JP2008273776A - Magnetic garnet single crystal and faraday rotor using the same - Google Patents

Magnetic garnet single crystal and faraday rotor using the same Download PDF

Info

Publication number
JP2008273776A
JP2008273776A JP2007118511A JP2007118511A JP2008273776A JP 2008273776 A JP2008273776 A JP 2008273776A JP 2007118511 A JP2007118511 A JP 2007118511A JP 2007118511 A JP2007118511 A JP 2007118511A JP 2008273776 A JP2008273776 A JP 2008273776A
Authority
JP
Japan
Prior art keywords
single crystal
faraday
garnet single
grown
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007118511A
Other languages
Japanese (ja)
Other versions
JP4844464B2 (en
Inventor
Atsushi Oido
敦 大井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007118511A priority Critical patent/JP4844464B2/en
Publication of JP2008273776A publication Critical patent/JP2008273776A/en
Application granted granted Critical
Publication of JP4844464B2 publication Critical patent/JP4844464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic garnet single crystal capable of reproductively reducing an optical loss of a rotor even when the crystal is grown by using a Na-containing solvent in a liquid phase epitaxial method (LPE method), and provide a Faraday rotor using the same. <P>SOLUTION: Grown is a magnetic garnet single crystal expressed by the chemical formula: Bi<SB>α</SB>Na<SB>β</SB>M1<SB>3-α-β</SB>Fe<SB>5-γ</SB>M2<SB>γ</SB>O<SB>12</SB>(wherein, M1 is at least one or more elements selected from among Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu and M2 is at least one or more elements selected from among Si, Ge, Ti, Pt, Ru, Sn, Hf and Zr and 0.600<α≤1.500, 0.003≤β≤0.050, 1.450≤3-α-β<2.397 and 0.20≤γ/(2β)≤0.85). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液相エピタキシャル法(LPE法)により育成した磁性ガーネット単結晶及びそれを用いたファラデー回転子に関する。   The present invention relates to a magnetic garnet single crystal grown by a liquid phase epitaxial method (LPE method) and a Faraday rotator using the same.

ファラデー回転子は、通信用光アイソレータや光サーキュレータ等において、光の偏光面を45度(deg.)回転させる光学素子として使用される。ファラデー回転子は、一般に、LPE法で育成した磁性ガーネット単結晶板をファラデー回転角が45deg.となるように研磨し、光入射/射出面に反射防止膜を成膜して作製される。   The Faraday rotator is used as an optical element that rotates a polarization plane of light by 45 degrees (deg.) In an optical isolator for communication, an optical circulator, or the like. A Faraday rotator is generally a magnetic garnet single crystal plate grown by the LPE method with a Faraday rotation angle of 45 deg. And an antireflection film is formed on the light incident / exit surface.

ところで、LPE法で磁性ガーネット単結晶を育成する際の溶媒として酸化ホウ素(B)、酸化ビスマス(Bi)と共に酸化鉛(PbO)が用いられる。このため、磁性ガーネット単結晶の育成時には結晶中に少量の鉛(Pb)が混入する。 Incidentally, lead oxide (PbO) is used together with boron oxide (B 2 O 3 ) and bismuth oxide (Bi 2 O 3 ) as a solvent for growing a magnetic garnet single crystal by the LPE method. For this reason, when growing a magnetic garnet single crystal, a small amount of lead (Pb) is mixed in the crystal.

近年の環境規制に対応するため、ファラデー回転子から環境負荷物質である鉛の含有量を削減させる努力がなされている。その結果、LPE法で磁性ガーネット単結晶を育成する際の溶媒材料としてPbに代えてナトリウム(Na)を使用する技術が確立されつつある。
PARK J.H.,Growth of epitaxial garnet film by LPE for application to integrated magneto-optic light switch arrays,Physica Status Solidi A:Applied Research,June 2004,Vol. 201, No. 8,pp. 1976-1979,CODEN: PSSABA; ISSN: 0031-8965
In order to meet recent environmental regulations, efforts have been made to reduce the content of lead, which is an environmentally hazardous substance, from the Faraday rotator. As a result, a technique of using sodium (Na) instead of Pb as a solvent material for growing a magnetic garnet single crystal by the LPE method is being established.
PARK JH, Growth of epitaxial garnet film by LPE for application to integrated magneto-optic light switch arrays, Physica Status Solidi A: Applied Research, June 2004, Vol. 201, No. 8, pp. 1976-1979, CODN: PSSABA; ISSN: 0031-8965

ところがNaを溶媒に使用すると、少量のNaがガーネット単結晶膜に混入し、単結晶に光吸収が発生する。光吸収を持つガーネット単結晶で作製されたファラデー回転子は光損失が増加してしまう。光損失の大きいファラデー回転子で光アイソレータ等の通信用光デバイスを製造するとデバイス特性が低下してしまう問題が生じる。   However, when Na is used as a solvent, a small amount of Na is mixed into the garnet single crystal film, and light absorption occurs in the single crystal. Faraday rotators made of garnet single crystals with light absorption increase the light loss. When a communication optical device such as an optical isolator is manufactured with a Faraday rotator having a large optical loss, there arises a problem that device characteristics are deteriorated.

そこで、4価のカチオン(陽イオン)となってNaと電荷補償できるSi、Ge、Ti、Ptなどの元素をガーネット単結晶中に添加することで光損失の低減が図られている。   Therefore, light loss is reduced by adding elements such as Si, Ge, Ti, and Pt, which can be tetravalent cations (cations) and charge-compensated with Na, into the garnet single crystal.

しかしながら、これら4価のカチオンが安定な元素をガーネット単結晶中に単に添加しただけでは、ファラデー回転子の光損失のバラツキが大きくなり、再現性良く最小値まで光損失を低減させたファラデー回転子を製造できないことが分かってきた。   However, simply adding an element in which these tetravalent cations are stable to the garnet single crystal increases the variation in the optical loss of the Faraday rotator, and the Faraday rotator reduces the optical loss to the minimum value with good reproducibility. It has been found that can not be manufactured.

インライン光アイソレータのように低光損失が要求されるデバイスでは特に低い光損失のファラデー回転子が求められる。このような用途に対して、高い再現性で低光損失のファラデー回転子を提供できない点が課題として残っている。   A device that requires low optical loss, such as an in-line optical isolator, requires a Faraday rotator with particularly low optical loss. For such applications, the problem remains that a Faraday rotator with high reproducibility and low optical loss cannot be provided.

本発明の目的は、Naを含む溶媒を用いて育成しても回転子の光損失を再現良く低減させることができる磁性ガーネット単結晶及びそれを用いたファラデー回転子を提供することにある。   An object of the present invention is to provide a magnetic garnet single crystal that can reduce light loss of a rotor with good reproducibility even when grown using a solvent containing Na, and a Faraday rotator using the same.

上記目的は、化学式BiαNaβM13−α−βFe5−γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Ti、Pt、Ru、Sn、Hf、Zrから選択される少なくとも1種類以上の元素であり、0.600<α≦1.500、0.003≦β≦0.050、1.450≦3−α−β<2.397、0.20≦γ/(2β)≦0.85)で示されることを特徴とする磁性ガーネット単結晶によって達成される。 The above object has the formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, At least one element selected from Tm, Yb, and Lu, M2 is at least one element selected from Si, Ge, Ti, Pt, Ru, Sn, Hf, and Zr, and 0.600 < α ≦ 1.500, 0.003 ≦ β ≦ 0.050, 1.450 ≦ 3-α−β <2.397, 0.20 ≦ γ / (2β) ≦ 0.85) This is achieved by a magnetic garnet single crystal.

また上記目的は、化学式BiαNaβM13−α−βFe5−γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Ti、Pt、Ru、Sn、Hf、Zrから選択される少なくとも1種類以上の元素であり、0.600<α≦1.500、0.004<β≦0.040、1.460≦3−α−β<2.396、0.30≦γ/(2β)≦0.70)で示されることを特徴とする磁性ガーネット単結晶によって達成される。 The above object, the chemical formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Lu, at least one element selected from M2, M2 is at least one element selected from Si, Ge, Ti, Pt, Ru, Sn, Hf, Zr, and 0.600 <Α ≦ 1.500, 0.004 <β ≦ 0.040, 1.460 ≦ 3-α-β <2.396, 0.30 ≦ γ / (2β) ≦ 0.70). Achieved by the featured magnetic garnet single crystal.

また上記目的は、上記本発明の磁性ガーネット単結晶から作製されることを特徴とするファラデー回転子によって達成される。   The above-mentioned object is achieved by a Faraday rotator which is produced from the magnetic garnet single crystal of the present invention.

本発明によれば、Naを含む溶媒を用いて育成した磁性ガーネット単結晶で作製されるファラデー回転子の光損失を再現良く低減させることができる。   According to the present invention, the optical loss of a Faraday rotator made of a magnetic garnet single crystal grown using a solvent containing Na can be reduced with good reproducibility.

本発明の一実施の形態による磁性ガーネット単結晶及びそれを用いたファラデー回転子について説明する。まず、水酸化ナトリウム(NaOH)、Bi及びBを含む溶媒を用いてLPE法で(BiGdYb)Fe12単結晶を育成した。得られた単結晶をファラデー回転子に加工し、波長1.55μmの光を入射させて光損失(挿入損失)を測定した。光損失は約3dBであった。 A magnetic garnet single crystal according to an embodiment of the present invention and a Faraday rotator using the same will be described. First, a (BiGdYb) 3 Fe 5 O 12 single crystal was grown by the LPE method using a solvent containing sodium hydroxide (NaOH), Bi 2 O 3 and B 2 O 3 . The obtained single crystal was processed into a Faraday rotator, light with a wavelength of 1.55 μm was incident, and optical loss (insertion loss) was measured. The optical loss was about 3 dB.

これに対し、Pbを含む溶媒を用いてLPE法で育成された(BiGdYb)Fe12単結晶で作製したファラデー回転子は、光損失を0.05dB以下にすることができる。このことから、Naを含む溶媒を用いて育成されたガーネット単結晶の光損失は非常に大きいことが分かる。蛍光X線分析で組成を調べたところ、Naを含む溶媒から育成したガーネット単結晶からは100〜300ppmのNaが検出された。Bi置換希土類鉄ガーネット単結晶を構成するカチオン(陽イオン)は基本的に全て3価である。このため、1価が安定な価数であるNaがガーネット単結晶中に入ると、電荷のバランスが崩れてガーネット単結晶が半導体となる。これにより、Naを含むガーネット単結晶では光吸収が発生する。 On the other hand, a Faraday rotator made of a (BiGdYb) 3 Fe 5 O 12 single crystal grown by an LPE method using a solvent containing Pb can reduce the optical loss to 0.05 dB or less. This shows that the optical loss of the garnet single crystal grown using the solvent containing Na is very large. When the composition was examined by fluorescent X-ray analysis, 100 to 300 ppm of Na was detected from a garnet single crystal grown from a solvent containing Na. The cations (cations) constituting the Bi-substituted rare earth iron garnet single crystal are basically all trivalent. For this reason, when Na, which is a monovalent valence, enters the garnet single crystal, the charge balance is lost and the garnet single crystal becomes a semiconductor. Thereby, light absorption occurs in the garnet single crystal containing Na.

光吸収を低減させるには、ケイ素(Si)、ゲルマニウム(Ge)、チタン(Ti)、白金(Pt)、ルテニウム(Ru)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)のように安定に4価のカチオンとなる元素をガーネット単結晶に添加することが有効である。ガーネット単結晶の光吸収を抑制することにより、ファラデー回転子の光損失を低減させることが可能になる。Si、Ge、Ti、Pt、Ru、Sn、Hf、Zrはガーネット単結晶中で4価のカチオンが安定となり、ガーネット単結晶中に含有される1価のNaを電荷補償するので光損失は低くなる。   To reduce light absorption, silicon (Si), germanium (Ge), titanium (Ti), platinum (Pt), ruthenium (Ru), tin (Sn), hafnium (Hf), zirconium (Zr), etc. It is effective to add an element which becomes a tetravalent cation stably to the garnet single crystal. By suppressing the light absorption of the garnet single crystal, the optical loss of the Faraday rotator can be reduced. Si, Ge, Ti, Pt, Ru, Sn, Hf, and Zr have low light loss because tetravalent cations are stable in garnet single crystals and monovalent Na contained in garnet single crystals is compensated for charges. Become.

Bi置換希土類鉄ガーネット単結晶を構成するカチオンは基本的に3価の電荷を持つため、ガーネット単結晶中に存在する1価のNaのカチオンを電荷補償するには、Na量の2倍(=2Na)に相当する量の4価のカチオンが化学量論的には必要になる。ところがNaの2倍の量の4価カチオンがガーネット単結晶中に存在していてもファラデー回転子の光損失は再現良く最小値にならなかった。   Since the cation constituting the Bi-substituted rare earth iron garnet single crystal basically has a trivalent charge, in order to charge-compensate the monovalent Na cation present in the garnet single crystal, twice the amount of Na (= A stoichiometric amount of tetravalent cation corresponding to 2Na) is required. However, even when tetravalent cation twice as much as Na was present in the garnet single crystal, the optical loss of the Faraday rotator was not reproducibly minimized.

そこで4価のカチオンとなる元素としてゲルマニウム(Ge)を選び、ガーネット単結晶中のNaとGeの関係式(Ge/(2Na))の値を変えながらファラデー回転子の光損失及びそのバラツキを評価した。その結果、関係式(Ge/(2Na))の値が1より小さい条件(すなわち、Ge/(2Na)<1)で光損失が低くなる傾向があることが分かった。このとき、LPE法でのルツボ内の溶液のNa量とGe量を変えることにより、ガーネット単結晶中に含有されるNa量、Ge量及びNaとGeの関係式(Ge/(2Na))の値を変えた。   Therefore, germanium (Ge) was selected as an element to be a tetravalent cation, and the optical loss and variation of the Faraday rotator were evaluated while changing the value of the relational expression (Ge / (2Na)) of Na and Ge in the garnet single crystal. did. As a result, it was found that the optical loss tends to be low under the condition that the value of the relational expression (Ge / (2Na)) is smaller than 1 (that is, Ge / (2Na) <1). At this time, by changing the amount of Na and Ge of the solution in the crucible by the LPE method, the amount of Na contained in the garnet single crystal, the amount of Ge, and the relational expression of Na and Ge (Ge / (2Na)) Changed the value.

さらに詳細にNaとGeの関係式(Ge/(2Na))と光損失の関係を調べると、0.03dB以下の極めて低い光損失を持つファラデー回転子を再現良く作製するには、NaとGeの関係式(Ge/(2Na))の値が0.30以上、0.70以下であればよいことが分かった。さらに0.05dB以下の十分に低い光損失を持つファラデー回転子を再現良く作製する条件を求めたところ、NaとGeの関係式(Ge/(2Na))の値が0.20以上、0.85以下であることが望ましいことが分かった。   When the relation between the relational expression of Na and Ge (Ge / (2Na)) and optical loss is examined in more detail, in order to reproducibly produce a Faraday rotator having an extremely low optical loss of 0.03 dB or less, Na and Ge It was found that the value of the relational expression (Ge / (2Na)) should be 0.30 or more and 0.70 or less. Furthermore, when conditions for producing a Faraday rotator with sufficiently low optical loss of 0.05 dB or less with good reproducibility were obtained, the value of the relational expression of Na and Ge (Ge / (2Na)) was 0.20 or more, 0. It has been found that it is desirable to be 85 or less.

Naと電荷補償する元素は、Bi置換希土類鉄ガーネット単結晶のFeと置換可能で、ガーネット単結晶中で4価のカチオンとなるものが適している。そのような元素M2としてはSi、Ge、Ti、Pt、Ru、Sn、Hf及びZrが上げられる。   As the element for charge compensation with Na, an element that can be substituted for Fe of Bi-substituted rare earth iron garnet single crystal and becomes a tetravalent cation in the garnet single crystal is suitable. Examples of such element M2 include Si, Ge, Ti, Pt, Ru, Sn, Hf, and Zr.

そこで、Naと4価のカチオンとなる元素M2の関係式(M2/(2Na))の値が0.50となるように元素M2の少なくとも1種類以上が添加されたガーネット単結晶を育成してファラデー回転子を作製した。作製されたファラデー回転子の光損失を評価したところ、いずれの元素M2(又はそれらの組合わせ)を添加したガーネット単結晶から作製したファラデー回転子においても、光損失は再現良く低い値となった。ガーネット単結晶中で安定に4価のカチオンとなるこれらの元素M2は上記Geと同じ効果を持つ。従って、Naとの関係式(M2/(2Na);M2は4価が安定なカチオン)の値が0.30以上、0.70以下となる条件で、作製したファラデー回転子の光損失は再現良く最も低くなり、0.20以上、0.85以下で光損失の十分に低いファラデー回転子を再現良く作製することが可能になる。これらの効果は複数の4価のカチオンとなる元素M2を組み合わせた場合でも有効である。例えばGeとTiを添加した組成では、Naと元素M2の関係式は(Ge+Ti)/(2Na)となる。   Therefore, a garnet single crystal to which at least one element M2 is added is grown so that the value of the relational expression (M2 / (2Na)) between Na and the tetravalent cation element M2 is 0.50. A Faraday rotator was fabricated. When the optical loss of the manufactured Faraday rotator was evaluated, in the Faraday rotator manufactured from the garnet single crystal to which any element M2 (or a combination thereof) was added, the optical loss was reproducibly low. . These elements M2, which stably become tetravalent cations in the garnet single crystal, have the same effect as Ge. Therefore, the optical loss of the manufactured Faraday rotator is reproduced under the condition that the relational expression with Na (M2 / (2Na); M2 is a tetravalent stable cation) is 0.30 or more and 0.70 or less. It is possible to produce a Faraday rotator with good reproducibility with a sufficiently low light loss of 0.20 or more and 0.85 or less. These effects are effective even when a plurality of elements M2 that are tetravalent cations are combined. For example, in a composition in which Ge and Ti are added, the relational expression between Na and the element M2 is (Ge + Ti) / (2Na).

Naと元素M2の関係式(M2/(2Na))の値が0.20となるガーネット単結晶は、Na量と比較してM2量を減らした溶液から育成できる。   A garnet single crystal in which the value of the relational expression (M2 / (2Na)) between Na and element M2 is 0.20 can be grown from a solution in which the amount of M2 is reduced compared to the amount of Na.

M2/(2Na)が0.85で、Na量が0.003未満とNa含有量の少ないガーネット単結晶を育成するには、特にNa量が少なくM2量が多い溶液から結晶育成する必要がある。Na量を少なくした溶液では、溶媒の割合を一定に保つため、ルツボに充填するBi量を増やす必要が生じる。ところが、Biの融液は粘度が高いため、Biの割合が増えると溶液の粘性は高くなる。粘性の高い溶液で結晶育成を行うと、結晶が成長する液相−固相の界面への溶質の供給が阻害されるため、成長速度の低下や結晶欠陥の発生などの問題が生じる。従って、粘性の高い溶液は結晶育成には好ましくない。 In order to grow a garnet single crystal with a M2 / (2Na) of 0.85 and a Na content of less than 0.003 and a low Na content, it is particularly necessary to grow a crystal from a solution with a small amount of Na and a large amount of M2. . In a solution in which the amount of Na is reduced, it is necessary to increase the amount of Bi 2 O 3 filled in the crucible in order to keep the ratio of the solvent constant. However, since the Bi 2 O 3 melt has a high viscosity, the viscosity of the solution increases as the proportion of Bi 2 O 3 increases. When a crystal is grown with a highly viscous solution, the supply of a solute to the liquid-solid interface where the crystal grows is hindered, causing problems such as a decrease in growth rate and generation of crystal defects. Therefore, a highly viscous solution is not preferable for crystal growth.

このように、M2/(2Na)が0.85でNa量が0.003より少ないガーネット単結晶を育成するには、Bi量を増やした粘性の高い溶液から結晶育成する必要がある。しかしながら、これでは結晶欠陥の少ない品質の優れた結晶が得られ難くなり、ファラデー回転子の製造歩留まりが低下する傾向がある。 Thus, in order to grow a garnet single crystal having an M2 / (2Na) of 0.85 and an Na amount of less than 0.003, it is necessary to grow the crystal from a highly viscous solution with an increased amount of Bi 2 O 3. . However, this makes it difficult to obtain an excellent crystal with few crystal defects and tends to reduce the manufacturing yield of the Faraday rotator.

従って、M2/(2Na)が0.85以下となるガーネット単結晶を得るには、ルツボに充填するBi量を抑制して溶液の粘性が高くならないようにするため、Na含有量が0.003以上のガーネット単結晶を育成することが望ましい。また、同じ理由によりM2/(2Na)が0.70以下となるガーネット単結晶を得るには、Na含有量が0.004以上のガーネット単結晶を育成することが望ましい。 Therefore, in order to obtain a garnet single crystal having M2 / (2Na) of 0.85 or less, the amount of Bi 2 O 3 charged in the crucible is suppressed so that the viscosity of the solution does not increase. It is desirable to grow a garnet single crystal of 0.003 or more. For the same reason, in order to obtain a garnet single crystal having M2 / (2Na) of 0.70 or less, it is desirable to grow a garnet single crystal having an Na content of 0.004 or more.

Naと元素M2の関係式(M2/(2Na))の値が0.85、あるいは0.70となるガーネット単結晶は、Na量に比較してM2量を増やした溶液から育成できる。そしてNa量が0.05とNa含有量の比較的大きなガーネット単結晶を育成するには、特にNa量とM2量の多い溶液から結晶育成する必要がある。Naと元素M2は電荷を補償しながらガーネット単結晶に入るため、Na量とM2量を同時に増やさなくてはガーネット単結晶中のNa含有量を大きくすることはできない。しかしながら溶液のNa量を増やし過ぎるとガーネットではなくNaFeOが析出するため、溶液中のNa量は25mol%程度が上限となる。Na量が約25mol%の溶液から、Na含有量が0.050より大きなガーネット単結晶を得るには、M2/(2Na)を0.85より大きくする必要がある。ところがM2/(2Na)が0.85より大きくなると作製されたファラデー回転子の光損失のバラツキが増し、損失の十分に低いファラデー回転子を再現良く作製できなくなる。従って、ガーネット単結晶中のNa含有量は0.050以下とすることが望ましい。 A garnet single crystal in which the value of the relational expression (M2 / (2Na)) between Na and element M2 is 0.85 or 0.70 can be grown from a solution in which the amount of M2 is increased compared to the amount of Na. In order to grow a garnet single crystal having a Na content of 0.05 and a relatively large Na content, it is particularly necessary to grow the crystal from a solution having a large amount of Na and M2. Since Na and the element M2 enter the garnet single crystal while compensating for the electric charge, the Na content in the garnet single crystal cannot be increased without increasing the amounts of Na and M2 simultaneously. However, if the amount of Na in the solution is increased too much, NaFeO 2 precipitates instead of garnet, so the upper limit of the amount of Na in the solution is about 25 mol%. In order to obtain a garnet single crystal having a Na content larger than 0.050 from a solution having a Na content of about 25 mol%, M2 / (2Na) needs to be larger than 0.85. However, when M2 / (2Na) is larger than 0.85, the variation of the optical loss of the manufactured Faraday rotator increases, and a Faraday rotator having a sufficiently low loss cannot be manufactured with good reproducibility. Therefore, the Na content in the garnet single crystal is desirably 0.050 or less.

また、同じくNa量が約25mol%の溶液から、Na含有量が0.040より大きなガーネット単結晶を得るには、M2/(2Na)を0.70より大きくする必要がある。従って、M2/(2Na)を0.70以下とするためには、ガーネット単結晶中のNa含有量は0.040以下とすることが望ましい。   Similarly, in order to obtain a garnet single crystal having a Na content greater than 0.040 from a solution having a Na content of about 25 mol%, M2 / (2Na) needs to be greater than 0.70. Therefore, in order to make M2 / (2Na) 0.70 or less, the Na content in the garnet single crystal is desirably 0.040 or less.

元素M1は、イットリウム(Y)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ホルミウム(Ho)、イッテルビウム(Yb)、及びルテチウム(Lu)から選択される少なくとも1種類以上の元素である。元素M1には、上記以外の希土類元素である、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ジスプロシウム(Dy)、エルビウム(Er)、及びツリウム(Tm)のいずれも選択することは可能である。しかし、磁気特性、光学特性、ファラデー回転係数などのファラデー回転子特性を改善する効果の観点から、Y、Eu、Gd、Tb、Ho、Yb、Luから選ばれる少なくとも1種類以上の元素をBi置換希土類鉄ガーネット単結晶の希土類材料に使用することが望ましい。   The element M1 is at least one element selected from yttrium (Y), europium (Eu), gadolinium (Gd), terbium (Tb), holmium (Ho), ytterbium (Yb), and lutetium (Lu). is there. The element M1 includes lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), dysprosium (Dy), erbium (Er), and thulium, which are rare earth elements other than those described above. Any of (Tm) can be selected. However, at least one element selected from Y, Eu, Gd, Tb, Ho, Yb, and Lu is replaced by Bi from the viewpoint of improving the Faraday rotator characteristics such as magnetic characteristics, optical characteristics, and Faraday rotation coefficient. It is desirable to use the rare earth iron garnet single crystal rare earth material.

ガーネット単結晶中のBi量が減少するとファラデー回転係数(deg./μm)が小さくなるので、ファラデー回転子の厚さを厚くする必要が生じる。厚いファラデー回転子を作製するには厚いBi置換希土類鉄ガーネット単結晶膜が必要となるが、厚い単結晶膜の育成を試みると単結晶に割れが発生し易くなる。従って、ファラデー回転子を厚くすることは好ましくなく、Bi量は化学式で0.600以上にすることが望ましい。また、Bi量が1.500より大きいガーネット単結晶の育成を試みると、溶液の過飽和状態を安定に維持できなくなり、Bi置換希土類鉄ガーネット単結晶の育成が困難になる。従って、Bi量は0.600以上、1.500以下とすることが望ましい。   When the amount of Bi in the garnet single crystal decreases, the Faraday rotation coefficient (deg./μm) decreases, so that it is necessary to increase the thickness of the Faraday rotator. In order to produce a thick Faraday rotator, a thick Bi-substituted rare earth iron garnet single crystal film is required. However, if an attempt is made to grow a thick single crystal film, cracks are likely to occur in the single crystal. Therefore, it is not preferable to increase the thickness of the Faraday rotator, and the Bi amount is desirably set to 0.600 or more in chemical formula. Further, if an attempt is made to grow a garnet single crystal having a Bi amount greater than 1.500, the supersaturated state of the solution cannot be stably maintained, and it becomes difficult to grow a Bi-substituted rare earth iron garnet single crystal. Therefore, the Bi amount is preferably 0.600 or more and 1.500 or less.

以下、本実施の形態による磁性ガーネット単結晶及びそれを用いたファラデー回転子について、実施例及び比較例を用いてより具体的に説明する。   Hereinafter, the magnetic garnet single crystal according to the present embodiment and the Faraday rotator using the magnetic garnet single crystal will be described more specifically with reference to Examples and Comparative Examples.

まず、希土類元素M1(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素)の酸化物として、酸化ガドリニウム(Gd)、酸化イッテルビウム(Yb)、酸化テルビウム(Tb)、酸化ホルミウム(Ho)、酸化ユウロピウム(Eu)、酸化イットリウム(Y)、酸化ルテチウム(Lu)のいずれか1種類以上を選び、金(Au)製のルツボに充填した(図1参照)。 First, oxidation of rare earth element M1 (M1 is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) As materials, gadolinium oxide (Gd 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), terbium oxide (Tb 2 O 3 ), holmium oxide (Ho 2 O 3 ), europium oxide (Eu 2 O 3 ), yttrium oxide One or more of (Y 2 O 3 ) and lutetium oxide (Lu 2 O 3 ) were selected and filled in a crucible made of gold (Au) (see FIG. 1).

また、同ルツボに、酸化鉄(Fe)、酸化ホウ素(B)、酸化ビスマス(Bi)、水酸化ナトリウム(NaOH)を充填した。このとき、Na量が10〜24mol%の範囲になるようにNaOH配合量を調整した。 The crucible was filled with iron oxide (Fe 2 O 3 ), boron oxide (B 2 O 3 ), bismuth oxide (Bi 2 O 3 ), and sodium hydroxide (NaOH). At this time, the amount of NaOH blended was adjusted so that the amount of Na was in the range of 10 to 24 mol%.

さらに、同ルツボに、ガーネット単結晶中で安定に4価のカチオンとなる元素M2の酸化物として、酸化ゲルマニウム(GeO)、酸化ケイ素(SiO)、酸化チタン(TiO)、酸化白金(PtO)、酸化ルテニウム(RuO)、酸化スズ(SnO)、酸化ハフニウム(HfO)、及び酸化ジルコニウム(ZrO)のいずれか1種類以上を充填した(図1参照)。このとき、4価のカチオンとなる元素M2とNaがガーネット単結晶中に含有される量の関係式(M2/(2Na))が0.20〜0.85の範囲となるように元素M2の酸化物の配合量を調整した。 Furthermore, in the crucible, germanium oxide (GeO 2 ), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), platinum oxide (platinum oxide) are used as oxides of the element M2 that stably becomes a tetravalent cation in the garnet single crystal. One or more of PtO 2 ), ruthenium oxide (RuO 2 ), tin oxide (SnO 2 ), hafnium oxide (HfO 2 ), and zirconium oxide (ZrO 2 ) were filled (see FIG. 1). At this time, the relational expression (M2 / (2Na)) of the amounts of the elements M2 and Na that become tetravalent cations and Na contained in the garnet single crystal is in the range of 0.20 to 0.85. The compounding quantity of the oxide was adjusted.

次いで、ルツボを電気炉に配置した。950℃まで炉温を上げてルツボ内の材料を溶解し、金製の攪拌用冶具を使用して融液を攪拌した。   The crucible was then placed in an electric furnace. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible, and the melt was stirred using a gold stirring jig.

磁性ガーネット単結晶膜を育成するための基板には、引き上げ法により育成したガーネット単結晶のインゴットから作製された単結晶ウエハを用いる。本実施例では単結晶育成用基板としてCaMgZr置換GGG(ガドリニウム・ガリウム・ガーネット)単結晶基板((GdCa)(CaMgZr)12)を用いている。
以上は、下記の全ての実施例及び比較例で共通の作業である。
As a substrate for growing a magnetic garnet single crystal film, a single crystal wafer made from a garnet single crystal ingot grown by a pulling method is used. In this embodiment, a CaMgZr-substituted GGG (gadolinium gallium garnet) single crystal substrate ((GdCa) 3 (CaMgZr) 5 O 12 ) is used as a single crystal growth substrate.
The above is a work common to all the following examples and comparative examples.

<実施例1>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)分析法で分析したところ、Bi0.8710Gd1.6240Yb0.4950Na0.0100Fe4.9900Ge0.010012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 1>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP (Inductively Coupled Plasma) analysis, Bi 0.8710 Gd 1.6240 Yb 0.4950 Na 0.0100 Fe 4.9900 Ge 0.0100 O was found to be 12. The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射して光損失を評価したところ、光損失が0.00dBのサンプルが6個、0.01dBのサンプルが88個、0.02dBのサンプルが31個得られた。従って本実施例においては、最小値が0.00dB、最大値が0.02dB、typical(代表)値が0.01dBである極めて低い光損失が再現性良く得られた。なお、本願ではTypical値とは、最もサンプル数の多かった光損失測定値である。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Furthermore, when light having a wavelength of 1.55 μm is incident on each Faraday rotator and optical loss is evaluated, six samples with optical loss of 0.00 dB, 88 samples with 0.01 dB, and 0.02 dB samples are obtained. 31 pieces were obtained. Therefore, in this example, an extremely low light loss having a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical (typical) value of 0.01 dB was obtained with good reproducibility. In the present application, the “typical value” is an optical loss measurement value having the largest number of samples.

<実施例2>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、842℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.9012Gd1.5950Yb0.4918Na0.0120Fe4.9860Ge0.014012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.58であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 2>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 842 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. The composition of the resulting single crystal was analyzed by ICP analysis, it was found that a Bi 0.9012 Gd 1.5950 Yb 0.4918 Na 0.0120 Fe 4.9860 Ge 0.0140 O 12. The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.58. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例3>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、851℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8691Gd1.6268Yb0.4971Na0.0070Fe4.9958Ge0.004212であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.30であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 3>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 851 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8691 Gd 1.6268 Yb 0.4971 Na 0.0070 Fe 4.9958 Ge 0.0042 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.30. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.03dB、typical値が0.02dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.03 dB, and a typical value of 0.02 dB. It was obtained with good reproducibility.

<実施例4>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、845℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8717Gd1.6268Yb0.4815Na0.0200Fe4.9720Ge0.028012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.70であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 4>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 845 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8717 Gd 1.6268 Yb 0.4815 Na 0.0200 Fe 4.9720 Ge 0.0280 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.70. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.03dB、typical値が0.02dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.03 dB, and a typical value of 0.02 dB. It was obtained with good reproducibility.

<実施例5>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、873℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.9122Gd1.5780Yb0.5068Na0.0030Fe4.9988Ge0.001212であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.20であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 5>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 873 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found that it was Bi 0.9122 Gd 1.5780 Yb 0.5068 Na 0.0030 Fe 4.9988 Ge 0.0012 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.20. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.01dB、最大値が0.05dB、typical値が0.03dBである十分低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was sufficiently low with a minimum value of 0.01 dB, a maximum value of 0.05 dB, and a typical value of 0.03 dB. It was obtained with good reproducibility.

<実施例6>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、849℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8784Gd1.6355Yb0.4361Na0.0500Fe4.9150Ge0.085012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.85であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 6>
A CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 849 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8784 Gd 1.6355 Yb 0.4361 Na 0.0500 Fe 4.9150 Ge 0.0850 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.85. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.01dB、最大値が0.05dB、typical値が0.03dBである十分低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was sufficiently low with a minimum value of 0.01 dB, a maximum value of 0.05 dB, and a typical value of 0.03 dB. It was obtained with good reproducibility.

<実施例7>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8700Gd1.6245Yb0.4955Na0.0100Fe4.9900Si0.010012であることが分かった。SiとNaの関係式(Si/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 7>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8700 Gd 1.6245 Yb 0.4955 Na 0.0100 Fe 4.9900 Si 0.0100 O 12 . The value of the relational expression (Si / (2Na)) between Si and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例8>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8725Gd1.6223Yb0.4952Na0.0100Fe4.9900Ti0.010012であることが分かった。TiとNaの関係式(Ti/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 8>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8725 Gd 1.6223 Yb 0.4952 Na 0.0100 Fe 4.9900 Ti 0.0100 O 12 . The value of the relational expression (Ti / (2Na)) between Ti and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例9>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8718Gd1.6256Yb0.4926Na0.0100Fe4.9900Pt0.010012であることが分かった。PtとNaの関係式(Pt/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 9>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8718 Gd 1.6256 Yb 0.4926 Na 0.0100 Fe 4.9900 Pt 0.0100 O 12 . The value of the relational expression (Pt / (2Na)) between Pt and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例10>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8706Gd1.6260Yb0.4934Na0.0100Fe4.9900Ru0.010012であることが分かった。RuとNaの関係式(Ru/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 10>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8706 Gd 1.6260 Yb 0.4934 Na 0.0100 Fe 4.9900 Ru 0.0100 O 12 . The value of the relational expression (Ru / (2Na)) between Ru and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例11>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8722Gd1.6247Yb0.4931Na0.0100Fe4.9900Sn0.010012であることが分かった。SnとNaの関係式(Sn/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 11>
A CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8722 Gd 1.6247 Yb 0.4931 Na 0.0100 Fe 4.9900 Sn 0.0100 O 12 . The value of the relational expression (Sn / (2Na)) between Sn and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例12>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8701Gd1.6241Yb0.4958Na0.0100Fe4.9900Hf0.010012であることが分かった。HfとNaの関係式(Hf/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 12>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8701 Gd 1.6241 Yb 0.4958 Na 0.0100 Fe 4.9900 Hf 0.0100 O 12 . The value of the relational expression (Hf / (2Na)) between Hf and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例13>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8710Gd1.6234Yb0.4956Na0.0100Fe4.9900Zr0.010012であることが分かった。ZrとNaの関係式(Zr/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 13>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8710 Gd 1.6234 Yb 0.4956 Na 0.0100 Fe 4.9900 Zr 0.0100 O 12 . The value of the relational expression (Zr / (2Na)) between Zr and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例14>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8710Gd1.6234Yb0.4956Na0.0100Fe4.9900Ge0.0055Ti0.004512であることが分かった。Ge+TiとNaの関係式((Ge+Ti)/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 14>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8710 Gd 1.6234 Yb 0.4956 Na 0.0100 Fe 4.9900 Ge 0.0055 Ti 0.0045 O 12. I understood. The value of the relational expression ((Ge + Ti) / (2Na)) between Ge + Ti and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例15>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、831℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚500〜520μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi1.0150Tb1.8996Ho0.0754Na0.0100Fe4.9900Ge0.010012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 15>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 831 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 500 to 520 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 1.0150 Tb 1.8996 Ho 0.0754 Na 0.0100 Fe 4.9900 Ge 0.0100 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.31μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.31μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 deg. With respect to light having a wavelength of 1.31 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when light having a wavelength of 1.31 μm is incident on each Faraday rotator and the optical loss is evaluated, the optical loss is extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例16>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、886℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を60時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚840〜870μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.6002Eu1.71040.6794Na0.0100Fe4.9900Ge0.010012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 16>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 886 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 60 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 840 to 870 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.6002 Eu 1.7104 Y 0.6794 Na 0.0100 Fe 4.9900 Ge 0.0100 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<実施例17>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、886℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を32時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚390〜420μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi1.4998Gd0.7030Lu0.7872Na0.0100Fe4.9900Ge0.010012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Example 17>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 886 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 32 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a film thickness of 390 to 420 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 1.4998 Gd 0.7030 Lu 0.7872 Na 0.0100 Fe 4.9900 Ge 0.0100 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.00dB、最大値が0.02dB、typical値が0.01dBである極めて低い光損失が再現性良く得られた。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the light loss was extremely low with a minimum value of 0.00 dB, a maximum value of 0.02 dB, and a typical value of 0.01 dB. It was obtained with good reproducibility.

<比較例1>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、871℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8901Gd1.6110Yb0.4949Na0.0040Fe4.9988Ge0.001212であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.15であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Comparative Example 1>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 871 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8901 Gd 1.6110 Yb 0.4949 Na 0.0040 Fe 4.9988 Ge 0.0012 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.15. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.02dB、最大値が0.09dB、typical値が0.05dBと光損失が大きくなり、光損失の再現性が低下する傾向が確認された。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the minimum value was 0.02 dB, the maximum value was 0.09 dB, the typical value was 0.05 dB, and the light loss increased. It was confirmed that the reproducibility of light loss tends to decrease.

<比較例2>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、885℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を50時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚500〜550μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.9002Gd1.5808Yb0.5170Na0.0020Fe4.9660Ge0.034012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.85であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面には多くの結晶欠陥が確認できた。
<Comparative example 2>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 885 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 50 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 500 to 550 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.9002 Gd 1.5808 Yb 0.5170 Na 0.0020 Fe 4.9660 Ge 0.0340 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.85. Many crystal defects were confirmed on the surface of the obtained Bi-substituted rare earth iron garnet single crystal film.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、幾つかのファラデー回転子で結晶欠陥が確認された。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.01dB、最大値が0.05dB、typical値が0.03dBで、0.05dB以下の光損失が再現良く得られた。しかしながら、結晶欠陥が存在するファラデー回転子は消光比が低下するため不良品となるので、これらの単結晶板からファラデー回転子を生産するのは好ましくないことが分かった。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystal of all 125 Faraday rotators was observed with an infrared polarization microscope, and crystal defects were confirmed in several Faraday rotators. . Further, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the minimum value was 0.01 dB, the maximum value was 0.05 dB, the typical value was 0.03 dB, and it was 0.05 dB or less. Light loss was obtained with good reproducibility. However, since the Faraday rotator with crystal defects is inferior because the extinction ratio decreases, it has been found that it is not preferable to produce the Faraday rotator from these single crystal plates.

<比較例3>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、838℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚540〜570μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.8726Gd1.6377Yb0.4347Na0.0550Fe4.9010Ge0.099012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.90であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、結晶欠陥の少ない光沢性のある単結晶膜であった。
<Comparative Example 3>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 838 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 540 to 570 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.8726 Gd 1.6377 Yb 0.4347 Na 0.0550 Fe 4.9010 Ge 0.0990 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.90. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, it was a glossy single crystal film with few crystal defects.

育成した各単結晶ウエハを研磨加工して、波長1.55μmの光に対してファラデー回転角が45deg.となる5枚の単結晶板を作製した。次いで各単結晶板の研磨面に反射防止膜を成膜した。次に、各単結晶板から縦横2(mm)×2(mm)の複数のファラデー回転子を作製した。次に、単結晶板毎に25個のファラデー回転子を抜き取り、全125個のファラデー回転子の結晶内部を赤外偏光顕微鏡で観察したところ、結晶欠陥は確認できなかった。さらに波長1.55μmの光を各ファラデー回転子に入射させて光損失を評価したところ、最小値が0.01dB、最大値が0.08dB、typical値が0.04dBと光損失が大きくなり、損失の再現性が低下する傾向が確認された。   Each grown single crystal wafer was polished, and the Faraday rotation angle was 45 degrees with respect to light having a wavelength of 1.55 μm. 5 single crystal plates were produced. Next, an antireflection film was formed on the polished surface of each single crystal plate. Next, a plurality of Faraday rotators of 2 (mm) × 2 (mm) in length and width were produced from each single crystal plate. Next, 25 Faraday rotators were extracted for each single crystal plate, and the inside of the crystals of all 125 Faraday rotators was observed with an infrared polarization microscope. As a result, no crystal defects could be confirmed. Furthermore, when the light loss was evaluated by making light having a wavelength of 1.55 μm incident on each Faraday rotator, the minimum value was 0.01 dB, the maximum value was 0.08 dB, and the typical value was 0.04 dB. It was confirmed that the loss reproducibility tends to decrease.

<比較例4>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、892℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を75時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚940〜960μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi0.5009Eu1.88120.6079Na0.0100Fe4.9900Ge0.010012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、いずれの単結晶でも表面に同心円状に割れが確認された。育成した単結晶膜を加工して、単結晶板を得ることは割れのためできなかった。
<Comparative Example 4>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 892 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 75 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a thickness of 940 to 960 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 0.5009 Eu 1.8812 Y 0.6079 Na 0.0100 Fe 4.9900 Ge 0.0100 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, cracks were confirmed concentrically on the surface of any single crystal. It was impossible to process the grown single crystal film to obtain a single crystal plate because of cracks.

<比較例5>
CaMgZr置換GGG基板を金製の固定冶具に取り付けて炉内に投入し、760℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を75時間行った。同じ工程により全部で5枚の単結晶ウエハを育成し、膜厚180〜250μmの磁性ガーネット単結晶膜が得られた。得られた単結晶の組成をICP分析法で分析したところ、Bi1.6041Gd0.4989Lu0.8870Na0.0100Fe4.9900Ge0.010012であることが分かった。GeとNaの関係式(Ge/(2Na))の値は0.50であった。得られたBi置換希土類鉄ガーネット単結晶膜の表面を観察すると、いずれの単結晶でも表面に多数の結晶欠陥が確認された。また膜厚が薄すぎるため、育成した単結晶膜を加工して、単結晶板を得ることはできなかった。
<Comparative Example 5>
The CaMgZr-substituted GGG substrate was attached to a gold fixing jig and placed in a furnace. After the furnace temperature was lowered to 760 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 75 hours. A total of five single crystal wafers were grown by the same process, and a magnetic garnet single crystal film having a film thickness of 180 to 250 μm was obtained. When the composition of the obtained single crystal was analyzed by ICP analysis, it was found to be Bi 1.6041 Gd 0.4989 Lu 0.8870 Na 0.0100 Fe 4.9900 Ge 0.0100 O 12 . The value of the relational expression (Ge / (2Na)) between Ge and Na was 0.50. When the surface of the obtained Bi-substituted rare earth iron garnet single crystal film was observed, many crystal defects were confirmed on the surface of any single crystal. Moreover, since the film thickness was too thin, the grown single crystal film could not be processed to obtain a single crystal plate.

図1は、上記の実施例及び比較例について、元素M1、M2、育成したガーネット単結晶のNa量β、M2量γ、関係式(M2/(2Na))、及び作製したファラデー回転子の光損失(dB)等をまとめて示している。   FIG. 1 shows elements M1 and M2, Na amount β of grown garnet single crystal, M2 amount γ, relational expression (M2 / (2Na)), and light of the prepared Faraday rotator for the above examples and comparative examples. The loss (dB) and the like are shown together.

図1に示すように、0.05dB以下の十分に低い光損失を持つファラデー回転子を再現良く作製するには、Naと元素M2の関係式(M2/(2Na))の値が0.20以上、0.85以下であればよいことが分かる(実施例1乃至17、及び比較例1乃至3参照)。
0.03dB以下の極めて低い光損失を持つファラデー回転子を再現良く作製するには、NaとM2の関係式(M2/(2Na))の値が0.30以上、0.70以下であればよいことが分かる(実施例5及び6を除く実施例1乃至17参照)。
As shown in FIG. 1, in order to produce a Faraday rotator having a sufficiently low optical loss of 0.05 dB or less with good reproducibility, the value of the relational expression (M2 / (2Na)) between Na and the element M2 is 0.20. As described above, it can be understood that the value may be 0.85 or less (see Examples 1 to 17 and Comparative Examples 1 to 3).
In order to produce a Faraday rotator having an extremely low optical loss of 0.03 dB or less with good reproducibility, the value of the relational expression (M2 / (2Na)) between Na and M2 is 0.30 or more and 0.70 or less. It turns out that it is good (refer Example 1 thru | or 17 except Examples 5 and 6).

本発明の一実施の形態の実施例1〜17及び比較例1〜5での関係式M2/(2Na)、Na量β、M2量γ、及び光損失等をまとめて示す表である。It is a table | surface which shows collectively the relational expression M2 / (2Na), Na amount (beta), M2 amount (gamma), light loss, etc. in Examples 1-17 of the one embodiment of this invention, and Comparative Examples 1-5.

Claims (3)

化学式BiαNaβM13−α−βFe5−γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Ti、Pt、Ru、Sn、Hf、Zrから選択される少なくとも1種類以上の元素であり、0.600<α≦1.500、0.003≦β≦0.050、1.450≦3−α−β<2.397、0.20≦γ/(2β)≦0.85)
で示されること
を特徴とする磁性ガーネット単結晶。
Formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, At least one element selected from Lu, M2 is at least one element selected from Si, Ge, Ti, Pt, Ru, Sn, Hf, Zr, and 0.600 <α ≦ 1. 500, 0.003 ≦ β ≦ 0.050, 1.450 ≦ 3-α-β <2.397, 0.20 ≦ γ / (2β) ≦ 0.85)
A magnetic garnet single crystal characterized by the following:
化学式BiαNaβM13−α−βFe5−γM2γ12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSi、Ge、Ti、Pt、Ru、Sn、Hf、Zrから選択される少なくとも1種類以上の元素であり、0.600<α≦1.500、0.004<β≦0.040、1.460≦3−α−β<2.396、0.30≦γ/(2β)≦0.70)
で示されること
を特徴とする磁性ガーネット単結晶。
Formula Bi α Na β M1 3-α -β Fe 5-γ M2 γ O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, At least one element selected from Lu, M2 is at least one element selected from Si, Ge, Ti, Pt, Ru, Sn, Hf, Zr, and 0.600 <α ≦ 1. 500, 0.004 <β ≦ 0.040, 1.460 ≦ 3-α-β <2.396, 0.30 ≦ γ / (2β) ≦ 0.70)
A magnetic garnet single crystal characterized by the following:
請求項1又は2に記載の磁性ガーネット単結晶から作製されることを特徴とするファラデー回転子。   A Faraday rotator made of the magnetic garnet single crystal according to claim 1.
JP2007118511A 2007-04-27 2007-04-27 Magnetic garnet single crystal and Faraday rotator using the same Expired - Fee Related JP4844464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007118511A JP4844464B2 (en) 2007-04-27 2007-04-27 Magnetic garnet single crystal and Faraday rotator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118511A JP4844464B2 (en) 2007-04-27 2007-04-27 Magnetic garnet single crystal and Faraday rotator using the same

Publications (2)

Publication Number Publication Date
JP2008273776A true JP2008273776A (en) 2008-11-13
JP4844464B2 JP4844464B2 (en) 2011-12-28

Family

ID=40052257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118511A Expired - Fee Related JP4844464B2 (en) 2007-04-27 2007-04-27 Magnetic garnet single crystal and Faraday rotator using the same

Country Status (1)

Country Link
JP (1) JP4844464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193950A1 (en) * 2018-04-06 2019-10-10 湖北工業株式会社 Magnetic garnet single crystal and production method for magnetic garnet single crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260300A (en) * 1975-10-07 1977-05-18 Philips Nv Method of growing stngle crystal epitaxial layer of rear earth metalltron garnet
JP2006169093A (en) * 2004-11-19 2006-06-29 Tdk Corp Magnetic garnett single crystal, optical element using the same and method for manufacturing magnetic garnett single crystal
JP2007210806A (en) * 2006-02-07 2007-08-23 Tdk Corp Magnetic garnet single crystal, and optical element using the same
JP2007210879A (en) * 2006-01-10 2007-08-23 Tdk Corp Magnetic garnet single crystal, its production method, and optical element using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260300A (en) * 1975-10-07 1977-05-18 Philips Nv Method of growing stngle crystal epitaxial layer of rear earth metalltron garnet
JP2006169093A (en) * 2004-11-19 2006-06-29 Tdk Corp Magnetic garnett single crystal, optical element using the same and method for manufacturing magnetic garnett single crystal
JP2007210879A (en) * 2006-01-10 2007-08-23 Tdk Corp Magnetic garnet single crystal, its production method, and optical element using the same
JP2007210806A (en) * 2006-02-07 2007-08-23 Tdk Corp Magnetic garnet single crystal, and optical element using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193950A1 (en) * 2018-04-06 2019-10-10 湖北工業株式会社 Magnetic garnet single crystal and production method for magnetic garnet single crystal
JP2019182696A (en) * 2018-04-06 2019-10-24 湖北工業株式会社 Magnetic garnet single crystal, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4844464B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US8142676B2 (en) Magnetic garnet single crystal and optical element using the same
JP3959099B2 (en) Method for producing magnetic garnet single crystal
EP0409691A2 (en) Oxide garnet single crystal
JP5377785B1 (en) Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
WO2006054628A1 (en) Magnetic garnet single crystal, optical device using same and method for producing single crystal
US7695562B2 (en) Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US7758766B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
DE102010021203B4 (en) Terbium titanate for use as a Faraday rotator - Faraday rotator and optical isolator
JP4844464B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP4720730B2 (en) Optical element manufacturing method
JP3816591B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal film
JP4821344B2 (en) Magnetic garnet single crystal and optical element using the same
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP2001044027A (en) Magnetic garnet single crystal and faraday rotator using the same
JP4432896B2 (en) Method for producing garnet single crystal
JP6887678B2 (en) Method for manufacturing magnetic garnet single crystal
Rytz et al. 4.4 Crystal growth of rare-earth doped and rare-earth containing materials
Chani Crystal-chemistry and fiber crystal growth of optical oxide materials
JP2005247590A (en) Magnetic garnet single crystal and optical element using the same
CN115772703A (en) Lithium barium terbium fluoroborate magneto-optical crystal and preparation method and application thereof
Arsenev et al. Spectroscopy of Rare‐Earth Elements in Single‐Crystal Films of Yttrium‐Aluminium Garnets (YAG)
JP2009084131A (en) Magneto-optical element and its manufacturing method, and optical device produced by using the same
JP2002308696A (en) Garnet single crystal substrate and method for producing bismuth-substituted rare earth garnet single crystal film using the same
JP2005247589A (en) Magnetic garnet single crystal and optical element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees