JP4432874B2 - Method for producing magnetic garnet single crystal - Google Patents

Method for producing magnetic garnet single crystal Download PDF

Info

Publication number
JP4432874B2
JP4432874B2 JP2005311682A JP2005311682A JP4432874B2 JP 4432874 B2 JP4432874 B2 JP 4432874B2 JP 2005311682 A JP2005311682 A JP 2005311682A JP 2005311682 A JP2005311682 A JP 2005311682A JP 4432874 B2 JP4432874 B2 JP 4432874B2
Authority
JP
Japan
Prior art keywords
single crystal
mol
temperature
garnet single
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005311682A
Other languages
Japanese (ja)
Other versions
JP2007119278A (en
Inventor
敦 大井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005311682A priority Critical patent/JP4432874B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to CN2005800396760A priority patent/CN101061263B/en
Priority to EP05806917A priority patent/EP1820886A4/en
Priority to PCT/JP2005/021103 priority patent/WO2006054628A1/en
Priority to US11/666,331 priority patent/US7811465B2/en
Priority to TW094140430A priority patent/TWI300811B/en
Publication of JP2007119278A publication Critical patent/JP2007119278A/en
Application granted granted Critical
Publication of JP4432874B2 publication Critical patent/JP4432874B2/en
Priority to US12/806,000 priority patent/US8815011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

本発明は、フラックス法を用いて磁性ガーネット単結晶を育成する磁性ガーネット単結晶の製造方法に関する。   The present invention relates to a method for producing a magnetic garnet single crystal by growing a magnetic garnet single crystal using a flux method.

ファラデー回転子は、透過する光の偏光面を回転させる機能を有する光学素子であり、光アイソレータ、光アッテネータ、光磁界センサ等の光デバイスに使用される。ファラデー回転子は、一般に板状のビスマス(Bi)置換希土類鉄ガーネット単結晶を用いて作製される。Bi置換希土類鉄ガーネット単結晶は、フラックス法の一種である液相エピタキシャル(LPE)法により育成される。   The Faraday rotator is an optical element having a function of rotating the plane of polarization of transmitted light, and is used in optical devices such as an optical isolator, an optical attenuator, and a magnetic field sensor. A Faraday rotator is generally manufactured using a plate-like bismuth (Bi) -substituted rare earth iron garnet single crystal. Bi-substituted rare earth iron garnet single crystal is grown by a liquid phase epitaxial (LPE) method which is a kind of flux method.

フラックス法等の溶液法によりBi置換希土類鉄ガーネット単結晶を育成する際には、過飽和状態を保ちながらガーネット単結晶を安定に成長させるために、一般にPbO、Bi及びBが溶媒として用いられる。このため磁性ガーネット単結晶の育成時には結晶中に少量の鉛(Pb)が混入する。従来、通信用光デバイスに使用されるファラデー回転子には、化学式Bi3−α−βM1αPbβFe5−γ−δM2γM3δ12においてPbの量βが0.03〜0.06程度である磁性ガーネット単結晶が用いられる。
特開2001−044026号公報 特開2001−044027号公報
When a Bi-substituted rare earth iron garnet single crystal is grown by a solution method such as a flux method, PbO, Bi 2 O 3 and B 2 O 3 are generally used in order to stably grow a garnet single crystal while maintaining a supersaturated state. Used as a solvent. For this reason, when growing a magnetic garnet single crystal, a small amount of lead (Pb) is mixed in the crystal. Conventionally, the Faraday rotator used for the optical device for communication has a Pb amount β of 0.03 to 0 in the chemical formula Bi 3-α-β M1 α Pb β Fe 5-γ-δ M2 γ M3 δ O 12 . A magnetic garnet single crystal of about .06 is used.
JP 2001-044026 A JP 2001-044027 A

ところが近年の環境保護運動の高まりと共に、全ての工業製品で環境負荷物質であるPbの含有量を削減する努力がなされている。従って、LPE法により育成する磁性ガーネット単結晶においても、少量ではあるが混入するPbが環境汚染の要因になり得るとして問題になってきた。そこでファラデー回転子を構成する材料である磁性ガーネット単結晶に含有するPbの量を削減する必要が生じている。   However, with the recent increase in environmental protection movement, efforts are being made to reduce the content of Pb, which is an environmentally hazardous substance, in all industrial products. Therefore, even in a magnetic garnet single crystal grown by the LPE method, a small amount of Pb mixed therein has become a problem because it can cause environmental pollution. Therefore, it is necessary to reduce the amount of Pb contained in the magnetic garnet single crystal that is a material constituting the Faraday rotator.

本発明の目的は、Pbの含有量を削減した磁性ガーネット単結晶の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a magnetic garnet single crystal with a reduced Pb content.

上記目的は、Na、Bi及びBを含む溶媒に、Fe、Ga及びAlのうちFeを含む少なくとも一種の元素を9.0mol%以上25.5mol%以下の配合率で溶解して溶液を生成し、前記溶液を用いて磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット単結晶の製造方法によって達成される。   The purpose is to form a solution by dissolving at least one element containing Fe among Fe, Ga and Al in a solvent containing Na, Bi and B at a blending ratio of 9.0 mol% to 25.5 mol%. This is achieved by a method for producing a magnetic garnet single crystal using the solution to grow a magnetic garnet single crystal.

また上記目的は、Na、Bi及びBを含む溶媒に、Fe、Ga及びAlのうちFeを含む少なくとも一種の元素を溶解して溶液を生成し、前記溶液を用いて600℃以上900℃以下の育成温度で磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット単結晶の製造方法によって達成される。   Further, the above object is to produce a solution by dissolving at least one element containing Fe among Fe, Ga and Al in a solvent containing Na, Bi and B, and using the solution, the temperature is from 600 ° C. to 900 ° C. This is achieved by a method for producing a magnetic garnet single crystal characterized by growing a magnetic garnet single crystal at a growth temperature.

さらに上記目的は、Na、Bi及びBを含む溶媒に、Fe、Ga及びAlのうちFeを含む少なくとも一種の元素を配合率x(mol%)で溶解して溶液を生成し、前記溶液を用いて、436+18.2x≦y≦555+18.2xを満たす育成温度y(℃)で磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット単結晶の製造方法によって達成される。   Further, the object is to produce a solution by dissolving at least one element containing Fe among Fe, Ga and Al in a solvent containing Na, Bi and B at a compounding ratio x (mol%), and using the solution. The magnetic garnet single crystal is grown at a growth temperature y (° C.) that satisfies 436 + 18.2x ≦ y ≦ 555 + 18.2x.

上記本発明の磁性ガーネット単結晶の製造方法であって、前記配合率xは9.0mol%以上であり、前記育成温度yは900℃以下であることを特徴とする。   In the method for producing a magnetic garnet single crystal of the present invention, the blending ratio x is 9.0 mol% or more, and the growth temperature y is 900 ° C. or less.

上記本発明の磁性ガーネット単結晶の製造方法であって、前記溶液はAu製のルツボ内で生成することを特徴とする。   In the method for producing a magnetic garnet single crystal of the present invention, the solution is produced in a crucible made of Au.

本発明によれば、Pbの含有量を削減した磁性ガーネット単結晶を実現できる。   According to the present invention, a magnetic garnet single crystal with reduced Pb content can be realized.

本発明の一実施の形態による磁性ガーネット単結晶の製造方法について図1乃至図3を用いて説明する。本実施の形態では、ガーネット単結晶に微量含まれていたPbを完全に除去するために、従来の溶媒に含まれるPbをナトリウム(Na)で代替し、Na、Bi及びホウ素(B)を含む溶媒からBi置換希土類鉄ガーネット単結晶を育成する。ところが、Na、Bi及びBを含む溶媒からガーネット単結晶を育成する技術は開発されて間もないため、ガーネット単結晶を安定に育成できる育成条件の詳細は明らかになっていない。特に、溶質の主成分であるFe、Ga及びAlに関する育成条件は分かっていない。そのため、育成条件によってはガーネット単結晶が得られないという問題や、欠陥や割れが多数あるガーネット単結晶しか得られないという問題が生じ得る。 A method for producing a magnetic garnet single crystal according to an embodiment of the present invention will be described with reference to FIGS. In this embodiment, in order to completely remove Pb contained in a trace amount in a garnet single crystal, Pb contained in a conventional solvent is replaced with sodium (Na), and Na, Bi, and boron (B) are contained. A Bi-substituted rare earth iron garnet single crystal is grown from a solvent. However, since a technique for growing a garnet single crystal from a solvent containing Na, Bi, and B has just been developed, details of growth conditions that can stably grow a garnet single crystal have not been clarified. In particular, the growth conditions for Fe 2 O 3 , Ga 2 O 3 and Al 2 O 3 which are the main components of the solute are not known. Therefore, depending on the growth conditions, there may be a problem that a garnet single crystal cannot be obtained, or a problem that only a garnet single crystal having many defects and cracks can be obtained.

本実施の形態では、Na、Bi及びBを含む溶媒を用い、溶質の主成分である鉄(Fe)、ガリウム(Ga)及びアルミニウム(Al)の配合率xを変えた種々の育成条件でBi置換希土類鉄ガーネット単結晶(磁性ガーネット単結晶)の育成を試みた。ここで、本願明細書中で用いられる「配合率」とは、ルツボに充填されるNa、Bi、B、Fe、Ga、Al、希土類元素など溶液中でカチオン(陽イオン)となる元素の総mol数に占める各元素のmol数の割合(mol%)のことである。また、「Fe、Ga及びAlの配合率x」とは、Feの配合率、Gaの配合率及びAlの配合率の和のことである。図1は、Fe、Ga及びAlの配合率xと、ガーネット単結晶を育成する際の溶液の温度(育成温度)yとの関係を示すグラフである。グラフの横軸は配合率x(mol%)を表し、縦軸は育成温度y(℃)を表している。   In the present embodiment, a solvent containing Na, Bi and B is used, and Bi is grown under various growth conditions in which the mixing ratio x of iron (Fe), gallium (Ga) and aluminum (Al), which are main components of the solute, is changed. Attempts were made to grow substituted rare earth iron garnet single crystals (magnetic garnet single crystals). Here, the “mixing ratio” used in the present specification is the total number of elements that become cations (cations) in a solution such as Na, Bi, B, Fe, Ga, Al, and rare earth elements filled in the crucible. It is the ratio (mol%) of the number of moles of each element in the number of moles. In addition, “Fe, Ga, and Al compounding ratio x” is the sum of Fe compounding ratio, Ga compounding ratio, and Al compounding ratio. FIG. 1 is a graph showing the relationship between the mixing ratio x of Fe, Ga and Al and the temperature (growth temperature) y of the solution when growing a garnet single crystal. The horizontal axis of the graph represents the blending ratio x (mol%), and the vertical axis represents the growth temperature y (° C.).

Na、Bi及びBを含む溶媒からガーネット単結晶を育成する際には、金(Au)製のルツボが必須と考えられる。Auは比較的低い融点(1064℃)を持つ柔らかい金属であるため、溶液の温度が950℃を超えるとAu製ルツボは形状を保てなくなる。したがって、ルツボに投入した材料を融解する融解温度は950℃以下にする必要がある。ガーネット単結晶は融解温度より更に温度の低い過飽和状態で育成されることになるので、育成温度yは900℃以下にする必要がある(図1の直線a及びそれより下)。Fe、Ga及びAlの配合率xを変えて単結晶育成を行ったところ、育成温度yを900℃以下にするにはFe、Ga及びAlの配合率xを25.5mol%以下にする必要があることが分かった(図1の直線b及びそれより左)。   When growing a garnet single crystal from a solvent containing Na, Bi and B, a crucible made of gold (Au) is considered essential. Since Au is a soft metal having a relatively low melting point (1064 ° C.), the shape of the Au crucible cannot be maintained when the temperature of the solution exceeds 950 ° C. Therefore, the melting temperature for melting the material charged in the crucible needs to be 950 ° C. or lower. Since the garnet single crystal is grown in a supersaturated state lower in temperature than the melting temperature, the growing temperature y needs to be 900 ° C. or lower (the straight line a in FIG. 1 and below). When single crystal growth was performed while changing the mixing ratio x of Fe, Ga and Al, it was necessary to set the mixing ratio x of Fe, Ga and Al to 25.5 mol% or less in order to make the growth temperature y 900 ° C. or less. It was found that there is a line (b in FIG. 1 and left).

一方、Fe、Ga及びAlの配合率xを低くするとガーネット単結晶の成長速度が低下する。成長速度が著しく低下すると、ファラデー回転子に加工し得る大きさのガーネット単結晶を得るためには極めて長時間の結晶育成が必要となってしまい、ガーネット単結晶を製造する上で障害となる。具体的には、Fe、Ga及びAlの配合率xが9.0mol%より低くなると、成長速度が低くなり過ぎてファラデー回転子に適したガーネット単結晶の育成が困難になる。したがって、Fe、Ga及びAlの配合率xは9.0mol%以上であることが望ましい(図1の直線c及びそれより右)。また、Fe、Ga及びAlの配合率xを9.0mol%以上にするには、育成温度yを600℃以上にする必要があることが分かった(図1の直線d及びそれより上)。   On the other hand, when the mixing ratio x of Fe, Ga and Al is lowered, the growth rate of the garnet single crystal is lowered. When the growth rate is remarkably reduced, crystal growth for an extremely long time is required to obtain a garnet single crystal having a size that can be processed into a Faraday rotator, which is an obstacle to producing a garnet single crystal. Specifically, when the blending ratio x of Fe, Ga, and Al is lower than 9.0 mol%, the growth rate becomes too low and it becomes difficult to grow a garnet single crystal suitable for a Faraday rotator. Therefore, the blending ratio x of Fe, Ga and Al is desirably 9.0 mol% or more (the straight line c in FIG. 1 and the right side thereof). Further, it was found that the growth temperature y must be 600 ° C. or higher in order to make the Fe, Ga, and Al compounding ratio x be 9.0 mol% or higher (straight line d in FIG. 1 and above).

Bi置換希土類鉄ガーネット(BiRe3−zFe12;Reは希土類元素を表す)単結晶において十分に大きいファラデー回転角を得るためには、Bi量を示すzが0.5以上であることが望ましい。一方、Bi量zが1.5より大きくなると過飽和状態が不安定になり、ガーネット単結晶に多数の割れや欠陥が発生してしまうため、Bi量zは1.5以下であることが望ましい。したがって、Bi置換希土類鉄ガーネット単結晶をファラデー回転子に用いるためには、Bi量zは0.5以上1.5以下であるのが望ましい。 Bi-substituted rare earth iron garnet (Bi z Re 3-z Fe 5 O 12; Re represents a rare earth element) in order to obtain a sufficiently large Faraday rotation angle in the single crystal, with z indicating the Bi content is 0.5 or more It is desirable to be. On the other hand, if the Bi amount z is larger than 1.5, the supersaturated state becomes unstable, and a large number of cracks and defects occur in the garnet single crystal. Therefore, the Bi amount z is desirably 1.5 or less. Therefore, in order to use a Bi-substituted rare earth iron garnet single crystal for a Faraday rotator, the Bi amount z is desirably 0.5 or more and 1.5 or less.

Biは希土類元素と比較して温度が低くなるほど偏析係数が大きくなるため、育成温度yが低くなるほどガーネット単結晶中のBi量zは多くなる傾向がある。したがって、Fe、Ga及びAlの配合率xが同じ材料を用いた場合、Bi量zの少ないガーネット単結晶を育成する際の育成温度yは高くなり、Bi量zの多いガーネット単結晶を育成する場合の育成温度yは低くなる傾向がある。   Since Bi has a higher segregation coefficient as the temperature is lower than that of rare earth elements, the Bi amount z in the garnet single crystal tends to increase as the growth temperature y decreases. Therefore, when materials having the same mixing ratio x of Fe, Ga, and Al are used, the growth temperature y when growing a garnet single crystal with a small Bi amount z is high, and a garnet single crystal with a large Bi amount z is grown. In this case, the growth temperature y tends to be low.

Fe、Ga及びAlの配合率xを9.0mol%から19.0mol%までの範囲で変えて、Bi量zが0.5のBi置換希土類鉄ガーネット単結晶を育成した。配合率xと育成温度yとの間には、図1の直線eのようなほぼ直線的な関係が認められた。配合率x(mol%)及び育成温度y(℃)の関係は、単位の次元を無視するとy=555+18.2xと表される。これは、Fe、Ga及びAlの配合率xが増加すると材料の融解温度が直線的に上昇し、それに伴い育成温度yも上昇するためと考えられる。   A Bi-substituted rare earth iron garnet single crystal having a Bi content z of 0.5 was grown by changing the compounding ratio x of Fe, Ga and Al in a range from 9.0 mol% to 19.0 mol%. A substantially linear relationship such as a straight line e in FIG. 1 was recognized between the blending ratio x and the growth temperature y. The relationship between the blending ratio x (mol%) and the growth temperature y (° C.) is expressed as y = 555 + 18.2x when the unit dimension is ignored. This is presumably because the melting temperature of the material rises linearly and the growth temperature y rises along with an increase in the mixing ratio x of Fe, Ga and Al.

また、Fe、Ga及びAlの配合率xを9.0mol%から25.5mol%までの範囲で変えて、Bi量zが1.5のBi置換希土類鉄ガーネット単結晶を育成した。配合率xと育成温度yとの間には、図1の直線eよりも低い育成温度yで直線eとほぼ同一の傾きを持つ直線fのような直線的な関係が認められた。配合率x(mol%)及び育成温度y(℃)の関係は、単位の次元を無視するとy=436+18.2xと表される。したがって、2本の直線e、f及びそれらで挟まれた範囲の配合率x及び育成温度yで単結晶を育成することにより、Bi量zが0.5以上1.5以下でありファラデー回転子に適したBi置換希土類鉄ガーネット単結晶が得られることが分かった。   Further, a Bi-substituted rare earth iron garnet single crystal having a Bi content z of 1.5 was grown by changing the compounding ratio x of Fe, Ga, and Al in a range from 9.0 mol% to 25.5 mol%. A linear relationship such as a straight line f having almost the same inclination as the straight line e at a growing temperature y lower than the straight line e in FIG. 1 was recognized between the blending ratio x and the growing temperature y. The relationship between the compounding ratio x (mol%) and the growth temperature y (° C.) is expressed as y = 436 + 18.2x when the unit dimension is ignored. Therefore, by growing a single crystal with two straight lines e and f and a blending ratio x and a growth temperature y in a range between them, the Bi amount z is 0.5 to 1.5 and the Faraday rotator It was found that a Bi-substituted rare earth iron garnet single crystal suitable for the above can be obtained.

以上の結果より、Bi置換希土類鉄ガーネット単結晶の好ましい育成条件が得られた。すなわち、Fe、Ga及びAlの配合率xが9.0mol%以上25.5mol%以下である場合(図1の2本の直線c、b及びそれらの間)に、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を育成できる。また、育成温度yが600℃以上900℃以下である場合(図1の2本の直線d、a及びそれらの間)に、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を育成できる。さらに、Fe、Ga及びAlの配合率x(mol%)と育成温度y(℃)とが436+18.2x≦y≦555+18.2xの関係を満たす場合(図1の2本の直線f、e及びそれらの間)に、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を育成できる。図1の直線a、c、e、f及びそれらで囲まれた範囲の配合率x及び育成温度yのようにこれらの育成条件を全て満たすことによって、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶をより安定に育成できるようになる。   From the above results, preferable growth conditions for Bi-substituted rare earth iron garnet single crystals were obtained. That is, when the mixing ratio x of Fe, Ga, and Al is 9.0 mol% or more and 25.5 mol% or less (two straight lines c and b in FIG. 1 and between them), Bi suitable for a Faraday rotator. A substituted rare earth iron garnet single crystal can be grown. Further, when the growth temperature y is 600 ° C. or more and 900 ° C. or less (the two straight lines d and a in FIG. 1 and between them), a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator can be grown. Further, when the mixing ratio x (mol%) of Fe, Ga and Al and the growth temperature y (° C.) satisfy the relationship of 436 + 18.2x ≦ y ≦ 555 + 18.2x (two straight lines f, e and Between them, Bi-substituted rare earth iron garnet single crystals suitable for Faraday rotators can be grown. A Bi-substituted rare earth iron garnet suitable for a Faraday rotator is obtained by satisfying all of these growth conditions such as the straight lines a, c, e, and f in FIG. A single crystal can be grown more stably.

なお本実施の形態では、溶媒に溶解する溶質の主成分としてFe、Ga及びAlを用いているが、Ga及びAlは必ずしも用いる必要はない。例えばGaを用いない場合、配合率xはFeの配合率とAlの配合率との和を表す。またGa及びAlの双方を用いない場合、配合率xはFeの配合率を表す。   In this embodiment, Fe, Ga, and Al are used as the main components of the solute dissolved in the solvent. However, Ga and Al are not necessarily used. For example, when Ga is not used, the blending ratio x represents the sum of the blending ratio of Fe and the blending ratio of Al. Moreover, when not using both Ga and Al, the compounding rate x represents the compounding rate of Fe.

本実施の形態によれば、Pbの含有量を削減した磁性ガーネット単結晶の製造方法を実現できる。また本実施の形態によれば、Na、Bi及びBを含む溶媒を用いてファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を安定に育成することが可能になる。
以下、本実施の形態による磁性ガーネット単結晶の製造方法について、実施例及び比較例を用いてより具体的に説明する。
According to the present embodiment, a method for producing a magnetic garnet single crystal with a reduced Pb content can be realized. Further, according to the present embodiment, it is possible to stably grow a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator using a solvent containing Na, Bi and B.
Hereinafter, the manufacturing method of the magnetic garnet single crystal by this Embodiment is demonstrated more concretely using an Example and a comparative example.

(実施例1)
図2は、単結晶を育成する工程の一部を示している。まずAu製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは14.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.5mol%、52.5mol%、24.5mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液(溶液)8を生成した。直径2インチのCaMgZr置換GGG(ガドリニウム・ガリウム・ガーネット)基板10を固定冶具2に取り付けて炉内に投入した。750℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度750℃でエピタキシャル成長を4時間行った。y1=436+18.2x、y2=555+18.2xとすると、育成温度yとy1、y2との関係はy1<y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.00Gd1.70Yb0.30Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
Example 1
FIG. 2 shows a part of a process for growing a single crystal. First, in a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O, which weighs 2.3 kg in total. 3. Filled with NaOH. The blending ratio x of Fe, Ga and Al was 14.0 mol%. Moreover, the compounding ratio of B, Bi, and Na was 8.5 mol%, 52.5 mol%, and 24.5 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt (solution) 8. A CaMgZr-substituted GGG (gadolinium gallium garnet) substrate 10 having a diameter of 2 inches was attached to the fixed jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 750 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 750 ° C. for 4 hours. When y1 = 436 + 18.2x and y2 = 555 + 18.2x, the relationship between the growth temperature y and y1, y2 was y1 <y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. Composition analysis of the single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.00 Gd 1.70 Yb 0.30 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP (Inductively Coupled Plasma) analysis, the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 . It was found that this was a Bi-substituted rare earth iron garnet single crystal that could be used for a Faraday rotator.

(実施例2)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは14.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.4mol%、52.4mol%、24.4mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。810℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度810℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y≒y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi0.52Gd2.48Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGd)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 2)
The crucible 4 made of Au was filled with Gd 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH that totaled 2.3 kg. . The blending ratio x of Fe, Ga and Al was 14.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.4 mol%, 52.4 mol%, and 24.4 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 810 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 810 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y≈y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. The composition of the single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi 0.52 Gd 2.48 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na was detected but the composition was confirmed. I couldn't. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGd) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例3)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは14.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.5mol%、52.6mol%、24.5mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。690℃まで融液の温度を下げてから基板10の片面を融液8に接触させ、育成温度690℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1≒y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.50Gd0.87Yb0.63Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 3)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The blending ratio x of Fe, Ga and Al was 14.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.5 mol%, 52.6 mol%, and 24.5 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt was lowered to 690 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 690 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1≈y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. When the composition of the single crystal was analyzed by X-ray fluorescence analysis, the composition was Bi 1.50 Gd 0.87 Yb 0.63 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected. However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例4)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは9.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.9mol%、55.4mol%、25.8mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。720℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度720℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y≒y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi0.52Gd2.48Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGd)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
Example 4
The crucible 4 made of Au was filled with Gd 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH that totaled 2.3 kg. . The blending ratio x of Fe, Ga and Al was 9.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.9 mol%, 55.4 mol%, and 25.8 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 720 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 720 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y≈y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. The composition of the single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi 0.52 Gd 2.48 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na was detected but the composition was confirmed. I couldn't. Then composition was examined in detail by the ICP analysis, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGd) 2.998 Na 0.002 (FeGaAl), used in the Faraday rotator It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例5)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは9.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.9mol%、55.5mol%、25.9mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。660℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度660℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.00Gd1.70Yb0.30Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 5)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The blending ratio x of Fe, Ga and Al was 9.0 mol%. Moreover, the compounding rates of B, Bi, and Na were 8.9 mol%, 55.5 mol%, and 25.9 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 660 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 660 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. Composition analysis of the single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.00 Gd 1.70 Yb 0.30 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例6)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは9.0mol%であった。また、B、Bi、Naの配合率は、それぞれ9.0mol%、55.6mol%、25.9mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。600℃まで融液8の温度を下げてから基板10の片面を融液に接触させ、育成温度600℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1≒y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.50Gd0.87Yb0.63Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 6)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The blending ratio x of Fe, Ga and Al was 9.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 9.0 mol%, 55.6 mol%, and 25.9 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 600 ° C., one side of the substrate 10 was brought into contact with the melt, and epitaxial growth was performed at a growth temperature of 600 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1≈y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. When the composition of the single crystal was analyzed by X-ray fluorescence analysis, the composition was Bi 1.50 Gd 0.87 Yb 0.63 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected. However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例7)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは19.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.0mol%、49.3mol%、23.0mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。900℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度900℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y≒y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi0.52Gd2.48Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGd)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 7)
The crucible 4 made of Au was filled with Gd 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH that totaled 2.3 kg. . The compounding ratio x of Fe, Ga and Al was 19.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.0 mol%, 49.3 mol%, and 23.0 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 900 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 900 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y≈y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. The composition of the single crystal was analyzed by X-ray fluorescence analysis. The composition was Bi 0.52 Gd 2.48 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na was detected but the composition was confirmed. I couldn't. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGd) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例8)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率は19.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.0mol%、49.4mol%、23.0mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。840℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度840℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.00Gd1.70Yb0.30Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 8)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The compounding ratio of Fe, Ga, and Al was 19.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.0 mol%, 49.4 mol%, and 23.0 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 840 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 840 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. Composition analysis of the single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.00 Gd 1.70 Yb 0.30 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例9)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは19.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.0mol%、49.5mol%、23.1mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。780℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度780℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1≒y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.50Gd0.87Yb0.63Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
Example 9
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The compounding ratio x of Fe, Ga and Al was 19.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.0 mol%, 49.5 mol%, and 23.1 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 780 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 780 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1≈y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. When the composition of the single crystal was analyzed by X-ray fluorescence analysis, the composition was Bi 1.50 Gd 0.87 Yb 0.63 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected. However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例10)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは22.0mol%であった。また、B、Bi、Naの配合率は、それぞれ7.7mol%、47.6mol%、22.2mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。900℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度900℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.50Gd0.87Yb0.63Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 10)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The compounding ratio x of Fe, Ga, and Al was 22.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 7.7 mol%, 47.6 mol%, and 22.2 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 900 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 900 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. When the composition of the single crystal was analyzed by X-ray fluorescence analysis, the composition was Bi 1.50 Gd 0.87 Yb 0.63 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected. However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(実施例11)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは25.5mol%であった。また、B、Bi、Naの配合率は、それぞれ7.3mol%、45.5mol%、21.2mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。900℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度900℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1≒y<y2であった。その結果、欠陥のない膜厚80μmの単結晶膜12が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi1.50Gd0.87Yb0.63Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002(FeGaAl)5.00012であることが分かり、ファラデー回転子に使用可能なBi置換希土類鉄ガーネット単結晶であることを確認した。
(Example 11)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The blending ratio x of Fe, Ga and Al was 25.5 mol%. Moreover, the compounding ratios of B, Bi, and Na were 7.3 mol%, 45.5 mol%, and 21.2 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 900 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 900 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1≈y <y2. As a result, a single crystal film 12 having a film thickness of 80 μm without defects could be grown. When the composition of the single crystal was analyzed by X-ray fluorescence analysis, the composition was Bi 1.50 Gd 0.87 Yb 0.63 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected. However, the composition could not be determined. Next, when the composition was evaluated in detail by ICP analysis, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeGaAl) 5.000 O 12 and used for the Faraday rotator. It was confirmed that it was a possible Bi-substituted rare earth iron garnet single crystal.

(比較例1)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは25.5mol%であった。また、B、Bi、Naの配合率は、それぞれ7.3mol%、45.5mol%、21.2mol%であった。材料が充填されたルツボ4を電気炉に配置した。980℃まで炉温を上げてルツボ4内の材料の融解及び攪拌を試みたが、炉温を上げすぎたためルツボ4が変形し単結晶の育成はできなかった。
(Comparative Example 1)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The blending ratio x of Fe, Ga and Al was 25.5 mol%. Moreover, the compounding ratios of B, Bi, and Na were 7.3 mol%, 45.5 mol%, and 21.2 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. Attempts were made to melt and stir the material in the crucible 4 by raising the furnace temperature to 980 ° C. However, because the furnace temperature was raised too much, the crucible 4 was deformed and the single crystal could not be grown.

(比較例2)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは25.5mol%であった。また、B、Bi、Naの配合率は、それぞれ7.3mol%、45.5mol%、21.2mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。880℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度880℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy<y1<y2であった。育成中、融液8中に多数の固形物が析出したため単結晶膜に多数の結晶欠陥が発生し、育成した単結晶をファラデー回転子に使用することは不可能であった。
(Comparative Example 2)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The blending ratio x of Fe, Ga and Al was 25.5 mol%. Moreover, the compounding ratios of B, Bi, and Na were 7.3 mol%, 45.5 mol%, and 21.2 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 880 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 880 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y <y1 <y2. During the growth, a large number of solids were precipitated in the melt 8, so that a large number of crystal defects occurred in the single crystal film, and it was impossible to use the grown single crystal for the Faraday rotator.

(比較例3)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは19.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.0mol%、49.3mol%、23.0mol%であった。材料が充填されたルツボ4を電気炉に配置した。980℃まで炉温を上げてルツボ4内の材料を融解して攪拌を試みたが、炉温を上げすぎたためルツボ4が変形し単結晶の育成はできなかった。
(Comparative Example 3)
The crucible 4 made of Au was filled with Gd 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH that totaled 2.3 kg. . The compounding ratio x of Fe, Ga and Al was 19.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.0 mol%, 49.3 mol%, and 23.0 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. Although the furnace temperature was raised to 980 ° C. and the material in the crucible 4 was melted and stirred, the crucible 4 was deformed and the single crystal could not be grown because the furnace temperature was raised too much.

(比較例4)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは19.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.0mol%、49.5mol%、23.1mol%であった。材料が充填されたルツボ4を電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を融解温度950℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。750℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度750℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy<y1<y2であった。育成中、融液8中に多数の固形物が析出したため単結晶膜に多数の結晶欠陥が発生し、育成した単結晶をファラデー回転子に使用することは不可能であった。
(Comparative Example 4)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 that weighs 2.3 kg in total. Charged with NaOH. The compounding ratio x of Fe, Ga and Al was 19.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.0 mol%, 49.5 mol%, and 23.1 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 950 ° C., and the material in the crucible 4 was melted at a melting temperature of 950 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 750 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 750 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y <y1 <y2. During the growth, a large number of solids were precipitated in the melt 8, so that a large number of crystal defects occurred in the single crystal film, and it was impossible to use the grown single crystal for the Faraday rotator.

(比較例5)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、La、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは9.0mol%であった。また、B、Bi、Naの配合率は、それぞれ8.9mol%、55.5mol%、25.9mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。750℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度750℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y2<yであった。その結果、欠陥のない膜厚80μmの単結晶膜が育成できた。蛍光X線分析法により単結晶を組成分析したところ、組成はBi0.40Gd2.54La0.06Fe4.80Ga0.10Al0.1012であり、Naは検出できたが組成を確定することはできなかった。次にICP分析法で詳しく組成を評価したところ、磁性ガーネット単結晶の化学式は、(BiGdLa)2.998Na0.002(FeGaAl)5.00012であることが分かった。しかしながら、育成した単結晶はBi量が少なく、ファラデー回転係数が小さ過ぎるためファラデー回転子には使用できないことを確認した。
(Comparative Example 5)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , La 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 totaling a weight of 2.3 kg. , Bi 2 O 3 , NaOH. The blending ratio x of Fe, Ga and Al was 9.0 mol%. Moreover, the compounding rates of B, Bi, and Na were 8.9 mol%, 55.5 mol%, and 25.9 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 750 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 750 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y2 <y. As a result, a single crystal film having a thickness of 80 μm without any defects was grown. Composition analysis of the single crystal by X-ray fluorescence analysis revealed that the composition was Bi 0.40 Gd 2.54 La 0.06 Fe 4.80 Ga 0.10 Al 0.10 O 12 and Na could be detected. However, the composition could not be determined. Then composition was examined in detail by the ICP analysis, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdLa) 2.998 Na 0.002 (FeGaAl). However, it was confirmed that the grown single crystal has a small amount of Bi and has a Faraday rotation coefficient that is too small to be used for a Faraday rotator.

(比較例6)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、La、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは9.0mol%であった。また、B、Bi、Naの配合率はそれぞれ8.9mol%、55.5mol%、25.9mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。580℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度580℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy<y1<y2であった。育成中、融液8中に多数の固形物が析出したため単結晶膜に多数の結晶欠陥が発生し、育成した単結晶をファラデー回転子に使用することは不可能であった。
(Comparative Example 6)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , La 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 that weighs 2.3 kg in total. , Bi 2 O 3 , NaOH. The blending ratio x of Fe, Ga and Al was 9.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 8.9 mol%, 55.5 mol%, and 25.9 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 580 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 580 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y <y1 <y2. During the growth, a large number of solids were precipitated in the melt 8, so that a large number of crystal defects occurred in the single crystal film, and it was impossible to use the grown single crystal for the Faraday rotator.

(比較例7)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、La、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは8.0mol%であった。また、B、Bi、Naの配合率は、それぞれ9.0mol%、56.1mol%、26.2mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。720℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度720℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y2<yであった。しかし、成長速度が低いため膜厚5μmの単結晶膜しか得られなかった。この成長速度では育成時間を延ばしてもファラデー回転子に必要な膜厚を得ることはできないため、本比較例の育成条件は、ファラデー回転子に用いるための磁性ガーネット単結晶の育成に不適であることが分かった。
(Comparative Example 7)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , La 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 that weighs 2.3 kg in total. , Bi 2 O 3 , NaOH. The compounding ratio x of Fe, Ga, and Al was 8.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 9.0 mol%, 56.1 mol%, and 26.2 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 720 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 720 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y2 <y. However, since the growth rate was low, only a single crystal film having a film thickness of 5 μm was obtained. At this growth rate, even if the growth time is extended, the film thickness required for the Faraday rotator cannot be obtained. Therefore, the growth conditions of this comparative example are unsuitable for growing a magnetic garnet single crystal for use in the Faraday rotator. I understood that.

(比較例8)
Au製のルツボ4に、合計で2.3kgの重量になるGd、Yb、La、Fe、Ga、Al、B、Bi、NaOHを充填した。Fe、Ga及びAlの配合率xは8.0mol%であった。また、B、Bi、Naの配合率は、それぞれ9.0mol%、56.1mol%、26.2mol%であった。材料が充填されたルツボ4を電気炉に配置した。900℃まで炉温を上げてルツボ4内の材料を融解温度900℃で融解して攪拌し、均一な融液8を生成した。直径2インチのCaMgZr置換GGG基板10を固定冶具2に取り付けて炉内に投入した。600℃まで融液8の温度を下げてから基板10の片面を融液8に接触させ、育成温度600℃でエピタキシャル成長を4時間行った。育成温度yとy1、y2との関係はy1<y<y2であった。しかし、成長速度が低いため膜厚10μmの単結晶膜しか得られなかった。この成長速度では育成時間を延ばしてもファラデー回転子に必要な膜厚を得ることはできないため、本比較例の育成条件は、ファラデー回転子に用いるための磁性ガーネット単結晶の育成に不適であることが分かった。
(Comparative Example 8)
In a crucible 4 made of Au, Gd 2 O 3 , Yb 2 O 3 , La 2 O 3 , Fe 2 O 3 , Ga 2 O 3 , Al 2 O 3 , B 2 O 3 totaling a weight of 2.3 kg. , Bi 2 O 3 , NaOH. The compounding ratio x of Fe, Ga, and Al was 8.0 mol%. Moreover, the compounding ratios of B, Bi, and Na were 9.0 mol%, 56.1 mol%, and 26.2 mol%, respectively. The crucible 4 filled with the material was placed in an electric furnace. The furnace temperature was raised to 900 ° C., and the material in the crucible 4 was melted at a melting temperature of 900 ° C. and stirred to produce a uniform melt 8. A CaMgZr-substituted GGG substrate 10 having a diameter of 2 inches was attached to the fixing jig 2 and placed in the furnace. After the temperature of the melt 8 was lowered to 600 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed at a growth temperature of 600 ° C. for 4 hours. The relationship between the growth temperature y and y1 and y2 was y1 <y <y2. However, since the growth rate was low, only a single crystal film having a thickness of 10 μm was obtained. At this growth rate, even if the growth time is extended, the film thickness required for the Faraday rotator cannot be obtained. Therefore, the growth conditions of this comparative example are unsuitable for growing a magnetic garnet single crystal for use in the Faraday rotator. I understood that.

図3は、上記の実施例及び比較例の育成条件等をまとめて示している。また、図1の●印(E1〜E11)は実施例1〜11での配合率x及び育成温度yをそれぞれ示し、図1の△印(C1〜C8)は比較例1〜8での配合率x及び育成温度yをそれぞれ示している(ただし、比較例1及び3では単結晶を育成できなかったため育成温度に代えて融解温度を示している)。図1及び図3に示すように、Fe、Ga及びAlの配合率xが9.0mol%以上25.5mol%以下である場合に、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を育成できる。また、育成温度yが600℃以上900℃以下である場合に、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を育成できる。さらに、Fe、Ga及びAlの配合率x(mol%)と育成温度y(℃)とが436+18.2x≦y≦555+18.2xの関係を満たす場合に、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶を育成できる。これらの育成条件を全て満たすことによって、ファラデー回転子に適したBi置換希土類鉄ガーネット単結晶をより安定に育成できるようになる。   FIG. 3 collectively shows the growth conditions and the like of the above examples and comparative examples. 1 (E1 to E11) represents the blending ratio x and the growth temperature y in Examples 1 to 11, respectively, and Δ marks (C1 to C8) in FIG. 1 represent blends in Comparative Examples 1 to 8, respectively. The rate x and the growth temperature y are shown respectively (however, in Comparative Examples 1 and 3, since the single crystal could not be grown, the melting temperature was shown instead of the growth temperature). As shown in FIGS. 1 and 3, a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator is grown when the mixing ratio x of Fe, Ga and Al is 9.0 mol% or more and 25.5 mol% or less. it can. In addition, when the growth temperature y is 600 ° C. or higher and 900 ° C. or lower, a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator can be grown. Furthermore, when the mixing ratio x (mol%) of Fe, Ga and Al and the growth temperature y (° C.) satisfy the relationship of 436 + 18.2x ≦ y ≦ 555 + 18.2x, Bi-substituted rare earth iron suitable for a Faraday rotator Can grow garnet single crystals. By satisfying all of these growth conditions, a Bi-substituted rare earth iron garnet single crystal suitable for a Faraday rotator can be grown more stably.

本発明の一実施の形態による磁性ガーネット単結晶の製造方法における配合率xと育成温度yとの関係を示すグラフである。It is a graph which shows the relationship between the compounding rate x and the growth temperature y in the manufacturing method of the magnetic garnet single crystal by one embodiment of this invention. 単結晶を育成する工程の一部を示す図である。It is a figure which shows a part of process of growing a single crystal. 実施例1乃至11及び比較例1乃至8の育成条件等をまとめて示す表である。It is a table | surface which shows the growth conditions etc. of Example 1 thru | or 11 and Comparative Examples 1-8 collectively.

符号の説明Explanation of symbols

2 固定冶具
4 ルツボ
8 融液
10 基板
12 単結晶膜
2 Fixing jig 4 Crucible 8 Melt 10 Substrate 12 Single crystal film

Claims (2)

Na、Bi及びBを含む溶媒に、Fe、Ga及びAlのうちFeを含む少なくとも一種の元素を9.0mol%以上の配合率x(mol%)で溶解して溶液を生成し、
前記溶液を用いて、436+18.2x≦y≦555+18.2xを満たす900℃以下の育成温度y(℃)で磁性ガーネット単結晶を育成すること
を特徴とする磁性ガーネット単結晶の製造方法。
In a solvent containing Na, Bi and B, at least one element containing Fe among Fe, Ga and Al is dissolved at a blending ratio x (mol%) of 9.0 mol% or more to produce a solution,
A method for producing a magnetic garnet single crystal, comprising using the solution to grow a magnetic garnet single crystal at a growth temperature y (° C.) of 900 ° C. or less that satisfies 436 + 18.2x ≦ y ≦ 555 + 18.2x.
請求項記載の磁性ガーネット単結晶の製造方法であって、
前記溶液はAu製のルツボ内で生成すること
を特徴とする磁性ガーネット単結晶の製造方法。
A method for producing a magnetic garnet single crystal according to claim 1 ,
The method for producing a magnetic garnet single crystal, wherein the solution is produced in a crucible made of Au.
JP2005311682A 2004-11-19 2005-10-26 Method for producing magnetic garnet single crystal Expired - Fee Related JP4432874B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005311682A JP4432874B2 (en) 2005-10-26 2005-10-26 Method for producing magnetic garnet single crystal
EP05806917A EP1820886A4 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal, optical device using same and method for producing single crystal
PCT/JP2005/021103 WO2006054628A1 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal, optical device using same and method for producing single crystal
US11/666,331 US7811465B2 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
CN2005800396760A CN101061263B (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal, optical device using same and method for producing single crystal
TW094140430A TWI300811B (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal and optical device using the same, and method of single crystal
US12/806,000 US8815011B2 (en) 2004-11-19 2010-08-27 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311682A JP4432874B2 (en) 2005-10-26 2005-10-26 Method for producing magnetic garnet single crystal

Publications (2)

Publication Number Publication Date
JP2007119278A JP2007119278A (en) 2007-05-17
JP4432874B2 true JP4432874B2 (en) 2010-03-17

Family

ID=38143511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311682A Expired - Fee Related JP4432874B2 (en) 2004-11-19 2005-10-26 Method for producing magnetic garnet single crystal

Country Status (1)

Country Link
JP (1) JP4432874B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225472B2 (en) * 2002-07-05 2009-02-18 Tdk株式会社 Magnetic garnet material, Faraday rotator, optical device, method for producing bismuth-substituted rare earth iron garnet single crystal film, and single crystal film
JP2004269305A (en) * 2003-03-07 2004-09-30 Tdk Corp Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method

Also Published As

Publication number Publication date
JP2007119278A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
US7811465B2 (en) Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
JP4702090B2 (en) Magnetic garnet single crystal and optical element using the same
JP3959099B2 (en) Method for producing magnetic garnet single crystal
WO2012086819A1 (en) Bi-substituted rare earth iron garnet single crystal, method for producing same, and optical device
JP2012012283A (en) Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD FOR PRODUCING SAME AND OPTICAL DEVICE
DE102010021203B4 (en) Terbium titanate for use as a Faraday rotator - Faraday rotator and optical isolator
JP4432874B2 (en) Method for producing magnetic garnet single crystal
US20090073549A1 (en) Magnetic garnet single crystal and faraday rotator using the same
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP4720730B2 (en) Optical element manufacturing method
JP4432875B2 (en) Method for producing garnet single crystal
JP5311474B2 (en) Magnetic garnet single crystal
JP4432896B2 (en) Method for producing garnet single crystal
JP4821344B2 (en) Magnetic garnet single crystal and optical element using the same
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP5292543B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP4844464B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JP6887678B2 (en) Method for manufacturing magnetic garnet single crystal
JP4867281B2 (en) Single crystal manufacturing method
JP2005247590A (en) Magnetic garnet single crystal and optical element using the same
JP2009147184A (en) Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal
JPH04137716A (en) Manufacture of bi replacing magnetic garnet crystal
JPH04362098A (en) Bi-substituted garnet crystal and its growing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees