JP2009147184A - Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal - Google Patents

Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal Download PDF

Info

Publication number
JP2009147184A
JP2009147184A JP2007324189A JP2007324189A JP2009147184A JP 2009147184 A JP2009147184 A JP 2009147184A JP 2007324189 A JP2007324189 A JP 2007324189A JP 2007324189 A JP2007324189 A JP 2007324189A JP 2009147184 A JP2009147184 A JP 2009147184A
Authority
JP
Japan
Prior art keywords
molar concentration
mol
melt
oxide
rig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007324189A
Other languages
Japanese (ja)
Inventor
Yohei Hanaki
陽平 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Granopt Ltd
Original Assignee
Granopt Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Granopt Ltd filed Critical Granopt Ltd
Priority to JP2007324189A priority Critical patent/JP2009147184A/en
Publication of JP2009147184A publication Critical patent/JP2009147184A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a bismuth-substituted rare-earth iron garnet single crystal not containing lead by a liquid phase epitaxial method using melt not containing lead in flux components. <P>SOLUTION: The method for manufacturing the bismuth-substituted rare-earth iron garnet single crystal is characterized by generating the melt from a flux consisting of Li<SB>2</SB>O, B<SB>2</SB>O<SB>3</SB>and Bi<SB>2</SB>O<SB>3</SB>and growing the bismuth-substituted rare-earth iron garnet single crystal by the liquid phase epitaxial method on a nonmagnetic garnet single crystal using the melt. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光アイソレータや光サーキュレータなどのファラデー回転子に用いられる希土類鉄ガーネット単結晶に関する。   The present invention relates to a rare earth iron garnet single crystal used for a Faraday rotator such as an optical isolator or an optical circulator.

近年、光ファイバ通信や光計測の発展はめざましいものがある。この光ファイバ通信や光計測では多くの場合、信号源として半導体レーザが使用されている。しかし、半導体レーザは、光ファイバ端面などから反射し、再び半導体レーザ自身に戻ってくるところの所謂反射戻り光があると、発振が不安定になるという重大な欠点がある。そのため半導体レーザの出射側に光アイソレータを設けて、反射戻り光を遮断し、半導体レーザの発振を安定化させることが行われている。 In recent years, the development of optical fiber communication and optical measurement has been remarkable. In this optical fiber communication and optical measurement, a semiconductor laser is often used as a signal source. However, the semiconductor laser has a serious drawback that oscillation is unstable if there is so-called reflected return light that is reflected from the end face of the optical fiber and returns to the semiconductor laser itself. Therefore, an optical isolator is provided on the emission side of the semiconductor laser to block the reflected return light and stabilize the oscillation of the semiconductor laser.

光アイソレータは偏光子、検光子、ファラデー回転子およびファラデー回転子を磁気的に飽和させるための永久磁石からなる。光アイソレータの中心的な機能を担うファラデー回転子には、主に液相エピタキシャル(以下、LPEと略す)法で育成される厚さが数十μmから500μm程度のビスマスを置換した希土類鉄ガーネット単結晶(以下、RIGと適宜略す)、たとえば(HoTbBi)Fe12、(YbTbBi)Fe12などが提案されている。 The optical isolator includes a polarizer, an analyzer, a Faraday rotator, and a permanent magnet for magnetically saturating the Faraday rotator. The Faraday rotator, which plays a central role in optical isolators, is a rare earth iron garnet single-layered film in which bismuth having a thickness of about several tens to 500 μm, which is grown mainly by liquid phase epitaxy (hereinafter abbreviated as LPE), is substituted. Crystals (hereinafter abbreviated as RIG as appropriate), for example, (HoTbBi) 3 Fe 5 O 12 , (YbTbBi) 3 Fe 5 O 12 have been proposed.

一般的なLPE法によるRIGの育成は、フラックス成分であるPbO−Bi−Bにガーネット単結晶成分である希土類や鉄を溶かした融液を、ガーネット単結晶が析出する過飽和温度状態に保ち、種結晶基板を該融液に浸漬して、基板上に結晶を成長させるという方法である。この際に、フラックス成分であり、かつファラデー効果の増大をもたらすビスマスが多量に取り込まれ、希土類の一部がビスマスに置換されたRIGが育成されるのである。しかしながら、同じくフラックス成分である鉛も、不純物として0.2重量%〜0.8重量%が取り込まれる。 The growth of RIG by a general LPE method is supersaturation in which a garnet single crystal precipitates a melt obtained by dissolving rare earth or iron as a garnet single crystal component in PbO—Bi 2 O 3 —B 2 O 3 as a flux component. This is a method in which a seed crystal substrate is immersed in the melt while maintaining a temperature state to grow a crystal on the substrate. At this time, a large amount of bismuth, which is a flux component and causes an increase in the Faraday effect, is taken in, and RIG in which a part of the rare earth is replaced with bismuth is grown. However, 0.2% by weight to 0.8% by weight of lead, which is also a flux component, is incorporated as an impurity.

近年、環境に対する規制が厳しくなってきている。鉛は中枢神経系機能障害やガンを引き起こす物質であることから、例えば、RoHS指令「電気電子機器に含まれる特定有害物質の使用制限に関する欧州議会および理事会指令」での指定物質であり、その最大許容量は0.1重量%と定められている。このRoHS指令を満足するための最も有効な手段は、鉛を含まないフラックス成分を使った融液による結晶育成であることは明白である。例えば、鉛を含まないフラックス成分としてBi(特許文献1)、またはBiにアルカリ金属を添加した方法を用いる例(特許文献2)が報告されているが、光通信用途のファラデー回転子に必要な厚さ0.5mm程度の良質なRIGを、安定に育成する技術は確立されていない。また、困難だとされている。
特開昭50−134000 特公昭57−45719
In recent years, environmental regulations have become stricter. Since lead is a substance that causes central nervous system dysfunction and cancer, for example, it is a designated substance in the RoHS Directive “European Parliament and Council Directive on Restriction of Use of Specific Hazardous Substances Included in Electrical and Electronic Equipment”. The maximum allowable amount is set at 0.1% by weight. It is clear that the most effective means for satisfying this RoHS directive is crystal growth by a melt using a flux component not containing lead. For example, Bi 2 O 3 (Patent Document 1) or an example of using a method of adding an alkali metal to Bi 2 O 3 (Patent Document 2) as a flux component not containing lead has been reported. A technique for stably growing a high-quality RIG having a thickness of about 0.5 mm required for a Faraday rotator has not been established. It is also difficult.
JP 50-134000 A Japanese Patent Publication No.57-45719

フラックス成分に鉛を含まないLPE法にて、安定的に結晶育成が可能で、量産性に富んだRIGの結晶育成技術を提案する。   We propose a crystal growth technique for RIG that is capable of stable crystal growth and is mass-productive by the LPE method that does not contain lead in the flux component.

本発明者らは、上記課題を解決すべく鋭意検討した結果、フラックス成分がLiO、B、Biにより構成された融液を生成し、該融液を用いることが上記課題を解決するために有効であるという知見を見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the inventors of the present invention generate a melt whose flux components are composed of Li 2 O, B 2 O 3 , and Bi 2 O 3 and use the melt. The present inventors have found the knowledge that it is effective for solving the above problems and completed the present invention.

また上記課題は融液中のLiOのモル濃度x(mol%)とBのモル濃度y(mol%)とBiのモル濃度z(mol%)が1.2≦(x/y)≦3.5及び0.056(x/y)^1.07≦(x/z)≦0.211(x/y)^1.28を満たす融液を生成し、該融液を用いることで達成される。 In addition, the above-mentioned problem is that the molar concentration x (mol%) of Li 2 O, the molar concentration y (mol%) of B 2 O 3 and the molar concentration z (mol%) of Bi 2 O 3 in the melt are 1.2 ≦ (X / y) ≦ 3.5 and 0.056 (x / y) ^ 1.07 ≦ (x / z) ≦ 0.211 (x / y) ^ 1.28 are produced, This is achieved by using a melt.

環境への規制、例えばRoHS指令を満足し、光学特性の優れたファラデー回転子の提供が可能となる。 It is possible to provide a Faraday rotator that satisfies environmental regulations such as the RoHS directive and has excellent optical characteristics.

上記である本発明において、RIGは、
一般式 : R3−aBiFe5−b12
(式中、RはY、Eu、Gd、Tb、Ho、YbおよびLuからなる群から選ばれる一種または二種以上の元素である。Mは、GaまたはAl、およびその両方の元素である。また、0.5≦a≦2.0、b≦1.6である。)
の式で表されるRIGから選択する。
ここで、aが0.5未満ではファラデー効果が小さくなり好ましくない。ファラデー効果との観点からは、より大きいことが好ましいが、2.0を超えると結晶欠陥が増加してくるので好ましくない。
GaとAlにてFeを置換する手法は、RIGの飽和磁界を下げるために用いるが、置換量bが1.6を超えるとファラデー効果が小さくなるので好ましくない。
In the present invention as described above, RIG is:
General formula: R 3-a Bi a Fe 5-b M b O 12
(In the formula, R is one or more elements selected from the group consisting of Y, Eu, Gd, Tb, Ho, Yb, and Lu. M is an element of Ga or Al, or both. Also, 0.5 ≦ a ≦ 2.0 and b ≦ 1.6.)
It selects from RIG represented by the type | formula.
Here, if a is less than 0.5, the Faraday effect becomes small, which is not preferable. From the viewpoint of the Faraday effect, it is preferably larger, but if it exceeds 2.0, crystal defects increase, which is not preferable.
The method of substituting Fe with Ga and Al is used to lower the saturation magnetic field of RIG. However, if the substitution amount b exceeds 1.6, the Faraday effect is reduced, which is not preferable.

また、Rは、光学特性と磁気特性を考慮し、かつ基板との格子定数の適合性などを考慮して選択するものであるが、具体的には、Y、Eu、Gd、Tb、Ho、Yb、Luの組み合わせが挙げられる。
また、Mは、2つのFeサイトに置換される置換量が安定となるように選択することが好ましく、具体的には、Ga、Alの組み合わせが挙げられる。
R is selected in consideration of optical characteristics and magnetic characteristics and in consideration of the compatibility of the lattice constant with the substrate. Specifically, Y, Eu, Gd, Tb, Ho, The combination of Yb and Lu is mentioned.
Further, M is preferably selected so that the substitution amount substituted with two Fe sites is stable, and specific examples include a combination of Ga and Al.

上記RIGをLPE法にて育成するためのフラックス成分として従来は、PbO、Bi、及びBが用いられてきた。しかしながらPbO、Bi、及びBで構成されるフラックスで上記RIG膜をLPE法にて育成すると、不純物としてRIGにPbが混入することは避けがたいという大きな問題があった。 Conventionally, PbO, Bi 2 O 3 , and B 2 O 3 have been used as flux components for growing the RIG by the LPE method. However, when the RIG film is grown by the LPE method with a flux composed of PbO, Bi 2 O 3 , and B 2 O 3 , there is a big problem that it is unavoidable that Pb is mixed into the RIG as an impurity.

本発明者らはフラックス成分として、Pbの代替となる元素について鋭意検討を重ねた。その結果、リチウム(Li)がPbの代替となる元素であることを見出した。すなわち、LiO、B、Biで構成されるフラックスで上記RIG膜をLPE法にて育成したところ、結晶性良好で、なおかつPbを含まないRIGが得られた。なお、本願実施例においては、LiOを生成させるために試薬にLiOHを用いている。用いる試薬が水酸化物や炭酸化合物であっても高温の融液中では、分解されLiOとして存在していると考えるのが一般的であるので、LiCOといった炭酸化物等を用いてもよい。
The inventors of the present invention have made extensive studies on an element that substitutes for Pb as a flux component. As a result, it was found that lithium (Li) is an element that can substitute for Pb. That is, when the RIG film was grown by the LPE method with a flux composed of Li 2 O, B 2 O 3 , and Bi 2 O 3 , an RIG having good crystallinity and not containing Pb was obtained. In this embodiment, LiOH is used as a reagent in order to generate Li 2 O. Even if the reagent to be used is a hydroxide or a carbonate compound, it is generally considered that the reagent is decomposed and present as Li 2 O in a high-temperature melt. Therefore, a carbonate such as Li 2 CO 3 is used. May be.

本発明者らはフラックス成分におけるLiO、B、及びBiのモル濃度比を変えて、RIGの育成を試みた。本発明においては、融液中のLiOのモル濃度x(mol%)、Bのモル濃度y(mol%)、Biのモル濃度z(mol%)とし、LiOとBのモル濃度比(x/y)及びLiOとBiのモル濃度比(x/z)を融液組成のパラメータとして用いた。 The inventors tried to grow RIG by changing the molar concentration ratio of Li 2 O, B 2 O 3 , and Bi 2 O 3 in the flux component. In the present invention, in the melt Li 2 O molar concentration x (mol%), the molar concentration y (mol%) of B 2 O 3, and Bi 2 O 3 molar concentration z (mol%), Li 2 The molar concentration ratio (x / y) between O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were used as parameters of the melt composition.

本発明者らは、詳細な実験を重ね、良質なRIGを得るためのフラックス組成比を見出し、本発明を完成させるに至った。なお、品質についての判断基準においては、RIG内における100μm以上のピット状の欠陥の数とし、100μm以上のピット状の欠陥の数が10個/cm未満の場合、結晶性は良好、10個/cm以上の場合、結晶性は悪いと判断した。
図1は、LiOとBのモル濃度比(x/y)とLiOとBiのモル濃度比(x/z)との関係を示すグラフである。図中×は、育成速度が極端に遅い条件、図中△は、RIG内に存在する100μm以上のピット状の欠陥が10個/cm以上であった条件、図中〇はRIG膜内に存在する100μm以上のピット状の欠陥が10個/cm未満であった条件を表す。LPE法では、フラックス成分の組成比に応じてRIGの成分である上記一般式中のRやFe、Mの成分比を適宜選ぶことで、RIGを育成することができる。本発明では、図中のフラックス成分に対して、RやFe、Mの成分比を最適化した結果をもって、その育成されたRIGの結晶性を評価した。まずLiOとBのモル濃度比(x/y)を変えて、融液組成の検討を行った。x/yが1.2より小さい場合、RIGの育成速度が極端に遅くなるか、育成が可能になった場合においてもRIGに欠陥が多く発生し、育成条件的に好ましくないものであった。またx/yが3.5より大きいと、RIGを育成する温度において融液中に微結晶が析出してしまい、RIGに欠陥が多数発生してしまう。よってx/yにおいては、RIGを安定的に育成できる条件として、1.2≦x/y≦3.5と定めた(図1の直線a、b間)。
The present inventors have repeated detailed experiments, found a flux composition ratio for obtaining a high-quality RIG, and completed the present invention. In addition, in the judgment criteria regarding the quality, the number of pit-like defects of 100 μm or more in the RIG is used, and when the number of pit-like defects of 100 μm or more is less than 10 / cm 2 , the crystallinity is good, 10 In the case of / cm 2 or more, the crystallinity was judged to be bad.
FIG. 1 is a graph showing the relationship between the molar concentration ratio (x / y) of Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) of Li 2 O and Bi 2 O 3 . Figure × is growth rate is extremely slow condition in FIG △, the condition 100μm or pit-like defects existing in the RIG was 10 / cm 2 or more, drawing 〇 is in the RIG film This represents a condition in which the number of existing pit-like defects of 100 μm or more was less than 10 / cm 2 . In the LPE method, RIG can be grown by appropriately selecting the component ratio of R, Fe, and M in the above general formula, which is a component of RIG, according to the composition ratio of the flux component. In the present invention, the crystallinity of the grown RIG was evaluated based on the result of optimizing the component ratio of R, Fe, and M with respect to the flux components in the figure. First, the composition of the melt was examined by changing the molar concentration ratio (x / y) between Li 2 O and B 2 O 3 . When x / y is smaller than 1.2, even when the growth rate of RIG is extremely slow or when growth is possible, many defects are generated in RIG, which is not preferable in terms of growth conditions. On the other hand, if x / y is greater than 3.5, microcrystals are deposited in the melt at the temperature at which the RIG is grown, and many defects are generated in the RIG. Therefore, in x / y, it was determined that 1.2 ≦ x / y ≦ 3.5 (between lines a and b in FIG. 1) as a condition for stably growing RIG.

次にLiOとBiのモル濃度比(x/z)について検討した。x/zが小さいと育成速度が遅くなり、また大きいとRIGに欠陥が多数発生する。組成比と育成条件を詳細に検討した結果、上記x/yの範囲であり、なおかつ0.056(x/y)^1.07≦(x/z)≦0.211(x/y)^1.28を満たす(図1の直線c、d間)組成において、結晶性の良好なRIGが得られた。 Next, the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 was examined. When x / z is small, the growth rate is slow, and when x / z is large, many defects occur in the RIG. As a result of examining the composition ratio and the growth conditions in detail, it is in the above x / y range, and 0.056 (x / y) ^ 1.07 ≦ (x / z) ≦ 0.211 (x / y) ^ With a composition satisfying 1.28 (between lines c and d in FIG. 1), RIG having good crystallinity was obtained.

本発明に用いる上記RIGの製造に用いる育成基板としては、公知のものが使用できる。一般には、SGGG基板と称して市販されている格子定数が1.2490nmから1.2515nmの非磁性ガーネット[(GdCa)(GaMgZr)12]基板から適宜選択する。 A well-known thing can be used as a growth board | substrate used for manufacture of said RIG used for this invention. Generally, it is appropriately selected from non-magnetic garnet [(GdCa) 3 (GaMgZr) 5 O 12 ] substrates having a lattice constant of 1.2490 nm to 1.2515 nm which are commercially available as SGGG substrates.

以下、本発明を実施例によって、具体的に説明する。
実施例1
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は70mol%、Feのモル濃度は13.4mol%、Bのモル濃度は6.3mol%、LiOのモル濃度は9mol%、Tbのモル濃度は1.2mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.43、0.13であった。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌混合してRIG育成用の融液とした。ここに得られた融液の温度を飽和温度以下の温度まで低下させて後、融液表面に、常法に従って、厚さが760μmで、格子定数が1.2497±0.0002nmの3インチ(111)ガーネット単結晶[(GdCa)(CaMgZr)12]基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行った結果、膜厚530μmのRIGを得た。100μm以上のピット状の欠陥の数は2個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて980deg/cmであった。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 70 mol%, the molar concentration of Fe 2 O 3 is 13.4 mol%, the molar concentration of B 2 O 3 is 6.3 mol%, and the molar concentration of Li 2 O is 9 mol%. The molar concentration of Tb 4 O 7 was 1.2 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.43 and 0.13, respectively.
This melt was placed at a predetermined position in a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently stirred and mixed to obtain a melt for RIG growth. After the temperature of the melt thus obtained is lowered to a temperature equal to or lower than the saturation temperature, the surface of the melt is 3 inches (thickness: 760 μm, lattice constant: 1.2497 ± 0.0002 nm according to a conventional method) One side of a 111) garnet single crystal [(GdCa) 3 (CaMgZr) 5 O 12 ] substrate was brought into contact and epitaxial growth was performed while rotating the substrate. As a result, an RIG having a film thickness of 530 μm was obtained. The number of pit-like defects of 100 μm or more was 2 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 980 deg / cm at a wavelength of 1550 nm.

実施例2
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化ホルミウム[Ho] 、酸化ガリウム[Ga]を計6000g仕込み融液とした。融液中のBiのモル濃度は72mol%、Feのモル濃度は13.6mol%、Bのモル濃度は4.8mol%、LiOのモル濃度は7.2mol%、Tbのモル濃度は0.7mol%、Hoのモル濃度は0.3mol%、Gaのモル濃度は1.4mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.50、0.10であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚570μmのRIGを得た。100μm以上のピット状の欠陥の数は3個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.3Ho0.6Bi1.1Fe4.3Ga0.712であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて870deg/cmであった。
Example 2
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of holmium oxide [Ho 2 O 3 ] and gallium oxide [Ga 2 O 3 ] were charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 72 mol%, the molar concentration of Fe 2 O 3 is 13.6 mol%, the molar concentration of B 2 O 3 is 4.8 mol%, and the molar concentration of Li 2 O is 7. 2 mol%, the molar concentration of Tb 4 O 7 is 0.7 mol%, the molar concentration of Ho 2 O 3 is 0.3 mol%, the molar concentration of Ga 2 O 3 was 1.4 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.50 and 0.10, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, an RIG with a thickness of 570 μm was obtained. The number of pit-like defects of 100 μm or more was 3 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.3 Ho 0.6 Bi 1.1 Fe 4.3 Ga 0.7 O 12 . Li and Pb were not detected. The Faraday rotation angle was 870 deg / cm at a wavelength of 1550 nm.

実施例3
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は72mol%、Feのモル濃度は13.4mol%、Bのモル濃度は4.8mol%、LiOのモル濃度は8.4mol%、Tbのモル濃度は1.3mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.75、0.12であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚550μmのRIGを得た。100μm以上のピット状の欠陥の数は4個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて960deg/cmであった。
Example 3
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 72 mol%, the molar concentration of Fe 2 O 3 is 13.4 mol%, the molar concentration of B 2 O 3 is 4.8 mol%, and the molar concentration of Li 2 O is 8. 4 mol%, the molar concentration of Tb 4 O 7 is 1.3 mol%, the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.75 and 0.12, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, an RIG having a thickness of 550 μm was obtained. The number of pit-like defects of 100 μm or more was 4 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 960 deg / cm at a wavelength of 1550 nm.

実施例4
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は65mol%、Feのモル濃度は13.1mol%、Bのモル濃度は7.4mol%、LiOのモル濃度は13.0mol%、Tbのモル濃度は1.4mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.76、0.20であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚570μmのRIGを得た。100μm以上のピット状の欠陥の数は2個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて950deg/cmであった。
Example 4
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 65 mol%, the molar concentration of Fe 2 O 3 is 13.1 mol%, the molar concentration of B 2 O 3 is 7.4 mol%, and the molar concentration of Li 2 O is 13. The molar concentration of 0 mol%, Tb 4 O 7 was 1.4 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.76 and 0.20, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, an RIG having a thickness of 570 μm was obtained. The number of pit-like defects of 100 μm or more was 2 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 950 deg / cm at a wavelength of 1550 nm.

実施例5
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は63mol%、Feのモル濃度は12.8mol%、Bのモル濃度は10mol%、LiOのモル濃度は12.5mol%、Tbのモル濃度は1.6mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.25、0.20であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚530μmのRIGを得た。100μm以上のピット状の欠陥の数は8個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて940deg/cmであった。
Example 5
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 63 mol%, the molar concentration of Fe 2 O 3 is 12.8 mol%, the molar concentration of B 2 O 3 is 10 mol%, and the molar concentration of Li 2 O is 12.5 mol%. The molar concentration of Tb 4 O 7 was 1.6 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.25 and 0.20, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG having a film thickness of 530 μm was obtained. The number of pit-like defects of 100 μm or more was 8 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 940 deg / cm at a wavelength of 1550 nm.

実施例6
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は59mol%、Feのモル濃度は13.3mol%、Bのモル濃度は12mol%、LiOのモル濃度は14.4mol%、Tbのモル濃度は1.2mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.20、0.24であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚520μmのRIGを得た。100μm以上のピット状の欠陥の数は8個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて940deg/cmであった。
Example 6
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 59 mol%, the molar concentration of Fe 2 O 3 is 13.3 mol%, the molar concentration of B 2 O 3 is 12 mol%, and the molar concentration of Li 2 O is 14.4 mol%. The molar concentration of Tb 4 O 7 was 1.2 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.20 and 0.24, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, an RIG having a thickness of 520 μm was obtained. The number of pit-like defects of 100 μm or more was 8 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 940 deg / cm at a wavelength of 1550 nm.

実施例7
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化ホルミウム[Ho]を計6000g仕込み融液とした。融液中のBiのモル濃度は39mol%、Feのモル濃度は15.4mol%、Bのモル濃度は10mol%、LiOのモル濃度は35mol%、Tbのモル濃度は0.2mol%、Hoのモル濃度は0.4mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ3.50、0.90であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚500μmのRIGを得た。100μm以上のピット状の欠陥の数は6個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb0.7Ho1.1Bi1.2Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて1150deg/cmであった。
Example 7
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of holmium oxide [Ho 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 39 mol%, the molar concentration of Fe 2 O 3 is 15.4 mol%, the molar concentration of B 2 O 3 is 10 mol%, the molar concentration of Li 2 O is 35 mol%, Tb The molar concentration of 4 O 7 was 0.2 mol%, and the molar concentration of Ho 2 O 3 was 0.4 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 3.50 and 0.90, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1, and as a result, a RIG having a thickness of 500 μm was obtained. The number of pit-like defects of 100 μm or more was 6 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 0.7 Ho 1.1 Bi 1.2 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 1150 deg / cm at a wavelength of 1550 nm.

実施例8

白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は55mol%、Feのモル濃度は15mol%、Bのモル濃度は6.9mol%、LiOのモル濃度は22.1mol%、Tbのモル濃度は0.8mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ3.20、0.40であった。

この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚550μmのRIGを得た。100μm以上のピット状の欠陥の数は6個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて950deg/cmであった。
Example 8

In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 55 mol%, the molar concentration of Fe 2 O 3 is 15 mol%, the molar concentration of B 2 O 3 is 6.9 mol%, and the molar concentration of Li 2 O is 22.1 mol%. The molar concentration of Tb 4 O 7 was 0.8 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 3.20 and 0.40, respectively.

Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, an RIG having a thickness of 550 μm was obtained. The number of pit-like defects of 100 μm or more was 6 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 950 deg / cm at a wavelength of 1550 nm.

比較例1
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は76mol%、Feのモル濃度は12.8mol%、Bのモル濃度は4.9mol%、LiOのモル濃度は4.9mol%、Tbのモル濃度は1.3mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.00、0.06であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、RIGの育成は確認できなかった。
Comparative Example 1
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 76 mol%, the molar concentration of Fe 2 O 3 is 12.8 mol%, the molar concentration of B 2 O 3 is 4.9 mol%, and the molar concentration of Li 2 O is 4. 9 mol%, the molar concentration of Tb 4 O 7 was 1.3 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.00 and 0.06, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, no growth of RIG could be confirmed.

比較例2
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]を計6000g仕込み融液とした。融液中のBiのモル濃度は31mol%、Feのモル濃度は12.3mol%、Bのモル濃度は9.3mol%、LiOのモル濃度は46.8mol%、Tbのモル濃度は0.6mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ5.03、1.51であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚560μmのRIGを得た。100μm以上のピット状の欠陥の数は32個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb2.1Bi0.9Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて900deg/cmであった。
Comparative Example 2
Bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ] in a platinum crucible A total of 6000 g charged melt was obtained. The molar concentration of Bi 2 O 3 in the melt is 31 mol%, the molar concentration of Fe 2 O 3 is 12.3 mol%, the molar concentration of B 2 O 3 is 9.3 mol%, and the molar concentration of Li 2 O is 46. The molar concentration of 8 mol% and Tb 4 O 7 was 0.6 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 5.03 and 1.51, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG having a thickness of 560 μm was obtained. The number of pit-like defects of 100 μm or more was 32 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 2.1 Bi 0.9 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 900 deg / cm at a wavelength of 1550 nm.

比較例3
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は40mol%、Feのモル濃度は16.4mol%、Bのモル濃度は12.3mol%、LiOのモル濃度は30.6mol%、Tbのモル濃度は0.65mol%、Ybのモル濃度は0.05mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ2.49、0.77であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚560μmのRIGを得た。100μm以上のピット状の欠陥の数は15個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、Tb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて940deg/cmであった。
Comparative Example 3
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 40 mol%, the molar concentration of Fe 2 O 3 is 16.4 mol%, the molar concentration of B 2 O 3 is 12.3 mol%, and the molar concentration of Li 2 O is 30. The molar concentration of 6 mol%, Tb 4 O 7 was 0.65 mol%, and the molar concentration of Yb 2 O 3 was 0.05 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 2.49 and 0.77, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG having a thickness of 560 μm was obtained. The number of pit-like defects of 100 μm or more was 15 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, it was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 940 deg / cm at a wavelength of 1550 nm.

比較例4
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は70mol%、Feのモル濃度は13.6mol%、Bのモル濃度は3.4mol%、LiOのモル濃度は11.9mol%、Tbのモル濃度は1.0mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ3.50、0.17であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、RIGの育成は確認できなかった。
Comparative Example 4
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 70 mol%, the molar concentration of Fe 2 O 3 is 13.6 mol%, the molar concentration of B 2 O 3 is 3.4 mol%, and the molar concentration of Li 2 O is 11. 9 mol%, the molar concentration of Tb 4 O 7 was 1.0 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 3.50 and 0.17, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, no growth of RIG could be confirmed.

比較例5
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は53mol%、Feのモル濃度は16.2mol%、Bのモル濃度は13.3mol%、LiOのモル濃度は16mol%、Tbのモル濃度は1.4mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.20、0.30であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚530μmのRIGを得た。100μm以上のピット状の欠陥の数は15個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、Tb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて950deg/cmであった。
Comparative Example 5
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 53 mol%, the molar concentration of Fe 2 O 3 is 16.2 mol%, the molar concentration of B 2 O 3 is 13.3 mol%, and the molar concentration of Li 2 O is 16 mol%. The molar concentration of Tb 4 O 7 was 1.4 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.20 and 0.30, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG having a film thickness of 530 μm was obtained. The number of pit-like defects of 100 μm or more was 15 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, it was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 950 deg / cm at a wavelength of 1550 nm.

比較例6
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は79mol%、Feのモル濃度は11.6mol%、Bのモル濃度は3.6mol%、LiOのモル濃度は4.3mol%、Tbのモル濃度は1.4mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.20、0.06であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、RIGの育成は確認できなかった。
Comparative Example 6
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 79 mol%, the molar concentration of Fe 2 O 3 is 11.6 mol%, the molar concentration of B 2 O 3 is 3.6 mol%, and the molar concentration of Li 2 O is 4. 3 mol%, the molar concentration of Tb 4 O 7 molar concentration of 1.4mol%, Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.20 and 0.06, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, no growth of RIG could be confirmed.

比較例7
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]を計6000g仕込み融液とした。融液中のBiのモル濃度は74.5mol%、Feのモル濃度は12.7mol%、Bのモル濃度は3.3mol%、LiOのモル濃度は8.2mol%、Tbのモル濃度は1.3mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ2.48、0.11であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、RIGの育成は確認できなかった。
Comparative Example 7
Bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ] in a platinum crucible A total of 6000 g charged melt was obtained. The molar concentration of Bi 2 O 3 in the melt is 74.5 mol%, the molar concentration of Fe 2 O 3 is 12.7 mol%, the molar concentration of B 2 O 3 is 3.3 mol%, and the molar concentration of Li 2 O is The molar concentration of 8.2 mol% and Tb was 1.3 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 2.48 and 0.11, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, no growth of RIG could be confirmed.

比較例8
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化ホルミウム[Ho]を計6000g仕込み融液とした。融液中のBiのモル濃度は71mol%、Feのモル濃度は12.1mol%、Bのモル濃度は7.8mol%、LiOのモル濃度は7.8mol%、Tbのモル濃度は0.4mol%、Hoのモル濃度は0.9mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.00、0.11であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚500μmのRIGを得た。100μm以上のピット状の欠陥の数は17個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、組成はTb0.7Ho1.1Bi1.2Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて1150deg/cmであった。
Comparative Example 8
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of holmium oxide [Ho 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 71 mol%, the molar concentration of Fe 2 O 3 is 12.1 mol%, the molar concentration of B 2 O 3 is 7.8 mol%, and the molar concentration of Li 2 O is 7. 8 mol%, the molar concentration of Tb 4 O 7 is 0.4 mol%, the molar concentration of Ho 2 O 3 was 0.9 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.00 and 0.11, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1, and as a result, a RIG having a thickness of 500 μm was obtained. The number of pit-like defects of 100 μm or more was 17 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, the composition was Tb 0.7 Ho 1.1 Bi 1.2 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 1150 deg / cm at a wavelength of 1550 nm.

比較例9
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は52mol%、Feのモル濃度は15mol%、Bのモル濃度は6.4mol%、LiOのモル濃度は25.7mol%、Tbのモル濃度は0.8mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ4.02、0.49であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚510μmのRIGを得た。100μm以上のピット状の欠陥の数は16個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、Tb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて950deg/cmであった。
Comparative Example 9
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 52 mol%, the molar concentration of Fe 2 O 3 is 15 mol%, the molar concentration of B 2 O 3 is 6.4 mol%, and the molar concentration of Li 2 O is 25.7 mol%. The molar concentration of Tb 4 O 7 was 0.8 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 4.02 and 0.49, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, a RIG having a thickness of 510 μm was obtained. The number of pit-like defects of 100 μm or more was 16 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, it was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 950 deg / cm at a wavelength of 1550 nm.

比較例10
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は53mol%、Feのモル濃度は13.7mol%、Bのモル濃度は15.9mol%、LiOのモル濃度は15.9mol%、Tbのモル濃度は1.4mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.00、0.3であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚540μmのRIGを得た。100μm以上のピット状の欠陥の数は20個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、Tb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて960deg/cmであった。
Comparative Example 10
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 53 mol%, the molar concentration of Fe 2 O 3 is 13.7 mol%, the molar concentration of B 2 O 3 is 15.9 mol%, and the molar concentration of Li 2 O is 15. 9 mol%, the molar concentration of Tb 4 O 7 was 1.4 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.00 and 0.3, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG having a thickness of 540 μm was obtained. The number of pit-like defects of 100 μm or more was 20 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, it was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 960 deg / cm at a wavelength of 1550 nm.

比較例11
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]を計6000g仕込み融液とした。融液中のBiのモル濃度は31mol%、Feのモル濃度は16.9mol%、Bのモル濃度は11.4mol%、LiOのモル濃度は39.8mol%、Tbのモル濃度は0.9mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ3.49、1.28であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚540μmのRIGを得た。100μm以上のピット状の欠陥の数は23個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、Tb2.1Bi0.9Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて900deg/cmであった。
Comparative Example 11
Bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ] in a platinum crucible A total of 6000 g charged melt was obtained. The molar concentration of Bi 2 O 3 in the melt is 31 mol%, the molar concentration of Fe 2 O 3 is 16.9 mol%, the molar concentration of B 2 O 3 is 11.4 mol%, and the molar concentration of Li 2 O is 39. The molar concentration of 8 mol% and Tb 4 O 7 was 0.9 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 3.49 and 1.28, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG having a thickness of 540 μm was obtained. The number of pit-like defects of 100 μm or more was 23 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, it was Tb 2.1 Bi 0.9 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 900 deg / cm at a wavelength of 1550 nm.

比較例12
白金製ルツボに酸化ビスマス[Bi]、酸化第2鉄[Fe]、酸化ほう素[B]、水酸化リチウム[LiOH]、酸化テルビウム[Tb]、酸化イッテリビウム[Yb]を計6000g仕込み融液とした。融液中のBiのモル濃度は43mol%、Feのモル濃度は15mol%、Bのモル濃度は15.1mol%、LiOのモル濃度は25.7mol%、Tbのモル濃度は1.1mol%、Ybのモル濃度は0.1mol%であった。LiOとBのモル濃度比(x/y)、LiOとBiのモル濃度比(x/z)はそれぞれ1.7、0.6であった。
この融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚580μmのRIGを得た。100μm以上のピット状の欠陥の数は17個/cmであった。この結晶を蛍光X線分析法により組成分析した結果、Tb1.9Yb0.1Bi1.0Fe5.012であった。またLiとPbは検出されなかった。ファラデー回転角は1550nm波長にて950deg/cmであった。
Comparative Example 12
In a platinum crucible, bismuth oxide [Bi 2 O 3 ], ferric oxide [Fe 2 O 3 ], boron oxide [B 2 O 3 ], lithium hydroxide [LiOH], terbium oxide [Tb 4 O 7 ], A total of 6000 g of ytterbium oxide [Yb 2 O 3 ] was charged to obtain a melt. The molar concentration of Bi 2 O 3 in the melt is 43 mol%, the molar concentration of Fe 2 O 3 is 15 mol%, the molar concentration of B 2 O 3 is 15.1 mol%, and the molar concentration of Li 2 O is 25.7 mol%. The molar concentration of Tb 4 O 7 was 1.1 mol%, and the molar concentration of Yb 2 O 3 was 0.1 mol%. The molar concentration ratio (x / y) between Li 2 O and B 2 O 3 and the molar concentration ratio (x / z) between Li 2 O and Bi 2 O 3 were 1.7 and 0.6, respectively.
Using this melt, epitaxial growth was performed in the same manner as in Example 1. As a result, an RIG having a film thickness of 580 μm was obtained. The number of pit-like defects of 100 μm or more was 17 / cm 2 . As a result of analyzing the composition of this crystal by X-ray fluorescence analysis, it was Tb 1.9 Yb 0.1 Bi 1.0 Fe 5.0 O 12 . Li and Pb were not detected. The Faraday rotation angle was 950 deg / cm at a wavelength of 1550 nm.

有害物質である鉛を含まず、安定に結晶育成可能で量産性に富んだビスマス置換希土類鉄ガーネット単結晶を得ることができ、その産業上の意義は極めて高い。   A bismuth-substituted rare earth iron garnet single crystal that does not contain lead, which is a harmful substance, can be stably grown and has high mass productivity can be obtained, and its industrial significance is extremely high.

融液中のLiO/Bのモル濃度比とLiO/Biのモル濃度比との関係を表した図。Diagram showing the relation between the molar ratio of Li 2 O / B molar ratio of 2 O 3 and Li 2 O / Bi 2 O 3 in the melt.

Claims (2)

LiO、BおよびBiにより構成されたフラックスから融液を生成し、該融液を用いて非磁性ガーネット単結晶上に液相エピタキシャル法によりビスマス置換希土類鉄ガーネット単結晶を育成することを特徴とする、ビスマス置換希土類鉄ガーネット単結晶の製造方法。
A melt is generated from a flux composed of Li 2 O, B 2 O 3 and Bi 2 O 3, and a bismuth-substituted rare earth iron garnet single crystal is formed on the nonmagnetic garnet single crystal by liquid phase epitaxy using the melt. A process for producing a bismuth-substituted rare earth iron garnet single crystal, characterized in that:
請求項1において、融液中のLiOのモル濃度x(mol%)とBのモル濃度y(mol%)とBiのモル濃度z(mol%)が式1及び式2の条件を満たすことを特徴とするビスマス置換希土類鉄ガーネット単結晶の製造方法。
式1 : 1.2≦x/y≦3.5
式2 : 0.056(x/y)^1.07≦(x/z)≦0.211(x/y)^1.28
According to claim 1, Li 2 O molar concentration x (mol%) in the melt and B 2 O 3 molar concentration y (mol%) and Bi 2 O 3 molar concentration z (mol%) is the formula 1 and A method for producing a bismuth-substituted rare earth iron garnet single crystal, wherein the condition of Formula 2 is satisfied.
Formula 1: 1.2 ≦ x / y ≦ 3.5
Formula 2: 0.056 (x / y) ^ 1.07 ≦ (x / z) ≦ 0.211 (x / y) ^ 1.28
JP2007324189A 2007-12-17 2007-12-17 Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal Pending JP2009147184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007324189A JP2009147184A (en) 2007-12-17 2007-12-17 Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007324189A JP2009147184A (en) 2007-12-17 2007-12-17 Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal

Publications (1)

Publication Number Publication Date
JP2009147184A true JP2009147184A (en) 2009-07-02

Family

ID=40917441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007324189A Pending JP2009147184A (en) 2007-12-17 2007-12-17 Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal

Country Status (1)

Country Link
JP (1) JP2009147184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170120A (en) * 2012-02-17 2013-09-02 Granopt Ltd Method for manufacturing faraday rotator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170120A (en) * 2012-02-17 2013-09-02 Granopt Ltd Method for manufacturing faraday rotator

Similar Documents

Publication Publication Date Title
US9201167B2 (en) Bi-substituted rare earth iron garnet single crystal, method for producing same, and optical device
JP5033945B2 (en) Rare earth iron garnet single crystal
JP4702090B2 (en) Magnetic garnet single crystal and optical element using the same
US9227851B2 (en) Bi-substituted rare earth iron garnet single crystal, method of manufacturing the same, and optical device
WO2006054628A1 (en) Magnetic garnet single crystal, optical device using same and method for producing single crystal
JP2006169093A (en) Magnetic garnett single crystal, optical element using the same and method for manufacturing magnetic garnett single crystal
JP4650943B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP2009147184A (en) Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal
JP4720730B2 (en) Optical element manufacturing method
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP4942029B2 (en) Magnetic garnet single crystal and method for producing the same
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JP2010059030A (en) Garnet single crystal substrate and method for manufacturing the same
JP5311474B2 (en) Magnetic garnet single crystal
Kučera et al. Growth and characterization of high purity epitaxial yttrium iron garnet films grown from BaO–B2O3–BaF2 flux
JP2008021691A (en) Process for producing bismuth-substitution rare-earth iron garnet single crystal
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JP2017024960A (en) Method for producing bismuth-substituted rare earth iron garnet crystal film and bismuth-substituted rare earth iron garnet crystal film
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP2007266152A (en) Method for producing bismuth-substituted rare-earth iron garnet single crystal
JP2011011945A (en) Bi-SUBSTITUTED RARE-EARTH IRON GARNET SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, AND OPTICAL DEVICE
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2007169073A (en) Garnet single crystal, optical element using the same, and method of producing single crystal
JP4432875B2 (en) Method for producing garnet single crystal