JP2010154587A - Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor - Google Patents

Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor Download PDF

Info

Publication number
JP2010154587A
JP2010154587A JP2008326754A JP2008326754A JP2010154587A JP 2010154587 A JP2010154587 A JP 2010154587A JP 2008326754 A JP2008326754 A JP 2008326754A JP 2008326754 A JP2008326754 A JP 2008326754A JP 2010154587 A JP2010154587 A JP 2010154587A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
rotor
magnetic plate
embedding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008326754A
Other languages
Japanese (ja)
Inventor
Giichi Ukai
義一 鵜飼
Yuji Nakahara
裕治 中原
Nobuaki Miyake
展明 三宅
Akihiro Daikoku
晃裕 大穀
Hiroki Matsubara
浩樹 松原
Masafumi Ogawa
雅史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008326754A priority Critical patent/JP2010154587A/en
Publication of JP2010154587A publication Critical patent/JP2010154587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet embedded rotor with stable quality, which is free from the deficiency or break of permanent magnets upon insertion of permanent magnets, and also in which the permanent magnets are always fixed surely in certain positions for embedding permanent magnets and the quantity of unbalance in rotation of the rotor is reduced. <P>SOLUTION: The permanent magnet embedded rotor includes: a rotor stacked core 11, in which a plurality of magnetic plates 11a where holes 12a for embedding magnets are created at equal intervals in its circumferential direction are stacked; and permanent magnets 13, which are installed in each hole 12a for embedding the magnets. In the rotor, a thin part 15a, which is thinner than the magnetic plate 11a, is formed at the side of the hole 12a for embedding the magnets of the magnetic plate 11a, and the permanent magnet 13 is fixed to the rotor stacked core 11 by the elastic transformation of the thin part 15a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、永久磁石埋め込み型回転子に係り、特に、磁性板を軸方向に複数個積層した回転子積層鉄心の磁石埋め込み用穴に永久磁石を装着した永久磁石埋め込み型回転子及びその製造方法に係るものである。   The present invention relates to a permanent magnet embedded rotor, and more particularly, to a permanent magnet embedded rotor in which a permanent magnet is mounted in a magnet embedding hole of a rotor laminated iron core in which a plurality of magnetic plates are stacked in the axial direction. It is related to.

従来の一般的な永久磁石埋め込み型回転子は、図19の平面図(a)及び側面図(b)に示されるように、回転軸100と、中心部に回転軸100が嵌入されると共に薄板鋼板を積層して形成された回転子鉄心101と、回転子鉄心101の外周近傍に形成された磁石埋め込み用穴102に埋め込まれた永久磁石103とを備えている。
永久磁石103は、磁石埋め込み用穴102に収容可能な大きさに形成されている。永久磁石103を磁石埋め込み用穴102に埋め込む際には、永久磁石103の表面に接着剤を塗布し、接着剤によって永久磁石103を磁石埋め込み用穴102に接着固定する。永久磁石103の固定に接着剤が使用できない場合には、永久磁石103を磁石埋め込み用穴102に隙間なく埋め込まれるように成形する。そして、永久磁石103を磁石埋め込み用穴102に埋め込む際には、永久磁石103を空圧装置等により加圧して磁石埋め込み用穴102に強制的に圧入することが行われる。
As shown in a plan view (a) and a side view (b) of FIG. 19, the conventional general permanent magnet embedded rotor includes a rotating shaft 100 and a thin plate in which the rotating shaft 100 is fitted at the center. A rotor core 101 formed by laminating steel plates and a permanent magnet 103 embedded in a magnet embedding hole 102 formed near the outer periphery of the rotor core 101 are provided.
The permanent magnet 103 is formed in a size that can be accommodated in the magnet embedding hole 102. When embedding the permanent magnet 103 in the magnet embedding hole 102, an adhesive is applied to the surface of the permanent magnet 103, and the permanent magnet 103 is adhered and fixed to the magnet embedding hole 102 by the adhesive. When an adhesive cannot be used for fixing the permanent magnet 103, the permanent magnet 103 is molded so as to be embedded in the magnet embedding hole 102 without a gap. When the permanent magnet 103 is embedded in the magnet embedding hole 102, the permanent magnet 103 is pressed by a pneumatic device or the like and forcibly pressed into the magnet embedding hole 102.

このほか、例えば特許文献1では、磁石固定部材により永久磁石の固定を行う永久磁石埋め込み型回転子が提案されている。この永久磁石埋め込み型回転子では、永久磁石を鉄心の永久磁石挿入穴に挿入した後、ロータコアの両端面に磁石固定部材の一方の面を押し当て、磁石固定部材の圧入部を磁束漏洩防止穴に圧入する。それと同時に、磁石固定部材の周方向押え部が永久磁石と挿入穴の内側面との間に挿入され、永久磁石を挿入穴の中の押し当て部に押し付けるので、永久磁石はロータコアの挿入穴の中に固定される。   In addition, for example, Patent Document 1 proposes a permanent magnet embedded rotor in which a permanent magnet is fixed by a magnet fixing member. In this permanent magnet embedded rotor, after the permanent magnet is inserted into the permanent magnet insertion hole of the iron core, one surface of the magnet fixing member is pressed against both end faces of the rotor core, and the press-fitted portion of the magnet fixing member is inserted into the magnetic flux leakage prevention hole. Press fit into. At the same time, the circumferential pressing part of the magnet fixing member is inserted between the permanent magnet and the inner surface of the insertion hole, and the permanent magnet is pressed against the pressing part in the insertion hole. Fixed inside.

また、特許文献2に開示されているような永久磁石埋め込み型回転子では、鉄心を構成する磁性板の少なくとも1枚を周方向にずらすことで、磁石埋め込み用穴に永久磁石を固定保持している。   Further, in the permanent magnet embedded rotor disclosed in Patent Document 2, the permanent magnet is fixedly held in the magnet embedding hole by shifting at least one of the magnetic plates constituting the iron core in the circumferential direction. Yes.

特開平9−308149号文献Japanese Patent Laid-Open No. 9-308149 特開平9−182333号文献Japanese Patent Laid-Open No. 9-182333

従来の永久磁石を接着剤を介して磁石埋め込み用穴に装着する永久磁石埋め込み型回転子では、永久磁石が永久磁石埋め込み用穴より若干小さめに形成されているため、永久磁石の磁石埋め込み用穴内部での固定位置が一定に定まらず、回転子の回転時のアンバランス量が増加するという問題があった。また、永久磁石を磁石埋め込み用穴に埋め込む際に、塗布されていた接着剤が削ぎ取られるなどして接着層の厚さを安定的に確保できない問題があった。   In a permanent magnet embedded rotor in which a conventional permanent magnet is attached to a magnet embedding hole via an adhesive, the permanent magnet is formed slightly smaller than the permanent magnet embedding hole. There was a problem that the internal fixed position was not fixed and the amount of unbalance during rotation of the rotor increased. Further, when embedding the permanent magnet in the hole for embedding the magnet, there has been a problem that the thickness of the adhesive layer cannot be stably secured because the applied adhesive is scraped off.

永久磁石を接着剤を介さずに磁石埋め込み用穴に強制的に圧入するような従来の永久磁石埋め込み型回転子では、例えば永久磁石が焼結体であって脆い場合には、永久磁石の圧入時に磁石埋め込み用穴の壁面との接触により永久磁石に欠けが生じ易い。また、永久磁石と磁石埋め込み用穴の寸法上の整合性を得るため、永久磁石の寸法精度の向上が必要であるなどの問題があった。   In the conventional permanent magnet embedded rotor in which the permanent magnet is forcibly pressed into the hole for embedding the magnet without using an adhesive, for example, when the permanent magnet is a sintered body and is brittle, the permanent magnet is pressed. Sometimes the permanent magnet is easily chipped due to contact with the wall surface of the magnet embedding hole. In addition, there is a problem that it is necessary to improve the dimensional accuracy of the permanent magnet in order to obtain dimensional consistency between the permanent magnet and the magnet embedding hole.

特許文献1に示されている永久磁石埋め込み型回転子では、ロータコアの外径より僅かに小さい外径のリング状にモールド樹脂で一体成形した磁石固定板を別途用意する必要があり、製品コストが高くなる問題がある。また、磁石固定部材の圧入部を磁束漏洩防止穴に圧入する必要があり、作業性に問題があった。さらに、永久磁石は半径方向には固定されないため、実際には接着剤との併用が必要となる問題があった。   In the permanent magnet embedded rotor shown in Patent Document 1, it is necessary to separately prepare a magnet fixing plate integrally molded with a mold resin in a ring shape having an outer diameter slightly smaller than the outer diameter of the rotor core, and the product cost is reduced. There is a problem of getting higher. Further, it is necessary to press-fit the press-fitting portion of the magnet fixing member into the magnetic flux leakage prevention hole, which causes a problem in workability. Further, since the permanent magnet is not fixed in the radial direction, there is a problem that it is actually necessary to use it together with an adhesive.

また、特許文献2に示されている永久磁石埋め込み型回転子では、永久磁石を磁石埋め込み用穴に挿入後に鉄心の一部の磁性板を周方向にずらして固定する必要があるため、作業性及び生産性が悪くなるという問題がある。   Moreover, in the permanent magnet embedded rotor shown in Patent Document 2, it is necessary to shift and fix a part of the magnetic plate of the iron core in the circumferential direction after the permanent magnet is inserted into the magnet embedding hole. In addition, there is a problem that productivity is deteriorated.

この発明は、上述の問題点を解消するためになされたものであり、永久磁石挿入時に永久磁石の欠損及び破損の発生しない品質の安定した永久磁石埋め込み型回転子を提供する。また、永久磁石が常に磁石埋め込み用穴の一定の位置に確実に固定され、回転子の回転時のアンバランス量が低減される永久磁石埋め込み型回転子を提供する。   The present invention has been made in order to solve the above-described problems, and provides a permanent magnet embedded rotor having a quality that does not cause a permanent magnet to be lost or damaged when the permanent magnet is inserted. Further, it is possible to provide a permanent magnet embedded rotor in which the permanent magnet is always securely fixed at a fixed position in the magnet embedding hole, and the amount of unbalance during rotation of the rotor is reduced.

また、永久磁石の挿入時に永久磁石の欠損及び破損が発生しなく、磁石埋め込み用穴の一定の位置に確実に固定される永久磁石埋め込み型回転子を、安価かつ容易で、自動化に適した方法で製造することを目的とする。   In addition, a permanent magnet embedded type rotor that is securely fixed at a fixed position of a magnet embedding hole without causing any permanent magnet breakage or damage when the permanent magnet is inserted is inexpensive, easy, and suitable for automation. The purpose is to manufacture with.

この発明の永久磁石埋め込み型回転子は、円周方向に等間隔に磁石埋め込み用穴が形成された磁性板を軸方向に複数個積層した回転子積層鉄心と、各磁石埋め込み用穴に装着された永久磁石を備えた永久磁石埋め込み型回転子において、
磁性板の磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部が形成され、薄肉部の弾性変形により永久磁石が回転子積層鉄心に固定されることを特徴とする。
A permanent magnet embedded rotor according to the present invention is attached to a rotor laminated iron core in which a plurality of magnetic plates having magnet embedding holes formed at equal intervals in the circumferential direction are laminated in the axial direction, and each magnet embedding hole. In a permanent magnet embedded rotor having a permanent magnet,
A thin portion having a thickness smaller than the thickness of the magnetic plate is formed near the side surface of the magnet embedding hole of the magnetic plate, and the permanent magnet is fixed to the rotor laminated core by elastic deformation of the thin portion. To do.

この発明の磁性板の製造方法は、円周方向に等間隔に磁石埋め込み用穴が形成された磁性板の製造方法において、
エッチングにより磁性板の磁石埋め込み用穴を、ハーフエッチングにより磁石埋め込み用穴の側面近傍に磁性板の肉厚よりも肉厚が薄い薄肉部を形成することを特徴とする。
The method of manufacturing a magnetic plate according to the present invention is a method of manufacturing a magnetic plate in which holes for embedding magnets are formed at equal intervals in the circumferential direction.
A magnet embedding hole of the magnetic plate is formed by etching, and a thin portion having a thickness smaller than the thickness of the magnetic plate is formed near the side surface of the magnet embedding hole by half etching.

この発明の永久磁石埋め込み型回転子の製造方法は、円周方向に等間隔に磁石埋め込み用穴が形成された磁性板を軸方向に複数個積層した回転子積層鉄心と、各磁石埋め込み用穴に装着された永久磁石を備えた永久磁石埋め込み型回転子の製造方法において、
エッチングにより磁性板の磁石埋め込み用穴を、ハーフエッチングにより磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部を形成する工程と、
磁石埋め込み用穴が形成された磁性板を軸方向に複数個積層して回転子積層鉄心を形成する工程と、
磁石埋め込み用穴に上記永久磁石を挿入し、上記薄肉部の弾性変形により上記永久磁石を上記回転子積層鉄心に固定する工程を備える。
The method of manufacturing a permanent magnet embedded rotor according to the present invention includes a rotor laminated iron core in which a plurality of magnetic plates in which magnet embedding holes are formed at equal intervals in the circumferential direction are laminated in the axial direction, and each magnet embedding hole In the manufacturing method of a permanent magnet embedded rotor having a permanent magnet attached to
Forming a hole for embedding the magnet in the magnetic plate by etching, and forming a thin portion with a thickness smaller than the thickness of the magnetic plate in the vicinity of the side surface of the hole for embedding magnet by half-etching;
A step of forming a rotor laminated core by laminating a plurality of magnetic plates formed with magnet embedding holes in the axial direction;
A step of inserting the permanent magnet into the magnet embedding hole and fixing the permanent magnet to the rotor laminated core by elastic deformation of the thin portion;

この発明の永久磁石埋め込み型回転子によれば、磁性板の磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部が形成され、薄肉部の弾性変形により永久磁石が回転子積層鉄心に固定されるので、永久磁石挿入時に永久磁石の欠損及び破損の発生しない品質の安定した回転子を提供できる。また、永久磁石が常に磁石埋め込み用穴の一定の位置に確実に固定されるので、回転子の回転時のアンバランス量を低減することができる。   According to the permanent magnet embedded rotor of the present invention, a thin portion having a thickness smaller than the thickness of the magnetic plate is formed near the side surface of the magnet embedding hole of the magnetic plate, and the permanent magnet is formed by elastic deformation of the thin portion. Is fixed to the rotor laminated iron core, it is possible to provide a stable rotor of a quality that does not cause the permanent magnet to be lost or damaged when the permanent magnet is inserted. Further, since the permanent magnet is always securely fixed at a fixed position in the magnet embedding hole, the amount of unbalance when the rotor rotates can be reduced.

この発明の磁性板及び永久磁石埋め込み型回転子の製造方法によれば、永久磁石の挿入時に永久磁石の欠損及び破損が発生しなく、磁石埋め込み用穴の一定の位置に確実に固定される永久磁石埋め込み型回転子を、安価かつ容易な方法で、また自動化に適した方法で製造することができる。   According to the method of manufacturing a magnetic plate and a permanent magnet embedded rotor according to the present invention, the permanent magnet is securely fixed to a fixed position of the magnet embedding hole without causing the permanent magnet to be broken or damaged when the permanent magnet is inserted. The magnet-embedded rotor can be manufactured by an inexpensive and easy method and a method suitable for automation.

実施の形態1.
図1はこの発明の実施の形態1による永久磁石埋め込み型回転子の回転子積層鉄心を構成する磁性板を説明するための図である。図2は本実施の形態による永久磁石埋め込み型回転子の回転子積層鉄心を示す平面図および側面断面図、図3は図2の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図および側面断面図である。図4は本実施の形態の永久磁石埋め込み型回転子を装着した永久磁石型モータの軸方向断面図、図5は図4の永久磁石型モータの固定子及び回転子を軸方向に垂直な断面で切断した場合の断面図を示す。
Embodiment 1 FIG.
FIG. 1 is a view for explaining a magnetic plate constituting a rotor laminated core of a permanent magnet embedded rotor according to Embodiment 1 of the present invention. FIG. 2 is a plan view and a side sectional view showing a rotor laminated core of the embedded permanent magnet rotor according to the present embodiment, and FIG. 3 is a permanent magnet embedded in which a permanent magnet and a rotating shaft are attached to the rotor laminated core of FIG. It is the top view and side surface sectional view which show a type | mold rotor. 4 is a sectional view in the axial direction of a permanent magnet type motor equipped with the embedded permanent magnet rotor of this embodiment, and FIG. 5 is a sectional view of the stator and rotor of the permanent magnet type motor in FIG. 4 perpendicular to the axial direction. Sectional drawing at the time of cutting by is shown.

図2は本実施の形態の永久磁石埋め込み型回転子の回転子積層鉄心を示し、図3は図2の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示している。なお、本実施の形態の永久磁石埋め込み型回転子は8極の場合を例示しているが、その他の極数であっても良い。図2及び図3において、永久磁石埋め込み型回転子10は、所定の形状に加工された珪素鋼板等の磁性板11aを複数個積層した積層体よりなる回転子積層鉄心11と、回転子積層鉄心11の外周近傍に形成された磁石埋め込み用穴12に埋め込み装着された極数分(本例の場合は8極分)の永久磁石13と、回転子積層鉄心11の中心部に嵌入された回転軸14とを備えている。   2 shows the rotor laminated core of the embedded permanent magnet rotor of this embodiment, and FIG. 3 shows the permanent magnet embedded rotor in which the permanent magnet and the rotating shaft are mounted on the rotor laminated core of FIG. Yes. In addition, although the permanent magnet embedded type rotor of this embodiment has illustrated the case of 8 poles, other pole numbers may be used. 2 and 3, the embedded permanent magnet rotor 10 includes a rotor laminated core 11 made of a laminate in which a plurality of magnetic plates 11a such as silicon steel plates processed into a predetermined shape are laminated, and a rotor laminated iron core. The permanent magnet 13 corresponding to the number of poles embedded in the magnet embedding hole 12 formed in the vicinity of the outer periphery of the magnet 11 (8 poles in this example) and the rotation fitted in the central portion of the rotor laminated core 11 A shaft 14 is provided.

回転子積層鉄心11には、その外周近傍に回転子の極数分(本例の場合、8個)だけ、周方向に等間隔に磁石埋め込み用穴12が設けられている。この磁石埋め込み用穴12は、周方向に延在すると共に互いに対向する2側面(本例の場合、長辺方向の2側面)と、径方向に延在すると共に互いに対向する2側面(本例の場合、短辺方向の2側面)とを有する略矩形形状の穴であり、回転子積層鉄心11を構成する磁性体11aを軸方向に貫通している。そして、それぞれの磁石埋め込み用穴12には、磁極面を径方向とすると共に、周方向に隣接する極が互いに異なるように永久磁石13が装着されている。ここで、永久磁石13はネオジウム系希土類磁石で構成することができる。   The rotor laminated iron core 11 is provided with magnet embedding holes 12 at equal intervals in the circumferential direction by the number of poles of the rotor (eight in this example) in the vicinity of the outer periphery thereof. The magnet embedding hole 12 has two side surfaces (in this example, two side surfaces in the long side direction) that extend in the circumferential direction and face each other, and two side surfaces that extend in the radial direction and face each other (in this example) In this case, it is a substantially rectangular hole having two side surfaces in the short side direction, and penetrates the magnetic body 11a constituting the rotor laminated core 11 in the axial direction. In each magnet embedding hole 12, a permanent magnet 13 is mounted so that the magnetic pole surface is in the radial direction and the poles adjacent in the circumferential direction are different from each other. Here, the permanent magnet 13 can be composed of a neodymium rare earth magnet.

図4及び図5は本実施の形態の永久磁石埋め込み型回転子を装着した永久磁石型モータを示す断面図である。図4及び図5において、固定子20は、珪素鋼板等の磁性板を所定の数だけ軸方向に積層した固定子積層鉄心21と、固定子積層鉄心21のティース21aに施された巻線22(なお、図5では巻線22は省略している)を備え、図示しないリード線により電源ユニットに接続するように構成されている。また、固定子20は外側構造体23により固定されている。永久磁石埋め込み型回転子10は、図3に示されたもので、磁性板を複数個積層した積層体よりなる回転子積層鉄心11と、磁石埋め込み用穴12に埋め込み装着された永久磁石13と、回転軸14とを備えている。この永久磁石埋め込み型回転子10は、外側構造体23に軸受24を介して回転自在に取り付けられている。なお、固定子20のスロット開口部の個数と永久磁石埋め込み型回転子10の磁極数は、回転電機の特性を考慮して適宜決定される。   4 and 5 are cross-sectional views showing a permanent magnet motor equipped with the embedded permanent magnet rotor of the present embodiment. 4 and 5, the stator 20 includes a stator laminated iron core 21 in which a predetermined number of magnetic plates such as silicon steel plates are laminated in the axial direction, and a winding 22 applied to the teeth 21 a of the stator laminated iron core 21. (The winding 22 is omitted in FIG. 5) and is configured to be connected to the power supply unit by a lead wire (not shown). The stator 20 is fixed by an outer structure 23. The permanent magnet embedded rotor 10 is shown in FIG. 3, and includes a rotor laminated core 11 made of a laminate in which a plurality of magnetic plates are laminated, and a permanent magnet 13 embedded in a magnet embedding hole 12. The rotating shaft 14 is provided. The permanent magnet embedded rotor 10 is rotatably attached to the outer structure 23 via a bearing 24. Note that the number of slot openings of the stator 20 and the number of magnetic poles of the permanent magnet embedded rotor 10 are appropriately determined in consideration of the characteristics of the rotating electrical machine.

図1は本実施の形態の永久磁石埋め込み型回転子10の回転子積層鉄心11を構成する磁性板11aを示す平面図、部分拡大図および断面図である。図1に示すように、回転子積層鉄心11を構成する磁性板11aには、その外周近傍に回転子の極数分(本例の場合、8個)だけ、周方向に等間隔に磁石埋め込み用穴12aが設けられている。磁石埋め込み用穴12aの周方向に延在する側面のうち径方向内側の側面には、磁性板11aの板厚より薄い薄肉部15aが形成されている。また、磁石埋め込み用穴12aの径方向に延在すると共に互いに対向する2側面には、磁性板11aの板厚より薄い薄肉部15bが形成されている。そして、図1のような磁性板11aを所要枚数軸方向に積層すると図2に示す回転子積層鉄心11が構成される。図2(b)は図2(a)の平面図の断面3A−3Aを示す図であるが、図をわかりやすくするために、磁性板11aの板厚を実際の尺度よりも大きく拡大して表記している(通常の尺度では磁性板11aの板厚はもっと小さく、枚数も多い)。同じく、磁石埋め込み用穴の薄肉部15aの形状も拡大して表記している(薄肉部15aの肉厚、突出長さともに通常の尺度ではもっと小さい)。   FIG. 1 is a plan view, a partially enlarged view, and a cross-sectional view showing a magnetic plate 11a constituting a rotor laminated iron core 11 of a permanent magnet embedded rotor 10 according to the present embodiment. As shown in FIG. 1, in the magnetic plate 11a constituting the rotor laminated core 11, magnets are embedded at equal intervals in the circumferential direction by the number of poles of the rotor (8 in this example) in the vicinity of the outer periphery. A hole 12a is provided. A thin portion 15a thinner than the thickness of the magnetic plate 11a is formed on the side surface on the radially inner side of the side surfaces extending in the circumferential direction of the magnet embedding hole 12a. Further, thin portions 15b thinner than the thickness of the magnetic plate 11a are formed on two side surfaces that extend in the radial direction of the magnet embedding hole 12a and face each other. Then, when the magnetic plates 11a as shown in FIG. 1 are laminated in the required axial direction, the rotor laminated iron core 11 shown in FIG. 2 is formed. FIG. 2B is a diagram showing a cross section 3A-3A of the plan view of FIG. 2A, but in order to make the diagram easy to understand, the thickness of the magnetic plate 11a is enlarged to be larger than the actual scale. (In a normal scale, the thickness of the magnetic plate 11a is smaller and the number is larger). Similarly, the shape of the thin portion 15a of the magnet embedding hole is also enlarged and shown (both the thickness and protrusion length of the thin portion 15a are smaller on a normal scale).

上記のように得られた図2の回転子積層鉄心11の磁石埋め込み用穴12に永久磁石13を挿入し、回転子積層鉄心11の中央部に回転軸14を圧入することで、図3に示す実施の形態1の永久磁石埋め込み用回転子10が得られる。   The permanent magnet 13 is inserted into the magnet embedding hole 12 of the rotor laminated core 11 of FIG. 2 obtained as described above, and the rotating shaft 14 is press-fitted into the central portion of the rotor laminated core 11 to obtain FIG. The rotor 10 for embedding the permanent magnet according to the first embodiment shown is obtained.

ここで、永久磁石の径方向厚みtと図1(c)に示されている磁石埋め込み用穴12aの径方向幅w1、w2の関係は、
w1<t<w2・・・(1)
という関係にあり、永久磁石挿入時には、磁石埋め込み用穴12aの薄肉部15aが永久磁石13と接触し、薄肉部15aが変形しながら永久磁石13が挿入される。そのため、永久磁石挿入後は薄肉部15aの弾性変形により磁石埋め込み用穴に永久磁石13が固定される。
Here, the relationship between the radial thickness t of the permanent magnet and the radial widths w1 and w2 of the magnet embedding hole 12a shown in FIG.
w1 <t <w2 (1)
Therefore, when the permanent magnet is inserted, the thin portion 15a of the magnet embedding hole 12a contacts the permanent magnet 13, and the permanent magnet 13 is inserted while the thin portion 15a is deformed. Therefore, after the permanent magnet is inserted, the permanent magnet 13 is fixed in the magnet embedding hole by elastic deformation of the thin portion 15a.

磁石埋め込み用穴の径方向幅が永久磁石の径方向厚みよりも小さく、かつ、薄肉部が形成されていない磁石埋め込み用穴に永久磁石を挿入する場合、磁性板の剛性が大きいために、永久磁石挿入時の抵抗により永久磁石が欠損、破損するといった不具合が発生する。しかし、本実施の形態の場合は、磁石埋め込み用穴に薄肉部を形成しているため、薄肉部の部分で剛性が低くなり、永久磁石挿入時の抵抗が小さくなり、永久磁石の欠損又は破損を防止しながら、接着などの方法を用いることなく、永久磁石を回転子積層鉄心に確実に固定することができる。   When a permanent magnet is inserted into a magnet embedding hole in which the radial width of the magnet embedding hole is smaller than the radial thickness of the permanent magnet and the thin portion is not formed, the permanent magnet is There is a problem that the permanent magnet is damaged or broken due to the resistance when the magnet is inserted. However, in the case of the present embodiment, since the thin portion is formed in the hole for embedding the magnet, the rigidity of the thin portion becomes low, the resistance when the permanent magnet is inserted is reduced, and the permanent magnet is lost or damaged. It is possible to reliably fix the permanent magnet to the rotor laminated core without using a method such as adhesion.

また、図1(d)及び(e)に示すように、磁石埋め込み用穴12aの径方向に延在すると共に互いに対向する2側面に薄肉部15bが形成されており、永久磁石の周方向幅Lと図1(d)に示されている磁石埋め込み用穴12aの周方向長さL1、L2の関係は、
L1<L<L2・・・(2)
に設定されている。永久磁石挿入時には、磁石埋め込み用穴12aの径方向に延在する両側面の薄肉部15bが永久磁石13の周方向端部と接触し、薄肉部15bが弾性変形しながら永久磁石13が挿入される。そして、永久磁石挿入後は薄肉部15bの弾性変形により磁石埋め込み用穴12aに永久磁石13が固定される。したがって、永久磁石13を回転子積層鉄心11の周方向に対しても、接着などの方法を用いることなく、かつ欠損及び破損することなく確実に固定することができる。
Further, as shown in FIGS. 1D and 1E, the thin portion 15b is formed on the two side surfaces extending in the radial direction of the magnet embedding hole 12a and facing each other, and the circumferential width of the permanent magnet The relationship between L and the circumferential lengths L1 and L2 of the magnet embedding hole 12a shown in FIG.
L1 <L <L2 (2)
Is set to When the permanent magnet is inserted, the thin portions 15b on both side surfaces extending in the radial direction of the magnet embedding hole 12a come into contact with the circumferential end of the permanent magnet 13, and the permanent magnet 13 is inserted while the thin portion 15b is elastically deformed. The After the permanent magnet is inserted, the permanent magnet 13 is fixed to the magnet embedding hole 12a by elastic deformation of the thin portion 15b. Therefore, the permanent magnet 13 can be reliably fixed to the circumferential direction of the rotor laminated core 11 without using a method such as adhesion and without being broken or damaged.

上記のように、磁石埋め込み用穴12aの周方向に延在する側面のうち径方向内側の側面に薄肉部15aが形成されているので、永久磁石13は磁石埋め込み用穴12の径方向外側の側面に押圧され接触した状態で固定される。そのため、永久磁石13の磁極面から空隙を介さずに磁性板11aを通って径方向外側に向かって磁束が流れ、磁気効率が高まる効果がある。
また、周方向に対しては、磁石埋め込み用穴12aの両側の薄肉部15bの突出長さを等しくすることにより、永久磁石13は磁石埋め込み用穴12の周方向の中心位置に固定される。従って、回転子積層鉄心11内の永久磁石13の位置がばらつくことがなく、一定の位置に固定される。本実施の形態の場合は、8個の永久磁石13のすべてが磁石埋め込み用穴12の外周側面に押し付けられ、かつ磁石埋め込み用穴13の周方向中心位置にばらつきなく固定される。そのため、回転子のアンバランス量を低減することができる。
As described above, since the thin wall portion 15a is formed on the radially inner side surface of the side surfaces extending in the circumferential direction of the magnet embedding hole 12a, the permanent magnet 13 is disposed on the radially outer side of the magnet embedding hole 12. It is fixed in a state of being pressed against the side surface and in contact therewith. Therefore, the magnetic flux flows from the magnetic pole surface of the permanent magnet 13 through the magnetic plate 11a toward the outside in the radial direction without passing through the gap, and there is an effect of increasing the magnetic efficiency.
Further, in the circumferential direction, the permanent magnets 13 are fixed to the center position in the circumferential direction of the magnet embedding hole 12 by making the protruding lengths of the thin portions 15b on both sides of the magnet embedding hole 12a equal. Therefore, the position of the permanent magnet 13 in the rotor laminated core 11 does not vary and is fixed at a fixed position. In the case of the present embodiment, all of the eight permanent magnets 13 are pressed against the outer peripheral side surface of the magnet embedding hole 12 and fixed to the center position in the circumferential direction of the magnet embedding hole 13 without variation. Therefore, the amount of rotor unbalance can be reduced.

ここで、磁石埋め込み用穴の薄肉部の形成方法について説明する。本実施の形態の磁性板11aは、珪素鋼板等の鋼板30をエッチング加工することにより形成される。まず、図6においてエッチングによる貫通穴の形成方法の概念図を示す。鋼板30の両面に、貫通穴を形成する部分以外を被覆したマスキング(レジスト)40を施す。そして、マスキング処理された鋼板30にエッチング液を散布し、マスキングされていない部分の鋼板30を溶解させることで貫通穴31を形成する。   Here, the formation method of the thin part of the hole for magnet embedding is demonstrated. The magnetic plate 11a of the present embodiment is formed by etching a steel plate 30 such as a silicon steel plate. First, FIG. 6 shows a conceptual diagram of a method for forming a through hole by etching. Masking (resist) 40 is applied to both surfaces of the steel plate 30 except for the portions where the through holes are formed. And the through-hole 31 is formed by spraying etching liquid on the steel plate 30 by which the masking process was carried out, and dissolving the steel plate 30 of the part which is not masked.

次に、図7において磁石埋め込み用穴に配置させる薄肉部をエッチング加工により形成する方法の概念図を示す。図7に示すように、薄肉部を形成する部分には片面のみマスキング40が施される。このようにマスキング処理された鋼板30にエッチング液を散布し、マスキングされていない部分の鋼板30を溶解させることで、鋼板30に底付きの穴が形成され、結果として、薄肉部32が形成されることになる。なお、このエッチング加工方法をハーフエッチングと呼ぶ。   Next, the conceptual diagram of the method of forming the thin part arrange | positioned in the hole for magnet embedding in FIG. 7 by an etching process is shown. As shown in FIG. 7, masking 40 is applied only to one side of the portion where the thin portion is formed. By spraying an etching solution on the steel plate 30 thus masked and dissolving the unmasked portion of the steel plate 30, a bottomed hole is formed in the steel plate 30, and as a result, a thin portion 32 is formed. Will be. This etching method is called half etching.

図8及び図9は実施の形態1の回転子積層鉄心の磁性板を形成するためのマスキングの例を示す平面図である。図8は鋼板30の片面に配置されるマスキング40Aを示し、図9は鋼板30のもう片方の面に配置されるマスキング40Bを示している。図8のマスキング40Aは、磁性板11aの外周部を形成するための開口部41と、磁石埋め込み用穴12aを形成するための開口部42aと、回転軸を挿入するための開口部43を有している。図9のマスキング40Bは、磁性板11aの外周部を形成するための開口部41と、磁石埋め込み用穴12aを形成するための開口部42bと、回転軸を挿入するための開口部43を有している。図9のマスキング40Bの開口部42bの径方向の幅は、図8のマスキング40Aの開口部42aの径方向の幅より短くなっているので、図1に示す磁性板11aの磁石埋め込み用穴12aの薄肉部15aを形成することができる。また、図9のマスキング40Bの開口部42bの周方向両端部の径方向内側の突出部により、図1に示す磁性板11aの磁石埋め込み用穴12aの薄肉部15bを形成することができる。   8 and 9 are plan views showing an example of masking for forming the magnetic plate of the rotor laminated core according to the first embodiment. FIG. 8 shows a masking 40A arranged on one side of the steel plate 30, and FIG. 9 shows a masking 40B arranged on the other side of the steel plate 30. The masking 40A in FIG. 8 has an opening 41 for forming the outer peripheral portion of the magnetic plate 11a, an opening 42a for forming the magnet embedding hole 12a, and an opening 43 for inserting the rotating shaft. is doing. The masking 40B in FIG. 9 has an opening 41 for forming the outer periphery of the magnetic plate 11a, an opening 42b for forming the magnet embedding hole 12a, and an opening 43 for inserting the rotation shaft. is doing. Since the radial width of the opening 42b of the masking 40B in FIG. 9 is shorter than the radial width of the opening 42a of the masking 40A in FIG. 8, the magnet embedding hole 12a of the magnetic plate 11a shown in FIG. The thin-walled portion 15a can be formed. Moreover, the thin part 15b of the magnet embedding hole 12a of the magnetic plate 11a shown in FIG. 1 can be formed by the radially inner protrusions at both ends in the circumferential direction of the opening 42b of the masking 40B of FIG.

ハーフエッチング処理する時の処理条件(処理時間等)を調整することにより、図10(b)及び(c)に示すように、薄肉部の厚さを調整することができ、薄肉部の剛性を調整することができる。その結果、永久磁石13を磁石埋め込み用穴12aに挿入する時の抵抗の大きさや永久磁石13を磁石埋め込み用穴12aで保持する力の大きさを調整することができる。また、図10(a)のように薄肉部の長さを調整することにより、薄肉部の剛性を調整することができ、永久磁石13を挿入する時の抵抗の大きさや永久磁石13を保持する力の大きさを調整することができる。なお、永久磁石13の固定をより確実にするため、接着等の方法を補助的に併用しても構わない。   By adjusting the processing conditions (processing time, etc.) at the time of half-etching, the thickness of the thin portion can be adjusted as shown in FIGS. 10B and 10C, and the rigidity of the thin portion can be adjusted. Can be adjusted. As a result, the magnitude of the resistance when the permanent magnet 13 is inserted into the magnet embedding hole 12a and the magnitude of the force that holds the permanent magnet 13 in the magnet embedding hole 12a can be adjusted. Further, by adjusting the length of the thin portion as shown in FIG. 10A, the rigidity of the thin portion can be adjusted, and the magnitude of resistance when the permanent magnet 13 is inserted and the permanent magnet 13 are held. The magnitude of the force can be adjusted. In order to fix the permanent magnet 13 more securely, a method such as adhesion may be used in an auxiliary manner.

以上のように実施の形態1によれば、磁性板の磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部が形成され、薄肉部の弾性変形により永久磁石が回転子積層鉄心に固定されるので、永久磁石挿入時に永久磁石の欠損及び破損の発生しない品質の安定した回転子を提供できる。また、永久磁石が常に磁石埋め込み用穴の一定の位置に確実に固定されるので、回転子の回転時のアンバランス量を低減することができる。   As described above, according to the first embodiment, a thin portion thinner than the thickness of the magnetic plate is formed in the vicinity of the side surface of the magnet embedding hole of the magnetic plate, and the permanent magnet is formed by elastic deformation of the thin portion. Since it is fixed to the rotor laminated iron core, it is possible to provide a stable rotor with a quality that does not cause the permanent magnet to be lost or damaged when the permanent magnet is inserted. Further, since the permanent magnet is always securely fixed at a fixed position in the magnet embedding hole, the amount of unbalance when the rotor rotates can be reduced.

また、エッチングにより磁性板の磁石埋め込み用穴を、ハーフエッチングにより磁石埋め込み用穴の側面近傍に磁性板の肉厚よりも肉厚が薄い薄肉部を形成するようにしたので、永久磁石の挿入時に永久磁石の欠損及び破損が発生しなく、磁石埋め込み用穴の一定の位置に確実に固定される永久磁石埋め込み型回転子を、安価かつ容易な方法で、また自動化に適した方法で製造することができる。   In addition, a hole for embedding the magnet in the magnetic plate is formed by etching, and a thin portion having a thickness smaller than the thickness of the magnetic plate is formed near the side surface of the hole for embedding the magnet by half-etching. To manufacture a permanent magnet embedded type rotor that is securely fixed at a fixed position of a magnet embedding hole without causing permanent magnet breakage and breakage, by an inexpensive and easy method and a method suitable for automation. Can do.

実施の形態2.
図11はこの発明の実施の形態2による永久磁石埋め込み型回転子の回転子積層鉄心を示す平面図および側面断面図、図12は図11の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図および側面断面図である。
Embodiment 2. FIG.
11 is a plan view and a side sectional view showing a rotor laminated core of a permanent magnet embedded rotor according to a second embodiment of the present invention. FIG. 12 is a perspective view of the rotor laminated core shown in FIG. It is the top view and side sectional view showing a permanent magnet embedded type rotor.

実施の形態2では、図11及び図12に示すように、薄肉部15aが形成された磁性板11a−1と薄肉部15aが形成されていない磁性板11a−2を組み合わせて回転子積層鉄心11を構成する。この場合、図11及び図12に示すように、複数枚の薄肉部15aが形成されていない磁性板11a−2の間に薄肉部15aが形成されている磁性板11a−1を積み重ねて積層しても良いし、薄肉部15aが形成されている磁性板11a−1と薄肉部15aが形成されていない磁性板11a−2を交互に積層してもよい。また、図示はしていないが、実施の形態1で説明したように、磁性板には磁石埋め込み用穴の径方向に延在すると共に互いに対向する2側面に薄肉部15bが形成されている。この場合、薄肉部15bが形成された磁性板と薄肉部15bが形成されていない磁性板を組み合わせて回転子積層鉄心を構成してもよい。ここで、磁性板および薄肉部の形成方法は、実施の形態1と同じくエッチング加工およびハーフエッチング加工を用いる。また、永久磁石を回転子積層鉄心に固定する方法も実施の形態1と同様である。   In the second embodiment, as shown in FIGS. 11 and 12, the rotor laminated core 11 is formed by combining the magnetic plate 11 a-1 with the thin portion 15 a and the magnetic plate 11 a-2 with no thin portion 15 a formed. Configure. In this case, as shown in FIGS. 11 and 12, the magnetic plates 11a-1 having the thin portions 15a are stacked and stacked between the magnetic plates 11a-2 having the plurality of thin portions 15a not formed. Alternatively, the magnetic plates 11a-1 on which the thin portions 15a are formed and the magnetic plates 11a-2 on which the thin portions 15a are not formed may be alternately stacked. Although not shown in the drawings, as described in the first embodiment, the magnetic plate has thin portions 15b formed on two side surfaces that extend in the radial direction of the magnet embedding hole and face each other. In this case, the rotor laminated core may be configured by combining a magnetic plate in which the thin portion 15b is formed and a magnetic plate in which the thin portion 15b is not formed. Here, the method of forming the magnetic plate and the thin portion uses etching and half-etching as in the first embodiment. The method for fixing the permanent magnet to the rotor laminated iron core is the same as in the first embodiment.

実施の形態2は、薄肉部15aが形成された磁性板11a−1と薄肉部15aが形成されていない磁性板11a−2を組み合わせて回転子積層鉄心11を構成することにより、実施の形態1より永久磁石13を磁石埋め込み用穴12に挿入する時の抵抗を小さくし、永久磁石13の欠損や破損の恐れをより低減した構造となる。   In the second embodiment, the rotor laminated iron core 11 is configured by combining the magnetic plate 11a-1 in which the thin portion 15a is formed and the magnetic plate 11a-2 in which the thin portion 15a is not formed. Further, the resistance when the permanent magnet 13 is inserted into the magnet embedding hole 12 is reduced, and the risk of the permanent magnet 13 being lost or damaged is further reduced.

以上のように本実施の形態によれば、薄肉部の剛性を低減することができるので、より小さな抵抗で永久磁石を磁石埋め込み用穴に挿入することができ、永久磁石の欠損又は破損を防止しながら、永久磁石を回転子積層鉄心に確実に固定することができる。また、永久磁石を回転子積層鉄心内の決まった位置に精度よく確実に固定することができるので、回転子の回転時のアンバランス量を低減することができる。   As described above, according to the present embodiment, the rigidity of the thin portion can be reduced, so that the permanent magnet can be inserted into the hole for embedding the magnet with a smaller resistance, and the permanent magnet is prevented from being broken or damaged. However, the permanent magnet can be reliably fixed to the rotor laminated core. Further, since the permanent magnet can be accurately and reliably fixed at a fixed position in the rotor laminated iron core, the amount of unbalance when the rotor rotates can be reduced.

実施の形態3.
図13はこの発明の実施の形態3による永久磁石埋め込み型回転子の回転子積層鉄心を示す平面図および側面断面図、図14は図13の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図および側面断面図である。
Embodiment 3 FIG.
13 is a plan view and a side sectional view showing a rotor laminated core of an embedded permanent magnet rotor according to Embodiment 3 of the present invention. FIG. 14 is a perspective view of the rotor laminated core shown in FIG. It is the top view and side sectional view showing a permanent magnet embedded type rotor.

実施の形態3では、図13及び図14に示すように、磁性板11a−3には、磁石埋め込み用穴12aの周方向に延在する側面のうち径方向内側の側面に、磁性板11a−3の板厚より薄い薄肉部15cが複数個所に点在して形成されている。そして、薄肉部15cが形成された磁性板11a−3と薄肉部15cが形成されていない磁性板11a−4とを積み重ねて積層することにより、回転子積層鉄心11を構成している。なお、薄肉部15cが形成された磁性板11a−3のみを複数個積層して回転子積層鉄心11を構成してもよい。また、図示はしていないが、実施の形態1で説明したように、磁性板には磁石埋め込み用穴の径方向に延在すると共に互いに対向する2側面に薄肉部15bが形成されている。ここで、磁性板および薄肉部の形成方法は、実施の形態1と同じくエッチング加工およびハーフエッチング加工を用いる。また、永久磁石を回転子積層鉄心に固定する方法も実施の形態1と同様である。   In the third embodiment, as shown in FIGS. 13 and 14, the magnetic plate 11a-3 includes a magnetic plate 11a- on the radially inner side surface among the side surfaces extending in the circumferential direction of the magnet embedding hole 12a. Thin portions 15c thinner than the plate thickness 3 are formed at a plurality of locations. And the rotor laminated | stacked iron core 11 is comprised by laminating | stacking and laminating | stacking the magnetic plate 11a-3 in which the thin part 15c was formed, and the magnetic plate 11a-4 in which the thin part 15c was not formed. Alternatively, the rotor laminated core 11 may be configured by laminating only a plurality of magnetic plates 11a-3 on which the thin portions 15c are formed. Although not shown, as described in the first embodiment, the magnetic plate has thin portions 15b formed on the two side surfaces that extend in the radial direction of the magnet embedding hole and face each other. Here, the method of forming the magnetic plate and the thin portion uses etching and half-etching as in the first embodiment. The method for fixing the permanent magnet to the rotor laminated core is the same as that in the first embodiment.

以上のように本実施の形態によれば、薄肉部の剛性を更に低減することができるので、より小さな抵抗で永久磁石を永久磁石埋め込み用穴に挿入することができ、永久磁石の欠損又は破損を防止しながら、永久磁石を回転子積層鉄心に確実に固定することができる。また、永久磁石を回転子積層鉄心内の決まった位置に精度よく確実に固定することができきるので、回転子の回転時のアンバランス量を低減することができる。   As described above, according to the present embodiment, the rigidity of the thin-walled portion can be further reduced, so that the permanent magnet can be inserted into the permanent magnet embedding hole with smaller resistance, and the permanent magnet is lost or damaged. The permanent magnet can be reliably fixed to the rotor laminated iron core while preventing the above. In addition, since the permanent magnet can be fixed accurately and reliably at a predetermined position in the rotor laminated core, the amount of unbalance when the rotor rotates can be reduced.

実施の形態4.
図15はこの発明の実施の形態4による永久磁石埋め込み型回転子の回転子積層鉄心を構成する磁性板を示す断面図及び詳細図、図16は本実施の形態による回転子積層鉄心を示す平面図、断面図及び詳細図、図17は図16の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図、断面図及び詳細図である。
Embodiment 4 FIG.
15 is a sectional view and a detailed view showing a magnetic plate constituting a rotor laminated core of a permanent magnet embedded rotor according to a fourth embodiment of the present invention, and FIG. 16 is a plan view showing the rotor laminated iron core according to the present embodiment. FIG. 17 is a plan view, a sectional view, and a detailed view showing a permanent magnet embedded rotor in which a permanent magnet and a rotating shaft are mounted on the rotor laminated core shown in FIG.

上記実施の形態において、薄肉部15a、15b、15cは、磁性板11aの磁石埋め込み用穴12aの側面から突出した形状をしている。これに対して、本実施の形態では、薄肉部を磁石埋め込み用穴の側面から磁性体内側の位置に形成されている。例えば、図15及び図16に示すように、磁性板11bの磁石埋め込み用穴の周方向に延在する側面のうち径方向内側の側面から磁性体内側の位置に少し距離をおいて薄肉部16aが形成されている。この薄肉部16aは磁石埋め込み用穴の周方向に延在する側面に沿って配設されている。また、図16(c)の詳細図に示すように、薄肉部16aの周方向両端部から磁石埋め込み用穴12aに向かって径方向に延びるスリット17aが形成されている。また、実施の形態1で説明したように、磁性板11bには磁石埋め込み用穴の径方向に延在すると共に互いに対向する2側面に薄肉部15bが形成されている。ここで、磁性板および薄肉部の形成方法は、実施の形態1と同じくエッチング加工およびハーフエッチング加工を用いる。   In the said embodiment, the thin parts 15a, 15b, 15c have the shape which protruded from the side surface of the hole 12a for magnet embedding of the magnetic board 11a. On the other hand, in the present embodiment, the thin portion is formed at a position inside the magnetic body from the side surface of the magnet embedding hole. For example, as shown in FIGS. 15 and 16, the thin portion 16a is spaced a little from the radially inner side surface to the position inside the magnetic body among the side surfaces extending in the circumferential direction of the magnet embedding hole of the magnetic plate 11b. Is formed. The thin portion 16a is disposed along a side surface extending in the circumferential direction of the magnet embedding hole. Further, as shown in the detailed view of FIG. 16C, slits 17a extending in the radial direction from both circumferential ends of the thin portion 16a toward the magnet embedding hole 12a are formed. Further, as described in the first embodiment, the magnetic plate 11b is formed with the thin portions 15b on the two side surfaces extending in the radial direction of the magnet embedding hole and facing each other. Here, the method of forming the magnetic plate and the thin portion uses etching and half-etching as in the first embodiment.

図16は磁性板11bを所要枚数積層して得られた回転子積層鉄心11を示す。この回転子積層鉄心11の磁石埋め込み用穴12に永久磁石13を挿入し、回転軸14を圧入することで永久磁石埋め込み型回転子10が得られる。回転子積層鉄心11に永久磁石13を挿入する時は、磁性板11bの薄肉部16aが図17(c)の詳細図に示すように弾性的に変形することで、永久磁石13を回転子積層鉄心11に固定することができる。なお、上記実施の形態に説明したように、薄肉部15bが形成されている磁性板と薄肉部15bが形成されていない磁性板を組み合わせて積層し、回転子積層鉄心11を構成することもできる。   FIG. 16 shows a rotor laminated core 11 obtained by laminating a required number of magnetic plates 11b. The permanent magnet embedded rotor 10 is obtained by inserting the permanent magnet 13 into the magnet embedding hole 12 of the rotor laminated core 11 and press-fitting the rotating shaft 14. When the permanent magnet 13 is inserted into the rotor laminated iron core 11, the thin portion 16a of the magnetic plate 11b is elastically deformed as shown in the detailed view of FIG. It can be fixed to the iron core 11. As described in the above embodiment, the rotor laminated core 11 can be configured by combining and laminating a magnetic plate in which the thin portion 15b is formed and a magnetic plate in which the thin portion 15b is not formed. .

以上のように構成することで、薄肉部の剛性を低減することができるので、より小さな抵抗で、永久磁石を永久磁石埋め込み用穴に挿入することができ、永久磁石の欠損及び破損を防止しながら、永久磁石を回転子積層鉄心に確実に固定することができる。また、永久磁石を回転子積層鉄心内の決まった位置に精度よく確実に固定することができるので、回転子の回転時のアンバランス量を低減することができる。   By configuring as described above, the rigidity of the thin portion can be reduced, so that the permanent magnet can be inserted into the permanent magnet embedding hole with a smaller resistance, and the permanent magnet can be prevented from being broken or damaged. However, the permanent magnet can be reliably fixed to the rotor laminated core. Further, since the permanent magnet can be accurately and reliably fixed at a fixed position in the rotor laminated iron core, the amount of unbalance when the rotor rotates can be reduced.

図18は実施の形態4の変形例である磁性板の構成を示す平面図、詳細図及び断面図である。図18の磁性板11cは、磁石埋め込み用穴12aの周方向に延在する側面のうち径方向内側の側面から磁性体内側の位置に、薄肉部16bを複数個所点在して形成する。そして、各薄肉部16bの両端部から磁石埋め込み用穴12aに向かって径方向に延びるスリット17bを形成する。   FIG. 18 is a plan view, a detailed view, and a cross-sectional view showing a configuration of a magnetic plate that is a modification of the fourth embodiment. The magnetic plate 11c in FIG. 18 is formed by interposing a plurality of thin portions 16b at positions inside the magnetic body from the radially inner side surface among the side surfaces extending in the circumferential direction of the magnet embedding hole 12a. Then, slits 17b extending in the radial direction from both end portions of each thin portion 16b toward the magnet embedding hole 12a are formed.

以上のように構成することで、薄肉部の剛性を更に低減することができるので、より小さな抵抗で永久磁石を磁石埋め込み用穴に挿入することができ、永久磁石の欠損及び破損を防止しながら、永久磁石を回転子積層鉄心に確実に固定することができる。また、永久磁石を回転子積層鉄心内の決まった位置に精度よく確実に固定することができるので、回転子の回転時のアンバランス量を低減することができる。   By configuring as described above, the rigidity of the thin-walled portion can be further reduced, so that the permanent magnet can be inserted into the hole for embedding the magnet with a smaller resistance while preventing the permanent magnet from being broken or damaged. The permanent magnet can be reliably fixed to the rotor laminated core. Further, since the permanent magnet can be accurately and reliably fixed at a predetermined position in the rotor laminated core, the amount of unbalance when the rotor rotates can be reduced.

この発明の実施の形態1に係る永久磁石埋め込み型回転子の回転子積層鉄心を構成する磁性板の平面図、部分拡大図、及び断面図である。It is the top view of the magnetic board which comprises the rotor lamination | stacking iron core of the permanent magnet embedded type rotor which concerns on Embodiment 1 of this invention, the elements on larger scale, and sectional drawing. 実施の形態1による永久磁石埋め込み型回転子の回転子積層鉄心を示す平面図および側面断面図である。FIG. 3 is a plan view and a side cross-sectional view showing a rotor laminated core of the embedded permanent magnet rotor according to the first embodiment. 図2の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図および側面断面図である。FIG. 3 is a plan view and a side sectional view showing a permanent magnet embedded rotor in which a permanent magnet and a rotating shaft are mounted on the rotor laminated iron core of FIG. 2. 実施の形態1の永久磁石埋め込み型回転子を装着した永久磁石型モータの軸方向断面図である。FIG. 3 is an axial sectional view of a permanent magnet motor equipped with the embedded permanent magnet rotor according to the first embodiment. 図4の永久磁石型モータの固定子及び回転子を軸方向に垂直な断面で切断した場合の断面図である。FIG. 5 is a cross-sectional view when the stator and the rotor of the permanent magnet type motor of FIG. 4 are cut along a cross section perpendicular to the axial direction. エッチングによる貫通穴の形成方法の概念図を示す。The conceptual diagram of the formation method of the through-hole by an etching is shown. 薄肉部をエッチング加工により形成する方法の概念図を示す。The conceptual diagram of the method of forming a thin part by an etching process is shown. 実施の形態1の回転子積層鉄心の磁性板を形成するためのマスキングの例を示す平面図である。FIG. 3 is a plan view showing an example of masking for forming the magnetic plate of the rotor laminated iron core according to the first embodiment. 実施の形態1の回転子積層鉄心の磁性板を形成するためのマスキングの例を示す平面図である。FIG. 3 is a plan view showing an example of masking for forming the magnetic plate of the rotor laminated iron core according to the first embodiment. ハーフエッチングによる薄肉部の形成を示す図である。It is a figure which shows formation of the thin part by half etching. この発明の実施の形態2による永久磁石埋め込み型回転子の回転子積層鉄心を示す平面図および側面断面図である。It is the top view and side sectional drawing which show the rotor lamination | stacking iron core of the permanent magnet embedding type rotor by Embodiment 2 of this invention. 図11の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図および側面断面図である。FIG. 12 is a plan view and a side sectional view showing a permanent magnet embedded rotor in which a permanent magnet and a rotating shaft are mounted on the rotor laminated iron core of FIG. 11. この発明の実施の形態3による永久磁石埋め込み型回転子の回転子積層鉄心を示す平面図および側面断面図である。It is the top view and side sectional drawing which show the rotor lamination | stacking iron core of the permanent magnet embedding type rotor by Embodiment 3 of this invention. 図13の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図および側面断面図である。FIG. 14 is a plan view and a side sectional view showing a permanent magnet embedded rotor in which a permanent magnet and a rotating shaft are mounted on the rotor laminated iron core of FIG. 13. この発明の実施の形態4による永久磁石埋め込み型回転子の回転子積層鉄心を構成する磁性板を示す断面図及び詳細図である。It is sectional drawing and detail drawing which show the magnetic board which comprises the rotor lamination | stacking iron core of the permanent magnet embedding type rotor by Embodiment 4 of this invention. 実施の形態4による回転子積層鉄心を示す平面図、断面図及び詳細図である。FIG. 6 is a plan view, a cross-sectional view, and a detailed view showing a rotor laminated core according to a fourth embodiment. 図16の回転子積層鉄心に永久磁石及び回転軸を装着した永久磁石埋め込み型回転子を示す平面図、断面図及び詳細図である。FIG. 17 is a plan view, a cross-sectional view, and a detailed view showing a permanent magnet embedded rotor in which a permanent magnet and a rotating shaft are mounted on the rotor laminated iron core of FIG. 16. 実施の形態4の変形例である磁性板の構成を示す平面図、詳細図及び断面図である。FIG. 10 is a plan view, a detailed view, and a cross-sectional view illustrating a configuration of a magnetic plate that is a modification of the fourth embodiment. 従来の一般的な永久磁石埋め込み型回転子を示す平面図及び側面図である。It is the top view and side view which show the conventional common permanent magnet embedded type | mold rotor.

符号の説明Explanation of symbols

10 永久磁石埋め込み型回転子、11 回転子積層鉄心、11a 磁性板、
12,12a 磁石埋め込み用穴、13 永久磁石、14 回転軸、
15a,b,c,16a 薄肉部。
10 embedded permanent magnet rotor, 11 rotor laminated core, 11a magnetic plate,
12, 12a Magnet embedding hole, 13 permanent magnet, 14 rotating shaft,
15a, b, c, 16a Thin part.

Claims (11)

円周方向に等間隔に磁石埋め込み用穴が形成された磁性板を軸方向に複数個積層した回転子積層鉄心と、上記各磁石埋め込み用穴に装着された永久磁石を備えた永久磁石埋め込み型回転子において、
上記磁性板の磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部が形成され、上記薄肉部の弾性変形により上記永久磁石が上記回転子積層鉄心に固定されることを特徴とする永久磁石埋め込み型回転子。
Permanent magnet embedded type comprising a rotor laminated iron core in which a plurality of magnetic plates having magnet embedding holes formed at equal intervals in the circumferential direction are laminated in the axial direction, and permanent magnets mounted in the respective magnet embedding holes. In the rotor,
A thin portion having a thickness smaller than the thickness of the magnetic plate is formed near the side surface of the magnet embedding hole of the magnetic plate, and the permanent magnet is fixed to the rotor laminated core by elastic deformation of the thin portion. A permanent magnet embedded rotor.
上記薄肉部は、上記磁石埋め込み用穴の周方向に延在する側面近傍のうち径方向内側の側面近傍に形成されていることを特徴とする請求項1に記載の永久磁石埋め込み型回転子。 2. The permanent magnet embedded rotor according to claim 1, wherein the thin portion is formed in the vicinity of a radially inner side surface in a vicinity of a side surface extending in a circumferential direction of the magnet embedding hole. 上記薄肉部は、上記磁石埋め込み用穴の径方向に延在すると共に互いに対向する2側面近傍に形成されていることを特徴とする請求項1又は請求項2に記載の永久磁石埋め込み型回転子。 3. The permanent magnet embedded rotor according to claim 1, wherein the thin portion is formed in the vicinity of two side surfaces that extend in a radial direction of the magnet embedding hole and face each other. . 上記回転子積層鉄心は、上記薄肉部が形成されている磁性板と上記薄肉部が形成されていない磁性板とを組み合わせて積層していることを特徴とする請求項1から請求項3のいずれか1項に記載の永久磁石埋め込み型回転子。 4. The rotor laminated iron core according to claim 1, wherein the laminated magnetic core is formed by combining a magnetic plate in which the thin portion is formed and a magnetic plate in which the thin portion is not formed. A permanent magnet embedded rotor according to claim 1. 上記薄肉部は、上記磁性板の磁石埋め込み用穴の側面から突出した形状であることを特徴とする請求項1から請求項4のいずれか1項に記載の永久磁石埋め込み型回転子。 The permanent magnet-embedded rotor according to any one of claims 1 to 4, wherein the thin-walled portion has a shape protruding from a side surface of a magnet-embedding hole of the magnetic plate. 上記薄肉部は、上記磁性板の磁石埋め込み用穴の側面から当該磁性体内側の位置に形成されていることを特徴とする請求項1から請求項4のいずれか1項に記載の永久磁石埋め込み型回転子。 5. The permanent magnet embedding according to claim 1, wherein the thin portion is formed at a position inside the magnetic body from a side surface of the magnet embedding hole of the magnetic plate. Type rotor. 上記薄肉部は、上記磁石埋め込み用穴の周方向に延在する側面近傍のうち径方向内側の側面近傍に複数個所点在して形成されていることを特徴とする請求項1から請求項6のいずれか1項に記載の永久磁石埋め込み型回転子。 The thin-walled portion is formed in a plurality of locations near the side surface on the radially inner side in the vicinity of the side surface extending in the circumferential direction of the magnet embedding hole. The embedded permanent magnet rotor according to any one of the above. 上記磁性板の磁石埋め込み用穴の側面から突出した薄肉部と、上記側面と対向する側面との距離が、上記永久磁石の対応する外形寸法より小さく形成されていると共に、上記突出した薄肉部が形成された側面と、上記側面と対向する側面との距離が、上記永久磁石の対応する外形寸法より大きく形成されていることを特徴とする請求項5に記載の永久磁石埋め込み型回転子。 The distance between the thin wall portion protruding from the side surface of the magnet embedding hole of the magnetic plate and the side surface facing the side surface is smaller than the corresponding outer dimension of the permanent magnet, and the protruding thin wall portion is The embedded permanent magnet rotor according to claim 5, wherein a distance between the formed side surface and the side surface facing the side surface is formed to be larger than a corresponding outer dimension of the permanent magnet. 上記磁性板の磁石埋め込み用穴の上記磁性体内側の位置に薄肉部が形成された側面と、上記側面と対向する側面との距離が、上記永久磁石の対応する外形寸法より小さく形成されていることを特徴とする請求項6に記載の永久磁石埋め込み型回転子。 The distance between the side surface where the thin portion is formed at the position inside the magnetic body of the magnet embedding hole of the magnetic plate and the side surface facing the side surface is smaller than the corresponding outer dimension of the permanent magnet. The embedded permanent magnet rotor according to claim 6. 円周方向に等間隔に磁石埋め込み用穴が形成された磁性板の製造方法において、
エッチングにより上記磁性板の磁石埋め込み用穴を、ハーフエッチングにより上記磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部を形成することを特徴とする磁性板の製造方法。
In the method of manufacturing a magnetic plate in which holes for embedding magnets are formed at equal intervals in the circumferential direction,
Manufacturing a magnetic plate, wherein a hole for embedding a magnet in the magnetic plate is formed by etching, and a thin portion having a thickness smaller than a thickness of the magnetic plate is formed near a side surface of the hole for embedding the magnet by half-etching. Method.
円周方向に等間隔に磁石埋め込み用穴が形成された磁性板を軸方向に複数個積層した回転子積層鉄心と、上記各磁石埋め込み用穴に装着された永久磁石を備えた永久磁石埋め込み型回転子の製造方法において、
エッチングにより上記磁性板の磁石埋め込み用穴を、ハーフエッチングにより上記磁石埋め込み用穴の側面近傍に当該磁性板の肉厚よりも肉厚が薄い薄肉部を形成する工程と、
上記磁石埋め込み用穴が形成された磁性板を軸方向に複数個積層して回転子積層鉄心を形成する工程と、
上記磁石埋め込み用穴に上記永久磁石を挿入し、上記薄肉部の弾性変形により上記永久磁石を上記回転子積層鉄心に固定する工程からなる永久磁石埋め込み型回転子の製造方法。
Permanent magnet embedded type comprising a rotor laminated iron core in which a plurality of magnetic plates having magnet embedding holes formed at equal intervals in the circumferential direction are laminated in the axial direction, and permanent magnets mounted in the respective magnet embedding holes. In the rotor manufacturing method,
Forming a hole for embedding the magnet in the magnetic plate by etching, and forming a thin portion having a thickness smaller than the thickness of the magnetic plate in the vicinity of the side surface of the hole for embedding the magnet by half-etching;
A step of forming a rotor laminated core by laminating a plurality of magnetic plates in which the magnet embedding holes are formed in the axial direction;
A method of manufacturing a permanent magnet embedded rotor comprising a step of inserting the permanent magnet into the magnet embedding hole and fixing the permanent magnet to the rotor laminated core by elastic deformation of the thin portion.
JP2008326754A 2008-12-24 2008-12-24 Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor Pending JP2010154587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326754A JP2010154587A (en) 2008-12-24 2008-12-24 Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326754A JP2010154587A (en) 2008-12-24 2008-12-24 Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor

Publications (1)

Publication Number Publication Date
JP2010154587A true JP2010154587A (en) 2010-07-08

Family

ID=42573025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326754A Pending JP2010154587A (en) 2008-12-24 2008-12-24 Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor

Country Status (1)

Country Link
JP (1) JP2010154587A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123316A (en) * 2011-12-12 2013-06-20 Nissan Motor Co Ltd Rotor core and method of manufacturing the same
KR20170066868A (en) * 2015-12-07 2017-06-15 현대모비스 주식회사 magnet insert type motor rotor
US9762096B2 (en) 2013-02-20 2017-09-12 Mitsubishi Electric Corporation Interior permanent magnet motor
CN107465284A (en) * 2016-06-06 2017-12-12 德昌电机(深圳)有限公司 Rotor and motor, electric tool with the rotor
CN107546891A (en) * 2016-06-29 2018-01-05 Em-动力有限责任公司 The rotor of motor
CN109038897A (en) * 2018-09-12 2018-12-18 珠海格力节能环保制冷技术研究中心有限公司 A kind of rotor core and the motor with it
US10355545B2 (en) 2016-05-20 2019-07-16 Fanuc Corporation Rotating-electric-machine rotor structure, and rotating electric machine
KR20220076797A (en) * 2020-12-01 2022-06-08 주식회사 에스 씨디 Rotor for motor
US20230238843A1 (en) * 2020-02-04 2023-07-27 Nidec Motor Corporation Laminated spoked rotor with mechanical magnet retention
WO2024194143A1 (en) * 2023-03-23 2024-09-26 Valeo Eautomotive Germany Gmbh Rotor for an electric machine with improved fixation of rotor magnets in the rotor lamination stack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219668A (en) * 1992-02-03 1993-08-27 Toshiba Corp Permanent magnet type rotor
JP2004289904A (en) * 2003-03-20 2004-10-14 Isuzu Motors Ltd Permanent magnet retaining structure for rotor
JP2007181254A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Rotor for permanent magnet embedded motor
JP2008011692A (en) * 2006-04-19 2008-01-17 Asmo Co Ltd Embedded-magnet type rotary electric machine
JP2008245346A (en) * 2007-03-26 2008-10-09 Hitachi Ltd Commutator motor and vacuum cleaner using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219668A (en) * 1992-02-03 1993-08-27 Toshiba Corp Permanent magnet type rotor
JP2004289904A (en) * 2003-03-20 2004-10-14 Isuzu Motors Ltd Permanent magnet retaining structure for rotor
JP2007181254A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Rotor for permanent magnet embedded motor
JP2008011692A (en) * 2006-04-19 2008-01-17 Asmo Co Ltd Embedded-magnet type rotary electric machine
JP2008245346A (en) * 2007-03-26 2008-10-09 Hitachi Ltd Commutator motor and vacuum cleaner using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123316A (en) * 2011-12-12 2013-06-20 Nissan Motor Co Ltd Rotor core and method of manufacturing the same
US9762096B2 (en) 2013-02-20 2017-09-12 Mitsubishi Electric Corporation Interior permanent magnet motor
KR20170066868A (en) * 2015-12-07 2017-06-15 현대모비스 주식회사 magnet insert type motor rotor
KR102490607B1 (en) 2015-12-07 2023-01-19 현대모비스 주식회사 magnet insert type motor rotor
US10355545B2 (en) 2016-05-20 2019-07-16 Fanuc Corporation Rotating-electric-machine rotor structure, and rotating electric machine
CN107465284A (en) * 2016-06-06 2017-12-12 德昌电机(深圳)有限公司 Rotor and motor, electric tool with the rotor
CN107465284B (en) * 2016-06-06 2020-11-06 德昌电机(深圳)有限公司 Rotor, motor with rotor and electric tool
CN107546891B (en) * 2016-06-29 2021-09-03 罗伯特·博世有限公司 Rotor of electric machine
CN107546891A (en) * 2016-06-29 2018-01-05 Em-动力有限责任公司 The rotor of motor
CN109038897A (en) * 2018-09-12 2018-12-18 珠海格力节能环保制冷技术研究中心有限公司 A kind of rotor core and the motor with it
CN109038897B (en) * 2018-09-12 2024-05-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor core and motor with same
US20230238843A1 (en) * 2020-02-04 2023-07-27 Nidec Motor Corporation Laminated spoked rotor with mechanical magnet retention
KR20220076797A (en) * 2020-12-01 2022-06-08 주식회사 에스 씨디 Rotor for motor
KR102471079B1 (en) * 2020-12-01 2022-11-25 주식회사 에스 씨디 Rotor for motor
WO2024194143A1 (en) * 2023-03-23 2024-09-26 Valeo Eautomotive Germany Gmbh Rotor for an electric machine with improved fixation of rotor magnets in the rotor lamination stack

Similar Documents

Publication Publication Date Title
JP2010154587A (en) Permanent magnet embedded rotor, magnetic plate, and method of manufacturing the permanent magnet embedded rotor
JP6095827B1 (en) Manufacturing method of rotor for rotating electrical machine
JP5258509B2 (en) Permanent magnet motor rotor
JP4687871B2 (en) Axial gap type electric motor
JP5382012B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
CN107408852B (en) The manufacturing method of rotor, rotating electric machine and rotor
KR100624381B1 (en) Rotor for interior permanent magnet synchronous motor and method for manufacturing the rotor
KR20160112412A (en) Rotor comprising a rotor core and manufacturing method thereof
JP6444497B2 (en) Rotating electric machine and manufacturing method thereof
JP4812787B2 (en) Method of manufacturing rotor for pump motor, pump motor, pump and rotor for pump motor
KR0130753B1 (en) Electric motor and method of producing the same
WO2009093380A1 (en) Laminated wound core and rotor equipped with the core, dynamo-electric machine
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP2005137117A (en) Rotor for rotary electric machine
JP2008022672A (en) Reluctance motor
JP2009240109A (en) Electric motor
JP2010136514A (en) Rotor
JP2007053864A (en) Permanent magnet embedded rotor
JP5917193B2 (en) Rotor, motor and method of manufacturing rotor
JP2008289314A (en) Rotor assembly of embedded magnet-type motor and its manufacturing method
JP2007129892A (en) Motor and manufacturing method thereof
JP2013187943A (en) Permanent magnet type motor and rotor thereof
JP2009268164A (en) Laminate core for rotors, rotor core, rotor for permanent-magnet synchronous rotating electrical machines equipped therewith, permanent-magnet synchronous rotating electrical machine, and vehicle, elevator, and finishing machine using the same
JP6685166B2 (en) Axial gap type rotating electric machine
US12009699B2 (en) Rotor and brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106