JPS6065511A - Manufacture of single crystal of magnetic oxide - Google Patents

Manufacture of single crystal of magnetic oxide

Info

Publication number
JPS6065511A
JPS6065511A JP17308183A JP17308183A JPS6065511A JP S6065511 A JPS6065511 A JP S6065511A JP 17308183 A JP17308183 A JP 17308183A JP 17308183 A JP17308183 A JP 17308183A JP S6065511 A JPS6065511 A JP S6065511A
Authority
JP
Japan
Prior art keywords
magnetic oxide
oxide
single crystal
amorphous
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17308183A
Other languages
Japanese (ja)
Inventor
Senji Shimanuki
島貫 専治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17308183A priority Critical patent/JPS6065511A/en
Publication of JPS6065511A publication Critical patent/JPS6065511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain the single crystal of a thin film or a thin plate having a large area and an uniform composition of less detect easily at low cost by a method wherein after the crystalline magnetic oxide is made to be amorphous, it is recrystallized from the end in order under a partial temperature gradient. CONSTITUTION:The crystalline magnetic oxide is once fused in a platinum crucible to be made into an fused oxide substance 2 of uniform composition. When this is poured between metallic twin rolls 3 and is pressure-expanded and is rapidly cooled, the amorphous magnetic oxide 4 in a large-area thin plate form can be obtained. This amorphous oxide 4 is processed into a square paddle shape and parallel heater 5 and 5 are arranged on the upper and lower sides of it with being close. Then, it is heated from the grip part of a small area in order under a partial temperature gradient to be recrystallized to form the magnetic oxide signal crystal 6. In this method, compared with the slicing from a plate of a large area without a defect can be obtained. In addition, manufacture is easy and the properties for mass production is good and the low-cost manufacture is possible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気記録用磁気ヘッドや磁気媒体、マイクロ波
素子などの素子材料(二用いられる磁性酸化物単結晶の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a magnetic oxide single crystal used in element materials such as magnetic heads for magnetic recording, magnetic media, and microwave elements.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般(−薄膜あるいは薄板状の磁性酸化物単結晶として
磁気記録用磁気へラドコアにスピネル型のマンガン亜鉛
フェライト単結晶が、マイクロ波素子や磁己バブルメモ
リー(−希土類鉄ガーネット型フェライト単結晶が広く
用いられている。又、光磁気記録用としてはペロブスカ
イト型の希土類鉄オルソフェライト、希土類鉄ガーネッ
トフェライト、六方晶フェライトなどの磁性酸化物単結
晶が研究されて実用化が期待されている。
Spinel-type manganese-zinc ferrite single crystals are widely used in magnetic helad cores for magnetic recording as magnetic oxide single crystals in the form of thin films or thin plates, and are widely used in microwave elements and magnetic bubble memories (-Rare earth iron garnet type ferrite single crystals are widely used. For magneto-optical recording, magnetic oxide single crystals such as perovskite-type rare earth iron orthoferrite, rare earth iron garnet ferrite, and hexagonal ferrite are being researched and are expected to be put to practical use.

従来、このような薄膜あるいは薄板状の磁性酸化物単結
晶は、例えば薄板状のマンガン亜鉛フェライト単結晶は
ブリッジマン法(=よって溶融酸化物から種付けして育
成された大型単結晶をスライシング、研摩などの加工工
程を経て板状に形成し、実用(二供されていた。
Conventionally, such thin film or thin plate-shaped magnetic oxide single crystals, for example thin plate-shaped manganese zinc ferrite single crystals, have been produced by the Bridgman method (=thus, slicing and polishing a large single crystal grown by seeding from molten oxide). Through the following processing steps, it was formed into a plate shape and put into practical use (two times).

しかしながら、大面積の薄膜あるいは薄板状の単結晶を
作製するとなると、大型単結晶が必要となるが、一般(
=クラックや欠陥の少々い且つ組成の均一な大型単結晶
ブリッジマン法(=よって得ることは難しい。又、ブリ
ッジマン法で作製されるマンガン亜鉛フェライト単結晶
では、通常単結晶育成時において単結晶の上部では亜鉛
の量が多く々す、その下部では亜鉛が少くなくなるとい
つ組成偏析が生じやすく、実際(=使用供される部分は
中央の部分のみであって、歩留りが悪b0又更(二は、
必要とする単結晶の厚さが薄くなるほど加工(二よる損
失が大きく、歩留が悪くなる欠点もあった。
However, when producing a large-area thin film or thin plate-like single crystal, a large single crystal is required, but generally (
= It is difficult to obtain a large single crystal with a few cracks or defects and a uniform composition using the Bridgman method.Also, in manganese zinc ferrite single crystals produced by the Bridgman method, normally a single crystal is formed during single crystal growth. In the upper part, the amount of zinc is large, and in the lower part, when the zinc content decreases, compositional segregation tends to occur. Second,
The thinner the required single crystal, the greater the loss due to processing and the lower the yield.

又、希土類鉄オルンフエライト、希土類鉄ガーネットフ
ェライト及び六方晶フェライトでは、スパッタリング法
や液相エピタキシャル法(LEP法)などより薄膜状の
単結晶が作製されているが、大面積で且つ組成の均一な
ものが得られ(二<<、ガドリウムガリウムガーネット
単、拮晶などの高価な基板を必要とし、たり量産性が劣
る上、多成分系の単結晶の作製が極めて難しいなどの欠
点がある。
Furthermore, for rare earth iron orn ferrite, rare earth iron garnet ferrite, and hexagonal ferrite, thin film-like single crystals have been produced using sputtering methods and liquid phase epitaxial methods (LEP methods); However, it requires expensive substrates such as gadolinium gallium garnet monocrystalline or antagonistic crystals, has poor mass productivity, and has the disadvantages that it is extremely difficult to produce multi-component single crystals.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる点に鑑みなされたもので、大面積で欠
陥が少なく、組成の均一な薄膜や薄板の単結晶が得られ
、しかも製造が容易であり、量産性に富むと共(二低コ
ストな磁性酸化物単結晶の製造方法を提供するものであ
る。
The present invention was devised in view of these points, and it is possible to obtain a thin film or thin plate single crystal with a large area, few defects, and a uniform composition, and it is easy to manufacture and has high mass productivity. The present invention provides a method for manufacturing a magnetic oxide single crystal at low cost.

〔発明の概要〕[Summary of the invention]

本発明は単相または固溶体検1ら成る結晶質磁性酸化物
を、非晶質化した後、この非晶質磁性酸化物を局部的な
温度勾配下で、順次端部側より再結晶化することを特徴
とするものである。以下本発明の詳細な説明する。本発
明の結晶質磁性酸化物は、鉄族遷移金属元素(Ti、V
、Cr、Mn、Fe、Co。
In the present invention, a crystalline magnetic oxide consisting of a single phase or a solid solution is made amorphous, and then this amorphous magnetic oxide is sequentially recrystallized from the end side under a local temperature gradient. It is characterized by this. The present invention will be explained in detail below. The crystalline magnetic oxide of the present invention comprises iron group transition metal elements (Ti, V
, Cr, Mn, Fe, Co.

Ni、C*)と希土類遷移金属元素(La、Ce、Pr
、Nd 。
Ni, C*) and rare earth transition metal elements (La, Ce, Pr
, Nd.

Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
u、Yb、Lu)のうちの少くとも1種から成る磁性酸
化物を主成分として1つ、アルカリ金属(Li 、Na
、K ) 、アルカリ土類金属(Mg、Ca、Sr、B
a) 、 Sc、Y、B、Zr、Hf、Zn、Cd。
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
The main component is a magnetic oxide consisting of at least one of the following: alkali metals (Li, Na,
, K), alkaline earth metals (Mg, Ca, Sr, B
a) Sc, Y, B, Zr, Hf, Zn, Cd.

Si、Ge、Sn、Pb、A/、in、Bi 、sbの
うちの少くとも11重を含む酸化物を副成分とする磁性
酸化物であり。
A magnetic oxide whose subcomponent is an oxide containing at least 11 of Si, Ge, Sn, Pb, A/, in, Bi, and sb.

特(二、スピネル型、ガーネット型、ペロプスカイト型
及び六方晶フェライトである。
Special (2) spinel type, garnet type, perovskite type and hexagonal ferrite.

このような結晶質磁性酸化物を非晶質化する方法として
は、結晶質磁性酸化物を一旦溶融して均質な組成にした
後、急冷して疑問させる液体急冷法と、基板物質の一ヒ
(:蒸着して成長させる蒸着法とに大別される。
Methods for making such a crystalline magnetic oxide amorphous include the liquid quenching method, in which the crystalline magnetic oxide is melted to a homogeneous composition, and then rapidly cooled, and the liquid quenching method, in which the substrate material (It is broadly divided into vapor deposition methods that involve vapor deposition and growth.

液体急冷法としては、例えば第1図に示すように結晶質
磁性酸化物を白金るつぼlで一旦溶融して均質な組成の
酸化物融体2とし、これを回転している金属製の双ロー
ル3の間(二流し込んで、圧延急冷すると、大面積の薄
板状の非晶質磁性酸化物4が得られる。この場合金属製
の双ロール3としてはスチール、銅、ステンレス々どの
ロールを用い、また単ロールによって急冷しても良い。
In the liquid quenching method, for example, as shown in Fig. 1, a crystalline magnetic oxide is once melted in a platinum crucible to form an oxide melt 2 with a homogeneous composition, which is then passed through a pair of rotating metal rolls. 3 (by pouring, rolling and quenching, a large-area thin plate-like amorphous magnetic oxide 4 is obtained. In this case, as the metal twin rolls 3, rolls such as steel, copper, stainless steel, etc. are used. Alternatively, it may be rapidly cooled using a single roll.

またこの他の液体急冷法としては高速移動する金属ベル
トC二酸化物融体を注ぐ方法、あるいは酸化物融体中に
冷却媒体を浸漬して引き上げるディッピング法なども用
いることができる。この液体急冷法では融体なよく攪拌
するか、高周波加熱すること(二よって融体の組成均一
性を保持出来るため得られる非晶質磁性酸化物の組成は
非常(二均−である。
Further, as other liquid quenching methods, a method of pouring a high-speed moving metal belt C dioxide melt, or a dipping method in which a cooling medium is immersed in the oxide melt and pulled up can be used. In this liquid quenching method, the composition of the amorphous magnetic oxide obtained is very (bihomogeneous) because the composition of the melt can be maintained by stirring the melt well or by high-frequency heating.

このようにして得られた薄板状の非晶質酸化物4は例え
ば第2図に示すように羽子板状に加工し。
The thin plate-like amorphous oxide 4 thus obtained is processed into a battledore shape, for example, as shown in FIG.

この上下両側に平行ヒーター5.5を近接して配置し、
面積の小さい握手側力)ら局部的な温度勾配を与えなが
ら、順次加熱して再結晶化し、磁性酸化物単結晶6を作
製する。
Parallel heaters 5.5 are placed close to each other on both sides of this upper and lower sides,
A magnetic oxide single crystal 6 is produced by sequentially heating and recrystallizing the magnetic oxide while applying a local temperature gradient due to the small area force of the handshake.

この再結晶化f:おける加熱手段さしては、上下の平行
ヒーター5,5に限らず、レーザーあるいは赤外線やア
ークイメージ炉などにより、順次加熱しても良い。
The heating means used in this recrystallization f: is not limited to the upper and lower parallel heaters 5, 5, but may be sequentially heated using a laser, infrared rays, an arc image furnace, or the like.

また再結晶化するための最高熱処理温度は、磁性酸化物
の種類によって異なり、例えば磁性酸化物が、コングル
エンド(二溶融する場合、その熱処理温度は融点以上融
点+300’O以下が好ましい。
The maximum heat treatment temperature for recrystallization varies depending on the type of magnetic oxide. For example, when the magnetic oxide undergoes congruend (congruent melting), the heat treatment temperature is preferably higher than the melting point and lower than the melting point +300'O.

融点未満であると単結晶の成長速度が遅く量産性が低下
し、また融点+300’Oを越える高温度では酸化物の
成分が蒸発により組成偏析を起し易く、均質々磁性酸化
物単結晶が得られない。
If the temperature is below the melting point, the growth rate of the single crystal will be slow and mass productivity will be reduced, and if the temperature exceeds the melting point +300'O, the oxide components will easily evaporate and cause compositional segregation, resulting in a homogeneous homomagnetic oxide single crystal. I can't get it.

また磁性酸化物がインコングルエンドに溶融する場合は
本来の磁性酸化物とは別の磁性酸化物に分解するため、
溶融することができない。この場合の熱処理温度は結晶
化温度以上で融点以下の温度範囲とすることにより、粒
成長(特に不連続粒成長)によって非晶質磁性酸化物か
ら磁性酸化物単結晶への成長を行なうことができる。%
−二、組成均一性の優れた磁性酸化物単結晶を得る(−
はぐ融点以下の0.95 T’M (TM :融点)で
表わされる温度付近で熱処理するのが好ましい。この粒
成長は通常の焼結体の粒成長と異なり温度勾配下では非
晶質からの、あるいは極めて微細な結晶粒からの粒成長
となるため単結晶の成長速度は速く、しかもI mx以
下の薄膜あるいは薄板状であれば更に成長が速い。
In addition, when a magnetic oxide melts into an incongruent state, it decomposes into a magnetic oxide different from the original magnetic oxide.
Cannot be melted. In this case, by setting the heat treatment temperature to a temperature range above the crystallization temperature and below the melting point, it is possible to grow the amorphous magnetic oxide into a magnetic oxide single crystal through grain growth (particularly discontinuous grain growth). can. %
-2. Obtaining a magnetic oxide single crystal with excellent compositional uniformity (-
The heat treatment is preferably carried out at a temperature around 0.95 T'M (TM: melting point) below the melting point. This grain growth differs from grain growth in normal sintered bodies, and under temperature gradients, grains grow from amorphous or from extremely fine crystal grains, so the growth rate of single crystals is fast, and even below I mx. If it is in the form of a thin film or a thin plate, the growth will be even faster.

また結晶質磁性酸化物を蒸着法により非晶質化する方法
としては1例えば高周波スパッタリング法、[流スパッ
タリング法、マグネトロンスパッタリング法、イオンビ
ームスパッタリング法、イオンブレーティング法、電子
ビーム蒸着法、化学蒸着法(CVD法)などが挙げられ
る。
Methods for making crystalline magnetic oxides amorphous by vapor deposition include, for example, radio frequency sputtering, flow sputtering, magnetron sputtering, ion beam sputtering, ion brating, electron beam evaporation, and chemical vapor deposition. method (CVD method), etc.

例えばスパッタリング法(二よる場合、第3図(:示す
よう(ニガス導入バルブ7と排気バルブ8を設けた真空
容器9内に、高周波電源1oに接続した、結晶質磁性酸
化物11のターゲット12を設けると共に、これと対向
して基板13を配置して、高周波スパッタリングを行な
い、300”O以下の基板温度で基板13上(二非晶質
磁性酸化物4を形成する。次に第4図(二示すように試
料全体(二千行ヒーター5゜5を設けて、基板13の表
面の非晶質酸化物4を局部的な温度勾配下で順次端部側
より熱処理して磁性酸化物単結晶6を作成する。特にス
パッタリング法では基板を回転することにより組成の均
一な非晶質磁性酸化物を容易に作成できる。
For example, when using a sputtering method (2), a target 12 of crystalline magnetic oxide 11 connected to a high frequency power source 1o is placed in a vacuum vessel 9 equipped with a gas inlet valve 7 and an exhaust valve 8 as shown in FIG. At the same time, a substrate 13 is placed opposite to the substrate 13, and high frequency sputtering is performed to form a di-amorphous magnetic oxide 4 on the substrate 13 at a substrate temperature of 300" or less. Next, as shown in FIG. As shown in Figure 2, the entire sample (2,000 rows) is equipped with a heater 5°5 and heat-treated the amorphous oxide 4 on the surface of the substrate 13 from the end side under a local temperature gradient to form a magnetic oxide single crystal. 6. Particularly in the sputtering method, an amorphous magnetic oxide having a uniform composition can be easily created by rotating the substrate.

又、この場合、基板としては、サファイヤ基板、ガラス
基板を用いるが、サファイヤ基板のよう【二単結晶基板
を用いた方がこの上に蒸着した非晶質磁性酸化物の単結
晶化が容易である。また非晶質磁性酸化物の一端(二種
付けをした後、再結晶化する方が、むだな核発生がなく
単結晶化が極めて容易となる。
In this case, a sapphire substrate or a glass substrate is used as the substrate, but it is easier to single-crystallize the amorphous magnetic oxide deposited on it by using a single-crystal substrate like a sapphire substrate. be. In addition, recrystallization after one end (two seeds) of the amorphous magnetic oxide eliminates wasteful nucleation and makes single crystallization extremely easy.

才た基板物質がガラス基板である場合は、予め基板表面
(:極〈薄い単結晶脱芽たは配向性の多結晶膜を付着さ
せておくと単結晶化が容易となる。
If the desired substrate material is a glass substrate, it is easier to form a single crystal by attaching an extremely thin single crystal budding or oriented polycrystalline film to the substrate surface in advance.

この場合、付着する単結晶および配向性の多結晶膜は目
的とする酸化物の格子定数に近いものが望ましく、また
配向性の多結晶膜は層状化合物を用いることが好ましい
。又、本発明で液体急冷法あるいは蒸着法で非晶質磁性
酸化物を作成せる場合、組成(二より非晶質化しないで
多結晶体と々る場合がある。この場合結晶粒径が1μm
以下であれば、非晶質磁性酸化物と同様(二熱処理する
ことにより磁性酸化物単結晶を得ることができる。
In this case, it is desirable that the attached single crystal and oriented polycrystalline film have a lattice constant close to that of the target oxide, and it is preferable to use a layered compound for the oriented polycrystalline film. In addition, when an amorphous magnetic oxide can be produced by the liquid quenching method or vapor deposition method in the present invention, the composition (in some cases, it becomes a polycrystal without becoming amorphous. In this case, the crystal grain size is 1 μm).
If it is below, the same as for an amorphous magnetic oxide (a magnetic oxide single crystal can be obtained by performing two heat treatments).

本発明の製造方法においては、液体急冷法や蒸着法によ
って得られた非晶質磁性酸化物を局部的温度勾配下での
再結晶化時(−シばしば生じるクラックを避るため、一
旦本来の再結晶化温度より低い温度で熱処理して結晶粒
径が1μm以下の微細彦多結晶の薄膜や薄板にしてから
、局部的温度勾配下で順次端部より熱処理して磁性酸化
物単結晶を得ることも出来る。又、本発明の製造方法に
おける磁性酸化物単結晶は広義の意味である一定方向に
完全(二配向している多結晶でもよい。例えば垂直磁化
記録用材料では磁性酸化物単結晶より容易磁化方向に完
全(−配向している微細な多結晶薄膜或いは薄板である
のが好ましい。
In the production method of the present invention, an amorphous magnetic oxide obtained by a liquid quenching method or a vapor deposition method is recrystallized under a local temperature gradient (-in order to avoid cracks that often occur, After being heat-treated at a temperature lower than the original recrystallization temperature to form a fine Hiko polycrystalline thin film or thin plate with a crystal grain size of 1 μm or less, the magnetic oxide single crystal is heat-treated sequentially from the edges under a local temperature gradient. In addition, the magnetic oxide single crystal in the production method of the present invention may be a polycrystal that is completely (bi-oriented) in a certain direction in a broad sense.For example, in a perpendicular magnetization recording material, the magnetic oxide single crystal It is preferable to use a fine polycrystalline thin film or thin plate that is perfectly oriented (-) in the direction of magnetization, which is easier than a single crystal.

〔発明の実施例〕[Embodiments of the invention]

次(二実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically explained with reference to the following two examples.

実施例l Mn0.60 znO−34Fe2.0604から成る
組成(D Mn Znフェライトの粉体12 fを第1
図に示すよう(二白金るつぼlで溶解し、これを50α
/seeの周速で回転するスチール製の双ロール3(:
流し込んで圧延急冷し、幅約40朋、長さ約3 m 、
厚さ約加μmの薄板を作製した。この薄板の一部を取っ
てX線回折で調べたところ非晶質であることが確認され
た。この非晶JR酸化物4を示差熱分析装置(二より結
晶化温度を測定したところ650℃であった。次C二と
の非晶質酸化物4を第2図C二本すよう(二、その上下
両側(二2本の白金ヒータ5を配置し、最高温度が13
20°0、温度勾酸り00℃/cm条件下で、2酩/分
の速さで通過させて端蔀側から再結晶化した。X線回折
及び塩酸のエツチング処理(二より、薄板の端部を除い
てこの酸化物薄板が単結晶であること確認した。
Example 1 Composition consisting of Mn0.60 znO-34Fe2.0604 (D Mn Zn ferrite powder 12 f was first
As shown in the figure (dissolved in a two-platinum crucible, 50α
Steel twin rolls 3 rotating at a circumferential speed of /see (:
Poured, rolled and rapidly cooled, approximately 40mm wide and 3m long.
A thin plate having a thickness of approximately 1 μm was prepared. When a part of this thin plate was examined by X-ray diffraction, it was confirmed that it was amorphous. The crystallization temperature of this amorphous JR oxide 4 was measured using a differential thermal analyzer (2) and was found to be 650°C. , the upper and lower sides (22 platinum heaters 5 are arranged, and the maximum temperature is 13
Recrystallization was carried out from the edge side by passing the sample under the conditions of 20° C. and a temperature gradient of 00° C./cm at a rate of 2 g/min. X-ray diffraction and hydrochloric acid etching treatment (second analysis) confirmed that this oxide thin plate was a single crystal except for the edges of the thin plate.

又、この酸化物単結晶薄板の一部をX線ラウェ写真を撮
ったところ、板面が(110)面のスピネル型結晶構造
であることが確認された。又、X線マイクロアナライザ
ーよりMn、Zn、Feの元素の組成分析したところ全
く組成変動がないことが分った。
Further, when an X-ray Laue photograph was taken of a part of this oxide single crystal thin plate, it was confirmed that the plate surface had a spinel type crystal structure with a (110) plane. Further, when the composition of elements Mn, Zn, and Fe was analyzed using an X-ray microanalyzer, it was found that there was no compositional variation at all.

実施例2゜ Mn−Znフェライトの粉体量を601に、回転する双
ロールの周速を10 crtt /seeにした他は実
施例1と同様の装置を用いて作製した。得られた試料は
幅約6C1+π、長さ約200 ** 、厚さ約1mで
あった。この薄板の一部を・とってX線回折で調べたと
ころスピネル型結晶構造であった。この結晶質酸化物薄
板を光学顕微鏡で結晶粒の大きさを調べたところ0.2
μm以下の結晶粒より成っていることが確認された。次
(二この微細多結晶質酸化物を一端(二板面が(ioo
)面のMnZn フエライ) 単結晶1fEt (D 
(OtO)面を接触させて第2図C二本すように同様に
最高温度1370°0.温度勾配50 ”O/ cIr
Lの条件下で、0.4tnx1分を通過させて端部より
順次再結晶化させた。塩酸のエツチング及びX線ラウェ
写真より得られた酸化物薄板は板面が(100)面で、
スピネル型結晶構造を有する酸化物単結晶であることが
確認された。
Example 2 The same apparatus as in Example 1 was used except that the amount of Mn--Zn ferrite powder was 601, and the circumferential speed of the rotating twin rolls was 10 crtt/see. The obtained sample had a width of about 6C1+π, a length of about 200**, and a thickness of about 1 m. When a part of this thin plate was examined by X-ray diffraction, it was found to have a spinel-type crystal structure. When we examined the crystal grain size of this crystalline oxide thin plate using an optical microscope, it was found that the size of the crystal grains was 0.2.
It was confirmed that it consisted of crystal grains of μm or less. Next (two) one end of this fine polycrystalline oxide (two plate surface is (ioo
) single crystal 1fEt (D
Similarly, the maximum temperature was 1370°0. Temperature gradient 50”O/cIr
Under the condition of L, 0.4 tn x 1 minute was passed through the sample to sequentially recrystallize from the end. The oxide thin plate obtained from hydrochloric acid etching and X-ray Laue photography has a (100) plane,
It was confirmed that it was an oxide single crystal with a spinel type crystal structure.

実施例3゜ 第3図(二示す高周波スパッタ装置を用いY3Fe。Example 3゜ Figure 3 (Y3Fe using the high frequency sputtering device shown in Figure 2).

01.2から成る組成の焼結体をターゲラ) 12とし
て、ガス圧5 x 10 Torrのアルゴン、酸素(
混合比5:5)の雰囲気中で放電させて、ターゲット1
2に対向して配置されたアルミナ基板13上に薄膜4を
スパッタ蒸着した。なおこの場合、アルミナ基板13は
室温とした。また得られた薄膜は縦80 ** 、横8
6m1、厚さ旬μmであり、これをX線回析で調べたと
ころ非晶質であることが確認された。またこの非晶質酸
化物薄膜な示差熱分析で調べたところ結晶化温度740
℃であった。
A sintered body having a composition consisting of
Target 1 was discharged in an atmosphere with a mixing ratio of 5:5.
A thin film 4 was sputter-deposited on an alumina substrate 13 placed opposite to 2. In this case, the alumina substrate 13 was kept at room temperature. Also, the obtained thin film has a length of 80 ** and a width of 8
It was 6 m1 in thickness and approximately 100 μm thick, and when examined by X-ray diffraction, it was confirmed that it was amorphous. Furthermore, when this amorphous oxide thin film was examined by differential thermal analysis, the crystallization temperature was 740.
It was ℃.

このようにしてアルミナ基板〕3上に形成された ・非
晶質酸化物薄膜4を第4図)二示すように2本の白金ヒ
ーター5により最高温度が1350℃、温度勾配30°
O/(mの条件下で0.247分の速さで通過させて、
端部側から順次再結晶化した。
In this way, the amorphous oxide thin film 4 formed on the alumina substrate 3 is heated to a maximum temperature of 1350°C with a temperature gradient of 30° by two platinum heaters 5, as shown in Figure 4).
Let it pass at a speed of 0.247 min under the condition of O/(m,
Recrystallization was performed sequentially from the end side.

このようにして得られた酸化物単結晶6の一部をX線ラ
ウェ写真を撮ったところ、膜面が(111)であるガー
ネット型の単結晶であるととが確認された。
When a part of the oxide single crystal 6 thus obtained was taken by an X-ray Laue photograph, it was confirmed that it was a garnet type single crystal with a (111) film surface.

以上のように本発明に係る磁性酸化物単結晶の製造方法
は従来の大型単結晶からのスライシング(−比べ、大面
積で欠陥がな(1g++z以下の薄膜や薄板の単結晶が
得られ、しかも製造が容易で量産性(1宮み、低コスト
(二製造することができる々ど顕著々効果を有するもの
である。
As described above, the method for producing a magnetic oxide single crystal according to the present invention can yield a thin film or thin plate single crystal with a large area and no defects (1g++z or less), compared to conventional slicing from a large single crystal. It is easy to manufacture, mass-producible (one size), low cost (can be manufactured twice), and has remarkable effects.

特(二本発明の製造方法で得られたMnZn フェライ
ト単結晶は低コストであり、すぐれた特性を有すると共
に特性の信頼性、再現性が高(、VTR用磁気記碌ヘン
ドとして極めて有用で工業上有効なものである。
In particular, the MnZn ferrite single crystal obtained by the production method of the present invention is low cost, has excellent properties, and has high reliability and reproducibility of properties. It is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるもので、液体急冷法に
より非晶質磁性酸化物を作製している状態を示す斜視図
、第2図は液体急冷法(二より得られた非晶質磁性酸化
物を再結晶化して込る状態を示す余1視図、第3図は高
周波スパッタ装置により非晶質酸化物をスパッタ蒸着し
ている状態を示す装置の概略図、第4図は基板上(ニス
バッタ蒸着された非晶質磁性酸化物を再結晶化している
状態を示す斜視図である。 l・・・るつぼ、 2・・・酸化物融体、3・・・双ロ
ール、 4・・・非晶質酸化物、5・・・ヒーター、 
6・・・磁性酸化物単結晶、9゛°°真空容器、 10
・・・高周波電源、12・・・ターゲット、 13・・
・基数。 代理人弁理士 則近憲佑 (他1名) 第 1 図 第 3 図 第 4 図
FIG. 1 is a perspective view showing an example of the present invention in which an amorphous magnetic oxide is produced by the liquid quenching method, and FIG. Fig. 3 is a schematic view of the apparatus showing the state in which an amorphous oxide is sputter-deposited using a high-frequency sputtering apparatus, and Fig. 4 is a perspective view showing the state in which a highly magnetic oxide is recrystallized. It is a perspective view showing a state in which an amorphous magnetic oxide deposited on a substrate (varnish batter vapor deposited) is recrystallized. l... Crucible, 2... Oxide melt, 3... Twin roll, 4 ...Amorphous oxide, 5...Heater,
6...Magnetic oxide single crystal, 9゛°° vacuum container, 10
...High frequency power supply, 12...Target, 13...
·radix. Representative Patent Attorney Kensuke Norichika (1 other person) Figure 1 Figure 3 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1) 、1−相又は固溶体から成る結晶質磁性酸化物
を非晶質化した後、当該非晶質磁性酸化物を局部的表温
度勾配下で、順次端部より再結晶化することを特徴とす
る磁性酸化物単結晶の製造方法。
(1) After amorphizing a crystalline magnetic oxide consisting of a 1-phase or solid solution, the amorphous magnetic oxide is sequentially recrystallized from the edges under a local surface temperature gradient. A method for producing a characteristic magnetic oxide single crystal.
(2)結晶質磁性酸化物の非晶質化を液体急冷法により
行うことを特徴とする特許請求の範囲第1項記載の磁性
酸化物単結晶の製造方法。
(2) A method for producing a magnetic oxide single crystal according to claim 1, characterized in that the crystalline magnetic oxide is made amorphous by a liquid quenching method.
(3)結晶質磁性酸化物の非晶質化を蒸着法により基板
物質に付着させて行うことを特徴とする特許請求の範囲
第、1項記載の磁性酸化物単結晶の製造方法。
(3) A method for manufacturing a magnetic oxide single crystal according to claim 1, characterized in that the crystalline magnetic oxide is made amorphous by being attached to a substrate material by a vapor deposition method.
(4)再結晶化を、最高温度が非晶質磁性酸化物の結晶
化温度以上で、融点+300”O以下の温度で行うこと
を特徴とする特許請求の範囲第1項記載の磁性酸化物単
結晶の製造方法。
(4) The magnetic oxide according to claim 1, wherein the recrystallization is performed at a maximum temperature higher than the crystallization temperature of the amorphous magnetic oxide and lower than the melting point +300"O. Method for producing single crystals.
(5)再結晶化を、非晶質磁性酸化物の一端(二種付け
して行うことを特徴とする特許請求の範囲第1項記載の
磁性酸化物単結晶の製造方法。
(5) The method for producing a magnetic oxide single crystal according to claim 1, characterized in that the recrystallization is performed at one end (two types) of the amorphous magnetic oxide.
(6)結晶質磁性酸化物として、鉄族遷移金属元素(T
i 、v、Cr、Mn、Fe、Co、Ni 、Cu)と
希土類遷移金属元素(La、Ce、Pr、Nd、Pm、
Sm、Eu、Gd、Tb、Dy、Ho。 Er、Tu、Yb、Lu)のうちの少くとも1種から成
る磁性酸化物を主成分として且つ、アルカリ金属(Li
 。 Na、K)、アルカリ上41i金属(Mg、 Ca 、
 Sr 、Ba) 、 Sc 。 Y、B、Zr、Hf、Zn、Cd、Si、Ge、Sn、
Pb、A/、In、Bi 、Sbのうちの少くとも1種
を含む酸化物を副成分とする磁性酸化物を周込たことを
特徴とする特許請求の範囲第1項記載の磁性酸化物単結
晶の製造方法。 (力 結晶質磁性酸化物がスピネル型、ガーネット型、
ペロブスカイト型、及び六方晶のフェライト磁性酸化物
であることを特徴とする特許請求の範囲第6項記載の磁
性酸化物単結晶の製造方法。
(6) As a crystalline magnetic oxide, an iron group transition metal element (T
i, v, Cr, Mn, Fe, Co, Ni, Cu) and rare earth transition metal elements (La, Ce, Pr, Nd, Pm,
Sm, Eu, Gd, Tb, Dy, Ho. The main component is a magnetic oxide consisting of at least one of the following: Er, Tu, Yb, Lu) and an alkali metal (Li).
. 41i metals on alkali (Mg, Ca,
Sr, Ba), Sc. Y, B, Zr, Hf, Zn, Cd, Si, Ge, Sn,
The magnetic oxide according to claim 1, characterized in that it contains a magnetic oxide whose subcomponent is an oxide containing at least one of Pb, A/, In, Bi, and Sb. Method for producing single crystals. (Force crystalline magnetic oxides are spinel type, garnet type,
7. The method for producing a magnetic oxide single crystal according to claim 6, wherein the magnetic oxide is a perovskite type and hexagonal ferrite magnetic oxide.
JP17308183A 1983-09-21 1983-09-21 Manufacture of single crystal of magnetic oxide Pending JPS6065511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17308183A JPS6065511A (en) 1983-09-21 1983-09-21 Manufacture of single crystal of magnetic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17308183A JPS6065511A (en) 1983-09-21 1983-09-21 Manufacture of single crystal of magnetic oxide

Publications (1)

Publication Number Publication Date
JPS6065511A true JPS6065511A (en) 1985-04-15

Family

ID=15953851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17308183A Pending JPS6065511A (en) 1983-09-21 1983-09-21 Manufacture of single crystal of magnetic oxide

Country Status (1)

Country Link
JP (1) JPS6065511A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152010A (en) * 1984-01-19 1985-08-10 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPS62119760A (en) * 1985-11-19 1987-06-01 Ricoh Co Ltd Photomagnetic recording material
CN108395233A (en) * 2018-03-26 2018-08-14 南通冠优达磁业有限公司 High-power and low-loss high frequency transformer MnZn ferrite material and preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152010A (en) * 1984-01-19 1985-08-10 Ricoh Co Ltd Metal oxide magnetic substance and magnetic film
JPH0576763B2 (en) * 1984-01-19 1993-10-25 Ricoh Kk
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPS62119760A (en) * 1985-11-19 1987-06-01 Ricoh Co Ltd Photomagnetic recording material
CN108395233A (en) * 2018-03-26 2018-08-14 南通冠优达磁业有限公司 High-power and low-loss high frequency transformer MnZn ferrite material and preparation method

Similar Documents

Publication Publication Date Title
Carosella et al. Pulsed laser deposition of epitaxial BaFe12O19 thin films
Adamov et al. Electrical and structural properties of thin gold films obtained by vacuum evaporation and sputtering
EP1593759A1 (en) Substrate for forming magnetic garnet single-crystal film, optical device and process for producing the same
Wang et al. Microwave and magnetic properties of double-sided hexaferrite films on (111) magnesium oxide substrates
Desai et al. Annealing induced structural change in sputter deposited copper ferrite thin films and its impact on magnetic properties
US20030177975A1 (en) Rare earth-iron garnet single crystal material and method for preparation thereof and device using rare earth-iron garnet single crystal material
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JP2003267796A (en) Oxide having perovskite structure and method for producing the same
JP2003267800A (en) Oxide ion-conducting crystal and method for producing the same
WO2003000963A1 (en) Substrate for forming magnetic garnet single crystal film, optical device, and its production method
US4057458A (en) Method of making nickel zinc ferrite by liquid-phase epitaxial growth
JP2004269305A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
US4293371A (en) Method of making magnetic film-substrate composites
JPS6065511A (en) Manufacture of single crystal of magnetic oxide
Tolksdorf et al. Crystal growth of magnetic garnets from high-temperature solutions
US20060150893A1 (en) Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
Papakonstantinou et al. Substrate temperature and oxygen pressure dependence of pulsed laser-deposited Sr ferrite films
Sasaura et al. Twin-free single crystal growth of NdGaO3
JPH04500061A (en) Epitaxial Ba-Y-Cu-O superconductor film on perovski structure support
US4202930A (en) Lanthanum indium gallium garnets
JPS593091A (en) Production of oxide single crystal
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JPH0354454B2 (en)
JP2763040B2 (en) Oxide garnet single crystal
JPH01249691A (en) Production of superconducting thin film