2004289904 A JP 2004289904A
Authority
JP
Japan
Prior art keywords
permanent magnet
peripheral side
insertion hole
support member
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077042A
Other languages
Japanese (ja)
Inventor
Hiroshi Ozeki
浩 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003077042A priority Critical patent/JP2004289904A/en
Publication of JP2004289904A publication Critical patent/JP2004289904A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet retaining structure for a rotor which can directly retain a permanent magnet without having to separately provide an elastic member around the permanent magnet, in making a rotor core retained to the permanent magnet. <P>SOLUTION: In the permanent magnet retaining structure for the rotor which retains the permanent magnet 16 by forming an insertion hole 21 for the permanent magnet 16 at the peripheral side of the rotor core 15, and inserting the permanent magnet 16 into the insertion hole 21, an elastic support mechanism 22 is arranged in advance in the rotor core 15 on at least one side of the periphery of the insertion hole 21, and the permanent magnet 16 is retained in the insertion hole 21 by the spring force of the elastic support mechanism 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は永久磁石を用いた電動機や発電機に係り、特にロータコアへの永久磁石の保持を簡単に行えるロータの永久磁石保持構造に関するものである。
【0002】
【従来の技術】
従来、永久磁石式ACG(交流発電機)においては、ケイ素鋼板を積層したロータに内蔵された永久磁石(マグネットセグメント)は、それを保持するために永久磁石の外周をアルミ鋳物で鋳込む構造となっている。
【0003】
図6、図7は、従来のロータの永久磁石保持構造を示したもので、ケイ素鋼板で形成されたロータコア60に、挿入孔62を形成し、その挿入孔62に希土類等の永久磁石61を圧入して形成される。また挿入孔62の円周方向両側にアルミ鋳込み用の孔63が一体に形成され、挿入孔62の直径方向の内外に永久磁石61を保持するための爪64が形成されると共にアルミ鋳込み用の孔63にも押さえ爪65が形成され、挿入孔62に永久磁石61を圧入後、アルミ鋳込み用の孔63にアルミニウム66を鋳込んで永久磁石61を挿入孔62に保持するようにしている。
【0004】
この従来のACGは完成された構造であり、量産体制も確立していることから低コストとなっているが、ロータの製作に鋳造設備が必要となるため、コスト面で問題がある。
【0005】
そこで、アルミ鋳物を使用しないで、接着剤を充填して保持するようにしたり、特許文献1に示されるように弾性部材をロータコアの永久磁石挿入穴に装着してその弾性力で保持することが提案されている。
【0006】
【特許文献1】
特開2000−341920号公報
【0007】
【発明が解決しようとする課題】
しかしながら、接着剤や弾性部材を用いて保持すると、その分コストが掛かってしまう問題がある。
【0008】
そこで、本発明の目的は、上記課題を解決し、永久磁石をロータコアに保持させるにおいて、永久磁石の周りに弾性部材を別途設けることなく直接保持することが可能なロータの永久磁石保持構造を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明は、ロータコアの外周側に永久磁石の挿入孔を設け、その挿入孔に永久磁石を挿入して永久磁石を保持するロータの永久磁石保持構造において、挿入孔の周囲の少なくとも一辺のロータコアに予め弾性支持機構を形成し、その弾性支持機構のバネ力で永久磁石を挿入孔内に保持させるようにしたロータの永久磁石保持構造である。
【0010】
請求項2の発明は、挿入孔の外周側のロータコアに径方向に薄い外周辺側支持部材を形成し、その外周辺側支持部材のバネ力で永久磁石を押圧する外周辺側弾性支持機構を形成した請求項1記載のロータの永久磁石保持構造である。
【0011】
請求項3の発明は、外周辺側支持部材と内周辺側支持部材には、それぞれ挿入孔に向けて突出する押さえ片が形成される請求項2記載のロータの永久磁石保持構造である。
【0012】
請求項4の発明は、挿入孔の内周側のロータコアに挿入孔に隣接して抜き穴を形成しその挿入孔と抜き穴間に内周辺側支持部材を形成し、その内周辺側支持部材のバネ力で永久磁石を押圧する内周辺側弾性支持機構を形成した請求項1〜3いずれか記載のロータの永久磁石保持構造である。
【0013】
請求項5の発明は、挿入孔の円周方向に近接して抜き穴を形成し、その抜き穴と挿入孔間に、円周辺側支持部材を形成し、その円周辺側支持部材のバネ力で永久磁石を押圧する円周側弾性支持機構を形成した請求項1〜4いずれかに記載のロータの永久磁石保持構造である。
【0014】
請求項6の発明は、円周辺側支持部材は、その途中が切り欠かれて内外端部に永久磁石を押圧する押さえ爪が形成される請求項5記載のロータの永久磁石保持構造である。
【0015】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0016】
先ず、図4によりACG(交流発電機)の全体構成を説明する。
【0017】
図4において、ケーシング10には軸受11、11により回転軸12が設けられ、その回転軸12にロータ13が取り付けられ、そのロータ13に対向してステータ14がケーシング10の内周に設けられる。
【0018】
ロータ13は、厚さ0.5mmのケイ素鋼板を多数積層したロータコア15からなり、そのロータコア15に希土類等の永久磁石16が保持され、その両側にアルミニウム製のマグネット押さえ板17、17が設けられる。
【0019】
ステータ14には、巻き線(図示せず)が施され、また回転軸12にはプーリ18が設けられ、プーリ18を介してロータ13が回転されて発電されるようになっている。
【0020】
また回転軸12には、ファン19、20が設けられ、回転軸12の回転で、ロータ13とステータ14が冷却されるようになっている。
【0021】
さて、図1に示すようにロータコア15には、その外周部に永久磁石16を圧入するための挿入孔21が円周方向に複数個設けられ、その挿入孔21に永久磁石16が挿入されて保持される。
【0022】
本発明においては、この永久磁石16をロータコア15に保持させるにおいて、その挿入孔21の周囲の少なくとも一辺のロータコア15に予め弾性支持機構22を形成し、その弾性支持機構22のバネ力で永久磁石16を挿入孔21内に保持させるようにしたものである。
【0023】
この弾性支持機構22は、四角形の挿入孔21の四辺に設けても、三辺に設けても、二辺に設けても、或いはいずれか一辺に設けてもよい。
【0024】
図2、図3は、挿入孔21の四辺に弾性支持機構22を形成する例を示し、図において、22oは外周辺側弾性支持機構、22iは内周辺側弾性支持機構、22c、22cは円周側弾性支持機構を示している。
【0025】
先ず、外周辺側弾性支持機構22oは、挿入孔21の外周側のロータコア15を形成するケイ素鋼板からなるコア板15sに径方向に薄い外周辺側支持部材23を形成し、その外周辺側支持部材23のバネ力で永久磁石16を押圧するように構成される。
【0026】
この外周辺側支持部材23には、挿入孔21に向けて突出する押さえ片24が形成される。
【0027】
外周辺側弾性支持機構22oを形成するにあたって、図3に示すように挿入孔21を、直径方向の線ldに対して挿入孔21の中心を通る線loが約7.5〜10度傾斜するように形成し、また従来のロータコアの外周円Cdに対して外周辺側支持部材23の表面の中心点pを通る円周Cpとの間隔dは、ロータコアが直径100mmφであればd=3〜5mmとなるように形成する。
【0028】
このように挿入孔21を傾斜して形成し、かつ挿入孔21の傾斜に合わせて外周辺側支持部材23を形成することで、そのロータコア15の外周には、緩やかに傾斜した直角三角形状の凹部25が形成され、またこのロータコア15の回転が反時計方向に回転されることで、外周辺側支持部材23から立ち上がった垂直壁部26は、回転によりロータコア15の周りに風を発生させるファン機能を備えることとなり、冷却効果を促進させることが可能となる。
【0029】
内周辺側弾性支持機構22iは、挿入孔21の内周側のコア板15sに挿入孔21に隣接して抜き穴27を形成し、その挿入孔21と抜き穴27間に内周辺側支持部材28を形成し、その内周辺側支持部材28のバネ力で永久磁石16を押圧するように構成される。
【0030】
内周辺側支持部材28には、挿入孔21に向けて突出する押さえ片29が形成される。
【0031】
円周側弾性支持機構22cは、挿入孔21の円周方向に近接してコア板15sに抜き穴30を形成し、その抜き穴30と挿入孔21間に、円周辺側支持部材31を形成し、その円周辺側支持部材31のバネ力で永久磁石16を押圧するように構成される。
【0032】
この円周辺側支持部材31は、後述するように内周辺側支持部材28と同様に形成してもよいが、円周辺側支持部材31の途中を切り欠いて内外端部に永久磁石16を押圧する押さえ爪31n、31nで形成するようにする。
【0033】
なお、32は、回転軸12の挿通穴、33は、ロータコア15の重量を軽くするための抜き穴である。
【0034】
次に本発明の作用を述べる。
【0035】
先ず、ロータ13の組立は、ケイ素鋼板からコア板15sを、図3に示した形状にプレス加工により打ち抜き、これを数十枚から百枚単位で積層して回転軸12に取り付け、各挿入穴21に永久磁石16を挿入する。
【0036】
この際、図2に示すように、弾性支持機構22である外周辺側弾性支持機構22o、内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cは、弾性力があるため図示の矢印のように永久磁石16を押圧して固定することとなる。
【0037】
この外周辺側弾性支持機構22o、内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cは、コア板15sを多数積層して形成されるため、永久磁石16の保持力は、従来のアルミ鋳込みや接着剤の固定と同様に十分に確保できる。
【0038】
この場合、外周辺側弾性支持機構22o、内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cは、永久磁石16が、ロータ13の回転で、回転方向への力と遠心力が作用するため、その力に抗して永久磁石16を挿入孔21内に保持する弾性力が得られるように、コア板15sの積層枚数と、外周辺側支持部材23、内周辺側支持部材28、円周辺側支持部材31の厚さを設定する。
【0039】
なお、弾性支持機構22での永久磁石16の軸方向への拘束力は、比較的小さいため、脱落防止のため、アルミニウム製のマグネット押さえ板17、17にて保持する。
【0040】
次に、本発明の他の実施の形態を図5(a)〜図5(e)により説明する。
【0041】
図5(a)は、内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cで、図示の矢印で示したように3方向から永久磁石16を保持するもので、挿入孔21の外周側のロータコア15は、肉厚の外周部15rに形成し、内周辺側弾性支持機構22iで、永久磁石16を挿入孔21の外周側辺部に押しつけるようにしたものである。
【0042】
内周辺側弾性支持機構22iは、挿入孔21の内周側のロータコア15に、挿入孔21の長さと略同じ長さの抜き穴27aを形成して内周辺側支持部材28aを形成し、かつその内周辺側支持部材28aに突起29aを形成して構成し、また円周側弾性支持機構22cは、その抜き穴30aが、隣接する挿入孔21の円周辺側支持部材31aも同時に形成するように一体にされて形成され、その円周辺側支持部材31aに挿入孔21に向かう突起40を形成したものである。
【0043】
図5(b)は、同じく内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cで、図示の矢印で示したように3方向から永久磁石16を保持するもので、内周辺側弾性支持機構22iは、図5(a)と同様の抜き穴27aを形成して内周辺側支持部材28aとし、内周辺側支持部材28aに突起29aを設けずにフラットなまま、または凸条の曲率面として形成したものである。
【0044】
また、円周側弾性支持機構22cは、図5(a)と同様に抜き穴30aを設けて円周辺側支持部材31aを形成し、また永久磁石16の円周側端部には、突起41、41を形成して、その突起41で円周辺側支持部材31aを押圧してバネ力を発生させるようにしたものである。
【0045】
図5(c)は、図5(b)と同じく内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cで、図示の矢印で示したように3方向から永久磁石16を保持するものであるが、円周側弾性支持機構22c、22cを形成する際に、挿入孔21の円周側両側に細長の抜き穴30cを形成して円周辺側支持部材31aを形成し、また永久磁石16の円周側端部には、突起41、41を形成して、その突起41で円周辺側支持部材31aを押圧してバネ力を発生させるようにしたものである。
【0046】
図5(d)は、内周辺側弾性支持機構22i、円周側弾性支持機構22cで、図示の矢印で示したように2方向から永久磁石16を保持するもので、内周辺側弾性支持機構22iは、挿入孔21の内周側のロータコア15に、挿入孔21の長さより短い抜き穴27dを形成し、かつ抜き穴27dの両側の挿入孔21に溝部42を形成して突起状の内周辺側支持部材28dを形成して構成し、また、円周側弾性支持機構22cは、回転側前方となる位置に細長の抜き穴30dを形成して、円周辺側支持部材31dを形成し、さらに挿入孔21の外周側にも内周側の溝部42と対向するように溝部43を形成して、円周辺側支持部材31dによるバネ力を発生させるように構成したものである。
【0047】
図5(e)は、図3で示した外周辺側弾性支持機構22o、内周辺側弾性支持機構22i、円周側弾性支持機構22c、22cの4方向で永久磁石16を支持する例を再度示したものであるが、これら弾性支持機構22o、22i,22cは、図示した以外に、図5(a)〜図5(e)に示したものを適宜組み合わせて構成するようにすることは勿論である。
【0048】
また各辺の支持部材に段付状の凸部押さえ片24,29,40,41に代えて曲面状の押さえ部材としても、その他、種々の形状にして押さえるようにしても有効である。
【0049】
この図5(a)〜図5(e)においても、弾性支持機構22により、永久磁石16を挿入孔21内にそのバネ力で確実に保持することが可能となる。
【0050】
【発明の効果】
以上要するに本発明によれば、従来のようにアルミ鋳込みや接着剤を用いることなく、ロータコアの挿入孔に永久磁石を保持させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示すロータコアの全体図である。
【図2】図1の要部拡大図である。
【図3】図2において、永久磁石を保持する前のコア板の要部詳細を示す図である。
【図4】本発明が適用されるACGの全体断面図である。
【図5】本発明の他の実施の形態を示す要部詳細図である。
【図6】従来のロータコアの全体図である。
【図7】図6の要部拡大図である。
【符号の説明】
15 ロータコア
16 永久磁石
21 挿入孔
22 弾性支持機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor or a generator using a permanent magnet, and more particularly to a rotor permanent magnet holding structure that can easily hold a permanent magnet on a rotor core.
[0002]
[Prior art]
Conventionally, in a permanent magnet type ACG (alternating current generator), a permanent magnet (magnet segment) built in a rotor laminated with a silicon steel plate has a structure in which an outer periphery of the permanent magnet is cast with an aluminum casting to hold the permanent magnet. Has become.
[0003]
6 and 7 show a conventional permanent magnet holding structure of a rotor, in which an insertion hole 62 is formed in a rotor core 60 formed of a silicon steel plate, and a permanent magnet 61 such as a rare earth element is inserted into the insertion hole 62. It is formed by press fitting. Also, holes 63 for casting aluminum are integrally formed on both sides in the circumferential direction of the insertion hole 62, claws 64 for holding the permanent magnets 61 are formed inside and outside the diameter of the insertion hole 62, and a hole for casting aluminum is formed. A holding claw 65 is also formed in the hole 63, and after the permanent magnet 61 is press-fitted into the insertion hole 62, aluminum 66 is cast into the hole 63 for casting aluminum to hold the permanent magnet 61 in the insertion hole 62.
[0004]
The conventional ACG has a completed structure and is low in cost due to the establishment of a mass production system, but has a problem in terms of cost because casting equipment is required for manufacturing the rotor.
[0005]
Therefore, instead of using an aluminum casting, an adhesive is filled and held, or an elastic member is attached to a permanent magnet insertion hole of a rotor core and held by the elastic force as shown in Patent Document 1. Proposed.
[0006]
[Patent Document 1]
JP 2000-341920 A
[Problems to be solved by the invention]
However, there is a problem in that the cost is increased by holding using an adhesive or an elastic member.
[0008]
In view of the above, an object of the present invention is to solve the above problems and provide a permanent magnet holding structure for a rotor that can directly hold a permanent magnet on a rotor core without separately providing an elastic member around the permanent magnet. Is to do.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a permanent magnet holding structure for a rotor in which a permanent magnet insertion hole is provided on an outer peripheral side of a rotor core, and a permanent magnet is inserted into the insertion hole to hold the permanent magnet. A rotor permanent magnet holding structure in which an elastic support mechanism is formed in advance on at least one side of the rotor core around the insertion hole, and the permanent magnet is held in the insertion hole by the spring force of the elastic support mechanism.
[0010]
The outer peripheral side elastic supporting mechanism which forms a thin outer peripheral side support member in the radial direction on the rotor core on the outer peripheral side of the insertion hole and presses the permanent magnet by the spring force of the outer peripheral side support member is provided. A permanent magnet holding structure for a rotor according to claim 1 formed.
[0011]
The invention according to claim 3 is the permanent magnet holding structure for a rotor according to claim 2, wherein the outer peripheral side support member and the inner peripheral side support member are each formed with a pressing piece projecting toward the insertion hole.
[0012]
According to a fourth aspect of the present invention, a hole is formed adjacent to the insertion hole in the rotor core on the inner side of the insertion hole, and an inner peripheral side support member is formed between the insertion hole and the hole. The permanent magnet holding structure for a rotor according to any one of claims 1 to 3, wherein an inner peripheral side elastic support mechanism that presses the permanent magnet with a spring force is formed.
[0013]
According to a fifth aspect of the present invention, a hole is formed in the vicinity of the insertion hole in the circumferential direction, a circle-side support member is formed between the hole and the insertion hole, and a spring force of the circle-side support member is formed. The permanent magnet holding structure for a rotor according to any one of claims 1 to 4, wherein a circumferential elastic support mechanism for pressing the permanent magnet is formed by using (1).
[0014]
The invention according to claim 6 is the permanent magnet holding structure for a rotor according to claim 5, wherein the circle peripheral side support member is cut out in the middle and a holding claw for pressing the permanent magnet is formed at the inner and outer ends.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
First, the overall configuration of an ACG (alternating current generator) will be described with reference to FIG.
[0017]
In FIG. 4, a rotating shaft 12 is provided on a casing 10 by bearings 11, 11, a rotor 13 is attached to the rotating shaft 12, and a stator 14 is provided on the inner periphery of the casing 10 so as to face the rotor 13.
[0018]
The rotor 13 is composed of a rotor core 15 in which a large number of 0.5 mm-thick silicon steel plates are stacked. The rotor core 15 holds a permanent magnet 16 made of a rare earth or the like, and magnet holding plates 17 made of aluminum are provided on both sides thereof. .
[0019]
A winding (not shown) is applied to the stator 14, and a pulley 18 is provided on the rotating shaft 12, and the rotor 13 is rotated via the pulley 18 to generate power.
[0020]
The rotating shaft 12 is provided with fans 19 and 20, and the rotation of the rotating shaft 12 cools the rotor 13 and the stator 14.
[0021]
As shown in FIG. 1, a plurality of insertion holes 21 for press-fitting the permanent magnets 16 are provided in the outer peripheral portion of the rotor core 15 in the circumferential direction, and the permanent magnets 16 are inserted into the insertion holes 21. Will be retained.
[0022]
In the present invention, when the permanent magnet 16 is held by the rotor core 15, an elastic support mechanism 22 is previously formed on the rotor core 15 on at least one side around the insertion hole 21, and the permanent magnet is 16 is held in the insertion hole 21.
[0023]
The elastic support mechanism 22 may be provided on four sides of the rectangular insertion hole 21, three sides, two sides, or any one side.
[0024]
2 and 3 show examples in which the elastic support mechanisms 22 are formed on the four sides of the insertion hole 21. In the figures, 22o is an outer peripheral elastic support mechanism, 22i is an inner peripheral elastic support mechanism, and 22c and 22c are circles. 3 shows a peripheral elastic support mechanism.
[0025]
First, the outer peripheral side elastic support mechanism 22o forms a radially thin outer peripheral side support member 23 on a core plate 15s made of a silicon steel plate forming the rotor core 15 on the outer peripheral side of the insertion hole 21, and supports the outer peripheral side. The permanent magnet 16 is configured to be pressed by the spring force of the member 23.
[0026]
The outer peripheral side support member 23 is formed with a holding piece 24 projecting toward the insertion hole 21.
[0027]
In forming the outer peripheral side elastic support mechanism 22o, a line lo passing through the center of the insertion hole 21 with respect to the diameter line ld is inclined by about 7.5 to 10 degrees as shown in FIG. The distance d between the outer circumference Cd of the conventional rotor core and the circumference Cp passing through the center point p on the surface of the outer peripheral side support member 23 is d = 3 to 3 if the diameter of the rotor core is 100 mmφ. It is formed so as to be 5 mm.
[0028]
In this manner, the insertion hole 21 is formed to be inclined, and the outer peripheral side support member 23 is formed in accordance with the inclination of the insertion hole 21, so that the outer periphery of the rotor core 15 has a gently inclined right triangle shape. When the concave portion 25 is formed and the rotation of the rotor core 15 is rotated in the counterclockwise direction, the vertical wall portion 26 rising from the outer peripheral support member 23 causes the fan to generate wind around the rotor core 15 by rotation. With the function, the cooling effect can be promoted.
[0029]
The inner peripheral side elastic support mechanism 22i forms a hole 27 adjacent to the insertion hole 21 in the core plate 15s on the inner peripheral side of the insertion hole 21, and an inner peripheral side support member between the insertion hole 21 and the hole 27. The permanent magnet 16 is configured to be pressed by the spring force of the inner peripheral side support member 28.
[0030]
A holding piece 29 is formed on the inner peripheral side support member 28 so as to project toward the insertion hole 21.
[0031]
The circumferential elastic support mechanism 22c forms a hole 30 in the core plate 15s in the vicinity of the insertion hole 21 in the circumferential direction, and forms a circle peripheral side support member 31 between the hole 30 and the insertion hole 21. Then, the permanent magnet 16 is configured to be pressed by the spring force of the circle peripheral side support member 31.
[0032]
This circle peripheral side support member 31 may be formed in the same manner as the inner peripheral side support member 28 as described later, but the middle part of the circle peripheral side support member 31 is cut out and the permanent magnet 16 is pressed against the inner and outer ends. Pressing claws 31n, 31n are formed.
[0033]
Reference numeral 32 denotes an insertion hole for the rotating shaft 12, and reference numeral 33 denotes a hole for reducing the weight of the rotor core 15.
[0034]
Next, the operation of the present invention will be described.
[0035]
First, the rotor 13 is assembled by punching a core plate 15s from a silicon steel plate into a shape shown in FIG. The permanent magnet 16 is inserted into 21.
[0036]
At this time, as shown in FIG. 2, the outer peripheral side elastic supporting mechanism 22o, the inner peripheral side elastic supporting mechanism 22i, and the circumferential side elastic supporting mechanisms 22c, 22c, which are the elastic supporting mechanisms 22, have an elastic force, so that The permanent magnet 16 is pressed and fixed as shown by the arrow.
[0037]
The outer peripheral side elastic support mechanism 22o, the inner peripheral side elastic support mechanism 22i, and the circumferential side elastic support mechanisms 22c, 22c are formed by laminating a large number of core plates 15s. As in the case of casting aluminum or fixing adhesive.
[0038]
In this case, the outer peripheral side elastic support mechanism 22o, the inner peripheral side elastic support mechanism 22i, and the circumferential side elastic support mechanisms 22c, 22c are configured such that when the permanent magnet 16 rotates the rotor 13, the force in the rotation direction and the centrifugal force are reduced. Therefore, the number of laminated core plates 15s, the outer peripheral side support member 23, and the inner peripheral side support member 28 are adjusted so that an elastic force for holding the permanent magnet 16 in the insertion hole 21 against the force is obtained. , The thickness of the circle peripheral side support member 31 is set.
[0039]
Since the restraining force of the elastic support mechanism 22 in the axial direction of the permanent magnet 16 is relatively small, the permanent magnet 16 is held by the aluminum magnet pressing plates 17 to prevent the permanent magnet 16 from falling off.
[0040]
Next, another embodiment of the present invention will be described with reference to FIGS. 5 (a) to 5 (e).
[0041]
FIG. 5A shows an inner peripheral side elastic support mechanism 22i and circumferential side elastic support mechanisms 22c, 22c which hold the permanent magnet 16 from three directions as indicated by arrows in the drawing. The outer peripheral side rotor core 15 is formed in a thick outer peripheral portion 15 r, and the permanent magnet 16 is pressed against the outer peripheral side of the insertion hole 21 by the inner peripheral elastic support mechanism 22 i.
[0042]
The inner-peripheral-side elastic support mechanism 22i forms an inner-peripheral-side support member 28a by forming a hole 27a having a length substantially equal to the length of the insertion hole 21 in the rotor core 15 on the inner periphery of the insertion hole 21; The protrusion 29a is formed on the inner peripheral side support member 28a, and the circumferential elastic support mechanism 22c is formed such that the hole 30a also forms the circular peripheral side support member 31a of the adjacent insertion hole 21 at the same time. The protrusion 40 is formed integrally with the support member 31a on the periphery of the circle and extends toward the insertion hole 21.
[0043]
FIG. 5B shows an inner peripheral side elastic support mechanism 22i and circumferential side elastic support mechanisms 22c, 22c which hold the permanent magnet 16 from three directions as indicated by arrows in the drawing. The elastic support mechanism 22i forms a hole 27a similar to that shown in FIG. 5A to form an inner peripheral side support member 28a. The inner peripheral side support member 28a remains flat without providing the projection 29a, or is formed as a convex strip. It is formed as a curvature surface.
[0044]
The circumferential elastic support mechanism 22c has a hole 30a in the same manner as in FIG. 5 (a) to form a circumferential support member 31a, and the circumferential end of the permanent magnet 16 has a protrusion 41. , 41 are formed, and the projection 41 presses the circle peripheral side supporting member 31a to generate a spring force.
[0045]
FIG. 5C shows the inner peripheral elastic support mechanism 22i and the circumferential elastic support mechanisms 22c and 22c, as in FIG. 5B, which hold the permanent magnet 16 from three directions as indicated by arrows in the drawing. However, when forming the circumferential elastic support mechanisms 22c, 22c, the elongated peripheral holes 30c are formed on both circumferential sides of the insertion hole 21 to form the circular peripheral support member 31a. Protrusions 41, 41 are formed on the circumferential end of the magnet 16, and the protrusions 41 press the circumferential support member 31a to generate a spring force.
[0046]
FIG. 5D shows an inner peripheral elastic support mechanism 22i and a circumferential elastic support mechanism 22c which hold the permanent magnet 16 from two directions as indicated by arrows in the drawing. Reference numeral 22i denotes a protruding inner portion formed by forming a hole 27d shorter than the length of the insertion hole 21 in the rotor core 15 on the inner peripheral side of the insertion hole 21 and forming a groove 42 in the insertion hole 21 on both sides of the hole 27d. The peripheral side support member 28d is formed, and the circumferential side elastic support mechanism 22c forms an elongated hole 30d at a position on the rotation side front to form a circular peripheral side support member 31d. Further, a groove 43 is formed on the outer peripheral side of the insertion hole 21 so as to face the groove 42 on the inner peripheral side, so that a spring force is generated by the circular peripheral side support member 31d.
[0047]
FIG. 5E shows an example in which the permanent magnet 16 is supported in four directions of the outer peripheral elastic support mechanism 22o, the inner peripheral elastic support mechanism 22i, and the circumferential elastic support mechanisms 22c, 22c shown in FIG. Although shown, these elastic support mechanisms 22o, 22i, and 22c may be configured by appropriately combining the components shown in FIGS. 5 (a) to 5 (e) other than those shown. It is.
[0048]
It is also effective to use a curved pressing member instead of the stepped convex pressing pieces 24, 29, 40, 41 on the supporting members on each side, or to press the supporting member in various shapes.
[0049]
5A to 5E, the elastic support mechanism 22 allows the permanent magnet 16 to be reliably held in the insertion hole 21 by its spring force.
[0050]
【The invention's effect】
In short, according to the present invention, the permanent magnet can be held in the insertion hole of the rotor core without using an aluminum casting or an adhesive unlike the related art.
[Brief description of the drawings]
FIG. 1 is an overall view of a rotor core showing an embodiment of the present invention.
FIG. 2 is an enlarged view of a main part of FIG.
FIG. 3 is a diagram showing details of a main part of a core plate before holding a permanent magnet in FIG. 2;
FIG. 4 is an overall sectional view of an ACG to which the present invention is applied.
FIG. 5 is a detailed view of a main part showing another embodiment of the present invention.
FIG. 6 is an overall view of a conventional rotor core.
FIG. 7 is an enlarged view of a main part of FIG. 6;
[Explanation of symbols]
15 rotor core 16 permanent magnet 21 insertion hole 22 elastic support mechanism

Claims (6)

ロータコアの外周側に永久磁石の挿入孔を設け、その挿入孔に永久磁石を挿入して永久磁石を保持するロータの永久磁石保持構造において、挿入孔の周囲の少なくとも一辺のロータコアに予め弾性支持機構を形成し、その弾性支持機構のバネ力で永久磁石を挿入孔内に保持させることを特徴とするロータの永久磁石保持構造。A permanent magnet insertion hole is provided on the outer peripheral side of the rotor core, and the permanent magnet is inserted into the insertion hole to hold the permanent magnet. Wherein the permanent magnet is held in the insertion hole by a spring force of the elastic support mechanism. 挿入孔の外周側のロータコアに径方向に薄い外周辺側支持部材を形成し、その外周辺側支持部材のバネ力で永久磁石を押圧する外周辺側弾性支持機構を形成した請求項1記載のロータの永久磁石保持構造。2. The outer peripheral side elastic supporting mechanism for pressing a permanent magnet by a spring force of the outer peripheral side supporting member is formed on a rotor core on an outer peripheral side of the insertion hole in a radial direction. A permanent magnet holding structure for the rotor. 外周辺側支持部材と内周辺側支持部材には、それぞれ挿入孔に向けて突出する押さえ片が形成される請求項2記載のロータの永久磁石保持構造。3. The permanent magnet holding structure for a rotor according to claim 2, wherein the outer peripheral side support member and the inner peripheral side support member are respectively formed with pressing pieces protruding toward the insertion holes. 挿入孔の内周側のロータコアに挿入孔に隣接して抜き穴を形成しその挿入孔と抜き穴間に内周辺側支持部材を形成し、その内周辺側支持部材のバネ力で永久磁石を押圧する内周辺側弾性支持機構を形成した請求項1〜3いずれか記載のロータの永久磁石保持構造。A punch hole is formed in the rotor core on the inner peripheral side of the insert hole adjacent to the insert hole, an inner peripheral support member is formed between the insert hole and the extract hole, and a permanent magnet is formed by the spring force of the inner peripheral support member. The permanent magnet holding structure for a rotor according to any one of claims 1 to 3, wherein an inner peripheral side elastic support mechanism for pressing is formed. 挿入孔の円周方向に近接して抜き穴を形成し、その抜き穴と挿入孔間に、円周辺側支持部材を形成し、その円周辺側支持部材のバネ力で永久磁石を押圧する円周側弾性支持機構を形成した請求項1〜4いずれかに記載のロータの永久磁石保持構造。A circle is formed in the vicinity of the insertion hole in the circumferential direction, a circle-side support member is formed between the hole and the insertion hole, and a permanent magnet is pressed by the spring force of the circle-side support member. 5. The permanent magnet holding structure for a rotor according to claim 1, wherein a peripheral elastic support mechanism is formed. 円周辺側支持部材は、その途中が切り欠かれて内外端部に永久磁石を押圧する押さえ爪が形成される請求項5記載のロータの永久磁石保持構造。6. The permanent magnet holding structure for a rotor according to claim 5, wherein the circle peripheral side support member is cut out in the middle thereof and a holding claw for pressing the permanent magnet is formed at the inner and outer ends.
JP2003077042A 2003-03-20 2003-03-20 Permanent magnet retaining structure for rotor Pending JP2004289904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077042A JP2004289904A (en) 2003-03-20 2003-03-20 Permanent magnet retaining structure for rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077042A JP2004289904A (en) 2003-03-20 2003-03-20 Permanent magnet retaining structure for rotor

Publications (1)

Publication Number Publication Date
JP2004289904A true JP2004289904A (en) 2004-10-14

Family

ID=33291897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077042A Pending JP2004289904A (en) 2003-03-20 2003-03-20 Permanent magnet retaining structure for rotor

Country Status (1)

Country Link
JP (1) JP2004289904A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060836A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Rotor for motor with embedded type magnet and manufacturing method thereof
JP2008029184A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Rotor, manufacturing method therefor, closed-type compressor, and refrigeration cycle device
WO2008092748A1 (en) 2007-02-01 2008-08-07 Robert Bosch Gmbh Electrical machine
JP2008278648A (en) * 2007-04-27 2008-11-13 Daikin Ind Ltd Axial gap rotary electric machine and manufacturing method thereof
JP2008545364A (en) * 2005-06-30 2008-12-11 スパル オートモーティブ ソチエタ レスポンサビリタ リミテ Rotor for electric machine
WO2009016077A1 (en) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Lamella package for a rotor or stator of an electrical machine and corresponding electrical machine
JP2010154587A (en) * 2008-12-24 2010-07-08 Mitsubishi Electric Corp Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor
JP2010158168A (en) * 2010-04-15 2010-07-15 Daikin Ind Ltd Axial gap rotary motor and method of manufacturing the same
US20110248593A1 (en) * 2010-04-13 2011-10-13 John Fiorenza Permanent Magnet Rotor for Axial Airgap Motor
JP2013034363A (en) * 2011-06-30 2013-02-14 Asmo Co Ltd Rotor and method for manufacturing the same
JP2013078164A (en) * 2011-09-29 2013-04-25 Asmo Co Ltd Rotor
CN103259357A (en) * 2012-02-20 2013-08-21 罗伯特·博世有限公司 Permanent magnet fixation with a frame
WO2014068753A1 (en) * 2012-11-01 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, compressor, and refrigeration and air conditioning equipment
JP2014236526A (en) * 2013-05-30 2014-12-15 三菱電機株式会社 Magnet embedded type rotor
KR101575631B1 (en) 2009-03-17 2015-12-08 삼성전자주식회사 Driving assembly for image stabilization of digital camera
CN107994701A (en) * 2017-12-12 2018-05-04 泛仕达机电股份有限公司 A kind of novel motor rotor structure
WO2019064403A1 (en) * 2017-09-28 2019-04-04 三菱電機株式会社 Rotor, electric motor, closed compressor, and method for manufacturing rotor
JP2021005928A (en) * 2019-06-26 2021-01-14 ファナック株式会社 Rotor and motor
DE102020102457A1 (en) 2020-01-31 2021-08-05 Schaeffler Technologies AG & Co. KG Electric machine with rotor magnets fixed by clamps; and methods of assembling a rotor

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545364A (en) * 2005-06-30 2008-12-11 スパル オートモーティブ ソチエタ レスポンサビリタ リミテ Rotor for electric machine
JP4704149B2 (en) * 2005-08-25 2011-06-15 富士重工業株式会社 Rotor of embedded magnet type motor and manufacturing method thereof
JP2007060836A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Rotor for motor with embedded type magnet and manufacturing method thereof
JP2008029184A (en) * 2006-06-20 2008-02-07 Mitsubishi Electric Corp Rotor, manufacturing method therefor, closed-type compressor, and refrigeration cycle device
WO2008092748A1 (en) 2007-02-01 2008-08-07 Robert Bosch Gmbh Electrical machine
JP2008278648A (en) * 2007-04-27 2008-11-13 Daikin Ind Ltd Axial gap rotary electric machine and manufacturing method thereof
JP4561770B2 (en) * 2007-04-27 2010-10-13 ダイキン工業株式会社 Axial gap type rotating electrical machine and manufacturing method thereof
WO2009016077A1 (en) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Lamella package for a rotor or stator of an electrical machine and corresponding electrical machine
JP2010154587A (en) * 2008-12-24 2010-07-08 Mitsubishi Electric Corp Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor
KR101575631B1 (en) 2009-03-17 2015-12-08 삼성전자주식회사 Driving assembly for image stabilization of digital camera
US20110248593A1 (en) * 2010-04-13 2011-10-13 John Fiorenza Permanent Magnet Rotor for Axial Airgap Motor
JP2010158168A (en) * 2010-04-15 2010-07-15 Daikin Ind Ltd Axial gap rotary motor and method of manufacturing the same
JP2013034363A (en) * 2011-06-30 2013-02-14 Asmo Co Ltd Rotor and method for manufacturing the same
US9484792B2 (en) 2011-06-30 2016-11-01 Asmo Co., Ltd. Rotor and method for manufacturing the rotor
JP2013078164A (en) * 2011-09-29 2013-04-25 Asmo Co Ltd Rotor
DE102012202529A1 (en) * 2012-02-20 2013-08-22 Robert Bosch Gmbh Permanent magnet arrangement for use in rotor of e.g. electric machine in motor car, has clamping unit firmly arranged at permanent magnet and extending on long side of permanent magnet that is magnetized after clamping unit is attached
CN103259357A (en) * 2012-02-20 2013-08-21 罗伯特·博世有限公司 Permanent magnet fixation with a frame
WO2014068753A1 (en) * 2012-11-01 2014-05-08 三菱電機株式会社 Electric motor with embedded permanent magnet, compressor, and refrigeration and air conditioning equipment
JP5933743B2 (en) * 2012-11-01 2016-06-15 三菱電機株式会社 Permanent magnet embedded motor, compressor, and refrigeration air conditioner
US9800105B2 (en) 2012-11-01 2017-10-24 Mitsubishi Electric Corporation Permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
JP2014236526A (en) * 2013-05-30 2014-12-15 三菱電機株式会社 Magnet embedded type rotor
WO2019064403A1 (en) * 2017-09-28 2019-04-04 三菱電機株式会社 Rotor, electric motor, closed compressor, and method for manufacturing rotor
JPWO2019064403A1 (en) * 2017-09-28 2019-12-12 三菱電機株式会社 Rotor, electric motor, hermetic compressor, and method of manufacturing rotor
CN107994701A (en) * 2017-12-12 2018-05-04 泛仕达机电股份有限公司 A kind of novel motor rotor structure
JP2021005928A (en) * 2019-06-26 2021-01-14 ファナック株式会社 Rotor and motor
JP7294914B2 (en) 2019-06-26 2023-06-20 ファナック株式会社 rotor and motor
DE102020102457A1 (en) 2020-01-31 2021-08-05 Schaeffler Technologies AG & Co. KG Electric machine with rotor magnets fixed by clamps; and methods of assembling a rotor
DE102020102457B4 (en) 2020-01-31 2024-01-25 Schaeffler Technologies AG & Co. KG Electric machine with rotor magnets fixed by clamps; and method for assembling a rotor

Similar Documents

Publication Publication Date Title
JP2004289904A (en) Permanent magnet retaining structure for rotor
JP4667461B2 (en) The process of attaching magnets to the rotor of the electric motor, and the rotor of the electric motor
EP1801952B1 (en) Electrical rotating machine
US20130127283A1 (en) Rotor of an electric motor and manufacturing method of same
JP2010239800A (en) Rotor of rotary electric machine and method of manufacturing the same
JP2015142484A (en) Surface magnet type rotary electric machine
EP1414130A3 (en) Electric motor with a permanent magnet rotor
JP2004023976A (en) Rotor of outside rotating type permanent magnet motor
JP2001258187A (en) Permanent magnet embedded rotor of permanent magnet motor
JP5300542B2 (en) Axial gap motor
US7114937B2 (en) Magneto-generator, method of manufacturing the same and resin molding die assembly for manufacturing the same
US20060071576A1 (en) Flat board type brushless dc motor
JP2000175388A (en) Permanent magnet burial type motor
JP4043665B2 (en) Self-starting permanent magnet synchronous motor
JP2000341909A (en) Single-bearing type permanent-magnet motor and single- bearing type fan motor
JP6074887B2 (en) Gap gauge used for assembling electric motor and method for manufacturing electric motor
JP4559831B2 (en) Motor rotor
JP2007053864A (en) Permanent magnet embedded rotor
CN101552515A (en) Fan motor
US20090295248A1 (en) Electric motor
JP2002136051A (en) Rotating machine and rotor thereof
JPH11299145A (en) Rotor for motor
JP4739700B2 (en) Motor rotor
JP3339501B2 (en) Flat cored type brushless vibration motor
JP2007089378A (en) Motor, manufacturing method thereof, and manufacturing method of stator equipped with bobbin for the motor