JP2003306397A - Functional membrane, and process and apparatus for manufacturing the same - Google Patents

Functional membrane, and process and apparatus for manufacturing the same

Info

Publication number
JP2003306397A
JP2003306397A JP2002113158A JP2002113158A JP2003306397A JP 2003306397 A JP2003306397 A JP 2003306397A JP 2002113158 A JP2002113158 A JP 2002113158A JP 2002113158 A JP2002113158 A JP 2002113158A JP 2003306397 A JP2003306397 A JP 2003306397A
Authority
JP
Japan
Prior art keywords
temperature
film
solution
porcelain
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002113158A
Other languages
Japanese (ja)
Other versions
JP2003306397A5 (en
Inventor
Yusuke Shioya
裕介 汐谷
Hiromitsu Fujii
博満 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2002113158A priority Critical patent/JP2003306397A/en
Publication of JP2003306397A publication Critical patent/JP2003306397A/en
Publication of JP2003306397A5 publication Critical patent/JP2003306397A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly functional membrane through liquid phase epitaxy (LPE) wherein temperature characteristics of a membrane material comprising a metal or ceramic material are improved and a process and an apparatus for manufacturing the functional membrane wherein the membrane material showing excellent temperature characteristics can be easily and stably manufactured. <P>SOLUTION: The functional membrane having a component composition that varies in the thickness direction is obtained by sequentially changing a film-forming temperature, either by directly and serially changing the temperature of a solution contacting a substrate or by sequentially moving the substrate vertically in a solution having a temperature gradient wherein the temperature is lower at deeper parts in a furnace, to change the component composition of the growing membrane in its thickness direction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、液相エピタキシ
ャル成長による金属材料又は磁器材料からなる膜の改良
に係り、膜の厚み方向に成分組成を変化させて成分組成
変化膜とし、例えば膜が有する所要特性の温度適用範囲
を著しく拡大できる機能性膜とその製造方法並びにその
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a film made of a metal material or a porcelain material by liquid phase epitaxial growth, and a composition change film is obtained by changing the composition in the thickness direction of the film. The present invention relates to a functional film capable of remarkably expanding a temperature application range of characteristics, a manufacturing method thereof, and an apparatus thereof.

【0002】[0002]

【従来の技術】マイクロ波・ミリ波・光通信、電子発
光、レーザー発振、光電変換、熱電変換、誘電体、超伝
導等におけるデバイスに用いられる材料には、スピネル
系磁心類、硫化物半導体、リン化物半導体、セレン化物
半導体、テルル化物半導体、金属間化合物半導体、ガー
ネット系フェライト、ペロブスカイト系誘電体フィルタ
・コンデンサ類、同LT・LN類、マグネプランバイト
系フェライト、スピネル系フェライト、閃亜鉛鉱系フェ
ライト、ウルツ鉱系フェライトなどが挙げられる。
2. Description of the Related Art Materials used for devices in microwave / millimeter wave / optical communication, electroluminescence, laser oscillation, photoelectric conversion, thermoelectric conversion, dielectrics, superconductivity, etc. include spinel magnetic cores, sulfide semiconductors, Phosphide semiconductors, selenide semiconductors, telluride semiconductors, intermetallic compound semiconductors, garnet-based ferrites, perovskite-based dielectric filters and capacitors, LT / LNs, magneplanbite-based ferrites, spinel-based ferrites, sphalerite Examples include ferrite and wurtzite ferrite.

【0003】上記の金属系材料又は磁器系材料は、膜状
で用いられることが多く、無機塩および酸化物などを溶
融した溶媒に、膜材料を溶質として溶かし込みした溶液
中に、基板を浸漬して該基板表面上に前記溶質を育成し
て膜化し、金属系又は磁器系機能性膜を成膜する液相エ
ピタキシャル法(以下LPE法という)によって製造で
きる。
The above-mentioned metal-based materials or porcelain-based materials are often used in the form of a film, and the substrate is immersed in a solution prepared by dissolving the film material as a solute in a solvent in which inorganic salts and oxides are melted. Then, the solute is grown on the surface of the substrate to form a film, and a metal-based or porcelain-based functional film is formed by a liquid phase epitaxial method (hereinafter referred to as LPE method).

【0004】通常LPE法は、筒状炉心内にるつぼを配
置した縦型炉芯管構造を有するLPE装置が多用され、
溶質の溶解温度、すなわち前記るつぼ内の溶液の温度を
均一にかつ一定にした状態で行われ、成膜成分並びにそ
の特性が供に均一な金属系又は磁器系の機能性膜が作製
されている。(特開平5−229893等参照)
In the LPE method, an LPE apparatus having a vertical furnace core tube structure in which a crucible is arranged in a cylindrical core is often used.
The solute melting temperature, that is, the temperature of the solution in the crucible is made uniform and constant, and a metal-based or porcelain-based functional film having uniform film-forming components and its properties is produced. . (See JP-A-5-229893, etc.)

【0005】[0005]

【発明が解決しようとする課題】所要の特性を得るため
の目的組成の溶質を有する溶液を用いて前記LPE法に
て成膜された材料であっても、例えば温度状態が変われ
ば、一般に前記特性も変わって所要特性を確保できなく
なる。すなわち、前記デバイスとしての特性は、使用環
境の温度により大きく変化してしまうことになる。
Even if the material is formed by the LPE method using a solution containing a solute having a desired composition for obtaining the required characteristics, if the temperature condition changes, for example, the above-mentioned material is generally used. The characteristics also change and it becomes impossible to secure the required characteristics. That is, the characteristics of the device will change greatly depending on the temperature of the environment in which it is used.

【0006】かかる膜材料の所要特性の温度安定化すな
わち温度特性の改良には、成分組成の検討では限界があ
り、一般には結晶粒径の制御、配向方向の制御、HIP
等による緻密化、第三材料との複合コンポジット化など
様々な検討がされているが、これを解消するには至って
いない。
There is a limit to the temperature stabilization of the required characteristics of the film material, that is, the improvement of the temperature characteristics in the study of the component composition. Generally, the control of the crystal grain size, the control of the orientation direction, and the HIP are performed.
There have been various studies such as densification due to factors such as densification, and formation of a composite composite with a third material, but this has not been resolved.

【0007】前記の成分組成の検討に関して、複数の異
なる組成膜より構成される多層膜を作製して膜材料の温
度特性を改良しようとする試みもある。しかし、複数の
膜を積層接合するには、接合境界の取り扱いなど工程上
の問題、接合する膜数の限界などの問題がある上、複数
の組成からなる溶液を準備する必要があるため、通常の
LPE法に比較して、手間や時間並びにコストを要す
る。さらには積層する各構成膜間の格子ミスマッチが目
的特性の劣化を招来したり、膜の剥離などの原因となる
問題もある。
Regarding the above-mentioned investigation of the component composition, there is an attempt to improve the temperature characteristics of the film material by producing a multilayer film composed of a plurality of films having different compositions. However, in order to laminate and bond a plurality of films, there are problems in the process such as handling of bonding boundaries, problems such as the limit of the number of films to be bonded, and it is necessary to prepare a solution having a plurality of compositions. It requires more labor, time and cost than the LPE method. Further, there is a problem that the lattice mismatch between the constituent films to be laminated causes the deterioration of the target characteristics and causes the peeling of the films.

【0008】この発明は、液相エピタキシャル成長によ
る金属材料や磁器材料からなる膜材料の温度特性を向上
させた高機能性膜の提供を目的とし、また、かかる温度
特性にすぐれた膜材料を容易にかつ安定的に製造できる
機能性膜の製造方法とその装置の提供を目的としてい
る。
An object of the present invention is to provide a highly functional film having improved temperature characteristics of a film material composed of a metal material or a porcelain material by liquid phase epitaxial growth, and to easily provide a film material excellent in such temperature characteristics. Moreover, it is an object of the present invention to provide a method for manufacturing a functional film and a device therefor capable of being stably manufactured.

【0009】[0009]

【課題を解決するための手段】発明者らは、温度特性を
向上させた高機能性膜を目的にその構成について種々検
討した結果、ある組成において得られる特性は複数の組
成を重畳することにより該特性も重畳できること、すな
わち、当該膜が有する所要特性の温度特性は、複数の組
成が重畳(変調)されることにより、複数の特性が重畳
されることになり、温度に対し安定化すること、換言す
ると成分組成の変調膜を得ることにより所要特性の温度
特性が向上することを知見した。
Means for Solving the Problems As a result of various studies on the constitution of the high-performance film having improved temperature characteristics, the inventors have found that the characteristics obtained in a certain composition are obtained by superimposing a plurality of compositions. The characteristics can also be superposed, that is, the temperature characteristics of the required characteristics of the film are stabilized by the superposition of a plurality of characteristics by superimposing (modulating) a plurality of compositions. In other words, it has been found that the temperature characteristic of the required characteristic is improved by obtaining the modulation film having the component composition.

【0010】そこで、発明者らは、膜の厚み方向に成分
組成を変化させた成分組成変化膜を得るための製造方法
について種々検討した結果、LPE法において、溶液中
の基板上に成膜しようとする溶液温度、すなわち成膜温
度を順次変化させることにより、育成する膜の厚み方向
に成分組成を変化させることが可能であることを知見し
た。
Therefore, as a result of various studies on the manufacturing method for obtaining the component composition changing film in which the component composition is changed in the thickness direction of the film, the inventors tried to form a film on the substrate in the solution by the LPE method. It was found that the component composition can be changed in the thickness direction of the film to be grown by sequentially changing the solution temperature, that is, the film forming temperature.

【0011】さらに発明者らは、前記成膜温度を変化さ
せる方法について鋭意検討した結果、溶液の温度を変化
させるか、溶液の深さ方向に溶液温度が降温又は昇温す
るように温度勾配を設けて基板をこの溶液内に順次昇降
させることで、成分組成の変調膜が得られることを知見
し、この発明を完成した。
Further, as a result of extensive studies on the method of changing the film forming temperature, the inventors changed the temperature of the solution or set a temperature gradient so that the temperature of the solution may be lowered or raised in the depth direction of the solution. The inventors have found that a modulation film having a component composition can be obtained by providing the substrate and sequentially moving the substrate up and down in this solution, and completed the present invention.

【0012】すなわちこの発明は、液相エピタキシャル
成長による金属材料又は磁器材料からなる膜であり、膜
の厚み方向に成分組成の変調を有することを特徴とする
機能性膜である。
That is, the present invention is a film made of a metal material or a porcelain material by liquid phase epitaxial growth, and is a functional film characterized by having a component composition modulation in the thickness direction of the film.

【0013】この発明は、基板表面に溶液中の溶質を液
相エピタキシャル成長させて成膜する方法であり、基板
表面に溶質が育成される際の成膜温度を変化させて、育
成した膜の厚み方向に成分組成の変調を持たせることを
特徴とする機能性膜の成膜方法である。
The present invention is a method for forming a solute in a solution by liquid phase epitaxial growth on a substrate surface to form a film. The thickness of the grown film is changed by changing the film forming temperature when the solute is grown on the substrate surface. A method for forming a functional film is characterized in that the component composition is modulated in the direction.

【0014】この発明は、前記の機能性膜の成膜方法に
おいて、成膜温度を変化させる方法が、 1)溶液温度を変化させる方法、 2)予め溶液中の溶融温度に温度勾配を設定しておき、
溶液中の基板を移動させる方法、 3)予め溶液溜まりの深さ方向に溶液温度が降温又は昇
温するよう制御保持し、基板を溶液内に順次昇降させる
方法、を併せて提案する。
According to the present invention, in the method of forming a functional film, the method of changing the film forming temperature is as follows: 1) changing the solution temperature, 2) setting a temperature gradient to the melting temperature in the solution in advance. Aside
A method of moving the substrate in the solution, 3) a method of controlling and holding the solution temperature in advance in the depth direction of the solution pool so that the temperature of the solution is lowered or raised, and sequentially raising and lowering the substrate in the solution are also proposed.

【0015】又、この発明は、上記の機能性膜又は成膜
方法において、 4)溶液温度の変化範囲が100℃以上である構成、 5)溶質が金属材料であり、硫化物半導体、リン化物半
導体、セレン化物半導体、テルル化物半導体、金属間化
合物半導体のいずれかである構成、 6)溶質が磁器材料であり、マグネプランバイト系磁
器、スピネル系磁器、ガーネット系磁器、ペロブスカイ
ト系磁器、閃亜鉛鉱系磁器、ウルツ鉱系磁器のいずれか
である構成、 7)ガーネット系磁器は、一般式 R13-xR2xFe
5-yy12 (但し、R1及びR2はY,Bi,Ca,
Pb,Sr,Ba,Cd,Cu,Mg,Mn,Cr,N
aおよびランタン系遷移元素のうち少なくとも一種、M
はAl,Ga,In,Mn,Cr,Sc,Cu,Zn,
Mg,Ni,Co,Li,Ge,Si,V,P,As,
V,Sb,Tiのうち少なくとも一種)で表され、0≦
x≦3、0≦y≦5を満足するものである構成、を併せ
て提案する。
The present invention also provides the functional film or film forming method as described above, wherein 4) the temperature range of the solution temperature change is 100 ° C. or higher, 5) the solute is a metal material, and a sulfide semiconductor or phosphide is used. Semiconductor, selenide semiconductor, telluride semiconductor, intermetallic compound semiconductor, 6) Solute is porcelain material, Magneplumbite porcelain, spinel porcelain, garnet porcelain, perovskite porcelain, zinc zinc blend A structure that is either a mineral-based porcelain or a wurtzite-based porcelain, 7) Garnet-based porcelain has the general formula R1 3-x R2 x Fe
5-y M y O 12 (where R1 and R2 Y, Bi, Ca,
Pb, Sr, Ba, Cd, Cu, Mg, Mn, Cr, N
a and at least one of lanthanum-based transition elements, M
Is Al, Ga, In, Mn, Cr, Sc, Cu, Zn,
Mg, Ni, Co, Li, Ge, Si, V, P, As,
At least one of V, Sb, and Ti), and 0 ≦
A configuration satisfying x ≦ 3 and 0 ≦ y ≦ 5 is also proposed.

【0016】さらにこの発明は、炉内にるつぼを配置し
た縦型炉芯管構造を有する液相エピタキシャル成長装置
であり、成膜温度を変化させる手段として、前記炉外周
部に設けた複数の加熱用ヒーター、前記るつぼの溶液表
面にガスを吹きつけるガスノズル、前記るつぼ底部を冷
却する冷却器をそれぞれ備えたことを特徴とする製造装
置である。
Further, the present invention is a liquid phase epitaxial growth apparatus having a vertical furnace core tube structure in which a crucible is arranged in the furnace, and a plurality of heating devices provided in the outer peripheral portion of the furnace as means for changing the film forming temperature. The manufacturing apparatus is provided with a heater, a gas nozzle that blows gas onto the solution surface of the crucible, and a cooler that cools the bottom of the crucible.

【0017】[0017]

【発明の実施の形態】液相エピタキシャル法(LPE
法)は、無機塩および酸化物を溶融した溶媒に、金属材
料系又は磁器系材料の膜材料を溶質として溶かし込みし
た溶液中に、基板を浸漬して基板上面上に機能性膜を育
成、成膜する方法であり、育成した成膜中に存在するあ
る構成元素Aの組成量と溶液中のAの組成量は以下の分
配係数で現される関係にある。 分配係数=膜中A組成量 / 溶液中A組成量
BEST MODE FOR CARRYING OUT THE INVENTION Liquid phase epitaxial method (LPE
Method) is a solution in which a film material of a metal material or a porcelain material is dissolved as a solute in a solvent in which an inorganic salt and an oxide are melted, and the substrate is immersed to grow a functional film on the upper surface of the substrate. This is a method for forming a film, and the composition amount of a certain constituent element A present in the grown film and the composition amount of A in the solution have a relationship expressed by the following distribution coefficient. Partition coefficient = A composition in film / A composition in solution

【0018】この分配係数は成膜条件により変化する。
さらに、他の複数の構成元素からなる成分系において
は、各々の元素についての分配係数はそれぞれ異なり、
成膜条件による変化もまた各様である。すなわち、LP
E法により成膜した膜中に存在する生成相の組成は、成
膜条件、特に成膜温度により変化する。
This distribution coefficient changes depending on the film forming conditions.
Furthermore, in the component system consisting of other plural constituent elements, the distribution coefficient for each element is different,
There are also various changes depending on the film forming conditions. That is, LP
The composition of the production phase existing in the film formed by the E method changes depending on the film forming conditions, particularly the film forming temperature.

【0019】この発明は、かかるLPE法で、溶融るつ
ぼ内の同一組成の溶媒と溶質からなる溶液において、異
なる成膜温度で育成した金属系材料又は磁器系材料の膜
が有する組成はそれぞれ異なり、得られた膜の特性、例
えば格子定数、磁気特性、飽和磁化、ΔHなど所要特性
及びこれらの温度特性も異なるという現象を知見し、こ
れを有効活用するものである。
According to the present invention, in the LPE method, in a solution consisting of a solvent and a solute of the same composition in a melting crucible, the composition of a metal-based material or a porcelain-based material film grown at different film forming temperatures is different, The inventors have found that the characteristics of the obtained film, for example, the lattice constant, magnetic characteristics, saturation magnetization, required characteristics such as ΔH, and these temperature characteristics are different, and utilize them effectively.

【0020】この発明によるLPE法は、基板表面に溶
液中の溶質が育成されて成膜化する際の当該成膜温度を
変化させて、育成した膜の厚み方向に成分組成の変調を
持たせる方法である。具体的には、図1Aに示すように
基板に接触する溶液の温度を変化させる方法、あるいは
図1Bに示すように予めるつぼ内の溶液温度を適宜変化
させておき、すなわち深い位置の溶液温度を850℃、
表面に近い方の溶液温度を950℃にしておき、基板を
溶液内で移動させる方法である。
In the LPE method according to the present invention, the solute in the solution is grown on the surface of the substrate to change the film forming temperature at the time of forming a film so that the composition of the grown film is modulated in the thickness direction. Is the way. Specifically, as shown in FIG. 1A, a method of changing the temperature of the solution in contact with the substrate, or as shown in FIG. 1B, the solution temperature in the crucible is appropriately changed beforehand, that is, the solution temperature at a deep position is changed. 850 ° C,
In this method, the temperature of the solution closer to the surface is kept at 950 ° C. and the substrate is moved within the solution.

【0021】以下に詳述すると、成膜温度、すなわち基
板表面に溶質を育成する際の時の溶液温度により、育成
する膜の組成は変化する。例えば、構成元素A,B,C
からなる成分系の場合、A,B,C各々の組成の分配係
数は異なり、また成膜温度による分配係数の変化もまた
様々であり、図2に示したごとく、溶液温度950℃で
は生成する膜の組成がA222、900℃ではA1.5
1.53、850℃ではA114というように変化す
る。従って、るつぼ内の溶液温度を950℃から850
℃へ調節しながら成膜を行えば、これらの組成が重畳も
しくはA222からA114へ連続的に変調した膜が
形成される。
Explaining in detail below, the composition of the film to be grown changes depending on the film forming temperature, that is, the solution temperature at the time of growing the solute on the substrate surface. For example, the constituent elements A, B, C
In the case of the component system consisting of, the distribution coefficient of the composition of each of A, B, and C is different, and the change of the distribution coefficient depending on the film forming temperature is also various. As shown in FIG. Film composition is A 2 B 2 C 2 and A 1.5 B at 900 ℃
At 1.5 C 3 and 850 ° C., it changes to A 1 B 1 C 4 . Therefore, the temperature of the solution in the crucible is changed from 950 ° C to 850 ° C.
When film formation is performed while adjusting the temperature to 0 ° C., a film in which these compositions are superposed or continuously modulated from A 2 B 2 C 2 to A 1 B 1 C 4 is formed.

【0022】次に図3に示す方法は、るつぼ内の溶液の
深さ方向に温度勾配を有する溶液中では、基板の浸漬位
置ごとに溶液温度が異なるため、成膜位置により生成す
る膜の相及び組成が変化することを効果的に利用するも
のである。
Next, according to the method shown in FIG. 3, in a solution having a temperature gradient in the depth direction of the solution in the crucible, the solution temperature varies depending on the dipping position of the substrate, so that the phase of the film formed depends on the film forming position. And that changes in composition are effectively utilized.

【0023】詳述すると、るつぼ内の溶液温度は表面側
の980℃から底側730℃と250℃の温度差、すな
わち温度が深さ方向で低下する温度勾配を設けてあり、
溶液中に浸漬した基板の位置が850℃では生成する膜
の組成がA114、900℃ではA1.51.53、95
0℃ではA222と変化する。従って、基板を850
℃から950℃と溶液温度の異なる位置へ移動させるこ
とにより、組成が重畳もしくはA114からA222
へ連続的に変調した膜が形成される。
More specifically, the temperature of the solution in the crucible has a temperature difference from 980 ° C. on the surface side to 730 ° C. on the bottom side and 250 ° C., that is, a temperature gradient in which the temperature decreases in the depth direction,
When the position of the substrate immersed in the solution is 850 ° C., the composition of the film formed is A 1 B 1 C 4 , and at 900 ° C., A 1.5 B 1.5 C 3 , 95
It changes to A 2 B 2 C 2 at 0 ° C. Therefore, the substrate is 850
By moving to a position where the solution temperature is different from ℃ to 950 ℃, the composition is superimposed or A 1 B 1 C 4 to A 2 B 2 C 2
A continuously modulated film is formed.

【0024】また、上述した溶液温度を変化させる方法
と溶液温度に深さ方向の温度勾配を設けて基板を移動さ
せる方法を組み合せることにより、同じ成膜時間で成膜
温度の変化範囲をより広くすることもできる。すなわ
ち、全体的な溶液温度変化に加え、図4に矢印で示すよ
うに成膜位置を調節することにより、さらに成膜時の温
度変化を大きくすることができる。詳述すると、破線の
矢印は基板の位置を変化させない場合で成膜温度変化は
900℃から800℃であり、実線の矢印は基板の位置
を変化させた場合であり、成膜温度変化は950℃から
800℃でより変化が大きいことになる。
Further, by combining the method of changing the solution temperature and the method of moving the substrate by providing a temperature gradient in the depth direction to the solution temperature, the change range of the film forming temperature can be further increased in the same film forming time. It can be made wider. That is, in addition to the change in the overall solution temperature, the temperature change during film formation can be further increased by adjusting the film formation position as shown by the arrow in FIG. More specifically, the broken line arrow indicates the case where the position of the substrate is not changed, and the film formation temperature change is 900 ° C. to 800 ° C. The solid line arrow indicates the case where the position of the substrate is changed, and the film formation temperature change is 950 ° C. The change is larger from ℃ to 800 ℃.

【0025】以上のいずれの方法によっても、基板上に
育成される膜は、厚み方向に成分組成を変調された機能
性膜であって、その厚み方向に組成が重畳されており、
よって特性が重畳されて所要特性の温度安定化向上が実
現できる。すなわち、この発明による機能成膜は、その
磁気特性、飽和磁化、ΔH等所要特性及びこれらの温度
特性を改善することができる。
By any of the above methods, the film grown on the substrate is a functional film whose component composition is modulated in the thickness direction, and the composition is superimposed in the thickness direction,
Therefore, the characteristics are superimposed, and the temperature stabilization improvement of the required characteristics can be realized. That is, the functional film formation according to the present invention can improve the magnetic properties, the saturation magnetization, the required properties such as ΔH, and the temperature properties thereof.

【0026】この発明において、基板を一定位置に保持
して溶液温度を変化させる方法と溶液温度に深さ方向の
温度勾配を設けて基板を移動させる方法を説明したが、
さらに溶液中に溶液液面からの深さ方向に温度勾配を持
たせるとともに、溶液内水平方向に同心円状に温度勾配
を設けて基板を移動させることにより、膜の面内方向と
厚み方向の両方に成分組成が変調した膜を設けることが
でき、また、溶液内水平方向に同心円状に温度勾配を設
けて、基板を水平移動することによっても成分組成が変
調した膜を得ることが可能である。
In the present invention, the method of holding the substrate at a fixed position to change the solution temperature and the method of moving the substrate by providing a temperature gradient in the depth direction to the solution temperature have been described.
Furthermore, by providing a temperature gradient in the solution in the depth direction from the solution surface and by concentrically providing a temperature gradient in the horizontal direction in the solution to move the substrate, both the in-plane direction and the thickness direction of the film can be obtained. It is possible to provide a film whose component composition is modulated, and also to obtain a film whose component composition is modulated by horizontally moving the substrate by providing a temperature gradient in a concentric circle in the horizontal direction in the solution. .

【0027】上述したこの発明によるLPE法に用いる
製造装置としては、公知のいずれの構成の成膜装置をも
用いることが可能である。縦型炉芯管構造の装置を用い
た例を図5に基づいて説明する。アルミナ製の縦型筒状
の炉芯管1の外周部に3機のヒータ2a,2b,2cを
設け、これらと炉芯管1の周囲を包囲するように炉体3
を設けてある。
As the manufacturing apparatus used for the above-described LPE method according to the present invention, any known film forming apparatus can be used. An example using the apparatus of the vertical furnace core tube structure will be described based on FIG. Three heaters 2a, 2b, 2c are provided on the outer peripheral portion of the vertical cylindrical furnace core tube 1 made of alumina, and the furnace body 3 is surrounded by the heaters 2a, 2b, 2c.
Is provided.

【0028】炉体3の上部には、シャッター4を配置
し、金属材料又は磁器材料からなる膜の溶質及び溶媒か
らなる溶液5を収容するるつぼ6は、その底面を冷却す
るための冷却器を有した支持台7にて支持されている。
A shutter 4 is arranged above the furnace body 3, and a crucible 6 for containing a solution 5 composed of a solute of a film made of a metal material or a porcelain material and a solvent is provided with a cooler for cooling the bottom surface thereof. It is supported by the supporting table 7 that it has.

【0029】成膜下地となる基板8は、基板保持具9に
て水平保持されて支持棒10にて昇降可能に保持されて
いる。また支持棒10は基板保持具9を回転させること
ができる。さらにるつぼ6の上方には、前記溶液5の液
面に、空気、O2、N2、Ar、Heを噴きつけて温度調
整を行うためのガスノズル11を配置してある。
The substrate 8 serving as a film-forming base is horizontally held by a substrate holder 9 and vertically held by a support rod 10. Further, the support rod 10 can rotate the substrate holder 9. Furthermore, above the crucible 6, a gas nozzle 11 for adjusting the temperature by spraying air, O 2 , N 2 , Ar, and He onto the liquid surface of the solution 5 is arranged.

【0030】かかる構成からなる縦型炉芯管構造の成膜
装置は、前記のヒータ2a,2b,2c、支持台7の冷
却器、ガスノズル11をそれぞれ連携させて所要パター
ンの制御運転を行うことで、実施例に示すごとく、溶液
5の深さ方向でわずか20〜30mm程度で100℃以
上の温度差の温度勾配を形成することができる。又、溶
液の同心円状に温度勾配を形成することも可能である。
In the film forming apparatus having the vertical furnace core tube structure having the above-mentioned structure, the heaters 2a, 2b and 2c, the cooler of the support base 7, and the gas nozzle 11 are made to cooperate with each other to perform a control operation of a required pattern. Then, as shown in the example, a temperature gradient of a temperature difference of 100 ° C. or more can be formed in the depth direction of the solution 5 with only about 20 to 30 mm. It is also possible to form a temperature gradient in concentric circles of the solution.

【0031】この発明において、機能性膜としての温度
特性を向上させるためには、前記の成膜温度の変化範囲
をできるだけ広くして、成分組成の変調範囲を拡大する
ことが望ましく、成膜温度の変化範囲は100℃以上が
好ましく、200℃あるいはそれ以上とすることも可能
である。
In the present invention, in order to improve the temperature characteristics of the functional film, it is desirable that the change range of the film formation temperature be as wide as possible to expand the modulation range of the component composition. The change range of is preferably 100 ° C. or higher, and may be 200 ° C. or higher.

【0032】この発明において、機能性膜は金属材料又
は磁器材料から構成される。金属材料としては、硫化物
半導体、リン化物半導体、セレン化物半導体、テルル化
物半導体、金属間化合物半導体が好ましい。
In the present invention, the functional film is made of a metal material or a porcelain material. The metal material is preferably a sulfide semiconductor, a phosphide semiconductor, a selenide semiconductor, a telluride semiconductor, or an intermetallic compound semiconductor.

【0033】また、磁器材料としては、マグネプランバ
イト系磁器、スピネル系磁器、ガーネット系磁器、ペロ
ブスカイト系磁器、閃亜鉛鉱系磁器、ウルツ鉱系磁器が
好ましい。
As the porcelain material, a magne plumbite porcelain, a spinel porcelain, a garnet porcelain, a perovskite porcelain, a zinc blende porcelain and a wurtzite porcelain are preferable.

【0034】この発明において、ガーネット系磁器材料
は、 一般式 R13-xR2xFe5-yy12 (但し、R1及びR2はY,Bi,Ca,Pb,Sr,
Ba,Cd,Cu,Mg,Mn,Cr,Naおよびラン
タン系遷移元素のうち少なくとも一種、MはAl,G
a,In,Mn,Cr,Sc,Cu,Zn,Mg,N
i,Co,Li,Ge,Si,V,P,As,V,S
b,Tiのうち少なくとも一種)で表され、0≦x≦
3、0≦y≦5を満足するものである構成が好ましい。
In the present invention, the garnet-based porcelain material is represented by the general formula R1 3-x R2 x Fe 5- y My O 12 (wherein R1 and R2 are Y, Bi, Ca, Pb, Sr,
At least one of Ba, Cd, Cu, Mg, Mn, Cr, Na and lanthanum-based transition elements, M is Al, G
a, In, Mn, Cr, Sc, Cu, Zn, Mg, N
i, Co, Li, Ge, Si, V, P, As, V, S
at least one of b and Ti), and 0 ≦ x ≦
A configuration satisfying 3, 0 ≦ y ≦ 5 is preferable.

【0035】[0035]

【実施例】実施例1 従来の縦型炉芯管構造の成膜装置を用いたLPE法によ
り、直径50mmのGGG基板(111)面上に、Y
1.5 Gd1.5 Fe4.75 Al0.2512 (以下YGI
AGと記す)膜を成膜した。溶液温度950℃(以下試
料1)、溶液温度850℃(以下試料2)、そしてエピ
タキシャル成長中に図6に示すごとく溶液温度を変化さ
せて成膜した試料(以下試料3)の3試料を成膜した。
得られた各YGIAG膜の膜中のAl元素量分布を測定
した結果を図7に示す。
Example 1 A YPE was performed on a GGG substrate (111) surface having a diameter of 50 mm by an LPE method using a conventional film forming apparatus having a vertical furnace core tube structure.
1.5 Gd 1.5 Fe 4.75 Al 0.25 O 12 (hereinafter YGI
A film (referred to as AG) was formed. Three samples, a solution temperature of 950 ° C. (hereinafter referred to as sample 1), a solution temperature of 850 ° C. (hereinafter referred to as sample 2), and a sample (hereinafter referred to as sample 3) formed by changing the solution temperature during epitaxial growth, as shown in FIG. did.
FIG. 7 shows the result of measuring the Al element amount distribution in the obtained YGIAG film.

【0036】図7に明らかなように、試料1、試料2の
Al量は膜厚方向に対し変化がないが、試料3ではAl
量が3.8mol%、1.0mol%の個所があり、そ
の間ではAl量が直線的に変化している。これより成膜
中の溶液温度を変化させることにより、膜厚み方向に成
分組成の変調が得られたことを確認できた。
As is apparent from FIG. 7, the Al amounts of Sample 1 and Sample 2 do not change in the film thickness direction, but Al of Sample 3 is
There are portions where the amount is 3.8 mol% and 1.0 mol%, and the Al amount changes linearly between them. From this, it was confirmed that by changing the solution temperature during film formation, modulation of the component composition was obtained in the film thickness direction.

【0037】次に、各YGIAG膜について、印加磁場
が5kGconstにおける飽和磁化温度特性を測定し
た結果を図8に示す。図8に明らかなように、試料2は
飽和磁化の最大値が950G、補償温度が−200℃、
試料1は飽和磁化の最大値が250G、補償温度が−2
0℃であり、いずれの試料も室温付近で温度変化に対す
る飽和磁化の変化が大きい。しかし試料3は飽和磁化の
温度変化は試料1、試料2を足し合わせた様態を示して
おり、室温付近で温度変化に対する飽和磁化の変化は小
さい。
Next, FIG. 8 shows the results of measuring the saturation magnetization temperature characteristics of each YGIAG film when the applied magnetic field was 5 kGconst. As is clear from FIG. 8, Sample 2 has a maximum saturation magnetization of 950 G and a compensation temperature of −200 ° C.
Sample 1 has a maximum saturation magnetization of 250 G and a compensation temperature of -2.
The temperature is 0 ° C., and the change of the saturation magnetization with respect to the temperature change is large near room temperature in all the samples. However, Sample 3 shows a state in which the change in saturation magnetization with temperature is the sum of Sample 1 and Sample 2, and the change in saturation magnetization with respect to temperature change is small near room temperature.

【0038】また、各YGIAG膜の飽和磁化温度係数
α(/℃)は、試料1が10000×10-6、試料2が
3000×10-6といずれも−10〜50℃のαが10
00×10-6以上であるが、試料3は180×10-6
極めて小さい値を示している。すなわち、この発明の成
膜方法で飽和磁化温度係数の小さいガーネット膜を得る
ことができた。
The saturation magnetization temperature coefficient α (/ ° C.) of each YGIAG film is 10,000 × 10 −6 for sample 1 and 3000 × 10 −6 for sample 2, and α of −10 to 50 ° C. is 10 in both cases.
Although it is not less than 00 × 10 −6 , Sample 3 shows a very small value of 180 × 10 −6 . That is, a garnet film having a small saturation magnetization temperature coefficient could be obtained by the film forming method of the present invention.

【0039】なお、温度範囲Tl〜Th(℃)(Tl
h)のαは、以下の式で与えられる。但し、Δ(4
πMs):Tl〜Th での飽和磁化の変化量、(4πM
s)Ce nter:(Th+Tl)/2での飽和磁化を示す。 α=Δ(4πMs)/((4πMs)Center×(Th
l))
The temperature range T l to T h (° C.) (T l <
Α of T h ) is given by the following equation. However, Δ (4
πMs): Amount of change in saturation magnetization from T 1 to T h , (4πM
s) Ce nter: (indicating the saturation magnetization at T h + T l) / 2 . α = Δ (4πMs) / ((4πMs) Center × (T h
T l ))

【0040】実施例2 LPE法により、直径50mmのGGG基板(111)
面上に、Y1Gd1Bi 1 Fe512(以下YGBIGと
記す)膜を成膜した。溶液温度950℃(以下試料
4)、溶液温度850℃(以下試料5)、そしてエピタ
キシャル成長中に実施例1と同様に図6のごとく溶液温
度を変化させて成膜した試料(以下試料6)の3試料を
成膜した。
Example 2 GGG substrate (111) with a diameter of 50 mm by LPE method
On the surface, Y1Gd1Bi 1  FeFiveO12(Hereafter YGBIG
A film is formed. Solution temperature 950 ° C (hereinafter sample
4), solution temperature 850 ° C (hereinafter sample 5), and epitaxy
During the axial growth, the solution temperature as shown in FIG.
The three samples (hereinafter referred to as sample 6) formed by changing the film thickness
A film was formed.

【0041】得られた各YGBIG膜の膜中の構成元素
量分布を測定した結果を図9に示す。図に示すごとく試
料4、試料5のBi量は膜厚方向に対し変化がないが、
試料6ではBi量が12mol%、4.2mol%の個
所があり、その間ではBi量が直線的に変化している。
これより成膜中の溶液温度を変化させることで、膜厚み
方向に成分組成の変調が得られたことを確認できた。
FIG. 9 shows the result of measuring the distribution of the amount of constituent elements in each YGBIG film obtained. As shown in the figure, the Bi amounts of Samples 4 and 5 did not change in the film thickness direction,
In sample 6, the Bi amount is 12 mol% and 4.2 mol%, and the Bi amount changes linearly between them.
From this, it was confirmed that the component composition was modulated in the film thickness direction by changing the solution temperature during film formation.

【0042】次に、各YGBIG膜について、印加磁場
が5kGconstにおける飽和磁化温度特性を測定し
た結果を図10に示す。図に明らかなように、試料5は
飽和磁化の最大値が800G、補償温度が−150℃以
下、試料4は飽和磁化の最大値が700G、補償温度が
−80℃であり、いずれの試料も室温付近で温度変化に
対する飽和磁化の変化が大きい。しかし試料6の飽和磁
化の温度変化は試料5、試料6を足し合わせた様態を示
しており、室温付近で温度変化に対する飽和磁化の変化
は小さい。
Next, FIG. 10 shows the results of measuring the saturation magnetization temperature characteristics of each YGBIG film when the applied magnetic field was 5 kGconst. As is clear from the figure, sample 5 has a maximum saturation magnetization of 800 G and a compensation temperature of −150 ° C. or lower, and sample 4 has a maximum saturation magnetization of 700 G and a compensation temperature of −80 ° C. The change in saturation magnetization with respect to temperature change is large near room temperature. However, the temperature change of the saturation magnetization of the sample 6 shows a mode in which the sample 5 and the sample 6 are added, and the change of the saturation magnetization with respect to the temperature change is small near room temperature.

【0043】また、各YGBIG膜の飽和磁化温度係数
α(/℃)は、試料4が3200×10-6、試料5が1
600×10-6といずれも−10〜50℃のαが100
0×10-6以上であるが、試料6は330×10-6と極
めて小さい値を示している。すなわち、この発明の成膜
方法で飽和磁化温度係数の小さいガーネット膜を得るこ
とができた。
The saturation magnetization temperature coefficient α (/ ° C.) of each YGBIG film was 3200 × 10 −6 for sample 4 and 1 for sample 5.
600 × 10 -6 and α of 100 at -10 to 50 ° C are 100
Although it is 0 × 10 −6 or more, Sample 6 shows an extremely small value of 330 × 10 −6 . That is, a garnet film having a small saturation magnetization temperature coefficient could be obtained by the film forming method of the present invention.

【0044】実施例3 図5に示すこの発明による縦型炉芯管構造の成膜装置を
用いてこの発明によるLPE法を実施した。るつぼ内で
PbO、B23を溶媒とし、ガーネット膜材料のFe2
3、R123、A23、R223を過熱溶融させ均一
化し、次に液相線と固相線の間の温度、すなわち800
〜1000℃の過冷却状態で図1Bのような温度分布を
持たせた。
Example 3 The LPE method according to the present invention was carried out using the film forming apparatus of the vertical furnace core tube structure according to the present invention shown in FIG. Using PbO and B 2 O 3 as solvents in the crucible, Fe 2 as a garnet film material
O 3 , R1 2 O 3 , A 2 O 3 , and R2 2 O 3 are heated and melted to homogenize, and then the temperature between the liquidus line and the solidus line, that is, 800
A temperature distribution as shown in FIG. 1B was given in a supercooled state of up to 1000 ° C.

【0045】その後、直径50mmのGGG基板(11
1)面上に、実施例1と同様のYGIAG膜を成膜し
た。溶液温度980℃(以下試料7)、溶液温度880
℃(以下試料8)、そして図11Aに示した温度分布の
溶液中で基板を移動させて成膜位置を図11Bのごとく
に変化させて成膜した試料(以下試料9)の3試料を成
膜した。得られた各YGIAG膜の膜中のAl元素量分
布を測定した結果を図12に示す。
After that, a GGG substrate (11
On the 1) surface, a YGIAG film similar to that in Example 1 was formed. Solution temperature 980 ° C. (Sample 7 below), solution temperature 880
C. (hereinafter referred to as sample 8), and a sample (hereinafter referred to as sample 9) was formed by moving the substrate in a solution having a temperature distribution shown in FIG. 11A and changing the film forming position as shown in FIG. 11B. Filmed FIG. 12 shows the measurement result of the Al element amount distribution in the obtained YGIAG films.

【0046】図12に明らかなように、試料7、試料8
のAl量は膜厚方向に対し変化がないが、試料9ではA
l量が4mol%、1.25mol%の個所があり、そ
の間ではAl量が直線的に変化している。これより、溶
液温度に深さ方向の温度勾配を設けて基板を移動させて
成膜温度を変化させることにより、膜厚み方向に成分組
成の変調が得られたことを確認できた。
As is apparent from FIG. 12, sample 7 and sample 8
The amount of Al does not change in the film thickness direction.
There are places where the amount of 1 is 4 mol% and 1.25 mol%, and the amount of Al changes linearly between them. From this, it was confirmed that the component composition was modulated in the film thickness direction by providing the temperature gradient in the depth direction of the solution temperature and moving the substrate to change the film formation temperature.

【0047】次に、各YGIAG膜について、印加磁場
が5kGconstにおける飽和磁化温度特性を測定し
た結果を図13に示す。図に明らかなように、試料8は
飽和磁化の最大値が900G、補償温度が−150℃、
試料7は飽和磁化の最大値が200G、補償温度が0℃
であり、いずれの試料も室温付近で温度変化に対する飽
和磁化の変化が大きい。しかし試料9は飽和磁化の温度
変化は試料7、試料8を足し合わせた様態を示してお
り、室温付近で温度変化に対する飽和磁化の変化は小さ
い。
Next, FIG. 13 shows the result of measuring the saturation magnetization temperature characteristic of each YGIAG film when the applied magnetic field was 5 kGconst. As is clear from the figure, Sample 8 has a maximum saturation magnetization of 900 G and a compensation temperature of −150 ° C.
Sample 7 has a maximum saturation magnetization of 200G and a compensation temperature of 0 ° C.
In each sample, the change in saturation magnetization with respect to the temperature change is large near room temperature. However, sample 9 shows a state in which the change in saturation magnetization due to temperature is the sum of sample 7 and sample 8, and the change in saturation magnetization due to the change in temperature is small near room temperature.

【0048】また、各YGIAG膜の飽和磁化温度係数
α(/℃)は、試料7が10000×10-6、試料8が
2800×10-6といずれも−10〜50℃のαが10
00×10-6以上であるが、試料9は140×10-6
極めて小さい値を示している。すなわち、この発明の成
膜方法で飽和磁化温度係数の小さいガーネット膜を得る
ことができた。
The saturation magnetization temperature coefficient α (/ ° C.) of each YGIAG film is 10,000 × 10 −6 for sample 7 and 2800 × 10 −6 for sample 8, and α of −10 to 50 ° C. is 10 in both cases.
Although it is not less than 00 × 10 −6 , Sample 9 shows an extremely small value of 140 × 10 −6 . That is, a garnet film having a small saturation magnetization temperature coefficient could be obtained by the film forming method of the present invention.

【0049】実施例4 実施例3と同様のLPE法により、直径50mmのGG
G基板(111)面上に、実施例2と同様のYGBIG
膜を成膜した。溶液温度980℃(以下試料10)、溶
液温度880℃(以下試料11)、そしてエピタキシャ
ル成長中に実施例3と同様に図11Aに示した温度分布
の溶液中で基板を移動させて成膜位置を図11Bのごと
くに変化させ成膜した試料(以下試料12)の3試料を
成膜した。
Example 4 By the same LPE method as in Example 3, GG with a diameter of 50 mm was used.
On the surface of the G substrate (111), YGBIG similar to that of the second embodiment
A film was formed. The solution temperature is 980 ° C. (hereinafter referred to as sample 10), the solution temperature is 880 ° C. (hereinafter referred to as sample 11), and the substrate is moved in the solution having the temperature distribution shown in FIG. Three samples, that is, samples (hereinafter, referred to as sample 12) formed by changing the film as in FIG. 11B were formed.

【0050】得られた各YGBIG膜の膜中の構成元素
量分布を測定した結果を図14に示す。図に示すごとく
試料10、試料11のBi量は膜厚方向に対し変化がな
いが、試料12ではBi量が14mol%、5mol%
の個所があり、その間ではBi量が直線的に変化してい
る。これより、溶液温度に深さ方向の温度勾配を設けて
基板を移動させて成膜温度を変化させることにより、膜
厚み方向に成分組成の変調が得られたことを確認でき
た。
FIG. 14 shows the results of measuring the distribution of the amounts of constituent elements in each of the obtained YGBIG films. As shown in the figure, the Bi amount in Samples 10 and 11 does not change in the film thickness direction, but in Sample 12, the Bi amount is 14 mol% and 5 mol%.
, And the amount of Bi changes linearly between them. From this, it was confirmed that the component composition was modulated in the film thickness direction by providing the temperature gradient in the depth direction of the solution temperature and moving the substrate to change the film formation temperature.

【0051】次に、各YGBIG膜について、印加磁場
が5kGconstにおける飽和磁化温度特性を測定し
た結果を図15に示す。図に明らかなように、試料11
は飽和磁化の最大値が800G、補償温度が−100℃
以下、試料10は飽和磁化の最大値が700G、補償温
度が0℃であり、いずれの試料も室温付近で温度変化に
対する飽和磁化の変化が大きい。しかし試料12の飽和
磁化の温度変化は試料10、試料11を足し合わせた様
態を示しており、室温付近で温度変化に対する飽和磁化
の変化は小さい。
Next, FIG. 15 shows the results of measuring the saturation magnetization temperature characteristics of each YGBIG film when the applied magnetic field was 5 kGconst. As is clear from the figure, sample 11
Has a maximum saturation magnetization of 800G and a compensation temperature of -100 ° C.
Hereinafter, Sample 10 has a maximum saturation magnetization of 700 G and a compensation temperature of 0 ° C., and all samples show large changes in saturation magnetization with respect to temperature changes near room temperature. However, the temperature change of the saturation magnetization of the sample 12 shows a mode in which the sample 10 and the sample 11 are added, and the change of the saturation magnetization with respect to the temperature change is small near room temperature.

【0052】また、各YGBIG膜の飽和磁化温度係数
α(/℃)は、試料10が3000×10-6、試料11
が1500×10-6といずれも−10〜50℃のαが1
000×10-6以上であるが、試料6は350×10-6
と極めて小さい値を示している。すなわち、この発明の
成膜方法で飽和磁化温度係数の小さいガーネット膜を得
ることができた。
The saturation magnetization temperature coefficient α (/ ° C.) of each YGBIG film was 3000 × 10 −6 for sample 10 and 11 for sample 11.
Is 1500 × 10 -6 and α at -10 to 50 ° C is 1
000 × 10 -6 or more, but sample 6 is 350 × 10 -6
And shows an extremely small value. That is, a garnet film having a small saturation magnetization temperature coefficient could be obtained by the film forming method of the present invention.

【0053】実施例5 図5に示すこの発明による縦型炉芯管構造の成膜装置を
用いて、狙い組成がY 1.77Gd1.23Fe3.6Al0.8In
0.612となるように、表1に示す配合比の各酸化物を
Ptるつぼ内へ投入し1050℃で溶融、撹拌した後、
図2に示すLPE法により、直径50mmのGGG基板
(111)面上に、溶液温度869℃で10分間成膜し
た試料(以下試料13)、溶液温度782℃で10分間
成膜した試料(以下試料14)、エピタキシャル成長中
に7.5分間で溶液温度を780℃から840℃まで変
化させて成膜した試料(以下試料15)及びエビタキシ
ャル成長中に10分間で溶液温度を780℃から870
℃まで変化させて成膜した試料(以下試料16)の4試
料を作製した。
Example 5 FIG. 5 shows a film forming apparatus having a vertical furnace core tube structure according to the present invention.
The target composition is Y 1.77Gd1.23Fe3.6Al0.8In
0.6O12So that each oxide of the compounding ratio shown in Table 1
After being put into a Pt crucible and melted and stirred at 1050 ° C.,
According to the LPE method shown in FIG. 2, a GGG substrate having a diameter of 50 mm
A film was formed on the (111) plane at a solution temperature of 869 ° C. for 10 minutes.
Sample (hereinafter sample 13), solution temperature 782 ° C for 10 minutes
Formed sample (hereinafter sample 14), during epitaxial growth
Change the solution temperature from 780 ℃ to 840 ℃ in 7.5 minutes.
Sample (hereinafter referred to as Sample 15) formed by film formation and shrimp
Solution temperature from 780 ° C to 870 in 10 minutes during growth.
4 trials of samples (hereinafter sample 16) formed by changing the temperature to ℃
The material was made.

【0054】得られた各試料の膜厚、4πMs頂上部付
近の±30℃の範囲における飽和磁化の温度係数、飽和
磁化のMax温度を表2に、印加磁場が5kGcons
tにおける飽和磁化温度曲線を図16に示す。なお、得
られた各試料はいずれも(111)配向のガーネットで
あった。
The film thickness of each sample obtained, the temperature coefficient of the saturation magnetization and the Max temperature of the saturation magnetization in the range of ± 30 ° C. near the top of 4πMs are shown in Table 2, and the applied magnetic field was 5 kGcons.
The saturation magnetization temperature curve at t is shown in FIG. The obtained samples were all garnets having (111) orientation.

【0055】表2から明らかなように、成膜温度を変化
させた本発明による試料15及び試料16は、成膜温度
を変化させない試料13及び試料14に比べ飽和磁化の
温度係数が小さいことが分かる。また、図16から明ら
かなように、試料13及び試料14に比べ、この発明に
よる試料15及び試料16は4πMs頂上部付近の±3
0℃の範囲における飽和磁化の温度変化が小さく、温度
曲線が平坦化されていることが分かる。
As is clear from Table 2, the sample 15 and the sample 16 according to the present invention in which the film forming temperature is changed have a smaller saturation magnetization temperature coefficient than the sample 13 and the sample 14 in which the film forming temperature is not changed. I understand. Further, as is clear from FIG. 16, in comparison with the sample 13 and the sample 14, the sample 15 and the sample 16 according to the present invention have ± 3 near the top of 4πMs.
It can be seen that the temperature change of the saturation magnetization is small in the range of 0 ° C. and the temperature curve is flattened.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【発明の効果】この発明は、基板への液相エピタキシャ
ル成長中に成膜温度を種々変化させる手段を用いること
で、育成した膜の厚み方向に成分組成の変調を導入する
ことが可能であり、実施例に明らかなように、所要特性
の温度安定化を図った、すなわち温度特性を著しく向上
させた金属系又は磁器系機能性膜を得ることができる。
According to the present invention, it is possible to introduce a component composition modulation in the thickness direction of a grown film by using means for changing the film forming temperature during liquid phase epitaxial growth on a substrate. As is clear from the examples, it is possible to obtain a metal-based or porcelain-based functional film with the required characteristics temperature-stabilized, that is, the temperature characteristics remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】A,Bはこの発明による成分組成の変調を導入
するLPE法の原理を示した溶液と基板の説明図であ
る。
1A and 1B are explanatory views of a solution and a substrate showing the principle of the LPE method for introducing the modulation of the component composition according to the present invention.

【図2】溶液の温度を変化させて成膜するこの発明によ
るLPE法を示す溶液と基板の説明図である。
FIG. 2 is an explanatory diagram of a solution and a substrate showing an LPE method according to the present invention for forming a film by changing the temperature of the solution.

【図3】温度勾配を有する溶液内で基板を移動させて成
膜するこの発明によるLPE法を示した溶液と基板の説
明図である。
FIG. 3 is an explanatory diagram of a solution and a substrate showing an LPE method according to the present invention for forming a film by moving the substrate in a solution having a temperature gradient.

【図4】溶液の深さ方向及び平面方向の温度変化に、成
膜位置変化による温度変化を追加する例を示すグラフで
ある。
FIG. 4 is a graph showing an example in which a temperature change due to a film formation position change is added to a temperature change in a depth direction and a plane direction of a solution.

【図5】この発明によるLPE法の製造装置の構成を示
す説明図である。
FIG. 5 is an explanatory diagram showing a configuration of an LPE manufacturing apparatus according to the present invention.

【図6】成膜時間と溶液温度との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between film formation time and solution temperature.

【図7】実施例1のYGIAG膜内のAl量分布を示し
たグラフである。
7 is a graph showing Al amount distribution in the YGIAG film of Example 1. FIG.

【図8】実施例1のYGIAG膜の飽和磁化温度特性を
示したグラフである。
FIG. 8 is a graph showing the saturation magnetization temperature characteristics of the YGIAG film of Example 1.

【図9】実施例2のYGBIG膜内のBi量分布を示し
たグラフである。
FIG. 9 is a graph showing the Bi amount distribution in the YGBIG film of Example 2.

【図10】実施例2のYGBIG膜の飽和磁化温度特性
を示したグラフである。
FIG. 10 is a graph showing the saturation magnetization temperature characteristics of the YGBIG film of Example 2.

【図11】Aは溶液中の温度分布を示したグラフであ
り、Bは成膜位置と時間経過を示したグラフである。
FIG. 11A is a graph showing a temperature distribution in a solution, and B is a graph showing a film forming position and a lapse of time.

【図12】実施例3のYGIAG膜内のAl量分布を示
したグラフである。
FIG. 12 is a graph showing Al amount distribution in a YGIAG film of Example 3.

【図13】実施例3のYGIAG膜の飽和磁化温度特性
を示したグラフである。
FIG. 13 is a graph showing the saturation magnetization temperature characteristic of the YGIAG film of Example 3.

【図14】実施例4のYGBIG膜内のBi量分布を示
したグラフである。
FIG. 14 is a graph showing the Bi amount distribution in the YGBIG film of Example 4.

【図15】実施例4のYGBIG膜の飽和磁化温度特性
を示したグラフである。
FIG. 15 is a graph showing the saturation magnetization temperature characteristics of the YGBIG film of Example 4.

【図16】実施例5のYGIAG膜の飽和磁化温度特性
を示したグラフである。
16 is a graph showing the saturation magnetization temperature characteristic of the YGIAG film of Example 5. FIG.

【符号の説明】[Explanation of symbols]

1 炉芯管 2a、2b、2c ヒータ 3 炉体 4 シャッター 5 溶液 6 るつぼ 7 支持台 8 金属系又は磁器系機能性膜 9 基板保持具 10 支持棒 11 ガスノズル 1 furnace core tube 2a, 2b, 2c heater 3 furnace body 4 shutter 5 solutions 6 crucibles 7 Support 8 Metal-based or porcelain-based functional film 9 Substrate holder 10 Support rod 11 gas nozzle

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年4月23日(2002.4.2
3)
[Submission date] April 23, 2002 (2002.4.2)
3)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

フロントページの続き Fターム(参考) 4G077 AA03 BC22 BC25 BC28 CG02 CG05 EA02 ED05 EF01 EG15 HA20 QA04 QA38 QA51 Continued front page    F-term (reference) 4G077 AA03 BC22 BC25 BC28 CG02                       CG05 EA02 ED05 EF01 EG15                       HA20 QA04 QA38 QA51

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 液相エピタキシャル成長による金属材料
又は磁器材料からなる膜であり、膜の厚み方向に成分組
成の変調を有する機能性膜。
1. A functional film, which is a film made of a metal material or a porcelain material by liquid phase epitaxial growth, and has a component composition modulation in the thickness direction of the film.
【請求項2】 金属材料が、硫化物半導体、リン化物半
導体、セレン化物半導体、テルル化物半導体、金属間化
合物半導体のいずれかである請求項1に記載の機能性
膜。
2. The functional film according to claim 1, wherein the metal material is any one of a sulfide semiconductor, a phosphide semiconductor, a selenide semiconductor, a telluride semiconductor, and an intermetallic compound semiconductor.
【請求項3】 磁器材料が、マグネプランバイト系磁
器、スピネル系磁器、ガーネット系磁器、ペロブスカイ
ト系磁器、閃亜鉛鉱系磁器、ウルツ鉱系磁器のいずれか
である請求項1に記載の機能性膜。
3. The functionality according to claim 1, wherein the porcelain material is any one of magne plumbite porcelain, spinel porcelain, garnet porcelain, perovskite porcelain, zinc blende porcelain and wurtzite porcelain. film.
【請求項4】 ガーネット系磁器は、一般式 R13-x
R2xFe5-yy12(但し、R1及びR2はY,B
i,Ca,Pb,Sr,Ba,Cd,Cu,Mg,M
n,Cr,Naおよびランタン系遷移元素のうち少なく
とも一種、MはAl,Ga,In,Mn,Cr,Sc,
Cu,Zn,Mg,Ni,Co,Li,Ge,Si,
V,P,As,V,Sb,Tiのうち少なくとも一種)
で表され、0≦x≦3、0≦y≦5を満足するものであ
る請求項3に記載の機能性膜。
4. The garnet-based porcelain has the general formula R1 3-x.
R2 x Fe 5-y M y O 12 ( where R1 and R2 Y, B
i, Ca, Pb, Sr, Ba, Cd, Cu, Mg, M
At least one of n, Cr, Na and lanthanum-based transition elements, M is Al, Ga, In, Mn, Cr, Sc,
Cu, Zn, Mg, Ni, Co, Li, Ge, Si,
(At least one of V, P, As, V, Sb, Ti)
The functional film according to claim 3, which is represented by the following formula and satisfies 0 ≦ x ≦ 3 and 0 ≦ y ≦ 5.
【請求項5】 基板表面に溶液中の溶質を液相エピタキ
シャル成長させて成膜する方法であり、前記成膜の温度
を変化させて、育成した膜の厚み方向に成分組成の変調
を持たせる機能性膜の製造方法。
5. A method for forming a solute in a solution by liquid phase epitaxial growth on a surface of a substrate to form a film, which has a function of changing the temperature of the film formation so as to have a component composition modulation in the thickness direction of the grown film. Of a flexible film.
【請求項6】 成膜温度を変化させる方法が、溶液温度
を変化させる方法である請求項5に記載の機能性膜の製
造方法。
6. The method for producing a functional film according to claim 5, wherein the method of changing the film forming temperature is a method of changing the solution temperature.
【請求項7】 成膜温度を変化させる方法が、予め溶液
中に温度勾配を設定しておき、溶液中の基板を移動させ
る請求項5に記載の機能性膜の製造方法。
7. The method for producing a functional film according to claim 5, wherein the method for changing the film formation temperature is to set a temperature gradient in the solution in advance and move the substrate in the solution.
【請求項8】 成膜温度を変化させる方法が、予め溶液
の深さ方向に溶液温度が降温又は昇温するよう制御保持
し、基板を溶液内に順次昇降させる方法である請求項7
に記載の機能性膜の製造方法。
8. The method of changing the film forming temperature is a method of controlling and holding the solution temperature in advance so that the solution temperature is lowered or raised in the depth direction of the solution, and sequentially raising and lowering the substrate in the solution.
The method for producing the functional film according to [4].
【請求項9】 成膜温度の変化範囲が100℃以上であ
る請求項5に記載の機能性膜の製造方法。
9. The method for producing a functional film according to claim 5, wherein the change range of the film formation temperature is 100 ° C. or higher.
【請求項10】 炉内にるつぼを配置した縦型炉芯管構
造を有する液相エピタキシャル成長装置であり、成膜温
度を変化させる手段として、前記炉外周部に設けた複数
の加熱用ヒーター、前記るつぼの溶液表面にガスを吹き
つけるガスノズル、前記るつぼ底部を冷却する冷却器を
それぞれ備えた請求項5に記載の製造方法に用いる機能
性膜の製造装置。
10. A liquid phase epitaxial growth apparatus having a vertical furnace core tube structure in which a crucible is arranged in a furnace, wherein a plurality of heaters for heating provided in the outer peripheral portion of the furnace as a means for changing a film forming temperature, The functional film manufacturing apparatus used in the manufacturing method according to claim 5, further comprising a gas nozzle that blows a gas onto the solution surface of the crucible and a cooler that cools the bottom of the crucible.
JP2002113158A 2002-04-16 2002-04-16 Functional membrane, and process and apparatus for manufacturing the same Pending JP2003306397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113158A JP2003306397A (en) 2002-04-16 2002-04-16 Functional membrane, and process and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113158A JP2003306397A (en) 2002-04-16 2002-04-16 Functional membrane, and process and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003306397A true JP2003306397A (en) 2003-10-28
JP2003306397A5 JP2003306397A5 (en) 2005-09-15

Family

ID=29395418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113158A Pending JP2003306397A (en) 2002-04-16 2002-04-16 Functional membrane, and process and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003306397A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210806A (en) * 2006-02-07 2007-08-23 Tdk Corp Magnetic garnet single crystal, and optical element using the same
JP2007210879A (en) * 2006-01-10 2007-08-23 Tdk Corp Magnetic garnet single crystal, its production method, and optical element using the same
JP2007217257A (en) * 2006-02-20 2007-08-30 Tdk Corp Magnetic garnet single crystal and optical element using the same
US7811465B2 (en) 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7811465B2 (en) 2004-11-19 2010-10-12 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
US8815011B2 (en) 2004-11-19 2014-08-26 Tdk Corporation Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
JP2007210879A (en) * 2006-01-10 2007-08-23 Tdk Corp Magnetic garnet single crystal, its production method, and optical element using the same
US7828895B2 (en) 2006-01-27 2010-11-09 Tdk Corporation Method of producing optical element
JP2007210806A (en) * 2006-02-07 2007-08-23 Tdk Corp Magnetic garnet single crystal, and optical element using the same
JP2007217257A (en) * 2006-02-20 2007-08-30 Tdk Corp Magnetic garnet single crystal and optical element using the same
JP4702090B2 (en) * 2006-02-20 2011-06-15 Tdk株式会社 Magnetic garnet single crystal and optical element using the same
US8142676B2 (en) 2006-02-20 2012-03-27 Tdk Corporation Magnetic garnet single crystal and optical element using the same

Similar Documents

Publication Publication Date Title
US7830644B2 (en) High dielectric capacitor materials and method of their production
US5015618A (en) Laser zone melted Bi--Sr--Ca--Cu--O thick films
US9201167B2 (en) Bi-substituted rare earth iron garnet single crystal, method for producing same, and optical device
JP5260881B2 (en) Mg-containing ZnO mixed crystal single crystal, laminated body thereof, and production method thereof
CN1768166A (en) Magnetic garnet single crystal film formation substrate, optical element and production method of the same
US20130071316A1 (en) Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD OF MANUFACTURING THE SAME, AND OPTICAL DEVICE
JP2003306397A (en) Functional membrane, and process and apparatus for manufacturing the same
US20020185055A1 (en) Method for production of zinc oxide single crystal
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
WO2003000963A1 (en) Substrate for forming magnetic garnet single crystal film, optical device, and its production method
EP1595979A1 (en) Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
JP6772674B2 (en) Manufacturing method of superconducting bulk joint and superconducting bulk joint
JPH0971416A (en) Crystal composition and solid laser apparatus produced by using the composition
Damen et al. Thin film growth of (MnxZn1− x) Fe2O4 by liquid phase epitaxy on bridgman grown Zn2TiO4 substrates
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JPS6065511A (en) Manufacture of single crystal of magnetic oxide
EP0018111B1 (en) Method of producing ferrite single crystals
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
KR20030022393A (en) Oxide Superconducting Electroconducting Article And method For Its Preparation
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
NL8001822A (en) METHOD FOR PREPARING FERRITE SINGLE CRYSTALS
US5221661A (en) Method of depositing a superconducting Bi2 Sr2 CaCu2 O8
JPH02172893A (en) Production of thin oxide superconducting film and substrate used therefor
JP2004235585A (en) Method for controlling captured magnetic field of superconductor
JP2005113220A (en) Polycrystal thin film, its production method, and oxide superconductor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A621 Written request for application examination

Effective date: 20050404

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20050404

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071214

A02 Decision of refusal

Effective date: 20080403

Free format text: JAPANESE INTERMEDIATE CODE: A02