JP3959099B2 - Method for producing magnetic garnet single crystal - Google Patents

Method for producing magnetic garnet single crystal Download PDF

Info

Publication number
JP3959099B2
JP3959099B2 JP2005286734A JP2005286734A JP3959099B2 JP 3959099 B2 JP3959099 B2 JP 3959099B2 JP 2005286734 A JP2005286734 A JP 2005286734A JP 2005286734 A JP2005286734 A JP 2005286734A JP 3959099 B2 JP3959099 B2 JP 3959099B2
Authority
JP
Japan
Prior art keywords
single crystal
garnet single
magnetic garnet
composition
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005286734A
Other languages
Japanese (ja)
Other versions
JP2006169093A (en
Inventor
敦 大井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005286734A priority Critical patent/JP3959099B2/en
Application filed by TDK Corp filed Critical TDK Corp
Priority to TW094140430A priority patent/TWI300811B/en
Priority to PCT/JP2005/021103 priority patent/WO2006054628A1/en
Priority to US11/666,331 priority patent/US7811465B2/en
Priority to CN2005800396760A priority patent/CN101061263B/en
Priority to EP05806917A priority patent/EP1820886A4/en
Publication of JP2006169093A publication Critical patent/JP2006169093A/en
Application granted granted Critical
Publication of JP3959099B2 publication Critical patent/JP3959099B2/en
Priority to US12/806,000 priority patent/US8815011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、液相エピタキシャル(LPE)法により育成した磁性ガーネット単結晶及びそれを用いた光学素子並びに磁性ガーネット単結晶の製造方法に関する。   The present invention relates to a magnetic garnet single crystal grown by a liquid phase epitaxial (LPE) method, an optical element using the same, and a method for producing a magnetic garnet single crystal.

通信用光アイソレータや光サーキュレータ等に使用されるファラデー回転子は一般にLPE法により育成された磁性ガーネット単結晶から作製される。LPE法で用いられる溶媒にはBやBi等と共にPbOが使われており、このため磁性ガーネット単結晶の育成時に結晶中に少量の鉛が混入する。従来、通信用光デバイスでは化学式Bi3−x−yM1PbFe5−z−wM2M312において、Pbの量yが0.03〜0.06程度である磁性ガーネット単結晶をファラデー回転子の材料にしている。 A Faraday rotator used for an optical isolator for communication, an optical circulator, or the like is generally made from a magnetic garnet single crystal grown by the LPE method. As a solvent used in the LPE method, PbO is used together with B 2 O 3 , Bi 2 O 3, and the like, so that a small amount of lead is mixed in the crystal when growing the magnetic garnet single crystal. Conventionally, in the chemical formula Bi 3-x-y M1 in communication optical device x Pb y Fe 5-z- w M2 z M3 w O 12, the magnetic garnet single amount of Pb y is about 0.03 to 0.06 The crystal is used as the material for the Faraday rotator.

特開2001−044026号公報JP 2001-044026 A 特開2001−044027号公報JP 2001-044027 A

ところが近年の環境保護運動の高まりと共に、全ての工業製品で環境負荷物質である鉛の含有量を削減させる努力がなされている。従って、LPE法により育成する磁性ガーネット単結晶においても、少量ではあるが混入する鉛が環境汚染の要因になり得るとして問題になってきた。そこでファラデー回転子を構成する材料である磁性ガーネット単結晶に含有する鉛の量を削減する必要が生じている。   However, with the recent increase in environmental protection movement, efforts are being made to reduce the content of lead, which is an environmentally hazardous substance, in all industrial products. Therefore, even in a magnetic garnet single crystal grown by the LPE method, a small amount of lead mixed in has become a problem because it can cause environmental pollution. Therefore, it is necessary to reduce the amount of lead contained in the magnetic garnet single crystal that is a material constituting the Faraday rotator.

本発明の目的は、鉛の含有量を削減した磁性ガーネット単結晶及びそれを用いた光学素子並びに磁性ガーネット単結晶の製造方法を提供することにある。   An object of the present invention is to provide a magnetic garnet single crystal with reduced lead content, an optical element using the same, and a method for producing the magnetic garnet single crystal.

上記目的は、液相エピタキシャル成長法により育成され、化学式 BiNaPbM13−x−y−zFe5−wM212(式中のM1はY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luから選択される少なくとも1種類以上の元素、M2はGa、Al、In、Ti、Ge、Si、Ptから選択される少なくとも1種類以上の元素であり、0.5<x≦2.0、0<y≦0.05、0≦z<0.01、0.94≦3−x−y−z<2.5、0≦w≦1.6)で示されることを特徴とする磁性ガーネット単結晶によって達成される。 The above object is grown by a liquid phase epitaxial growth method, and has the chemical formula Bi x Na y Pb z M1 3-x-yz Fe 5-w M2 w O 12 (where M1 is Y, Sm, Eu, Gd, Tb , Dy, Ho, Er, Tm, Yb, Lu, and at least one element selected from M2, and M2 is at least one element selected from Ga, Al, In, Ti, Ge, Si, Pt 0.5 <x ≦ 2.0, 0 <y ≦ 0.05 , 0 ≦ z <0.01, 0.94 ≦ 3-xyz <2.5, 0 ≦ w ≦ 1.6 It is achieved by a magnetic garnet single crystal characterized by the following.

また、上記目的は、上記本発明の磁性ガーネット単結晶で形成されることを特徴とする光学素子により達成される。
さらに上記目的は、NaOHを含む材料を用いてNaを含む融液を生成し、前記融液を用いて液相エピタキシャル成長法によりNaを含む磁性ガーネット単結晶を育成することを特徴とする磁性ガーネット単結晶の製造方法により達成される。
The above object is achieved by an optical element formed of the magnetic garnet single crystal of the present invention.
Further, the object is to produce a Na-containing melt using a material containing NaOH, and to grow a magnetic garnet single crystal containing Na by liquid phase epitaxial growth using the melt. This is achieved by a crystal production method.

本発明によれば、ファラデー回転子に用いられる磁性ガーネット単結晶に含まれるPb量を削減し、あるいは完全に除去することができる。   According to the present invention, the amount of Pb contained in the magnetic garnet single crystal used for the Faraday rotator can be reduced or completely removed.

本発明の一実施の形態による磁性ガーネット単結晶及びそれを用いた光学素子並びに磁性ガーネット単結晶の製造方法について説明する。液相エピタキシャル法で磁性ガーネット単結晶膜の育成に使用する溶媒には通常、PbO及び、B、Biが用いられる。Biはファラデー回転子に使用される磁性ガーネット単結晶の主要な構成元素でもあり、溶媒と溶質の両方の役割を兼ねている。そして主な溶質には各種希土類元素の酸化物、Fe、及びFeと置換できる非磁性元素の酸化物が用いられる。本願における希土類元素は、単独で安定してFeとガーネット単結晶を作ることができるY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどである。また、Feと置換できる非磁性元素は、Ga、Al、In、Ti、Ge、Si、Ptなどである。 A magnetic garnet single crystal according to an embodiment of the present invention, an optical element using the same, and a method for producing a magnetic garnet single crystal will be described. Usually, PbO, B 2 O 3 , and Bi 2 O 3 are used as the solvent used for growing the magnetic garnet single crystal film by the liquid phase epitaxial method. Bi is also a main constituent element of the magnetic garnet single crystal used for the Faraday rotator, and serves as both a solvent and a solute. As main solutes, oxides of various rare earth elements, Fe 2 O 3 , and oxides of nonmagnetic elements that can replace Fe are used. The rare earth elements in the present application are Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like that can stably form Fe and garnet single crystals independently. Nonmagnetic elements that can replace Fe are Ga, Al, In, Ti, Ge, Si, Pt, and the like.

図1は、本実施の形態における磁性ガーネット単結晶に入り得る各元素の価数とイオン半径とを示している。Pbは2価の電荷を持つカチオン(陽イオン)の状態で単結晶育成中に磁性ガーネット単結晶膜に入る。磁性ガーネット単結晶を構成するBiや希土類元素のカチオンの電荷は基本的に3価であるため、2価の電荷を持つPbのカチオンがガーネット単結晶中に入ると、電荷のバランスが崩れることになる。そこでガーネット単結晶に入り得る4価の電荷を持つカチオンが融液中に存在すると、そのカチオンはPbカチオンの2価の電荷を補償するようにガーネット単結晶に取り込まれる。なおPbはイオン半径が希土類元素と比べて大きいため、溶液中に占める割合に比べてわずかな量が希土類鉄ガーネット単結晶に入るだけである。   FIG. 1 shows the valence and ion radius of each element that can enter the magnetic garnet single crystal in the present embodiment. Pb enters a magnetic garnet single crystal film during single crystal growth in the form of a cation (cation) having a divalent charge. Since the charges of Bi and rare earth cations constituting the magnetic garnet single crystal are basically trivalent, if the Pb cation having a divalent charge enters the garnet single crystal, the charge balance will be lost. Become. Therefore, when a cation having a tetravalent charge that can enter the garnet single crystal is present in the melt, the cation is incorporated into the garnet single crystal so as to compensate for the divalent charge of the Pb cation. Since Pb has a larger ionic radius than rare earth elements, only a small amount of Pb enters the rare earth iron garnet single crystal compared to the proportion in the solution.

Naは1価の電荷を持つカチオンの状態で単結晶育成中に磁性ガーネット単結晶膜に入る。Pbと同様に、4価の電荷を持つカチオンを当該磁性ガーネット単結晶に取り込むことにより、磁性ガーネット単結晶に入ったNaの1価の電荷を補償することが可能である。Naのイオン半径は通常の希土類元素よりは大きいがPbよりは小さい。そのためNaは、磁性ガーネット単結晶内に希土類元素よりは入り難いがPbより安定的に入り易い。   Na enters the magnetic garnet single crystal film during single crystal growth in the form of a cation having a monovalent charge. Similarly to Pb, by incorporating a cation having a tetravalent charge into the magnetic garnet single crystal, it is possible to compensate for the monovalent charge of Na contained in the magnetic garnet single crystal. The ionic radius of Na is larger than that of ordinary rare earth elements but smaller than that of Pb. Therefore, Na is less likely to enter the magnetic garnet single crystal than the rare earth element, but is more likely to enter stably than Pb.

NaとPbは両方とも、磁性ガーネット単結晶中で希土類元素と比べ電荷の価数が小さく、またイオン半径が大きな元素である。但し、Naのイオン半径の方がPbより希土類元素のイオン半径に近いため、PbとNaが同時に単結晶育成用の融液中に存在する場合には、Naの方がPbよりガーネット単結晶に入り易い傾向がある。NaカチオンとPbカチオンの価数は希土類元素のカチオンの価数より小さい点では同じ特性を有しているが、Naは優先的にガーネット単結晶に入るためPbがガーネット単結晶に入るのを妨害する効果を有する。従って、Naを磁性ガーネット単結晶に加えることにより、ガーネット単結晶中に入るPbの量を化学式で0.01未満に削減させることができる。
2006年7月には、電気電子機器における有害物質の使用を規制するRoHS(Restriction on Hazardous Substances;有害物質使用制限)指令がEU(欧州連合)で施行される。RoHS指令で規定されるPbの最大許容量は、重量比で1000ppmである。本実施の形態による磁性ガーネット単結晶の組成においては、Pbの量が化学式で0.01未満であれば上記の最大許容量以下にすることも可能になる。従って本実施の形態によれば、RoHS指令に適合した光学素子が得られる。
Both Na and Pb are elements in the magnetic garnet single crystal that have a smaller charge valence and a larger ionic radius than rare earth elements. However, since the ionic radius of Na is closer to that of the rare earth element than Pb, when Pb and Na are simultaneously present in the melt for growing a single crystal, Na is more garnet single crystal than Pb. There is a tendency to enter easily. Na cation and Pb cation have the same characteristics in that they are smaller than the valence of rare earth cations, but Na preferentially enters the garnet single crystal and prevents Pb from entering the garnet single crystal. Has the effect of Therefore, by adding Na to the magnetic garnet single crystal, the amount of Pb entering the garnet single crystal can be reduced to less than 0.01 in chemical formula.
In July 2006, the RoHS (Restriction on Hazardous Substances) Directive, which regulates the use of hazardous substances in electrical and electronic equipment, will come into effect in the EU (European Union). The maximum allowable amount of Pb defined by the RoHS directive is 1000 ppm by weight. In the composition of the magnetic garnet single crystal according to the present embodiment, if the amount of Pb is less than 0.01 in the chemical formula, it is possible to make it not more than the above maximum allowable amount. Therefore, according to the present embodiment, an optical element conforming to the RoHS command can be obtained.

またNaと酸素とを含有する物質は他の酸化物と比べて低い温度で溶解するものが多いため、磁性ガーネット単結晶を育成する際の溶媒としても有効である。例えばNaOHを含む溶媒で育成されたNaが入った磁性ガーネット単結晶は、欠陥や割れのない優れた品質が得られる。そのため溶媒の材料からPbOを除外し、Naを含む物質とBi及びBを溶媒に用いて、Naの入った磁性ガーネット単結晶を育成することにより、Pbが完全に除かれた磁性ガーネット単結晶を得ることが可能である。 In addition, since many substances containing Na and oxygen dissolve at a lower temperature than other oxides, they are also effective as solvents for growing magnetic garnet single crystals. For example, a magnetic garnet single crystal containing Na grown with a solvent containing NaOH can have excellent quality without defects or cracks. Therefore, by removing PbO from the solvent material and growing a magnetic garnet single crystal containing Na using a substance containing Na and Bi 2 O 3 and B 2 O 3 as a solvent, Pb is completely removed. It is possible to obtain a magnetic garnet single crystal.

Naを含む溶媒で磁性ガーネット単結晶を育成する場合には、Naを含まない溶媒に比して溶液の過飽和状態をより安定に保つことができる。そのためBiは化学式で2.0程度まで安定してガーネット単結晶に入ることができる。またファラデー回転子として十分な回転係数(deg./μm)を得るためには、Biは化学式で0.5以上は必要である。   When a magnetic garnet single crystal is grown with a solvent containing Na, the supersaturated state of the solution can be kept more stable than a solvent containing no Na. Therefore, Bi can enter the garnet single crystal stably in a chemical formula up to about 2.0. In order to obtain a sufficient rotation coefficient (deg./μm) as a Faraday rotator, Bi must be 0.5 or more in chemical formula.

非磁性元素が化学式で1.6より多くFeと置換して磁性ガーネット単結晶に入ってくると、磁性ガーネット単結晶のキュリー点が室温付近の温度値まで下がり、ファラデー回転子として使えなくなる。そのためFeと置換される非磁性元素は化学式で1.6以下とすることが必要となる。   When a nonmagnetic element is substituted with more than 1.6 in the chemical formula and enters the magnetic garnet single crystal, the Curie point of the magnetic garnet single crystal falls to a temperature value near room temperature and cannot be used as a Faraday rotator. Therefore, the nonmagnetic element substituted for Fe must be 1.6 or less in chemical formula.

Naがガーネット単結晶に多く入るには、ガーネット単結晶の電荷のバランスを取るために、Ti、Ge、Si、Ptなどの4価の電荷が安定なイオンと共にガーネット単結晶に取り込まれる必要がある。Naが化学式で0.8以上ガーネット単結晶に入るには、4価の電荷で安定なイオンが化学式で1.6以上ガーネット単結晶に入る必要がある。Feと置換可能なTi、Ge、Si、Ptなどの元素が化学式で1.6以上あると、磁性ガーネット単結晶はそのキュリー点が室温以下になってしまいファラデー回転子として使えなくなる。そのためNaのガーネット単結晶に入る量は化学式で0.8までとすることが必要である。
また別の観点として、ガーネット単結晶に入るNaが多くなると、当該ガーネット単結晶を用いて作製されたファラデー回転子の挿入損失が増加してしまう。従って、挿入損失の小さいファラデー回転子を得るためには、Naのガーネット単結晶に入る量は化学式で0.05以下であることが望ましい。
In order for Na to enter a large amount in the garnet single crystal, in order to balance the charge of the garnet single crystal, it is necessary to incorporate tetravalent charges such as Ti, Ge, Si, and Pt into the garnet single crystal together with stable ions. . In order for Na to enter a garnet single crystal with a chemical formula of 0.8 or more, it is necessary that stable ions with a tetravalent charge enter the garnet single crystal with a chemical formula of 1.6 or more. If elements such as Ti, Ge, Si, and Pt that can be substituted for Fe are 1.6 or more in chemical formula, the magnetic garnet single crystal cannot be used as a Faraday rotator because its Curie point falls below room temperature. Therefore, the amount of Na entering the garnet single crystal must be up to 0.8 in the chemical formula.
As another point of view, when the amount of Na entering the garnet single crystal increases, the insertion loss of the Faraday rotator manufactured using the garnet single crystal increases. Therefore, in order to obtain a Faraday rotator with small insertion loss, the amount of Na entering the garnet single crystal is desirably 0.05 or less in chemical formula.

La、Ce、Pr、Nd、Pmなどの元素は単独ではFeとガーネット単結晶を作ることは困難であるが、ガーネット単結晶の構成元素の一部として入ることは可能である。   La, Ce, Pr, Nd, and Pm alone are difficult to form a single crystal of Fe and garnet by themselves, but can be included as a part of constituent elements of a garnet single crystal.

以下、本実施の形態による磁性ガーネット単結晶及びそれを用いた光学素子並びに磁性ガーネット単結晶の製造方法について、図1を参照しつつ実施例1乃至12を用いて具体的に説明する。
(実施例1)
図2は、磁性ガーネット単結晶の製造工程の一部を示している。図2に示すように、金製のルツボ4にGd、Yb、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。
Hereinafter, a magnetic garnet single crystal according to the present embodiment, an optical element using the same, and a method for producing the magnetic garnet single crystal will be specifically described with reference to FIGS.
Example 1
FIG. 2 shows a part of the manufacturing process of the magnetic garnet single crystal. As shown in FIG. 2, the gold crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig.

磁性ガーネット単結晶膜を育成するための基板には、引き上げ法により育成したガーネット単結晶のインゴットから作製された単結晶ウェハを用いる。本実施例では、単結晶育成用基板としてCaMgZr置換GGG(ガドリニウム・ガリウム・ガーネット)単結晶基板((GdCa)(GaMgZr)12)10を用いている。 As a substrate for growing a magnetic garnet single crystal film, a single crystal wafer made from a garnet single crystal ingot grown by a pulling method is used. In this embodiment, a CaMgZr-substituted GGG (gadolinium gallium garnet) single crystal substrate ((GdCa) 3 (GaMgZr) 5 O 12 ) 10 is used as a single crystal growth substrate.

CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、745℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmのBi置換希土類鉄ガーネット単結晶(磁性ガーネット単結晶)膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.30Gd1.20Yb0.50Fe5.0012であり、Naは検出できたが組成を確定することはできなかった。また、Pbは検出されなかった。次にICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002Fe5.00012であることが分かった。従ってこの単結晶にPbは含有されてないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対してファラデー回転角45deg(度)となる単結晶板を作製した。その単結晶板の研磨面に無反射コート(反射防止膜)を成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。 The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 745 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A Bi-substituted rare earth iron garnet single crystal (magnetic garnet single crystal) film 12 having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.30 Gd 1.20 Yb 0.50 Fe 5.00 O 12 and Na was detected but the composition was determined. I couldn't. Moreover, Pb was not detected. Next, when the composition was evaluated in detail by ICP (Inductively Coupled Plasma) analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 Fe 5.000 O 12 . Therefore, it was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a Faraday rotation angle of 45 deg (degrees) with respect to light having a wavelength of 1.55 μm. A non-reflective coating (antireflection film) was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例2)
金製のルツボ4にGd、Yb、Fe、B、GeO2、Bi、PbO、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、745℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.30Gd1.18Yb0.50Na0.02Fe4.95Ge0.0512であり、Pbは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Pbの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYbNa)2.991Pb0.009(FeGe)5.00012であることが分かった。Pbの含有量が非常に少なくなっていることが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 2)
A gold crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , B 2 O 3 , GeO 2 , Bi 2 O 3 , PbO, and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 745 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. The composition of the grown single crystal was analyzed by X-ray fluorescence analysis. As a result, the composition was Bi 1.30 Gd 1.18 Yb 0.50 Na 0.02 Fe 4.95 Ge 0.05 O 12 and Pb was detected. However, the composition could not be determined. Next, when the composition was evaluated in detail by the ICP analysis method, the Pb content was confirmed. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYbNa) 2.991 Pb 0.009 (FeGe). It was confirmed that the Pb content was very low. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例3)
金製のルツボ4にTb、Ho、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、775℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚510μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.04Tb1.67Ho0.29Fe5.0012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiTbHo)2.998Na0.002Fe5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 3)
A gold crucible 4 was filled with Tb 4 O 7 , Ho 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 775 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 510 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.04 Tb 1.67 Ho 0.29 Fe 5.00 O 12 and Na was detected but the composition was confirmed. I couldn't. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be (BiTbHo) 2.998 Na 0.002 Fe 5.000 O 12. It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例4)
金製のルツボ4にEu、Lu、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、810℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を35時間行った。膜厚450μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi0.76Eu1.70Lu0.54Fe5.0012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiEuLu)2.998Na0.002Fe5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.31μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.31μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
Example 4
A crucible 4 made of gold filled with Eu 2 O 3, Lu 2 O 3, Fe 2 O 3, B 2 O 3, Bi 2 O 3, NaOH, was placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 810 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 35 hours. A magnetic garnet single crystal film 12 having a thickness of 450 μm was obtained. Composition analysis of the grown single crystal by fluorescent X-ray analysis revealed that the composition was Bi 0.76 Eu 1.70 Lu 0.54 Fe 5.00 O 12 and Na was detected but the composition was confirmed. I couldn't. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiEuLu) 2.998 Na 0.002 Fe 5.000 O 12 . It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.31 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.31 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例5)
金製のルツボ4にDy、Y、Sm、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、745℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚450μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.29Dy1.200.41Sm0.10Fe5.0012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiDyYSm)2.998Na0.002Fe5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 5)
A gold crucible 4 was filled with Dy 2 O 3 , Y 2 O 3 , Sm 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 745 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 450 μm was obtained. When a grown single crystal was compositionally analyzed by X-ray fluorescence analysis, the composition is a Bi 1.29 Dy 1.20 Y 0.41 Sm 0.10 Fe 5.00 O 12, Na has been detected composition Could not be confirmed. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiDyYSm) 2.998 Na 0.002 Fe 5.000 O 12 . It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例6)
金製のルツボ4にGd、Er、Tm、Fe、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、710℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を20時間行った。膜厚300μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.60Gd0.27Er0.73Tm0.40Fe5.0012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdErTm)2.998Na0.002Fe5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.31μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.31μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として使用可能な特性であった。
(Example 6)
A gold crucible 4 was filled with Gd 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 710 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 20 hours. A magnetic garnet single crystal film 12 having a thickness of 300 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.60 Gd 0.27 Er 0.73 Tm 0.40 Fe 5.00 O 12 and Na was detected but the composition Could not be confirmed. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdErTm) 2.998 Na 0.002 Fe 5.000 O 12 . It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.31 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When light having a wavelength of 1.31 μm was incident and the optical characteristics of the manufactured rotor were evaluated, the characteristics were usable as a Faraday rotator.

(実施例7)
金製のルツボ4にGd、Yb、Fe、Ga、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、786℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚550μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi0.95Gd1.67Yb0.38Fe4.80Ga0.2012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.998Na0.002(FeGa)5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 7)
A crucible 4 made of gold filled with Gd 2 O 3, Yb 2 O 3, Fe 2 O 3, Ga 2 O 3, B 2 O 3, Bi 2 O 3, NaOH, was placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 786 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 550 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 0.95 Gd 1.67 Yb 0.38 Fe 4.80 Ga 0.20 O 12 and Na was detected but the composition Could not be confirmed. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYb) 2.998 Na 0.002 (FeGa). It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例8)
金製のルツボ4にGd、Yb、Fe、Al、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、772℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚530μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.07Gd1.67Yb0.26Fe4.80Al0.2012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.998Na0.002(FeAl)5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 8)
A gold crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , Al 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to a gold fixture 2 and placed in a furnace. After the furnace temperature was lowered to 772 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a film thickness of 530 μm was obtained. The composition of the grown single crystal was analyzed by fluorescent X-ray analysis. The composition was Bi 1.07 Gd 1.67 Yb 0.26 Fe 4.80 Al 0.20 O 12 and Na was detected but the composition Could not be confirmed. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, the chemical formula of the magnetic garnet single crystal was found to be 5.000 O 12 (BiGdYb) 2.998 Na 0.002 (FeAl). It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例9)
金製のルツボ4にGd、Yb、Fe、In、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、805℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を45時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi0.79Gd1.67Yb0.54Fe4.90In0.1012であり、Naは検出されたが組成を確定させることはできなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は(BiGdYb)2.998Na0.002(FeIn)5.00012であることが分かった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.31μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.31μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
Example 9
Gold crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , In 2 O 3 , B 2 O 3 , Bi 2 O 3 , and NaOH, and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 805 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 45 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 0.79 Gd 1.67 Yb 0.54 Fe 4.90 In 0.10 O 12 and Na was detected but the composition Could not be confirmed. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 (FeIn) 5.000 O 12 . It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.31 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.31 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例10)
金製のルツボ4にGd、Yb、Fe、GeO、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、790℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を42時間行った。膜厚570μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi0.93Gd1.67Yb0.20Na0.20Fe4.60Ge0.4012であった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 10)
A gold crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , GeO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 790 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 42 hours. A magnetic garnet single crystal film 12 having a thickness of 570 μm was obtained. When a grown single crystal was compositionally analyzed by X-ray fluorescence analysis, the composition was Bi 0.93 Gd 1.67 Yb 0.20 Na 0.20 Fe 4.60 Ge 0.40 O 12. It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例11)
白金製のルツボ4にGd、Yb、Fe、TiO、SiO、B、Bi、NaOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、746℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を36時間行った。膜厚480μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.28Gd1.20Yb0.50Na0.02Fe4.96Ti0.01Si0.01Pt0.0212であった。この単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対して回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 11)
A platinum crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , TiO 2 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and NaOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 746 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 36 hours. A magnetic garnet single crystal film 12 having a thickness of 480 μm was obtained. The composition of the grown single crystal was analyzed by X-ray fluorescence analysis. As a result, the composition was Bi 1.28 Gd 1.20 Yb 0.50 Na 0.02 Fe 4.96 Ti 0.01 Si 0.01 Pt 0.02. It was O 12. It was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

(実施例12)
金製のルツボ4にGd、Yb、Fe、B、Bi、NaOH、KOHを充填して、電気炉に配置した。950℃まで炉温を上げてルツボ4内の材料を溶解し、金製の攪拌用冶具を使用して融液8を攪拌した。CaMgZr置換GGG基板10を金製の固定冶具2に取り付けて炉内に投入し、745℃まで炉温を下げてから基板10の片面を融液8に接触させてエピタキシャル成長を40時間行った。膜厚500μmの磁性ガーネット単結晶膜12が得られた。育成した単結晶を蛍光X線分析法により組成分析したところ、組成はBi1.30Gd1.20Yb0.50Fe5.0012であり、Naは検出できたが組成を確定することはできなかった。また、PbとKは検出されなかった。次にICP分析法で詳しく組成を評価したところ、Naの含有量を確定できた。その結果、磁性ガーネット単結晶の化学式は、(BiGdYb)2.998Na0.002Fe5.00012であることが分かった。従ってこの単結晶にPbは含有されていないことが確認された。育成した単結晶膜12を加工して、波長1.55μmの光に対してファラデー回転角45degとなる単結晶板を作製した。その単結晶板の研磨面に無反射コートを成膜してファラデー回転子とした。波長1.55μmの光を入射させて、作製した回転子の光学特性を評価したところ、ファラデー回転子として問題のない特性であった。
(Example 12)
A gold crucible 4 was filled with Gd 2 O 3 , Yb 2 O 3 , Fe 2 O 3 , B 2 O 3 , Bi 2 O 3 , NaOH, and KOH and placed in an electric furnace. The furnace temperature was raised to 950 ° C., the material in the crucible 4 was dissolved, and the melt 8 was stirred using a gold stirring jig. The CaMgZr-substituted GGG substrate 10 was attached to the gold fixture 2 and placed in the furnace. After the furnace temperature was lowered to 745 ° C., one side of the substrate 10 was brought into contact with the melt 8 and epitaxial growth was performed for 40 hours. A magnetic garnet single crystal film 12 having a thickness of 500 μm was obtained. Composition analysis of the grown single crystal by X-ray fluorescence analysis revealed that the composition was Bi 1.30 Gd 1.20 Yb 0.50 Fe 5.00 O 12 and Na was detected but the composition was determined. I couldn't. Moreover, Pb and K were not detected. Next, when the composition was evaluated in detail by ICP analysis, the content of Na could be determined. As a result, it was found that the chemical formula of the magnetic garnet single crystal was (BiGdYb) 2.998 Na 0.002 Fe 5.000 O 12 . Therefore, it was confirmed that this single crystal did not contain Pb. The grown single crystal film 12 was processed to produce a single crystal plate having a Faraday rotation angle of 45 deg with respect to light having a wavelength of 1.55 μm. A non-reflective coating was formed on the polished surface of the single crystal plate to form a Faraday rotator. When the optical characteristics of the manufactured rotor were evaluated by making light having a wavelength of 1.55 μm incident, the characteristics were satisfactory as a Faraday rotator.

本発明の実施の形態における磁性ガーネット単結晶に入り得る各元素の価数とイオン半径とを示す図である。It is a figure which shows the valence and ionic radius of each element which can enter in the magnetic garnet single crystal in embodiment of this invention. 本発明の実施の形態における磁性ガーネット単結晶の製造工程の一部を示す図である。It is a figure which shows a part of manufacturing process of the magnetic garnet single crystal in embodiment of this invention.

符号の説明Explanation of symbols

2 固定冶具
4 ルツボ
8 融液
10 基板
12 単結晶膜
2 Fixing jig 4 Crucible 8 Melt 10 Substrate 12 Single crystal film

Claims (1)

NaOHを含む材料を用いてNaを含む融液を生成し、
前記融液を用いて液相エピタキシャル成長法によりNaを含む磁性ガーネット単結晶を育成すること
を特徴とする磁性ガーネット単結晶の製造方法。
Producing a melt containing Na using a material containing NaOH;
A method for producing a magnetic garnet single crystal, comprising growing a magnetic garnet single crystal containing Na by liquid phase epitaxial growth using the melt.
JP2005286734A 2004-11-19 2005-09-30 Method for producing magnetic garnet single crystal Expired - Fee Related JP3959099B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005286734A JP3959099B2 (en) 2004-11-19 2005-09-30 Method for producing magnetic garnet single crystal
PCT/JP2005/021103 WO2006054628A1 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal, optical device using same and method for producing single crystal
US11/666,331 US7811465B2 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
CN2005800396760A CN101061263B (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal, optical device using same and method for producing single crystal
TW094140430A TWI300811B (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal and optical device using the same, and method of single crystal
EP05806917A EP1820886A4 (en) 2004-11-19 2005-11-17 Magnetic garnet single crystal, optical device using same and method for producing single crystal
US12/806,000 US8815011B2 (en) 2004-11-19 2010-08-27 Magnetic garnet single crystal and optical element using same as well as method of producing single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004335457 2004-11-19
JP2005286734A JP3959099B2 (en) 2004-11-19 2005-09-30 Method for producing magnetic garnet single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007071191A Division JP4807288B2 (en) 2004-11-19 2007-03-19 Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal

Publications (2)

Publication Number Publication Date
JP2006169093A JP2006169093A (en) 2006-06-29
JP3959099B2 true JP3959099B2 (en) 2007-08-15

Family

ID=36670233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286734A Expired - Fee Related JP3959099B2 (en) 2004-11-19 2005-09-30 Method for producing magnetic garnet single crystal

Country Status (1)

Country Link
JP (1) JP3959099B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI300811B (en) 2004-11-19 2008-09-11 Tdk Corp Magnetic garnet single crystal and optical device using the same, and method of single crystal
US7695562B2 (en) 2006-01-10 2010-04-13 Tdk Corporation Magnetic garnet single crystal and method for producing the same as well as optical element using the same
JP4720730B2 (en) 2006-01-27 2011-07-13 Tdk株式会社 Optical element manufacturing method
JP4702090B2 (en) 2006-02-20 2011-06-15 Tdk株式会社 Magnetic garnet single crystal and optical element using the same
JP4844464B2 (en) * 2007-04-27 2011-12-28 Tdk株式会社 Magnetic garnet single crystal and Faraday rotator using the same
US7758766B2 (en) 2007-09-17 2010-07-20 Tdk Corporation Magnetic garnet single crystal and Faraday rotator using the same
JP2012012283A (en) 2010-05-31 2012-01-19 Namiki Precision Jewel Co Ltd Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD FOR PRODUCING SAME AND OPTICAL DEVICE
WO2012086819A1 (en) 2010-12-25 2012-06-28 並木精密宝石株式会社 Bi-substituted rare earth iron garnet single crystal, method for producing same, and optical device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225472B2 (en) * 2002-07-05 2009-02-18 Tdk株式会社 Magnetic garnet material, Faraday rotator, optical device, method for producing bismuth-substituted rare earth iron garnet single crystal film, and single crystal film
JP2004269305A (en) * 2003-03-07 2004-09-30 Tdk Corp Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method

Also Published As

Publication number Publication date
JP2006169093A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP3959099B2 (en) Method for producing magnetic garnet single crystal
JP4702090B2 (en) Magnetic garnet single crystal and optical element using the same
US8815011B2 (en) Magnetic garnet single crystal and optical element using same as well as method of producing single crystal
JP5858242B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
JP2012012283A (en) Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD FOR PRODUCING SAME AND OPTICAL DEVICE
JP5292544B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
US7758766B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP4650943B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP4720730B2 (en) Optical element manufacturing method
JP5568073B2 (en) Bismuth-substituted rare earth iron garnet crystal, method for producing the same, and Faraday rotator
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP5292543B2 (en) Bi-substituted rare earth iron garnet single crystal, manufacturing method thereof, and optical device
JP4821344B2 (en) Magnetic garnet single crystal and optical element using the same
JP4844464B2 (en) Magnetic garnet single crystal and Faraday rotator using the same
JP4432896B2 (en) Method for producing garnet single crystal
JP2005247590A (en) Magnetic garnet single crystal and optical element using the same
JP4432875B2 (en) Method for producing garnet single crystal
JP6887678B2 (en) Method for manufacturing magnetic garnet single crystal
JP2005247589A (en) Magnetic garnet single crystal and optical element using the same
JP2009147184A (en) Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal
JP4432874B2 (en) Method for producing magnetic garnet single crystal
JP2007266152A (en) Method for producing bismuth-substituted rare-earth iron garnet single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Ref document number: 3959099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees