JP2013170120A - Method for manufacturing faraday rotator - Google Patents

Method for manufacturing faraday rotator Download PDF

Info

Publication number
JP2013170120A
JP2013170120A JP2012049761A JP2012049761A JP2013170120A JP 2013170120 A JP2013170120 A JP 2013170120A JP 2012049761 A JP2012049761 A JP 2012049761A JP 2012049761 A JP2012049761 A JP 2012049761A JP 2013170120 A JP2013170120 A JP 2013170120A
Authority
JP
Japan
Prior art keywords
rig
oxide
temperature
magnetic field
faraday rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049761A
Other languages
Japanese (ja)
Other versions
JP5757484B2 (en
Inventor
Yohei Hanaki
陽平 花木
Hideyuki Sekiwa
秀幸 関和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Granopt Ltd
Original Assignee
Granopt Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Granopt Ltd filed Critical Granopt Ltd
Priority to JP2012049761A priority Critical patent/JP5757484B2/en
Publication of JP2013170120A publication Critical patent/JP2013170120A/en
Application granted granted Critical
Publication of JP5757484B2 publication Critical patent/JP5757484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a Faraday rotator which is excellent in temperature characteristics and showing rectangular hysteresis, and a Faraday rotator.SOLUTION: In a bismuth-substituted rare earth iron garnet single crystal grown by the liquid phase epitaxial method which is shown by chemical formula Tb-HoBiFeGaO(0.4≤x≤0.7, 1.1≤y≤1.3, and 0.6≤z≤0.75 in the formula), by making the crystal growth temperature to be ≥870°C and ≤950°C, a temperature characteristic of ≤0.075 (deg/°C) is attained.

Description

本発明は、光アイソレータや光サーキュレータなどのファラデー回転子に用いられる希土類鉄ガーネット単結晶に関する。詳しくは、永久磁石を用いないビスマス置換希土類鉄ガーネット単結晶からなるファラデー回転子に関する。  The present invention relates to a rare earth iron garnet single crystal used for a Faraday rotator such as an optical isolator or an optical circulator. Specifically, the present invention relates to a Faraday rotator made of a bismuth-substituted rare earth iron garnet single crystal that does not use a permanent magnet.

光ファイバ通信や光計測では多くの場合、信号源として半導体レーザが使用されている。しかし、半導体レーザは、光ファイバ端面などから反射し、再び半導体レーザ自身に戻ってくるところの所謂反射戻り光があると、発振が不安定になるという重大な欠点がある。そのため半導体レーザの出射側に光アイソレータを設けて、反射戻り光を遮断し、半導体レーザの発振を安定化させることが行われている。  In many cases of optical fiber communication and optical measurement, a semiconductor laser is used as a signal source. However, the semiconductor laser has a serious drawback that oscillation is unstable if there is so-called reflected return light that is reflected from the end face of the optical fiber and returns to the semiconductor laser itself. Therefore, an optical isolator is provided on the emission side of the semiconductor laser to block the reflected return light and stabilize the oscillation of the semiconductor laser.

一般的に、光アイソレータは偏光子、検光子、ファラデー回転子およびファラデー回転子を磁気的に飽和させるための永久磁石からなる。このファラデー回転子として用いられるビスマス置換希土類鉄ガーネット単結晶の中には、いったん外部磁界を加え磁気的に飽和させた後、外部磁界を無くしても磁気的飽和状態が保たれるという性能を有するものがある。この特性を有するファラデー回転子を用いた場合、光アイソレータにおいて、永久磁石が不要となるため、光アイソレータの小型化やコスト面において非常に大きなメリットがある。  In general, an optical isolator includes a polarizer, an analyzer, a Faraday rotator, and a permanent magnet for magnetically saturating the Faraday rotator. The bismuth-substituted rare earth iron garnet single crystal used as this Faraday rotator has the ability to maintain a magnetic saturation state even if the external magnetic field is lost after the external magnetic field is once applied and magnetically saturated. There is something. When a Faraday rotator having this characteristic is used, there is no need for a permanent magnet in the optical isolator, so there are significant advantages in terms of downsizing and cost of the optical isolator.

これまで、このように光アイソレータといった光部品を構成する場合に、永久磁石を必要しない性能を有するビスマス置換希土類鉄ガーネット単結晶には、(TbBi)(FeGaAl)12(特許文献1)、(TbHoBi)(FeGa)12(特許文献2)、(EuHoBi)(FeGa)12(特許文献3)、(TbYbBi)(FeGa)12(特許文献4)等が提案され、また、実用化されている。Conventionally, when an optical component such as an optical isolator is configured in this way, a bismuth-substituted rare earth iron garnet single crystal having a performance that does not require a permanent magnet is (TbBi) 3 (FeGaAl) 5 O 12 (Patent Document 1). , (TbHoBi) 3 (FeGa) 5 O 12 (Patent Document 2), (EuHoBi) 3 (FeGa) 5 O 12 (Patent Document 3), (TbYbBi) 3 (FeGa) 5 O 12 (Patent Document 4), etc. It has been proposed and put into practical use.

一般に、ファラデー回転子として使用されるビスマスを置換した希土類鉄ガーネット単結晶(以下、RIGと適宜略す)は、液相エピタキシャル(以下、LPEと略す)法にて、主に3インチ(111)ガーネット単結晶(GdCa)(GaMgZr)12基板を用いて育成される。その後、10mm×10mm程度へ切断し、両面を鏡面に研磨後、両面に反射防止膜を付着するという製造工程を歩む。
その後、1mm×1mm程度のチップの製品形状に切断した後に、永久磁石を不要とする性能を有するRIGでは、外部から磁界を加え磁気的に飽和させ、永久磁石が不要なファラデー回転子として用いられる。
In general, bismuth-substituted rare earth iron garnet single crystals (hereinafter abbreviated as RIG as appropriate) used as Faraday rotators are mainly produced by 3 inch (111) garnet by liquid phase epitaxial (hereinafter abbreviated as LPE) method. Growing using a single crystal (GdCa) 3 (GaMgZr) 5 O 12 substrate. Thereafter, a manufacturing process is performed in which the substrate is cut to about 10 mm × 10 mm, both surfaces are polished to a mirror surface, and an antireflection film is attached to both surfaces.
After that, the RIG having the performance of eliminating the need for a permanent magnet after cutting into a product shape of a chip of about 1 mm × 1 mm is used as a Faraday rotator that does not require a permanent magnet by applying a magnetic field from the outside to magnetically saturate. .

永久磁石を必要としないファラデー回転子にて問題となるのが、外部磁界及び環境温度の影響で磁気的な飽和状態が破られる、という点である。光アイソレータが使用される温度環境は、通常、−40〜85℃であり、また光アイソレータの設置場所に外部磁界が存在するケースも想定される。したがって、−40〜85℃の温度範囲で、外部磁界が存在した場合、例えば100(Oe)程度、好ましくは200(Oe)程度までの外部磁界が存在した場合にも、一旦飽和させたファラデー回転角が維持されることが、これらファラデー回転子には望まれる。ここで、外部磁界、特に磁気的に飽和したファラデー回転子に対して逆向きの磁界であって、この磁気的に飽和した状態を破る磁界を保磁力Hcと定義する。  A problem with a Faraday rotator that does not require a permanent magnet is that the magnetic saturation state is broken under the influence of an external magnetic field and ambient temperature. The temperature environment in which the optical isolator is used is normally −40 to 85 ° C., and a case where an external magnetic field exists at the installation location of the optical isolator is also assumed. Therefore, when an external magnetic field is present in the temperature range of −40 to 85 ° C., for example, even when an external magnetic field of up to about 100 (Oe), preferably about 200 (Oe) is present, the Faraday rotation once saturated. It is desirable for these Faraday rotators that the angle be maintained. Here, a magnetic field that is opposite to an external magnetic field, particularly a magnetically saturated Faraday rotator, and that breaks this magnetically saturated state is defined as a coercive force Hc.

永久磁石を不要とする性能を有するRIGとするためには、すなわち大きなHcをRIGに持たせるためには、RIGの磁気異方性を上げ、飽和磁界(以下、Hsと適宜略す)を下げることが有効である。したがって、磁気異方性の増大に寄与する希土類元素やその組み合わせを選択して、かつ四面体サイトの鉄を非磁性元素で置換するなどして飽和磁界を下げることが有効となる。四面体サイトの鉄を置換する非磁性元素には、一般にGaやAlが使われる。これは、GaやAlが四面体と八面体の2サイトある鉄の内、四面体サイトの方に選択的に置換され、フェリ磁性体であるRIGの飽和磁界を下げる効果があるためである。特にGaの四面体へのサイト選択率は、一般に90%程度と言われていて飽和磁界を下げる目的に適している。特許文献1〜4のRIGでは、飽和磁界を下げて、永久磁石を不要とする性能を有するRIGが実現される。  In order to make RIG that does not require a permanent magnet, that is, in order to give RIG a large Hc, the magnetic anisotropy of RIG is increased and the saturation magnetic field (hereinafter abbreviated as Hs as appropriate) is lowered. Is effective. Therefore, it is effective to lower the saturation magnetic field by selecting rare earth elements that contribute to an increase in magnetic anisotropy or a combination thereof, and replacing iron at the tetrahedral site with a nonmagnetic element. Generally, Ga or Al is used as a nonmagnetic element that replaces iron at the tetrahedral site. This is because Ga and Al are selectively substituted in the tetrahedral site out of the tetrahedral and octahedral two-site iron, and have the effect of lowering the saturation magnetic field of the ferrimagnetic RIG. In particular, the site selectivity to the tetrahedron of Ga is generally said to be about 90% and is suitable for the purpose of lowering the saturation magnetic field. In the RIGs of Patent Documents 1 to 4, the RIG having the performance of reducing the saturation magnetic field and making the permanent magnet unnecessary is realized.

しかしながら、これら非磁性元素にて鉄を置換すると、ファラデー回転角45degのファラデー回転子において、温度1℃当たりのファラデー回転角の変化(以下、温度特性と記す)が非磁性元素量の増加と共に悪化することが知られている。構成する希土類の種類に応じて異なるが、通常、非磁性イオンで置換しないファラデー回転子の温度特性は絶対値で、0.045〜0.07(deg/℃)(以下、温度特性値は絶対値の値で表記する)であるのに対して、一般に市販されていて永久磁石を必要としない、特許文献2または特許文献3記載のRIGでは、その温度特性が0.09〜0.1(deg/℃)と大きい。RIGの大きな温度特性は、光アイソレータの外部温度変化による性能低下の要因となる。  However, when iron is replaced with these nonmagnetic elements, the change in the Faraday rotation angle per 1 ° C. (hereinafter referred to as temperature characteristics) in a Faraday rotator with a Faraday rotation angle of 45 deg becomes worse as the amount of nonmagnetic elements increases. It is known to do. Usually, the temperature characteristics of a Faraday rotator that is not substituted with non-magnetic ions is an absolute value, which varies depending on the type of rare earth constituent, and is 0.045 to 0.07 (deg / ° C.) (hereinafter, the temperature characteristic value is an absolute value) In the RIG described in Patent Document 2 or Patent Document 3 that does not require a permanent magnet, the temperature characteristic is 0.09 to 0.1 (indicated by the value of the value). deg / ° C). The large temperature characteristics of RIG cause performance degradation due to external temperature changes of the optical isolator.

一方、特許文献1記載のRIGは、温度特性は0.07〜0.08(deg/℃)と比較的良好であるが、このRIGからなる市販されているファラデー回転子のHcの保証値は室温にて200(Oe)(製品カタログ値)であり、他の市販品(400〜500(Oe))と比較すると小さい。更に、高温にてHcの低下が大きいことを本発明者らは確認している。RIGの磁気的な物性である磁気異方性定数を大きくするとHcは大きくなる。磁気異方性定数と、希土類イオンの種類やそのイオン半径に関連があることは一般に知られている。特許文献1記載のRIGに、イオン半径が小さく磁性を有するHoを加えてHcの向上を提案したものが特許文献2であり、特許文献3では磁性を有してイオン半径の異なるEuとHoが組み合わされている。特許文献4で特許文献1記載のRIGに、イオン半径が小さく磁性を有するYbを組み合わせることでも大きなHcを有することを見出して、そして、その温度特性が従来よりも小さな0.075〜0.08(deg/℃)であるRIGが提案されている。
さらに、特許文献5においては、特許文献2及び特許文献4記載のRIGに、RIGを育成する際の坩堝材を金とし、加えてCaをRIGに混入させることで、その温度特性が0.075(deg/℃)以下となることが見出されている。しかし、温度特性の向上のためには、坩堝材に金を用いることが必須であり、従来から使用されていて、金よりも融点が高く、生産性に優れている白金製の坩堝が使用できないという制約がある。
また、育成後の熱処理で鉄サイトを置換しているGaのサイト選択率を変化させることが知られているが(非特許文献1)、この場合は雰囲気制御用の熱処理炉という大掛かりな装置が必要となり、さらに熱処理工程のための工数が必要となる。
On the other hand, the RIG described in Patent Document 1 has a relatively good temperature characteristic of 0.07 to 0.08 (deg / ° C.), but the guaranteed value of Hc of a commercially available Faraday rotator made of this RIG is It is 200 (Oe) (product catalog value) at room temperature, and is small compared with other commercially available products (400 to 500 (Oe)). Furthermore, the present inventors have confirmed that the decrease in Hc is large at high temperatures. Increasing the magnetic anisotropy constant, which is the magnetic property of RIG, increases Hc. It is generally known that the magnetic anisotropy constant is related to the type of rare earth ion and its ion radius. Patent Document 2 proposes improvement of Hc by adding Ho having a small ionic radius and magnetism to RIG described in Patent Document 1. In Patent Document 3, Eu and Ho having magnetism and different ionic radii are disclosed. It is combined. It has been found in Patent Document 4 that RIG described in Patent Document 1 is combined with Yb having a small ionic radius and magnetism to have a large Hc, and its temperature characteristic is 0.075 to 0.08, which is smaller than the conventional one. A RIG of (deg / ° C.) has been proposed.
Furthermore, in Patent Document 5, the temperature characteristics of the RIG described in Patent Document 2 and Patent Document 4 are 0.075 by using gold as the crucible material for growing the RIG and adding Ca to the RIG. It has been found that (deg / ° C.) or less. However, in order to improve temperature characteristics, it is essential to use gold for the crucible material, and a platinum crucible that has been used in the past and has a higher melting point than gold and is excellent in productivity cannot be used. There is a restriction.
Moreover, although it is known that the site selectivity of Ga substituting the iron site is changed by heat treatment after growth (Non-Patent Document 1), in this case, a large-scale apparatus called a heat treatment furnace for controlling the atmosphere is used. In addition, man-hours for the heat treatment process are required.

特許第3520889号Japanese Patent No. 3520889 特開平10−31112JP-A-10-31112 特許第3198053号Japanese Patent No. 3198053 特開2010−72263JP 2010-72263 A 特開2010−256588JP2010-256588

バブル技術ハンドブック 電気学会著 オーム社Bubble Technology Handbook by the Institute of Electrical Engineers Ohmsha

本発明者らは、Hcの大きな特許文献2にて提案されているRIGにおいて、実績のある生産性の高い白金坩堝を使って生産してもなお、温度特性に優れた当該ファラデー回転子の製造方法を提供することを課題とした。  The present inventors manufactured the Faraday rotator having excellent temperature characteristics even if the RIG proposed in Patent Document 2 with a large Hc is produced using a proven and highly productive platinum crucible. The problem was to provide a method.

本発明者らは、上記課題を解決すべく鋭意検討した結果、育成温度の上昇と共に、RIGの鉄サイトへ置換されるGaにおいて、飽和磁界を下げる効果がある四面体サイトへのサイト選択率が上昇するという知見を得、結果として従来よりも少ないGa置換量にて、RIGの温度特性を悪化させることなく、飽和磁界を低下させることが可能であるとの知見を見出し、本発明を完成させた。
すなわち、化学式Tb3−x−yHoBiFe5−zGa12(式中、0.4≦x≦0.7,1.1≦y≦1.3,0.6≦z≦0.75)で示される、液相エピタキシャル法にて育成されるビスマス置換希土類鉄ガーネット単結晶及びこれを磁化処理してなる角型ヒステリシスを示すファラデー回転子の製造方法において、結晶育成温度を870℃以上950℃以下とすることで、温度特性0.075(deg/℃)以下が達成された。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have a site selectivity to a tetrahedral site that has an effect of lowering a saturation magnetic field in Ga substituted for an RIG iron site with an increase in growth temperature. As a result, the inventors have found that it is possible to reduce the saturation magnetic field without deteriorating the temperature characteristics of RIG with a smaller amount of Ga substitution than before, and completed the present invention. It was.
That is, the formula Tb 3-x-y Ho x Bi y Fe 5-z Ga z O 12 ( wherein, 0.4 ≦ x ≦ 0.7,1.1 ≦ y ≦ 1.3,0.6 ≦ z ≦ 0.75), a bismuth-substituted rare earth iron garnet single crystal grown by a liquid phase epitaxial method and a method for producing a Faraday rotator showing a square hysteresis formed by magnetizing the bismuth-substituted rare earth iron garnet single crystal, Temperature characteristics of 0.075 (deg / ° C.) or less were achieved by setting the temperature to 870 ° C. or more and 950 ° C. or less.

育成温度と飽和磁界を調整するために必要なGa置換量と、温度特性の関係を示したグラフ図。The graph which showed the amount of Ga substitution required in order to adjust growth temperature and a saturation magnetic field, and the relationship of a temperature characteristic.

表1は、実施例1〜5、比較例1〜2の製造方法で作製したファラデー回転子の評価結果をまとめたものである。  Table 1 summarizes the evaluation results of the Faraday rotators produced by the production methods of Examples 1 to 5 and Comparative Examples 1 and 2.

Figure 2013170120
Figure 2013170120

表1内における各実施例および各比較例に記載した方法により製造したRIGにおいて、その時の育成温度とRIG中のGaの置換量及び温度特性の関係を図1に示す。表1内、Hcの値の定義としては、下記実施例で述べているように得られたRIGにおいて、1mm×1mmチップに加工された100チップのHcにおける平均値とし、さらに十分なHcが得られたという判断基準を上記100チップのHcにおける平均値が1000(Oe)以上であることとした。HcはHsに反比例するため、表1における飽和磁界が70(Oe)を超えると、Hcが低くなる。また、30(Oe)未満では、磁気補償温度が室温付近となるため、Hcが高くなり過ぎて、製品化する際に大きな着磁磁界を必要とするなどの支障が生じる。
図1で明確なように、育成温度の上昇とともに十分なHcを得るための、飽和磁界の調整に必要なGa置換量は減少し、それに伴い温度特性が向上することを本発明者らは見出した。飽和磁界の調整に必要なGa量が減少した理由は、育成温度の上昇と共に、RIGの鉄サイトへ置換されるGaにおいて、飽和磁界を下げる効果がある鉄サイトの四面体サイトへのサイト選択率が上昇したためと、本発明者らは考えている。図1より、育成温度が870℃以上とすることで温度特性0.075(deg/℃)以下が達成できる。
また、本発明は坩堝材の制約が無いため、金坩堝を用いた製造方法でも有効である。金は融点が1064℃と低いため、育成温度は950℃以下であることが望ましいが、白金製のルツボを使用する際はそれ以上の育成温度でもよい。
In RIG manufactured by the method described in each Example and each comparative example in Table 1, the relationship between the growth temperature at that time, the substitution amount of Ga in RIG, and the temperature characteristic is shown in FIG. In Table 1, as the definition of the value of Hc, in the RIG obtained as described in the following examples, the average value in Hc of 100 chips processed into 1 mm × 1 mm chips is obtained, and further sufficient Hc is obtained. The criterion for the determination was that the average value of Hc of the 100 chips was 1000 (Oe) or more. Since Hc is inversely proportional to Hs, when the saturation magnetic field in Table 1 exceeds 70 (Oe), Hc decreases. On the other hand, if it is less than 30 (Oe), the magnetic compensation temperature is near room temperature, so that Hc becomes too high, and troubles such as the need for a large magnetizing magnetic field when producing the product occur.
As is clear from FIG. 1, the present inventors have found that the amount of Ga substitution necessary for adjusting the saturation magnetic field to obtain sufficient Hc as the growth temperature rises decreases, and the temperature characteristics improve accordingly. It was. The reason why the amount of Ga necessary for adjusting the saturation magnetic field has decreased is that the site selectivity to the tetrahedral site of the iron site that has the effect of lowering the saturation magnetic field in Ga replaced with the iron site of RIG as the growth temperature increases. The present inventors think that this has increased. From FIG. 1, the temperature characteristic of 0.075 (deg / ° C.) or less can be achieved by setting the growth temperature to 870 ° C. or higher.
Further, the present invention is also effective in a manufacturing method using a gold crucible because there is no restriction on the crucible material. Since gold has a low melting point of 1064 ° C., the growth temperature is desirably 950 ° C. or lower, but when a platinum crucible is used, a higher growth temperature may be used.

Hoの置換量xは、0.4以上0.7以下が好ましい。xが0.4未満ではBiの置換量が減りファラデー効果が低下して必要な膜厚が厚くなるので好ましくない。逆にxが0.7を超えるとBiが多く入ることになるが、Biを多量に置換すると結晶の質や生産性が低下するので好ましくない。Hoの置換量xを上記の様に設定することで、RIG中の希土類サイトにおけるHo、Tb、Biの各イオン半径と使用する基板の格子定数との整合性によりTb、Biの置換量はそれぞれ決定され、Biの置換量yは1.1以上1.3以下となる。
Gaの置換量zは、できるだけ少ないことがファラデー回転角の温度特性に対して有効である。本発明を用いると、Gaの置換量zは0.6〜0.75の範囲で上記飽和磁界を得ることができる。
The substitution amount x of Ho is preferably 0.4 or more and 0.7 or less. If x is less than 0.4, the amount of Bi substitution is reduced, the Faraday effect is lowered, and the required film thickness is increased, which is not preferable. On the contrary, if x exceeds 0.7, a large amount of Bi will be contained, but if a large amount of Bi is substituted, the quality and productivity of the crystals are lowered, which is not preferable. By setting the amount of substitution x of Ho as described above, the amount of substitution of Tb and Bi depends on the consistency between the ionic radii of Ho, Tb, and Bi at the rare earth site in the RIG and the lattice constant of the substrate to be used. The Bi substitution amount y is 1.1 or more and 1.3 or less.
It is effective for the temperature characteristic of the Faraday rotation angle that the substitution amount z of Ga is as small as possible. When the present invention is used, the saturation magnetic field can be obtained when the Ga substitution amount z is in the range of 0.6 to 0.75.

本発明は、組成(TbHoBi)(FeGa)Oに関するものであるが、特許文献1記載の(TbBi)(FeGaAl)12、特許文献4及び特許文献5記載の(TbYbBi)(FeGa)12等においても、育成温度を上昇させることで飽和磁界の調整に必要なGa及びAl量が減少し、温度特性が向上することが期待できる。The present invention is concerned with the 5 O composition (TbHoBi) 3 (FeGa), described in Patent Document 1 (TbBi) 3 (FeGaAl) 5 O 12, Patent Documents 4 and 5, wherein the (TbYbBi) 3 ( In FeGa) 5 O 12 and the like, it can be expected that the temperature characteristics are improved by increasing the growth temperature to reduce the amount of Ga and Al necessary for adjusting the saturation magnetic field.

本発明に用いる上記RIG膜の製造に用いる種結晶基板としては、公知のものが使用できる。一般には、SGGG基板と称して市販されている格子定数が1.2490nmから1.2515nmの非磁性ガーネット(GdCa)(GaMgZr)12基板から適宜選択する。
以下、表1に記載したRIGの製法と評価結果の詳細を記載する。実施例や比較例では、すべて3Nかそれ以上の高純度試薬を用いている。また、いずれの製法による液相エピタキシャル法における結晶育成中においては、特別な雰囲気制御は実施していなく、いずれも大気中で行っている。
A known substrate can be used as the seed crystal substrate used for manufacturing the RIG film used in the present invention. In general, it is appropriately selected from non-magnetic garnet (GdCa) 3 (GaMgZr) 5 O 12 substrates having a lattice constant of 1.2490 nm to 1.2515 nm that are commercially available as SGGG substrates.
The details of the RIG production methods and evaluation results described in Table 1 are described below. In Examples and Comparative Examples, a high purity reagent of 3N or more is used. In addition, during the crystal growth in the liquid phase epitaxial method by any manufacturing method, no special atmosphere control is performed, and all are performed in the air.

以下、本発明を実施例によって具体的に説明する。
実施例1
白金製坩堝に原料、酸化ビスマス(Bi)、酸化ホルミウム(Ho)、酸化テルビウム(Tb)、酸化ガリウム(Ga)、酸化第2鉄(Fe)、酸化ほう素(B)、酸化鉛(PbO)において、酸化第2鉄に対する酸化ガリウムのモル比[Ga]/[Fe]が0.11、さらに酸化ホルミウム、酸化テルビウム、酸化第2鉄、酸化ガリウムのそれぞれのモル分率の和が0.19となるように仕込み、融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液の温度を878℃まで低下させて後、融液表面に、格子定数が1.2496nmの3インチ(111)ガーネット単結晶(GdCa)(GaMgZr)12基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行い、RIG(以下RIG−1と記す)を得た。RIG−1の飽和磁界Hsを測定した結果、値は40(Oe)であった。このRIG−1をICP発光分析法で分析した結果、組成はTb1.21Ho0.54Bi1.25Fe4.27Ga0.7312であった。得られたRIG−1を11mm×11mmに分割した後、基板を除去し、ファラデー回転角が45度になるように厚さを調整した。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG−1を1枚選択し、ファラデー回転角の温度特性を測定した結果、値は0.075(deg/℃)であった。
このRIG−1、1枚を1mm×1mmの大きさに切断した。得られたチップ100個において、各々の保磁力Hcを測定した結果、100個のHcの平均値は1384(Oe)であった。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
Raw materials, bismuth oxide (Bi 2 O 3 ), holmium oxide (Ho 2 O 3 ), terbium oxide (Tb 4 O 7 ), gallium oxide (Ga 2 O 3 ), ferric oxide (Fe 2 O) in a platinum crucible 3 ) In boron oxide (B 2 O 3 ) and lead oxide (PbO), the molar ratio [Ga 2 O 3 ] / [Fe 2 O 3 ] of gallium oxide to ferric oxide is 0.11, and further oxidation A melt was prepared so that the sum of the molar fractions of holmium, terbium oxide, ferric oxide, and gallium oxide was 0.19.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. After the temperature of the melt obtained here was lowered to 878 ° C., a 3 inch (111) garnet single crystal (GdCa) 3 (GaMgZr) 5 O 12 substrate having a lattice constant of 1.2496 nm was formed on the melt surface. One side was brought into contact and epitaxial growth was performed while rotating the substrate to obtain RIG (hereinafter referred to as RIG-1). As a result of measuring the saturation magnetic field Hs of RIG-1, the value was 40 (Oe). As a result of analyzing this RIG-1 by ICP emission spectrometry, the composition was Tb 1.21 Ho 0.54 Bi 1.25 Fe 4.27 Ga 0.73 O 12 . After dividing the obtained RIG-1 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle was 45 degrees. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, one RIG-1 having an arbitrary size of 11 mm × 11 mm was selected, and the temperature characteristic of the Faraday rotation angle was measured. As a result, the value was 0.075 (deg / ° C.).
One piece of this RIG-1 was cut into a size of 1 mm × 1 mm. As a result of measuring the coercive force Hc of 100 obtained chips, the average value of 100 Hc was 1384 (Oe).

実施例2
白金製坩堝に原料、酸化ビスマス(Bi)、酸化ホルミウム(Ho)、酸化テルビウム(Tb)、酸化ガリウム(Ga)、酸化第2鉄(Fe)、酸化ほう素(B)、酸化鉛(PbO)において、酸化第2鉄に対する酸化ガリウムのモル比[Ga]/[Fe]が0.11、さらに酸化ホルミウム、酸化テルビウム、酸化第2鉄、酸化ガリウムのそれぞれのモル分率の和が0.20となるように仕込み、融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液の温度を891℃まで低下させて後、融液表面に、格子定数が1.2496nmの3インチ(111)ガーネット単結晶(GdCa)(GaMgZr)12基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行い、RIG(以下RIG−2と記す)を得た。RIG−2の飽和磁界Hsを測定した結果、値は35(Oe)であった。このRIG−2をICP発光分析法で分析した結果、組成はTb1.25Ho0.53Bi1.22Fe4.28Ga0.7212であった。得られたRIG−2を11mm×11mmに分割した後、基板を除去し、ファラデー回転角が45度になるように厚さを調整した。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG−2を1枚選択し、ファラデー回転角の温度特性を測定した結果、値は0.074(deg/℃)であった。
このRIG−2、1枚を1mm×1mmの大きさに切断した。得られたチップ100個において、各々の保磁力Hcを測定した結果、100個のHcの平均値は1516(Oe)であった。
Example 2
Raw materials, bismuth oxide (Bi 2 O 3 ), holmium oxide (Ho 2 O 3 ), terbium oxide (Tb 4 O 7 ), gallium oxide (Ga 2 O 3 ), ferric oxide (Fe 2 O) in a platinum crucible 3 ) In boron oxide (B 2 O 3 ) and lead oxide (PbO), the molar ratio [Ga 2 O 3 ] / [Fe 2 O 3 ] of gallium oxide to ferric oxide is 0.11, and further oxidation A melt was prepared by adding the molar fractions of holmium, terbium oxide, ferric oxide, and gallium oxide to 0.20.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. After the temperature of the melt obtained here was lowered to 891 ° C., a 3 inch (111) garnet single crystal (GdCa) 3 (GaMgZr) 5 O 12 substrate having a lattice constant of 1.2496 nm was formed on the melt surface. One side was brought into contact and epitaxial growth was performed while rotating the substrate to obtain RIG (hereinafter referred to as RIG-2). As a result of measuring the saturation magnetic field Hs of RIG-2, the value was 35 (Oe). As a result of analyzing this RIG-2 by the ICP emission spectrometry, the composition was Tb 1.25 Ho 0.53 Bi 1.22 Fe 4.28 Ga 0.72 O 12 . After dividing the obtained RIG-2 into 11 mm × 11 mm, the substrate was removed and the thickness was adjusted so that the Faraday rotation angle was 45 degrees. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, as a result of selecting one arbitrary RIG-2 of 11 mm × 11 mm and measuring the temperature characteristics of the Faraday rotation angle, the value was 0.074 (deg / ° C.).
One piece of this RIG-2 was cut into a size of 1 mm × 1 mm. As a result of measuring each coercive force Hc in 100 obtained chips, the average value of 100 Hc was 1516 (Oe).

実施例3
白金製坩堝に原料、酸化ビスマス(Bi)、酸化ホルミウム(Ho)、酸化テルビウム(Tb)、酸化ガリウム(Ga)、酸化第2鉄(Fe)、酸化ほう素(B)、酸化鉛(PbO)において、酸化第2鉄に対する酸化ガリウムのモル比[Ga]/[Fe]が0.11、さらに酸化ホルミウム、酸化テルビウム、酸化第2鉄、酸化ガリウムのそれぞれのモル分率の和が0.21となるように仕込み、融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液の温度を901℃まで低下させて後、融液表面に、格子定数が1.2496nmの3インチ(111)ガーネット単結晶(GdCa)(GaMgZr)12基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行い、RIG(以下RIG−3と記す)を得た。RIG−3の飽和磁界Hsを測定した結果、値は65(Oe)であった。このRIG−3をICP発光分析法で分析した結果、組成はTb1.24Ho0.51Bi1.25Fe4.30Ga0.7012であった。得られたRIG−3を11mm×11mmに分割した後、基板を除去し、ファラデー回転角が45度になるように厚さを調整した。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG−3を1枚選択し、ファラデー回転角の温度特性を測定した結果、値は0.072(deg/℃)であった。
このRIG−3、1枚を1mm×1mmの大きさに切断した。得られたチップ100個において、各々の保磁力Hcを測定した結果、100個のHcの平均値は1008(Oe)であった。
Example 3
Raw materials, bismuth oxide (Bi 2 O 3 ), holmium oxide (Ho 2 O 3 ), terbium oxide (Tb 4 O 7 ), gallium oxide (Ga 2 O 3 ), ferric oxide (Fe 2 O) in a platinum crucible 3 ) In boron oxide (B 2 O 3 ) and lead oxide (PbO), the molar ratio [Ga 2 O 3 ] / [Fe 2 O 3 ] of gallium oxide to ferric oxide is 0.11, and further oxidation A melt was prepared so that the sum of the molar fractions of holmium, terbium oxide, ferric oxide, and gallium oxide was 0.21.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. After the temperature of the melt obtained here was lowered to 901 ° C., a 3 inch (111) garnet single crystal (GdCa) 3 (GaMgZr) 5 O 12 substrate having a lattice constant of 1.2496 nm was formed on the melt surface. One side was brought into contact and epitaxial growth was performed while rotating the substrate to obtain RIG (hereinafter referred to as RIG-3). As a result of measuring the saturation magnetic field Hs of RIG-3, the value was 65 (Oe). The RIG-3 the results of analysis by ICP emission spectrometry, the composition was Tb 1.24 Ho 0.51 Bi 1.25 Fe 4.30 Ga 0.70 O 12. The obtained RIG-3 was divided into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle was 45 degrees. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, as a result of selecting one arbitrary RIG-3 of 11 mm × 11 mm and measuring the temperature characteristics of the Faraday rotation angle, the value was 0.072 (deg / ° C.).
One piece of this RIG-3 was cut into a size of 1 mm × 1 mm. As a result of measuring the coercive force Hc of 100 obtained chips, the average value of 100 Hc was 1008 (Oe).

比較例1
白金製坩堝に原料、酸化ビスマス(Bi)、酸化ホルミウム(Ho)、酸化テルビウム(Tb)、酸化ガリウム(Ga)、酸化第2鉄(Fe)、酸化ほう素(B)、酸化鉛(PbO)において、酸化第2鉄に対する酸化ガリウムのモル比[Ga]/[Fe]が0.13、さらに酸化ホルミウム、酸化テルビウム、酸化第2鉄、酸化ガリウムのそれぞれのモル分率の和が0.13となるように仕込み、融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液の温度を790℃まで低下させて後、融液表面に、格子定数が1.2496nmの3インチ(111)ガーネット単結晶(GdCa)(GaMgZr)12基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行い、RIG(以下RIG−4と記す)を得た。RIG−4の飽和磁界Hsを測定した結果、値は50(Oe)であった。このRIG−4をICP発光分析法で分析した結果、組成はTb1.17Ho0.58Bi1.25Fe4.17Ga0.8312であった。得られたRIG−4を11mm×11mmに分割した後、基板を除去し、ファラデー回転角が45度になるように厚さを調整した。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG−4を1枚選択し、ファラデー回転角の温度特性を測定した結果、値は0.085(deg/℃)であった。
このRIG−4、1枚を1mm×1mmの大きさに切断した。得られたチップ100個において、各々の保磁力Hcを測定した結果、100個のHcの平均値は1574(Oe)であった。
Comparative Example 1
Raw materials, bismuth oxide (Bi 2 O 3 ), holmium oxide (Ho 2 O 3 ), terbium oxide (Tb 4 O 7 ), gallium oxide (Ga 2 O 3 ), ferric oxide (Fe 2 O) in a platinum crucible 3 ) In boron oxide (B 2 O 3 ) and lead oxide (PbO), the molar ratio [Ga 2 O 3 ] / [Fe 2 O 3 ] of gallium oxide to ferric oxide is 0.13, and further oxidation A melt was prepared by adding the molar fractions of holmium, terbium oxide, ferric oxide, and gallium oxide to 0.13.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. After the temperature of the melt obtained here was lowered to 790 ° C., a 3 inch (111) garnet single crystal (GdCa) 3 (GaMgZr) 5 O 12 substrate having a lattice constant of 1.2496 nm was formed on the melt surface. One side was brought into contact and epitaxial growth was performed while rotating the substrate to obtain RIG (hereinafter referred to as RIG-4). As a result of measuring the saturation magnetic field Hs of RIG-4, the value was 50 (Oe). As a result of analyzing this RIG-4 by the ICP emission spectrometry, the composition was Tb 1.17 Ho 0.58 Bi 1.25 Fe 4.17 Ga 0.83 O 12 . After dividing the obtained RIG-4 into 11 mm × 11 mm, the substrate was removed and the thickness was adjusted so that the Faraday rotation angle was 45 degrees. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, as a result of selecting one arbitrary 11 mm × 11 mm RIG-4 and measuring the temperature characteristics of the Faraday rotation angle, the value was 0.085 (deg / ° C.).
One piece of this RIG-4 was cut into a size of 1 mm × 1 mm. As a result of measuring each coercive force Hc in 100 obtained chips, the average value of 100 Hc was 1574 (Oe).

比較例2
白金製坩堝に原料、酸化ビスマス(Bi)、酸化ホルミウム(Ho)、酸化テルビウム(Tb)、酸化ガリウム(Ga)、酸化第2鉄(Fe)、酸化ほう素(B)、酸化鉛(PbO)において、酸化第2鉄に対する酸化ガリウムのモル比[Ga]/[Fe]が0.12、さらに酸化ホルミウム、酸化テルビウム、酸化第2鉄、酸化ガリウムのそれぞれのモル分率の和が0.15となるように仕込み、融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液の温度を823℃まで低下させて後、融液表面に、格子定数が1.2496nmの3インチ(111)ガーネット単結晶(GdCa)(GaMgZr)12基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行い、RIG(以下RIG−5と記す)を得た。RIG−5の飽和磁界Hsを測定した結果、値は55(Oe)であった。このRIG−5をICP発光分析法で分析した結果、組成はTb1.19Ho0.59Bi1.22Fe4.23Ga0.7712であった。得られたRIG−5を11mm×11mmに分割した後、基板を除去し、ファラデー回転角が45度になるように厚さを調整した。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG−5を1枚選択し、ファラデー回転角の温度特性を測定した結果、値は0.080(deg/℃)であった。
このRIG−5、1枚を1mm×1mmの大きさに切断した。得られたチップ100個において、各々の保磁力Hcを測定した結果、100個のHcの平均値は1313(Oe)であった。
Comparative Example 2
Raw materials, bismuth oxide (Bi 2 O 3 ), holmium oxide (Ho 2 O 3 ), terbium oxide (Tb 4 O 7 ), gallium oxide (Ga 2 O 3 ), ferric oxide (Fe 2 O) in a platinum crucible 3 ) In boron oxide (B 2 O 3 ) and lead oxide (PbO), the molar ratio [Ga 2 O 3 ] / [Fe 2 O 3 ] of gallium oxide to ferric oxide is 0.12, and further oxidation A melt was prepared so that the sum of the molar fractions of holmium, terbium oxide, ferric oxide, and gallium oxide was 0.15.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. After the temperature of the melt obtained here was lowered to 823 ° C., a 3 inch (111) garnet single crystal (GdCa) 3 (GaMgZr) 5 O 12 substrate having a lattice constant of 1.2496 nm was formed on the melt surface. One side was brought into contact and epitaxial growth was performed while rotating the substrate to obtain RIG (hereinafter referred to as RIG-5). As a result of measuring the saturation magnetic field Hs of RIG-5, the value was 55 (Oe). As a result of analyzing this RIG-5 by the ICP emission spectrometry, the composition was Tb 1.19 Ho 0.59 Bi 1.22 Fe 4.23 Ga 0.77 O 12 . After the obtained RIG-5 was divided into 11 mm × 11 mm, the substrate was removed and the thickness was adjusted so that the Faraday rotation angle was 45 degrees. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, as a result of selecting one arbitrary 11 mm × 11 mm RIG-5 and measuring the temperature characteristics of the Faraday rotation angle, the value was 0.080 (deg / ° C.).
One piece of this RIG-5 was cut into a size of 1 mm × 1 mm. As a result of measuring each coercive force Hc in 100 obtained chips, the average value of 100 Hc was 1313 (Oe).

Claims (1)

化学式Tb3−x−yHoBiFe5−zGa12(式中、0.4≦x≦0.7,1.1≦y≦1.3,0.6≦z≦0.75)で示される、液相エピタキシャル法にて育成されるビスマス置換希土類鉄ガーネット単結晶及びこれを磁化処理してなる角型ヒステリシスを示すファラデー回転子の製造方法において、結晶育成温度を870℃以上950℃以下とすることを特徴とする製造方法。Chemical formula Tb 3-xy Ho x Bi y Fe 5-z Ga z O 12 (where 0.4 ≦ x ≦ 0.7, 1.1 ≦ y ≦ 1.3, 0.6 ≦ z ≦ 0) .75), a method for producing a bismuth-substituted rare earth iron garnet single crystal grown by liquid phase epitaxy and a Faraday rotator having a square hysteresis formed by magnetizing the bismuth-substituted rare earth iron garnet single crystal. The manufacturing method characterized by being 950 degreeC or less above.
JP2012049761A 2012-02-17 2012-02-17 Faraday rotator manufacturing method Expired - Fee Related JP5757484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049761A JP5757484B2 (en) 2012-02-17 2012-02-17 Faraday rotator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049761A JP5757484B2 (en) 2012-02-17 2012-02-17 Faraday rotator manufacturing method

Publications (2)

Publication Number Publication Date
JP2013170120A true JP2013170120A (en) 2013-09-02
JP5757484B2 JP5757484B2 (en) 2015-07-29

Family

ID=49264293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049761A Expired - Fee Related JP5757484B2 (en) 2012-02-17 2012-02-17 Faraday rotator manufacturing method

Country Status (1)

Country Link
JP (1) JP5757484B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263597A (en) * 1993-03-16 1994-09-20 Mitsubishi Gas Chem Co Inc Faraday rotation element for optomagnetic sensor
JPH0769797A (en) * 1993-08-27 1995-03-14 Mitsubishi Gas Chem Co Inc Bismuth-substituted iron garnet single crystal formed in low saturated magnetic field
JPH07104224A (en) * 1993-10-07 1995-04-21 Mitsubishi Gas Chem Co Inc Nonreciprocity optical device
JPH1031112A (en) * 1996-07-16 1998-02-03 Mitsubishi Gas Chem Co Inc Faraday rotator which shows square hysteresis
US20020139293A1 (en) * 2001-03-28 2002-10-03 Photocrystal, Inc. Method of manufacturing a magnet-free faraday rotator
JP2006290643A (en) * 2005-04-07 2006-10-26 Granopt Ltd Method for manufacturing bismuth-substituted magnetic garnet film
JP2007153696A (en) * 2005-12-07 2007-06-21 Granopt Ltd Method for producing bismuth-substituted rare earth iron garnet single crystal
JP2007165668A (en) * 2005-12-15 2007-06-28 Granopt Ltd Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP2009147184A (en) * 2007-12-17 2009-07-02 Granopt Ltd Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal
JP2010072263A (en) * 2008-09-18 2010-04-02 Granopt Ltd Faraday rotator
JP2011016679A (en) * 2009-07-08 2011-01-27 Namiki Precision Jewel Co Ltd Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD FOR PRODUCING THE SAME AND OPTICAL DEVICE

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263597A (en) * 1993-03-16 1994-09-20 Mitsubishi Gas Chem Co Inc Faraday rotation element for optomagnetic sensor
JPH0769797A (en) * 1993-08-27 1995-03-14 Mitsubishi Gas Chem Co Inc Bismuth-substituted iron garnet single crystal formed in low saturated magnetic field
JPH07104224A (en) * 1993-10-07 1995-04-21 Mitsubishi Gas Chem Co Inc Nonreciprocity optical device
JPH1031112A (en) * 1996-07-16 1998-02-03 Mitsubishi Gas Chem Co Inc Faraday rotator which shows square hysteresis
US20020139293A1 (en) * 2001-03-28 2002-10-03 Photocrystal, Inc. Method of manufacturing a magnet-free faraday rotator
JP2006290643A (en) * 2005-04-07 2006-10-26 Granopt Ltd Method for manufacturing bismuth-substituted magnetic garnet film
JP2007153696A (en) * 2005-12-07 2007-06-21 Granopt Ltd Method for producing bismuth-substituted rare earth iron garnet single crystal
JP2007165668A (en) * 2005-12-15 2007-06-28 Granopt Ltd Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP2009147184A (en) * 2007-12-17 2009-07-02 Granopt Ltd Method for manufacturing bismuth-substituted rare-earth iron garnet single crystal
JP2010072263A (en) * 2008-09-18 2010-04-02 Granopt Ltd Faraday rotator
JP2011016679A (en) * 2009-07-08 2011-01-27 Namiki Precision Jewel Co Ltd Bi-SUBSTITUTED RARE EARTH IRON GARNET SINGLE CRYSTAL, METHOD FOR PRODUCING THE SAME AND OPTICAL DEVICE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7015000828; Fratello, V.J., et al.: '"Growth-induced anisotropy in bismuth: Rare-earth iron garnets"' Journal of Applied Physics Vol. 60, No. 7, 19861001, pp. 2488-2497 *

Also Published As

Publication number Publication date
JP5757484B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5033945B2 (en) Rare earth iron garnet single crystal
CN104073879B (en) Bismuth displacement rare earth iron garnet single crystal and its manufacture method
JPH0513916B2 (en)
Fu et al. New magneto‐optical film of Ce, Ga: GIG with high performance
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JP4650943B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP5757484B2 (en) Faraday rotator manufacturing method
JP2011011944A (en) Faraday rotator
JP5439931B2 (en) Manufacturing method of Faraday rotator
JP4720730B2 (en) Optical element manufacturing method
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP4942029B2 (en) Magnetic garnet single crystal and method for producing the same
WO2005056887A1 (en) Method for manufacturing garnet single crystal and garnet single crystal manufactured thereby
JP2002287104A (en) Method of manufacturing faraday rotator without using magnet
JP5311474B2 (en) Magnetic garnet single crystal
JP5966945B2 (en) Heat treatment method of bismuth-substituted rare earth iron garnet single crystal
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP2006225204A (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP2010072263A (en) Faraday rotator
JP3490143B2 (en) Oxide garnet single crystal
JP3917859B2 (en) Faraday rotator
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JP2008021691A (en) Process for producing bismuth-substitution rare-earth iron garnet single crystal
JP4432875B2 (en) Method for producing garnet single crystal
JP2018095487A (en) Nonmagnetic garnet single crystal, nonmagnetic garnet single crystal substrate, method for manufacturing nonmagnetic garnet single crystal, and method for manufacturing nonmagnetic garnet single crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5757484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees