JP4821344B2 - Magnetic garnet single crystal and optical element using the same - Google Patents

Magnetic garnet single crystal and optical element using the same Download PDF

Info

Publication number
JP4821344B2
JP4821344B2 JP2006029339A JP2006029339A JP4821344B2 JP 4821344 B2 JP4821344 B2 JP 4821344B2 JP 2006029339 A JP2006029339 A JP 2006029339A JP 2006029339 A JP2006029339 A JP 2006029339A JP 4821344 B2 JP4821344 B2 JP 4821344B2
Authority
JP
Japan
Prior art keywords
single crystal
faraday rotator
magnetic garnet
garnet single
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006029339A
Other languages
Japanese (ja)
Other versions
JP2007210806A (en
Inventor
敦 大井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006029339A priority Critical patent/JP4821344B2/en
Priority to US11/647,431 priority patent/US7695562B2/en
Priority to EP07000357.9A priority patent/EP1806755B1/en
Priority to CN2007100022443A priority patent/CN101000410B/en
Publication of JP2007210806A publication Critical patent/JP2007210806A/en
Application granted granted Critical
Publication of JP4821344B2 publication Critical patent/JP4821344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁性ガーネット単結晶及びそれを用いた光学素子に関する。   The present invention relates to a magnetic garnet single crystal and an optical element using the same.

ファラデー回転子は、透過する光の偏光面を回転させる機能を有する光学素子であり、通信用光アイソレータ、光アッテネータ、光サーキュレータ、光磁界センサ等の光デバイスに使用される。ファラデー回転子は、一般に板状のビスマス(Bi)置換希土類鉄ガーネット単結晶を用いて作製される。Bi置換希土類鉄ガーネット単結晶は、フラックス法の一種である液相エピタキシャル(LPE)法により育成される。   The Faraday rotator is an optical element having a function of rotating a polarization plane of transmitted light, and is used for an optical device such as a communication optical isolator, an optical attenuator, an optical circulator, and an optical magnetic field sensor. A Faraday rotator is generally manufactured using a plate-like bismuth (Bi) -substituted rare earth iron garnet single crystal. Bi-substituted rare earth iron garnet single crystal is grown by a liquid phase epitaxial (LPE) method which is a kind of flux method.

LPE法によりBi置換希土類鉄ガーネット単結晶を育成する際には、過飽和状態を保ちながらガーネット単結晶を安定に成長させるために、一般に酸化鉛(PbO)、酸化ビスマス(Bi)及び酸化ホウ素(B)が溶媒として用いられる。このため磁性ガーネット単結晶の育成時には結晶中に少量の鉛(Pb)が混入する。従来、通信用光デバイスに使用されるファラデー回転子には、化学式Bi3−x−yM1PbFe5−z−wM2M312においてPbの量yが0.03〜0.06程度である磁性ガーネット単結晶が用いられている。
特開2001−044026号公報 特開2001−044027号公報 特公平6−046604号公報
When growing Bi-substituted rare earth iron garnet single crystals by the LPE method, lead oxide (PbO), bismuth oxide (Bi 2 O 3 ) and oxidation are generally used to stably grow the garnet single crystal while maintaining a supersaturated state. Boron (B 2 O 3 ) is used as a solvent. For this reason, when growing a magnetic garnet single crystal, a small amount of lead (Pb) is mixed in the crystal. Conventionally, the Faraday rotator to be used for communication optical device, in the chemical formula Bi 3-x-y M1 x Pb y Fe 5-z-w M2 z M3 w O 12 quantity y of Pb is 0.03 to 0 A magnetic garnet single crystal of about .06 is used.
JP 2001-044026 A JP 2001-044027 A Japanese Examined Patent Publication No. 6-046604

ところが近年の環境保護運動の高まりと共に、全ての工業製品で環境負荷物質であるPbの含有量を削減する努力がなされている。従って、LPE法により育成する磁性ガーネット単結晶においても、少量ではあるが混入するPbが環境汚染の要因になり得るとして問題になってきた。そこで、ファラデー回転子を構成する材料である磁性ガーネット単結晶に含有されるPbの量を削減又は除去する必要が生じている。   However, with the recent increase in environmental protection movement, efforts are being made to reduce the content of Pb, which is an environmentally hazardous substance, in all industrial products. Therefore, even in a magnetic garnet single crystal grown by the LPE method, a small amount of Pb mixed therein has become a problem because it can cause environmental pollution. Therefore, it is necessary to reduce or remove the amount of Pb contained in the magnetic garnet single crystal that is a material constituting the Faraday rotator.

本発明の目的は、Pbの含有量を削減した磁性ガーネット単結晶及びそれを用いた光学素子を提供することにある。   An object of the present invention is to provide a magnetic garnet single crystal with a reduced Pb content and an optical element using the same.

上記目的は、化学式BiαNaβM13−α−βFe5−γ−δ−εM2γM3δM4ε12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSn、Rh、Ru、Hf、Zrから選択される少なくとも1種類以上の元素、M3はV、Sb、Nb、Taから選択される少なくとも1種類以上の元素、M4はW、Moから選択される少なくとも1種類以上の元素であり、0.5≦α≦2.0、0<β≦2.4、0<3−α−β<2.5、0<γ+δ+ε≦1.6)で示されることを特徴とする磁性ガーネット単結晶によって達成される。 The purpose is to use the chemical formula Bi α Na β M1 3-α-β Fe 5-γ-δ-ε M2 γ M3 δ M4 ε O 12 (M1 is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, At least one element selected from Tb, Dy, Ho, Er, Tm, Yb, Lu, M2 is at least one element selected from Sn, Rh, Ru, Hf, Zr, M3 is V, At least one element selected from Sb, Nb, Ta, M4 is at least one element selected from W, Mo, 0.5 ≦ α ≦ 2.0, 0 <β ≦ 2. 4, 0 <3-α−β <2.5, 0 <γ + δ + ε ≦ 1.6). This is achieved by a magnetic garnet single crystal.

上記本発明の磁性ガーネット単結晶であって、前記γ、δ及びεは、γ+2δ+3ε≧0.007の関係を満たすことを特徴とする。   In the magnetic garnet single crystal of the present invention, the γ, δ, and ε satisfy a relationship of γ + 2δ + 3ε ≧ 0.007.

また上記目的は、上記本発明の磁性ガーネット単結晶を用いて作製されていることを特徴とする光学素子によって達成される。   The above-mentioned object is achieved by an optical element characterized by being produced using the magnetic garnet single crystal of the present invention.

本発明によれば、磁性ガーネット単結晶に含まれるPb量を削減し、あるいは完全に除去することができる。   According to the present invention, the amount of Pb contained in the magnetic garnet single crystal can be reduced or completely removed.

本発明の一実施の形態による磁性ガーネット単結晶及びそれを用いた光学素子について図1を用いて説明する。本実施の形態では、従来の溶媒に含まれるPbの少なくとも一部をナトリウム(Na)で代替し、Naを含む溶液から磁性ガーネット単結晶を育成する。Naと酸素とを含有する物質は他の酸化物に比べて低い温度で溶解するものが多いため、Naは磁性ガーネット単結晶を育成する際の溶媒として有効である。例えば水酸化ナトリウム(NaOH)を含む溶媒から育成された磁性ガーネット単結晶は、欠陥や割れのない優れた品質を有する。溶媒の材料からPbOを除外し、Naを含む物質とBi及びBを溶媒に用いることにより、従来磁性ガーネット単結晶に微量含まれていたPbをほぼ完全に除去できる。 A magnetic garnet single crystal and an optical element using the same according to an embodiment of the present invention will be described with reference to FIG. In this embodiment, at least a part of Pb contained in a conventional solvent is replaced with sodium (Na), and a magnetic garnet single crystal is grown from a solution containing Na. Since many substances containing Na and oxygen dissolve at a lower temperature than other oxides, Na is effective as a solvent for growing magnetic garnet single crystals. For example, a magnetic garnet single crystal grown from a solvent containing sodium hydroxide (NaOH) has excellent quality free from defects and cracks. By excluding PbO from the solvent material and using a substance containing Na and Bi 2 O 3 and B 2 O 3 as the solvent, Pb that has been conventionally contained in a trace amount in the magnetic garnet single crystal can be almost completely removed.

ところが、Naを含む溶媒から育成したガーネット単結晶は、光通信で使用される1300〜1600nmの波長帯域での光吸収が極めて大きいということが判明した。大きな光吸収を持つガーネット単結晶を加工してファラデー回転子等の光学素子を作製すると、光学素子の光損失(挿入損失)が高くなってしまうという問題が生じ得る。したがって、Pbがほぼ完全に除去された光学素子の光損失を低減させるために、Naを含む溶媒を用いて育成されるガーネット単結晶の光吸収を減少させる必要がある。   However, it has been found that a garnet single crystal grown from a solvent containing Na has extremely large light absorption in a wavelength band of 1300 to 1600 nm used in optical communication. When an optical element such as a Faraday rotator is manufactured by processing a garnet single crystal having a large light absorption, there may be a problem that the optical loss (insertion loss) of the optical element increases. Therefore, in order to reduce the optical loss of the optical element from which Pb is almost completely removed, it is necessary to reduce the light absorption of the garnet single crystal grown using the solvent containing Na.

ここで、NaOH、Bi及びBを溶媒としてLPE法により育成した磁性ガーネット単結晶((BiGdYb)Fe12)を加工して、ファラデー回転子を作製した。このファラデー回転子の波長1.55μmの光に対する光損失は3dBであった。また、Pbを含む溶媒からLPE法により育成した磁性ガーネット単結晶((BiGdYb)Fe12)を加工して、別のファラデー回転子を作製した。このファラデー回転子の波長1.55μmの光に対する光損失は0.05dB以下であった。したがって、Naを含む溶媒を用いて作製されたファラデー回転子の光損失は、Pbを含む溶媒を用いて作製されたファラデー回転子の光損失と比較して極めて高いことが分かった。Naを含む溶媒から育成した磁性ガーネット単結晶の組成を蛍光X線分析により調べたところ、100〜300ppm程度のNaが検出された。Bi置換希土類鉄ガーネットを構成するカチオン(陽イオン)は、基本的に3価である。このため、1価が安定な価数であるNaのカチオンが磁性ガーネット単結晶中に入ると、電荷のバランスが崩れて磁性ガーネット単結晶が半導体となる。これにより、Naを含む磁性ガーネット単結晶では光吸収が発生していると考えられる。 Here, a magnetic garnet single crystal ((BiGdYb) 3 Fe 5 O 12 ) grown by the LPE method using NaOH, Bi 2 O 3 and B 2 O 3 as a solvent was processed to produce a Faraday rotator. The optical loss of this Faraday rotator with respect to light having a wavelength of 1.55 μm was 3 dB. Further, another Faraday rotator was produced by processing a magnetic garnet single crystal ((BiGdYb) 3 Fe 5 O 12 ) grown from a solvent containing Pb by the LPE method. The optical loss of this Faraday rotator with respect to light having a wavelength of 1.55 μm was 0.05 dB or less. Therefore, it was found that the optical loss of the Faraday rotator manufactured using the solvent containing Na is extremely higher than the optical loss of the Faraday rotator manufactured using the solvent containing Pb. When the composition of the magnetic garnet single crystal grown from the solvent containing Na was examined by fluorescent X-ray analysis, about 100 to 300 ppm of Na was detected. The cation (cation) constituting the Bi-substituted rare earth iron garnet is basically trivalent. For this reason, when a cation of Na, which is a monovalent valence, enters the magnetic garnet single crystal, the charge balance is lost and the magnetic garnet single crystal becomes a semiconductor. Thereby, it is considered that light absorption occurs in the magnetic garnet single crystal containing Na.

本実施の形態では、酸化スズ(SnO)、酸化ロジウム(RhO)、酸化ルテニウム(RuO)、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化バナジウム(V)、酸化アンチモン(Sb)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化モリブデン(MoO)、及び酸化タングステン(WO)のうち少なくとも1種をNaと共に配合材料に加え、磁性ガーネット単結晶を育成した。育成した磁性ガーネット単結晶をファラデー回転子に加工して光損失を評価したところ、光損失が低下する傾向が認められた。Sn、Rh、Ru、Hf及びZrはガーネット中で4価のカチオンが安定となり、V、Sb、Nb及びTaはガーネット中で5価のカチオンが安定となり、Mo及びWはガーネット中で6価のカチオンが安定となる。Naのカチオンと共に磁性ガーネット単結晶中に入るこれらの4価、5価又は6価のカチオンが電荷を補償することにより電荷のバランスがとれ、磁性ガーネット単結晶は絶縁体となる。これにより、磁性ガーネット単結晶の光吸収が減少したと考えられる。 In this embodiment mode, tin oxide (SnO 2 ), rhodium oxide (RhO 2 ), ruthenium oxide (RuO 2 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), vanadium oxide (V 2 O 5 ), At least one of antimony oxide (Sb 2 O 5 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), molybdenum oxide (MoO 3 ), and tungsten oxide (WO 3 ) is blended with Na In addition to the materials, magnetic garnet single crystals were grown. When the grown magnetic garnet single crystal was processed into a Faraday rotator and the optical loss was evaluated, a tendency for the optical loss to decrease was observed. Sn, Rh, Ru, Hf and Zr are stable in tetravalent cations in garnet, V, Sb, Nb and Ta are stable in pentavalent cations in garnet, and Mo and W are hexavalent in garnet. Cations become stable. These tetravalent, pentavalent, or hexavalent cations that enter the magnetic garnet single crystal together with the Na cation compensate for the charge to balance the charge, and the magnetic garnet single crystal becomes an insulator. Thereby, it is considered that the light absorption of the magnetic garnet single crystal is reduced.

さらに本実施の形態では、Naを含む配合材料にSnOを種々の配合量で加えて、複数種類の磁性ガーネット単結晶を育成した。本実施の形態では、配合材料中におけるSnのFeに対するモル比(Sn/Feモル比)をパラメータとして用い、SnOの配合量を変えることによりSn/Feモル比を0〜0.02の範囲内で種々の値に設定した。育成した複数種類の磁性ガーネット単結晶をそれぞれファラデー回転子に加工し、光損失を評価した。その結果、配合材料にSnOをわずかに添加するだけでもファラデー回転子の光損失は大幅に低下し、Sn/Feモル比が0.004である配合材料を用いて作製したファラデー回転子の光損失は、0〜0.01dBと極めて低くなることが分かった。Sn/Feモル比を0.004より大きくしても、ファラデー回転子の光損失は0〜0.01dBで変化はなかった。 Further, in this embodiment, in addition to SnO 2 in various amounts to the formulation material containing Na, it was grown several kinds of magnetic garnet single crystal. In the present embodiment, the molar ratio of Sn to Fe (Sn / Fe molar ratio) in the compounding material is used as a parameter, and the Sn / Fe molar ratio is in the range of 0 to 0.02 by changing the compounding amount of SnO 2. Various values were set. Multiple kinds of grown magnetic garnet single crystals were processed into Faraday rotators, and the optical loss was evaluated. As a result, the light loss of the Faraday rotator is significantly reduced even if a slight amount of SnO 2 is added to the compounding material, and the light of the Faraday rotator produced using the compounding material having a Sn / Fe molar ratio of 0.004. The loss was found to be very low, 0-0.01 dB. Even when the Sn / Fe molar ratio was larger than 0.004, the optical loss of the Faraday rotator was 0 to 0.01 dB, and there was no change.

Sn/Feモル比が0.004である配合材料から育成した磁性ガーネット単結晶を蛍光X線分析及びICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)分析により組成分析したところ、化学式(BiGdYb)2.996Na0.004Fe4.993Sn0.00712が得られた。組成分析の結果、Snのようにガーネット中で4価が安定な元素が磁性ガーネット単結晶中に入ることによってファラデー回転子の光損失が低下し、特に、磁性ガーネット単結晶中のSn量γを化学式で0.007にすると(γ=0.007)、ファラデー回転子の光損失を最低にすることができることが分かった。また、磁性ガーネット単結晶中のSn量γがさらに増加しても(γ>0.007)、ファラデー回転子の光損失は最低値のままであることが分かった。 A magnetic garnet single crystal grown from a compounding material having a Sn / Fe molar ratio of 0.004 was subjected to compositional analysis by fluorescent X-ray analysis and ICP (Inductively Coupled Plasma) analysis . Chemical formula (BiGdYb) 996 Na 0.004 Fe 4.993 Sn 0.007 O 12 was obtained. As a result of the compositional analysis, the light loss of the Faraday rotator is reduced when a tetravalent element such as Sn enters the magnetic garnet single crystal, and in particular, the Sn amount γ in the magnetic garnet single crystal is reduced. It was found that when the chemical formula is 0.007 (γ = 0.007), the optical loss of the Faraday rotator can be minimized. It was also found that the optical loss of the Faraday rotator remained at the lowest value even when the Sn content γ in the magnetic garnet single crystal was further increased (γ> 0.007).

Snと同様にガーネット中で4価が安定なRh、Ru、Hf及びZr等をSnに代えて用いても、ファラデー回転子の光損失を低減できることが分かった。特に、磁性ガーネット単結晶中でのこれらの元素の量γを化学式で0.007又はそれ以上にすると(γ≧0.007)、ファラデー回転子の光損失を最低にすることができた。   It has been found that the optical loss of the Faraday rotator can be reduced even if Rh, Ru, Hf, Zr, etc., which are stable in tetravalence in the garnet, are used instead of Sn as in the case of Sn. In particular, when the amount γ of these elements in the magnetic garnet single crystal was set to 0.007 or more in the chemical formula (γ ≧ 0.007), the optical loss of the Faraday rotator could be minimized.

また、ガーネット中で5価が安定なV、Sb、Nb及びTa等、又はガーネット中で6価が安定なW及びMo等を用いても、同様にファラデー回転子の光損失を低減できることが分かった。ただし、ガーネット中で5価又は6価が安定なこれらの元素を用いた場合、ファラデー回転子の光損失が最低となるための条件は上記と異なっていた。ガーネット中で5価のカチオンとなるV、Sb、Nb及びTaについては、磁性ガーネット単結晶中でのこれらの元素の量δを化学式で0.0035又はそれ以上にすると(2δ≧0.007)、ファラデー回転子の光損失を最低にすることができた。ガーネット中で6価のカチオンとなるW及びMoについては、磁性ガーネット単結晶中でのこれらの元素の量εを化学式で0.0023又はそれ以上にすると(3ε≧0.007)、ファラデー回転子の光損失を最低にすることができた。   Also, it can be seen that the optical loss of the Faraday rotator can be similarly reduced by using V, Sb, Nb, Ta, etc., which are stable in pentavalent in garnet, or W, Mo, etc., which are stable in hexavalent in garnet. It was. However, when these elements, which are stable in pentavalent or hexavalent form, are used in the garnet, the conditions for minimizing the optical loss of the Faraday rotator were different from the above. For V, Sb, Nb, and Ta that are pentavalent cations in garnet, if the amount δ of these elements in the magnetic garnet single crystal is 0.0035 or more in the chemical formula (2δ ≧ 0.007) The optical loss of the Faraday rotator could be minimized. For W and Mo, which are hexavalent cations in garnet, when the amount ε of these elements in the magnetic garnet single crystal is 0.0023 or more in the chemical formula (3ε ≧ 0.007), the Faraday rotator Was able to minimize the light loss.

さらに、Sn、Rh、Ru、Hf、Zr、V、Sb、Nb、Ta、W及びMoのうち2種以上を組み合わせて用いても、同様にファラデー回転子の光損失を低減できることが分かった。すなわち、磁性ガーネット単結晶の組成を示す化学式において、Sn、Rh、Ru、Hf及びZrから選択される少なくとも1種の元素の量γ、V、Sb、Nb及びTaから選択される少なくとも1種の元素の量δ、並びにW及びMoから選択される少なくとも1種の元素の量εがγ+δ+ε>0の関係を満たすことによって、磁性ガーネット単結晶の光吸収及びファラデー回転子の光損失が低減する。また、γ、δ及びεがγ+2δ+3ε≧0.007の関係を満たすことによって、磁性ガーネット単結晶の光吸収及びファラデー回転子の光損失はさらに低減する。   Furthermore, it has been found that even when two or more of Sn, Rh, Ru, Hf, Zr, V, Sb, Nb, Ta, W and Mo are used in combination, the optical loss of the Faraday rotator can be reduced. That is, in the chemical formula showing the composition of the magnetic garnet single crystal, the amount of at least one element selected from Sn, Rh, Ru, Hf and Zr γ, at least one selected from V, Sb, Nb and Ta When the element amount δ and the amount ε of at least one element selected from W and Mo satisfy the relationship γ + δ + ε> 0, the light absorption of the magnetic garnet single crystal and the light loss of the Faraday rotator are reduced. Moreover, when γ, δ, and ε satisfy the relationship of γ + 2δ + 3ε ≧ 0.007, the light absorption of the magnetic garnet single crystal and the light loss of the Faraday rotator are further reduced.

Sn、Rh、Ru、Hf、Zr、V、Sb、Nb、Ta、W及びMoが所定量以上ガーネット単結晶中に入り電荷のバランスが崩れると、電荷を補償するようにNaがガーネット中に入る。そのためSn、Rh、Ru、Hf、Zr、V、Sb、Nb、Ta、W及びMoでFeを多量に置換した場合でも、Naがガーネット単結晶に入ることにより電荷は補償される。しかしながら、磁性ガーネット単結晶においてSn、Rh、Ru、Hf、Zr、V、Sb、Nb、Ta、W及びMoの置換量が1.6より大きくなると、キュリー点が室温付近まで低下するためファラデー回転子としての使用が困難になる。したがって、Sn、Rh、Ru、Hf、Zr、V、Sb、Nb、Ta、W及びMoの置換量の上限は化学式で1.6となる(γ+δ+ε≦1.6)。   When Sn, Rh, Ru, Hf, Zr, V, Sb, Nb, Ta, W, and Mo enter the garnet single crystal for a predetermined amount or more and the charge balance is lost, Na enters the garnet so as to compensate the charge. . Therefore, even when a large amount of Fe is substituted with Sn, Rh, Ru, Hf, Zr, V, Sb, Nb, Ta, W, and Mo, the charge is compensated by Na entering the garnet single crystal. However, in the magnetic garnet single crystal, when the substitution amount of Sn, Rh, Ru, Hf, Zr, V, Sb, Nb, Ta, W, and Mo becomes larger than 1.6, the Curie point decreases to near room temperature, so Faraday rotation Use as a child becomes difficult. Therefore, the upper limit of the substitution amount of Sn, Rh, Ru, Hf, Zr, V, Sb, Nb, Ta, W and Mo is 1.6 in the chemical formula (γ + δ + ε ≦ 1.6).

4価が安定な元素と1価が安定な元素とが2:1の比率でガーネット単結晶に入れば電荷のバランスをとることができるため、4価が安定なSn、Rh、Ru、Hf及びZrが化学式で1.6だけガーネット単結晶に入るとき、Naは化学式で0.8だけ入る。また、5価が安定な元素と1価が安定な元素とが1:1の比率でガーネット単結晶に入れば電荷のバランスをとることができるため、5価が安定なV、Sb、Nb及びTaが化学式で1.6だけガーネット単結晶に入るとき、Naは化学式で1.6だけ入る。さらに、6価が安定な元素と1価が安定な元素とが2:3の比率でガーネット単結晶に入れば電荷のバランスをとることができるため、6価が安定なW及びMoが化学式で1.6だけガーネット単結晶に入るとき、Naは化学式で2.4だけ入る。すなわち、ファラデー回転子に使用可能な磁性ガーネット単結晶に含まれるNaの上限は化学式で2.4となる(β≦2.4)。   Since the charge balance can be achieved if the tetravalent stable element and the monovalent stable element enter the garnet single crystal at a ratio of 2: 1, the tetravalent stable Sn, Rh, Ru, Hf and When Zr enters the garnet single crystal by the chemical formula by 1.6, Na enters by 0.8 by the chemical formula. Further, since the charge can be balanced if the element having stable pentavalent and the element having stable monovalent enters the garnet single crystal at a ratio of 1: 1, V, Sb, Nb and When Ta enters the garnet single crystal by a chemical formula of 1.6, Na enters by a chemical formula of 1.6. Furthermore, since the balance of charge can be achieved if an element with stable hexavalence and an element with stable monovalence enter the garnet single crystal at a ratio of 2: 3, W and Mo with stable hexavalence are expressed by chemical formulas. When entering a garnet single crystal by 1.6, Na enters only 2.4 by chemical formula. That is, the upper limit of Na contained in the magnetic garnet single crystal usable for the Faraday rotator is 2.4 in the chemical formula (β ≦ 2.4).

Naを含む溶媒で磁性ガーネット単結晶を育成する場合には、Naを含まない溶媒に比して溶液の過飽和状態をより安定に保つことができる。そのためBiは、化学式で2.0程度まで安定してガーネット単結晶に入ることができる(α≦2.0)。一方、ファラデー回転子として十分な回転係数(deg/μm)を得るためには、ガーネット単結晶中のBiは化学式で0.5以上必要である(α≧0.5)。   When a magnetic garnet single crystal is grown with a solvent containing Na, the supersaturated state of the solution can be kept more stable than a solvent containing no Na. Therefore, Bi can stably enter the garnet single crystal up to about 2.0 in the chemical formula (α ≦ 2.0). On the other hand, in order to obtain a sufficient rotation coefficient (deg / μm) as a Faraday rotator, Bi in the garnet single crystal must be 0.5 or more in the chemical formula (α ≧ 0.5).

また本実施の形態では、磁性ガーネット単結晶に含まれる希土類元素として、単独又は組合せにより安定してFeとガーネット単結晶を作ることができるイットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)が用いられる。   In the present embodiment, as the rare earth element contained in the magnetic garnet single crystal, yttrium (Y), lanthanum (La), cerium (Ce), which can stably form Fe and garnet single crystals alone or in combination, Praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), Ytterbium (Yb) and lutetium (Lu) are used.

以上説明したように、本実施の形態による磁性ガーネット単結晶は、化学式BiαNaβM13−α−βFe5−γ−δ−εM2γM3δM4ε12(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSn、Rh、Ru、Hf、Zrから選択される少なくとも1種類以上の元素、M3はV、Sb、Nb、Taから選択される少なくとも1種類以上の元素、M4はW、Moから選択される少なくとも1種類以上の元素であり、0.5≦α≦2.0、0<β≦2.4、0<3−α−β<2.5、0<γ+δ+ε≦1.6)で表される。本実施の形態によれば、Pbをほぼ完全に除去した磁性ガーネット単結晶及びそれを用いた光学素子を実現できる。また本実施の形態によれば、磁性ガーネット単結晶の光吸収及び光学素子の光損失を低減できる。
以下、本実施の形態による磁性ガーネット単結晶及びそれを用いた光学素子について、実施例及び比較例を用いてより具体的に説明する。
As described above, the magnetic garnet single crystal according to this embodiment, the chemical formula Bi α Na β M1 3-α -β Fe 5-γ-δ-ε M2 γ M3 δ M4 ε O 12 (M1 is Y, La , Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, M2 is selected from Sn, Rh, Ru, Hf, Zr At least one element selected from the group consisting of at least one element selected from V, Sb, Nb and Ta, M4 is at least one element selected from W and Mo, 0.5 ≦ α ≦ 2.0, 0 <β ≦ 2.4, 0 <3-α−β <2.5, 0 <γ + δ + ε ≦ 1.6). According to the present embodiment, a magnetic garnet single crystal from which Pb is almost completely removed and an optical element using the same can be realized. Moreover, according to this Embodiment, the optical absorption of a magnetic garnet single crystal and the optical loss of an optical element can be reduced.
Hereinafter, the magnetic garnet single crystal and the optical element using the same according to the present embodiment will be described more specifically with reference to Examples and Comparative Examples.

(実施例1)
金(Au)製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.006とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液(溶液)を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。磁性ガーネット単結晶膜を育成するための基板には、引き上げ法により育成したガーネット単結晶のインゴットから作製された単結晶ウエハを用いる。本実施例では単結晶育成用基板として、CaMgZr置換GGG(ガドリニウム・ガリウム・ガーネット)単結晶基板((GdCa)(GaMgZr)12)を用いている。
Example 1
A crucible made of gold (Au) was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Sn / Fe molar ratio was set to 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt (solution), and the melt was stirred using a stirring jig made of Au. As a substrate for growing a magnetic garnet single crystal film, a single crystal wafer made from a garnet single crystal ingot grown by a pulling method is used. In this embodiment, a CaMgZr-substituted GGG (gadolinium gallium garnet) single crystal substrate ((GdCa) 3 (GaMgZr) 5 O 12 ) is used as the single crystal growth substrate.

CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Sn0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005(FeSn)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。 The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Sn 0.010 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeSn). The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例2)
Au製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.004とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.993Sn0.00712であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.996Na0.004(FeSn)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 2)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Sn / Fe molar ratio was set to 0.004. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.993 Sn 0.007 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal film was (BiGdYb) 2.996 Na 0.004 (FeSn) 5.000 O 12 . The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例3)
Au製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.008とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところNaが検出され、組成はBi1.293Gd1.200Yb0.500Na0.007Fe4.987Sn0.01312であった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 3)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Sn / Fe molar ratio was set to 0.008. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. When the grown single crystal film was compositionally analyzed by fluorescent X-ray analysis, Na was detected and the composition was Bi 1.293 Gd 1.200 Yb 0.500 Na 0.007 Fe 4.987 Sn 0.013 O 12. It was. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例4)
Au製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.012とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところNaが検出され、組成はBi1.290Gd1.200Yb0.500Na0.010Fe4.980Sn0.02012であった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
Example 4
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Sn / Fe molar ratio was set to 0.012. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. When the grown single crystal film was compositionally analyzed by fluorescent X-ray analysis, Na was detected and the composition was Bi1.290 Gd 1.200 Yb 0.500 Na 0.010 Fe 4.980 Sn 0.020 O 12. It was. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例5)
Au製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.020とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところNaが検出され、組成はBi1.283Gd1.200Yb0.500Na0.017Fe4.967Sn0.03312であった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 5)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Sn / Fe molar ratio was set to 0.020. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film Na was composition analysis by X-ray fluorescence analysis is detected, composition Bi 1.283 Gd 1.200 Yb 0.500 Na 0.017 Fe 4.967 Sn 0.033 O 12 met It was. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例6)
Au製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.002とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.997Sn0.00312であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.998Na0.002(FeSn)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0.2〜0.25dBであった。
(Example 6)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Sn / Fe molar ratio was set to 0.002. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.997 Sn 0.003 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal film was (BiGdYb) 2.998 Na 0.002 (FeSn) 5.000 O 12 . The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0.2 to 0.25 dB.

(実施例7)
Au製のルツボにGd、Yb、Fe、SnO、B、Bi、NaOHを充填して、電気炉に配置した。このときのSn/Feモル比を0.003とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.994Sn0.00612であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.997Na0.003(FeSn)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0.04〜0.07dBであった。
(Example 7)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , SnO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Sn / Fe molar ratio at this time was 0.003. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.994 Sn 0.006 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be (BiGdYb) 2.997 Na 0.003 (FeSn) 5.000 O 12 . The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0.04 to 0.07 dB.

(実施例8)
Au製のルツボにGd、Yb、Fe、RhO、B、Bi、NaOHを充填して、電気炉に配置した。このときのRh/Feモル比を0.006とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Rh0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005(FeRh)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 8)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , RhO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Rh / Fe molar ratio at this time was set to 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Rh 0.010 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeRh). The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例9)
Au製のルツボにGd、Yb、Fe、RuO、B、Bi、NaOHを充填して、電気炉に配置した。このときのRu/Feモル比を0.006とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Ru0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005(FeRu)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
Example 9
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , RuO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Ru / Fe molar ratio at this time was set to 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Ru 0.010 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeRu). The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例10)
Au製のルツボにGd、Yb、Fe、HfO、B、Bi、NaOHを充填して、電気炉に配置した。このときのHf/Feモル比を0.006とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Hf0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005(FeHf)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 10)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , HfO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. At this time, the Hf / Fe molar ratio was set to 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. When the grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Hf 0.010 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeHf). The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例11)
Au製のルツボにGd、Yb、Fe、ZrO、B、Bi、NaOHを充填して、電気炉に配置した。このときのZr/Feモル比を0.006とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe4.990Zr0.01012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005(FeZr)5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 11)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , ZrO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Zr / Fe molar ratio at this time was set to 0.006. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. The grown single crystal film was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.300 Gd 1.200 Yb 0.500 Fe 4.990 Zr 0.010 O 12, Na could be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be 5.000 O 12 (BiGdYb) 2.995 Na 0.005 (FeZr). The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例12)
Au製のルツボにGd、Yb、Fe、V、B、Bi、NaOHを充填して、電気炉に配置した。このときのV/Feモル比を0.003とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、NaとVは検出できなかった。次にICP分析法で詳しく組成を評価したところ、NaとVの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005Fe4.9950.00512であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 12)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , V 2 O 5 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The V / Fe molar ratio at this time was 0.003. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by fluorescent X-ray analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 , and Na and V could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the contents of Na and V were confirmed. As a result, the chemical formula of the magnetic garnet single crystal film was found to be (BiGdYb) 2.995 Na 0.005 Fe 4.995 V 0.005 O 12. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例13)
Au製のルツボにGd、Yb、Fe、Sb、B、Bi、NaOHを充填して、電気炉に配置した。このときのSb/Feモル比を0.003とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、NaとSbは検出できなかった。次にICP分析法で詳しく組成を評価したところ、NaとSbの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005Fe4.995Sb0.00512であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 13)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Sb 2 O 5 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Sb / Fe molar ratio at this time was set to 0.003. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by fluorescent X-ray analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 and Na and Sb could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the contents of Na and Sb were confirmed. As a result, it was found that the chemical formula of the magnetic garnet single crystal film was (BiGdYb) 2.995 Na 0.005 Fe 4.995 Sb 0.005 O 12 . The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例14)
Au製のルツボにGd、Yb、Fe、Nb、B、Bi、NaOHを充填して、電気炉に配置した。このときのNb/Feモル比を0.003とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、NaとNbは検出できなかった。次にICP分析法で詳しく組成を評価したところ、NaとNbの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005Fe4.995Nb0.00512であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 14)
An Au crucible was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Nb 2 O 5 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Nb / Fe molar ratio at this time was set to 0.003. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by fluorescent X-ray analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 and Na and Nb could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the contents of Na and Nb were confirmed. As a result, the chemical formula of the magnetic garnet single crystal film was found to be (BiGdYb) 2.995 Na 0.005 Fe 4.995 Nb 0.005 O 12. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例15)
Au製のルツボにGd、Yb、Fe、Ta、B、Bi、NaOHを充填して、電気炉に配置した。このときのTa/Feモル比を0.003とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、NaとTaは検出できなかった。次にICP分析法で詳しく組成を評価したところ、NaとTaの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005Fe4.995Ta0.00512であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 15)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ta 2 O 5 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Ta / Fe molar ratio at this time was 0.003. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by X-ray fluorescence analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 and Na and Ta could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the contents of Na and Ta could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be (BiGdYb) 2.995 Na 0.005 Fe 4.995 Ta 0.005 O 12. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例16)
Au製のルツボにGd、Yb、Fe、WO、B、Bi、NaOHを充填して、電気炉に配置した。このときのW/Feモル比を0.002とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、NaとWは検出できなかった。次にICP分析法で詳しく組成を評価したところ、NaとWの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005Fe4.9970.00312であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 16)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , WO 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The W / Fe molar ratio at this time was 0.002. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by X-ray fluorescence analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 and Na and W could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the contents of Na and W were confirmed. As a result, it was found that the chemical formula of the magnetic garnet single crystal film was (BiGdYb) 2.995 Na 0.005 Fe 4.997 W 0.003 O 12 . The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(実施例17)
Au製のルツボにGd、Yb、Fe、MoO、B、Bi、NaOHを充填して、電気炉に配置した。このときのMo/Feモル比を0.002とした。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、NaとMoは検出できなかった。次にICP分析法で詳しく組成を評価したところ、NaとMoの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.995Na0.005Fe4.997Mo0.00312であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は0〜0.01dBであり、極めて低損失であった。
(Example 17)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , MoO 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The Mo / Fe molar ratio at this time was 0.002. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by fluorescent X-ray analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 , and Na and Mo could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the contents of Na and Mo could be determined. As a result, the chemical formula of the magnetic garnet single crystal film was found to be (BiGdYb) 2.995 Na 0.005 Fe 4.997 Mo 0.003 O 12. The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 0 to 0.01 dB, which was extremely low loss.

(比較例)
Au製のルツボにGd、Yb、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ内の材料を溶解して融液を生成し、Au製の攪拌用冶具を使用して融液を攪拌した。CaMgZr置換GGG基板をAu製の固定冶具に取り付けて炉内に投入し、850℃まで炉温を下げてから基板の片面を融液に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜が得られた。育成した単結晶膜を蛍光X線分析により組成分析したところ、組成はBi1.300Gd1.200Yb0.500Fe5.00012であり、Naは検出できなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶膜の化学式は(BiGdYb)2.998Na0.002Fe5.00012であることが分かった。育成した単結晶膜を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜し、ファラデー回転子を作製した。作製したファラデー回転子から20個抜き取り、波長1.55μmの光に対する光損失を評価した。ファラデー回転子の光損失は3.0〜3.5dBであり、極めて高損失であった。
(Comparative example)
A crucible made of Au was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C. to dissolve the material in the crucible to produce a melt, and the melt was stirred using a stirring jig made of Au. The CaMgZr-substituted GGG substrate was attached to a fixed fixture made of Au and placed in a furnace. After the furnace temperature was lowered to 850 ° C., one side of the substrate was brought into contact with the melt and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal film by fluorescent X-ray analysis revealed that the composition was Bi 1.300 Gd 1.200 Yb 0.500 Fe 5.000 O 12 and Na could not be detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal film was (BiGdYb) 2.998 Na 0.002 Fe 5.000 O 12 . The grown single crystal film was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to produce a Faraday rotator. Twenty pieces were extracted from the prepared Faraday rotator and evaluated for light loss with respect to light having a wavelength of 1.55 μm. The optical loss of the Faraday rotator was 3.0 to 3.5 dB, which was extremely high loss.

図1は、上記の実施例及び比較例について、育成した磁性ガーネット単結晶のNa量β、M2量γ、M3量δ、M4量ε、γ+δ+ε及びγ+2δ+3ε、並びに作製したファラデー回転子の光損失(dB)をまとめて示している。図1に示すように、本実施例の磁性ガーネット単結晶は、Naを含有するとともにM2、M3又はM4のいずれかを含有している(γ+δ+ε>0)。一方、比較例の磁性ガーネット単結晶は、Naを含有しているがM2、M3及びM4をいずれも含有していない(γ+δ+ε=0)。M2、M3又はM4のいずれかを含有する本実施例の磁性ガーネット単結晶を用いたファラデー回転子は、比較例の磁性ガーネット単結晶を用いたファラデー回転子よりも低損失であることが分かる。特に、M2量γ、M3量δ及びM4量εがγ+2δ+3ε≧0.007の関係を満たす場合(実施例1乃至5及び8乃至17)には、Pbを含む溶媒から育成した磁性ガーネット単結晶を用いて作製した従来のファラデー回転子(例えば光損失0.05dB以下)と比較しても極めて低損失のファラデー回転子が得られる。   FIG. 1 shows the amount of Na of the grown magnetic garnet single crystal, M2 amount γ, M3 amount δ, M4 amount ε, γ + δ + ε and γ + 2δ + 3ε, and the optical loss of the prepared Faraday rotator for the above examples and comparative examples. dB) is shown together. As shown in FIG. 1, the magnetic garnet single crystal of the present example contains Na and contains any of M2, M3, and M4 (γ + δ + ε> 0). On the other hand, the magnetic garnet single crystal of the comparative example contains Na but does not contain any of M2, M3 and M4 (γ + δ + ε = 0). It can be seen that the Faraday rotator using the magnetic garnet single crystal of this example containing either M2, M3 or M4 has a lower loss than the Faraday rotator using the magnetic garnet single crystal of the comparative example. In particular, when the M2 amount γ, the M3 amount δ, and the M4 amount ε satisfy the relationship of γ + 2δ + 3ε ≧ 0.007 (Examples 1 to 5 and 8 to 17), a magnetic garnet single crystal grown from a solvent containing Pb is used. Even when compared with a conventional Faraday rotator (for example, an optical loss of 0.05 dB or less) manufactured by using the same, a very low loss Faraday rotator can be obtained.

本発明の一実施の形態の実施例1乃至17及び比較例の磁性ガーネット単結晶のNa量β、M2量γ、M3量δ及びM4量ε、並びにファラデー回転子の光損失をまとめて示す表である。Table showing collectively the Na amount β, M2 amount γ, M3 amount δ and M4 amount ε of the magnetic garnet single crystals of one embodiment of the present invention and the comparative example, and the optical loss of the Faraday rotator. It is.

符号の説明Explanation of symbols

β Na量
γ M2量
δ M3量
ε M4量
β Na amount γ M2 amount δ M3 amount ε M4 amount

Claims (3)

化学式BiαNaβM13−α−βFe5−γ−δ−εM2γM3δM4ε12
(M1はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はSn、Ru、Hfから選択される少なくとも1種類以上の元素、M3はV、Sb、Nb、Taから選択される少なくとも1種類以上の元素、M4はW、Moから選択される少なくとも1種類以上の元素であり、0.5≦α≦2.0、0<β≦2.4、0<3−α−β<2.5、0<γ+δ+ε≦0.033
で示されること
を特徴とする磁性ガーネット単結晶。
Chemical Formula Bi α Na β M1 3-α-β Fe 5-γ-δ-ε M2 γ M3 δ M4 ε O 12
(M1 is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and M2 is Sn, Ru, Hf. M3 is at least one element selected from V, Sb, Nb and Ta, M4 is at least one element selected from W and Mo, and 0 0.5 ≦ α ≦ 2.0, 0 <β ≦ 2.4, 0 <3-α−β <2.5, 0 <γ + δ + ε ≦ 0.033 )
A magnetic garnet single crystal characterized by the following:
請求項1記載の磁性ガーネット単結晶であって、
前記γ、δ及びεは、γ+2δ+3ε≧0.007の関係を満たすこと
を特徴とする磁性ガーネット単結晶。
The magnetic garnet single crystal according to claim 1,
The magnetic garnet single crystal, wherein γ, δ, and ε satisfy a relationship of γ + 2δ + 3ε ≧ 0.007.
請求項1又は2に記載の磁性ガーネット単結晶を用いて作製されていることを特徴とする光学素子。   An optical element manufactured using the magnetic garnet single crystal according to claim 1.
JP2006029339A 2006-01-10 2006-02-07 Magnetic garnet single crystal and optical element using the same Expired - Fee Related JP4821344B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006029339A JP4821344B2 (en) 2006-02-07 2006-02-07 Magnetic garnet single crystal and optical element using the same
US11/647,431 US7695562B2 (en) 2006-01-10 2006-12-29 Magnetic garnet single crystal and method for producing the same as well as optical element using the same
EP07000357.9A EP1806755B1 (en) 2006-01-10 2007-01-09 Magnetic garnet single crystal and method for producing the same as well as optical element using the same
CN2007100022443A CN101000410B (en) 2006-01-10 2007-01-10 Magnetic garnet single crystal and method for producing the same as well as optical element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029339A JP4821344B2 (en) 2006-02-07 2006-02-07 Magnetic garnet single crystal and optical element using the same

Publications (2)

Publication Number Publication Date
JP2007210806A JP2007210806A (en) 2007-08-23
JP4821344B2 true JP4821344B2 (en) 2011-11-24

Family

ID=38489575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029339A Expired - Fee Related JP4821344B2 (en) 2006-01-10 2006-02-07 Magnetic garnet single crystal and optical element using the same

Country Status (1)

Country Link
JP (1) JP4821344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844464B2 (en) * 2007-04-27 2011-12-28 Tdk株式会社 Magnetic garnet single crystal and Faraday rotator using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143893A (en) * 1985-12-16 1987-06-27 Matsushita Electric Ind Co Ltd Growth of magneto-optical crystal
JP2003306397A (en) * 2002-04-16 2003-10-28 Sumitomo Special Metals Co Ltd Functional membrane, and process and apparatus for manufacturing the same
JP4225472B2 (en) * 2002-07-05 2009-02-18 Tdk株式会社 Magnetic garnet material, Faraday rotator, optical device, method for producing bismuth-substituted rare earth iron garnet single crystal film, and single crystal film

Also Published As

Publication number Publication date
JP2007210806A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4702090B2 (en) Magnetic garnet single crystal and optical element using the same
JP5858242B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
US8815011B2 (en) Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
JP3959099B2 (en) Method for producing magnetic garnet single crystal
US7695562B2 (en) Magnetic garnet single crystal and method for producing the same as well as optical element using the same
US20130071316A1 (en) Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD OF MANUFACTURING THE SAME, AND OPTICAL DEVICE
US7758766B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP5292544B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
JP4821344B2 (en) Magnetic garnet single crystal and optical element using the same
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP4720730B2 (en) Optical element manufacturing method
JP4844464B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP5292543B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP4432896B2 (en) Method for producing garnet single crystal
JP4432875B2 (en) Method for producing garnet single crystal
JP2005247590A (en) Magnetic garnet single crystal and optical element using the same
JP4432874B2 (en) Method for producing magnetic garnet single crystal
JP5507934B2 (en) Faraday rotator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees