JP2006225204A - Method for producing bismuth-substituted rare earth iron garnet single crystal - Google Patents

Method for producing bismuth-substituted rare earth iron garnet single crystal Download PDF

Info

Publication number
JP2006225204A
JP2006225204A JP2005041329A JP2005041329A JP2006225204A JP 2006225204 A JP2006225204 A JP 2006225204A JP 2005041329 A JP2005041329 A JP 2005041329A JP 2005041329 A JP2005041329 A JP 2005041329A JP 2006225204 A JP2006225204 A JP 2006225204A
Authority
JP
Japan
Prior art keywords
melt
lpe
rare earth
film
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041329A
Other languages
Japanese (ja)
Inventor
Hirotaka Kawai
博貴 河合
Kimio Tsuchiya
公男 土屋
Nobuyasu Okano
紳保 岡野
Yuko Ota
猶子 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2005041329A priority Critical patent/JP2006225204A/en
Publication of JP2006225204A publication Critical patent/JP2006225204A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the variation width of magnetic properties to the minimum even when a work for growing a bismuth-substituted rare earth iron garnet single crystal film by an LPE method is repeatedly performed many times. <P>SOLUTION: In a method comprising filling a melt composed of a PbO-B<SB>2</SB>O<SB>3</SB>-Bi<SB>2</SB>O<SB>3</SB>flux component and bismuth-substituted rare earth iron garnet components, and then repeatedly performing the work for growing the bismuth-substituted rare earth iron garnet LPE film on a non-magnetic garnet substrate by the LEC method, after performing the growth work one time or a plurality of times, an element becoming a main constitutive component of the LPE film to be grown and having action making the compensation temperature of the LPE film shift to the high temperature side is added excessively into the melt in addition to the addition of the materials equivalent to the grown crystal components to the melt. Thereby, the shift of the compensation temperature to the low temperature side caused by mixing of platinum into the melt is reduced or canceled out. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、LPE(液相エピタキシャル)法により多数枚のビスマス置換希土類鉄ガーネット単結晶膜を育成する方法に関し、更に詳しく述べると、1回もしくは複数回の育成作業の後に、育成するLPE膜の補償温度を高温側にシフトさせる元素を融液に過剰に添加することにより、多数回にわたり繰り返しLPE膜の育成作業を行っても磁気特性のばらつきを抑制できるようにしたビスマス置換希土類鉄ガーネット単結晶の製造方法に関するものである。この技術は、例えば光通信あるいは光計測などの分野で使用するファラデー素子の製造に有用である。   The present invention relates to a method for growing a large number of bismuth-substituted rare earth iron garnet single crystal films by an LPE (liquid phase epitaxial) method. More specifically, the present invention relates to an LPE film to be grown after one or a plurality of growth operations. Bismuth-substituted rare earth iron garnet single crystal that can suppress variations in magnetic properties even when the LPE film is repeatedly grown many times by adding an element that shifts the compensation temperature to the high temperature side excessively It is related with the manufacturing method. This technique is useful for manufacturing a Faraday element used in the field of optical communication or optical measurement, for example.

周知のように、光通信あるいは光計測などの分野では、ファラデー効果を利用した各種のファラデー回転デバイスが数多く使用されている。例えば、反射戻り光を防止するためのデバイスである光アイソレータ、透過光量を可変制御するためのデバイスである可変光アッテネータ、あるいは透過光をオン・オフ制御するためのデバイスである光スイッチなどであり、それらには偏光面を回転させる機能を有するファラデー素子(磁気光学結晶)が組み込まれている。ここで、デバイスの小型化・高性能化のためには、ファラデー素子として、大きなファラデー回転能をもつ材料が望ましい。   As is well known, various Faraday rotation devices using the Faraday effect are used in the fields of optical communication and optical measurement. For example, an optical isolator that is a device for preventing reflected return light, a variable optical attenuator that is a device for variably controlling the amount of transmitted light, or an optical switch that is a device for controlling on / off of transmitted light They incorporate a Faraday element (magneto-optic crystal) having a function of rotating the polarization plane. Here, in order to reduce the size and increase the performance of the device, a material having a large Faraday rotation capability is desirable as the Faraday element.

大きなファラデー回転能をもつ磁気光学結晶の代表的な例としては、ビスマス置換希土類鉄ガーネット単結晶がある。そこで、現在、LPE法によって育成した厚さ数十μm〜数百μm程度の単結晶膜が、ファラデー素子として広く用いられている。LPE法による単結晶膜の育成は、生産性に優れており、必要なファラデー回転角を呈するファラデー素子を、低価格で提供できる利点があるからである。   A typical example of a magneto-optic crystal having a large Faraday rotation ability is a bismuth-substituted rare earth iron garnet single crystal. Therefore, at present, a single crystal film having a thickness of several tens of μm to several hundreds of μm grown by the LPE method is widely used as a Faraday element. This is because the growth of a single crystal film by the LPE method is excellent in productivity and has an advantage that a Faraday element exhibiting a necessary Faraday rotation angle can be provided at a low price.

LPE法によるビスマス置換希土類鉄ガーネット単結晶膜の育成は、LPE膜育成装置(LPE炉)を用いて行う。このLPE膜育成装置は、白金坩堝を電気炉内に設置した構造である。白金坩堝内には、所定の酸化物原料(PbO−B2 3 −Bi2 3 フラックス成分とビスマス置換希土類鉄ガーネット成分)を充填しておき、均一に混合攪拌された融液とする。温度制御した状態で吊り下げた非磁性ガーネット基板を融液表面に接触させることによって、該基板上にLPE単結晶膜を育成することができる。基板を交換し、上記の育成作業を繰り返すことで、多数のビスマス置換希土類鉄ガーネット単結晶膜を連続して製造することができる。 The growth of the bismuth-substituted rare earth iron garnet single crystal film by the LPE method is performed using an LPE film growth apparatus (LPE furnace). This LPE film growing apparatus has a structure in which a platinum crucible is installed in an electric furnace. A platinum crucible is filled with a predetermined oxide raw material (PbO—B 2 O 3 —Bi 2 O 3 flux component and bismuth-substituted rare earth iron garnet component), and a uniformly mixed and stirred melt is obtained. By bringing a nonmagnetic garnet substrate suspended in a temperature-controlled state into contact with the melt surface, an LPE single crystal film can be grown on the substrate. A large number of bismuth-substituted rare earth iron garnet single crystal films can be continuously produced by exchanging the substrate and repeating the above-described growing operation.

ところが、このような方法でビスマス置換希土類鉄ガーネット単結晶膜を連続して繰り返し育成すると、最初に育成した膜と最後に育成した膜とでは磁気特性(特に飽和磁界)が大きく異なる問題が生じる。デバイスに必要な磁界の設計では、低コスト化などのために、要求される磁気特性の余裕度が小さく(通常、余裕度は十数%程度以下が望ましい)なっている。磁気特性が大きく変動すると、ファラデー素子に必要な磁界を印加できなくなり、デバイスとして所望の特性が発現できなくなる恐れもある。それを避けるには、余裕度を大きくとらねばならず、デバイスが必要以上に大型化したり、コストが上昇する結果を招来する。   However, when the bismuth-substituted rare earth iron garnet single crystal film is continuously and repeatedly grown by such a method, there arises a problem that the magnetic properties (particularly the saturation magnetic field) are greatly different between the first grown film and the last grown film. In designing a magnetic field necessary for a device, a margin of required magnetic characteristics is small (usually, it is desirable that the margin is about 10% or less) in order to reduce costs. If the magnetic characteristics fluctuate greatly, it may not be possible to apply a necessary magnetic field to the Faraday element, and the desired characteristics of the device may not be realized. In order to avoid this, it is necessary to take a large margin, resulting in an unnecessarily large device and an increase in cost.

ところで、単結晶の製造コスト低減のために、白金坩堝内における融液の液位を意図的に移動することで坩堝の侵食位置を変え、それによって坩堝の穴あきを防止し、長期間にわたる連続育成の繰り返し回数を増加させる技術が提案されている(特許文献1参照)。ここでは、融液の液位を移動する方法として、融液と同じ成分を添加する方法と、融液を汲み出す方法が開示されている。その他、融液中に坩堝材料を投入するか、または予め融液中に投入してある坩堝材料を取り出す方法も提案されている(特許文献2参照)。   By the way, in order to reduce the manufacturing cost of a single crystal, the erosion position of the crucible is changed by intentionally moving the liquid level of the melt in the platinum crucible, thereby preventing the crucible from perforating and continuously for a long period of time. A technique for increasing the number of repetitions of training has been proposed (see Patent Document 1). Here, as a method of moving the liquid level of the melt, a method of adding the same components as the melt and a method of pumping out the melt are disclosed. In addition, a method of putting a crucible material into a melt or taking out a crucible material that has been put into a melt in advance has been proposed (see Patent Document 2).

このような方法は、より多くの枚数のLPE膜を低コストで製造できる利点がある。しかし、より多くの枚数のLPE膜を連続して繰り返し育成するほど、前記のように、最初に育成した膜と後で育成した膜とでの磁気特性のばらつき(特に飽和磁界の違い)が大きくなってしまう。つまり、単結晶は製造できるが、磁気特性のばらつきが更に大きくなるために、デバイスの設計が難しくなる問題点は解決できない。
特開平9−175898号公報 特開平10−167894号公報
Such a method has an advantage that a larger number of LPE films can be manufactured at a low cost. However, as a larger number of LPE films are continuously and repeatedly grown, as described above, the variation in magnetic characteristics (especially the difference in saturation magnetic field) between the first grown film and the later grown film increases. turn into. That is, a single crystal can be manufactured, but the problem that the device design becomes difficult cannot be solved because the variation in magnetic characteristics is further increased.
JP-A-9-175898 JP-A-10-167894

本発明が解決しようとする課題は、LPE法によるビスマス置換希土類鉄ガーネット単結晶膜の育成作業を多数回連続して繰り返し行っても、磁気特性の変動幅を最小限に抑えることができるようにすることである。   The problem to be solved by the present invention is that the fluctuation range of the magnetic properties can be minimized even if the growing operation of the bismuth-substituted rare earth iron garnet single crystal film by the LPE method is repeated continuously many times. It is to be.

本発明は、白金坩堝内に、PbO−B2 3 −Bi2 3 フラックス成分とビスマス置換希土類鉄ガーネット成分からなる融液を充填し、LPE法により非磁性ガーネット基板上にビスマス置換希土類鉄ガーネットLPE膜を育成する作業を繰り返す方法において、1回もしくは複数回の育成作業後に、育成する結晶成分に相当する材料を融液に加える他に、育成するLPE膜の主要構成成分となる元素であって且つ該LPE膜の補償温度を高温側にシフトさせる作用を有する元素を、融液に過剰に添加することを特徴とするビスマス置換希土類鉄ガーネット単結晶の製造方法である。ここで、「補償温度」とは、磁気光学結晶が、その温度を境として磁気モーメントが反転する温度のことである。この補償温度は、現象的には、その温度を境としてファラデー回転角の符号が反転するので、容易に求めることができる。 In the present invention, a platinum crucible is filled with a melt composed of a PbO—B 2 O 3 —Bi 2 O 3 flux component and a bismuth-substituted rare earth iron garnet component, and the bismuth-substituted rare earth iron is formed on the nonmagnetic garnet substrate by the LPE method. In the method of repeating the operation of growing the garnet LPE film, after one or a plurality of growth operations, in addition to adding a material corresponding to the crystal component to be grown to the melt, an element which is a main constituent of the LPE film to be grown In addition, there is provided a method for producing a bismuth-substituted rare earth iron garnet single crystal, wherein an element having an action of shifting the compensation temperature of the LPE film to a high temperature side is excessively added to the melt. Here, the “compensation temperature” is a temperature at which the magnetic moment of the magneto-optical crystal is reversed at the temperature. The compensation temperature can be easily obtained because the sign of the Faraday rotation angle is reversed with the temperature as a boundary.

LPE法により長期間にわたって白金坩堝を使用してビスマス置換希土類鉄ガーネット単結晶膜を連続して繰り返し育成すると、同じ融液を使用して同じ作業をしているにもかかわらず、磁気特性のばらつき(具体的には、最初に育成した膜と最後に育成した膜とでの飽和磁界の違い)が大きくなってしまう現象が観察された。初期膜と繰り返し育成膜における温度と飽和磁化との関係の一例を図3に示す。このような現象について鋭意研究した結果、育成したLPE膜中には白金が混入しており、その混入白金量が育成の繰り返し回数と共に徐々に増加していることが判明した。これは、長時間にわたる育成作業中、融液中に坩堝材料の白金が溶け込み続けており、融液中の白金濃度が徐々に濃くなっていくためである。LPE膜中に混入する白金量が増えると、図3に示すように、補償温度が低温側にシフトし、それによって室温での飽和磁界が大きくなるのである。このことから推測すると、補償温度が室温(例えば25℃程度)以上になる場合は、繰返し育成することにより補償温度が室温に近づき、室温における飽和磁化が小さくなり、飽和磁界が小さくなると予想される。その場合においては、保磁力が大きくなることが考えられる。このように、補償温度が変動することは、いずれの場合も磁気特性が変わり、好ましくない。本発明は、このような現象の知得と原因究明に基づき完成したものである。   When a bismuth-substituted rare earth iron garnet single crystal film is continuously and repeatedly grown using a platinum crucible over a long period of time by the LPE method, the magnetic properties vary even though the same work is performed using the same melt. A phenomenon was observed in which (specifically, the difference in saturation magnetic field between the first grown film and the last grown film) increased. An example of the relationship between the temperature and saturation magnetization in the initial film and the repetitively grown film is shown in FIG. As a result of diligent research on such a phenomenon, it was found that platinum was mixed in the grown LPE film, and the amount of the mixed platinum gradually increased with the number of times of growth. This is because the platinum as the crucible material continues to dissolve in the melt during the growth operation for a long time, and the platinum concentration in the melt gradually increases. When the amount of platinum mixed in the LPE film increases, as shown in FIG. 3, the compensation temperature shifts to the low temperature side, and thereby the saturation magnetic field at room temperature increases. Presuming from this, when the compensation temperature becomes room temperature (for example, about 25 ° C.) or higher, it is expected that the compensation temperature approaches the room temperature by repeated growth, the saturation magnetization at room temperature becomes smaller, and the saturation magnetic field becomes smaller. . In that case, the coercive force may be increased. Thus, fluctuation of the compensation temperature is not preferable because the magnetic characteristics change in any case. The present invention has been completed based on the knowledge and investigation of the cause of such a phenomenon.

本発明では、1回もしくは複数回の育成作業後に、育成するLPE膜の主要構成成分となる元素であって、且つ該LPE膜の補償温度を高温側にシフトさせる作用を有する元素を、融液に過剰に添加しており、それによってLPE膜への白金混入による特性変動を低減もしくは相殺させているのである。実際には、1回の育成作業が完了する毎に該元素を融液に過剰に添加するのが好ましいが、育成条件によっては複数回の育成作業が完了した後に該元素を融液に過剰に添加する方法でもよい。ここで過剰添加する元素は、もともとLPE膜の主要な構成成分であるので、添加したことによる弊害は全くない。LPE膜の補償温度を高温側にシフトさせる作用を有する元素としては、Tb,Gd,Dy,Hoがある。   In the present invention, an element that is a main constituent of an LPE film to be grown after one or a plurality of growing operations and has an action of shifting the compensation temperature of the LPE film to a high temperature side is added to the melt. Thus, the characteristic fluctuation due to the platinum mixing into the LPE film is reduced or offset. Actually, it is preferable to add the element excessively to the melt every time one growing operation is completed. However, depending on the growing conditions, the element is excessively added to the melt after a plurality of growing operations are completed. The method of adding may be used. Here, the excessively added element is originally a main component of the LPE film, so there is no harmful effect caused by the addition. Tb, Gd, Dy, and Ho are elements having an effect of shifting the compensation temperature of the LPE film to the high temperature side.

より好ましくは、結晶育成作業の後に、育成する結晶成分に相当する材料と、育成するLPE膜の補償温度を高温側にシフトさせる作用を有する元素の他に、融液と同じ成分を融液に加え、白金坩堝中における融液の液位を移動させるようにしてビスマス置換希土類鉄ガーネット単結晶膜を育成する方法がある。この方法は、1つの白金坩堝で多くの単結晶を育成できる利点と、得られた多くの単結晶の磁気特性が揃っている利点を、兼ね備えたものとなる。   More preferably, after the crystal growth operation, in addition to the material corresponding to the crystal component to be grown and the element having the action of shifting the compensation temperature of the LPE film to be grown to the high temperature side, the same component as the melt is added to the melt. In addition, there is a method of growing a bismuth-substituted rare earth iron garnet single crystal film by moving the liquid level of the melt in the platinum crucible. This method combines the advantage that many single crystals can be grown in one platinum crucible and the advantage that the magnetic properties of many obtained single crystals are aligned.

これらの方法において、育成するLPE膜が、主要な構成成分となる元素としてTbとGaを有するビスマス置換希土類鉄ガーネット組成であって、該LPE膜の補償温度を高温側にシフトさせる作用を有する元素がTbであり、該Tbの過剰添加によって融液への白金混入による補償温度の低温側へのシフトを低減もしくは相殺するのがよい。なお、Tbは、通常、酸化物として白金坩堝に投入する。LPE膜の組成としては、典型的には、(TbYBi)3 (FeGa)5 12があり、それをSGGG基板上に育成する。 In these methods, an LPE film to be grown has a bismuth-substituted rare earth iron garnet composition having Tb and Ga as elements as main constituent elements, and has an effect of shifting the compensation temperature of the LPE film to a high temperature side. Is the Tb, and it is preferable to reduce or cancel the shift of the compensation temperature to the low temperature side due to the platinum addition to the melt by the excessive addition of Tb. Tb is usually charged as an oxide into a platinum crucible. A typical composition of the LPE film is (TbYBi) 3 (FeGa) 5 O 12 , which is grown on an SGGG substrate.

本発明は、育成作業後に、育成するLPE膜の主要構成成分となる元素であって、且つ該LPE膜の補償温度を高温側にシフトさせる作用を有する元素を、融液に過剰に添加するLPE法によるビスマス置換希土類鉄ガーネット単結晶の製造方法であるから、LPE膜への白金混入による特性変動を低減もしくは相殺させることができ、そのため育成作業を多数回連続して繰り返し行っても、磁気特性(例えば飽和磁界)の変動幅を最小限(具体的には十数%以下)に抑えることができる。このようにして、磁気特性の揃ったLPE膜を量産でき、低コスト化を図ることができるし、デバイスにおける磁界の設計も容易となる。   The present invention is an LPE in which an element which is a main constituent of an LPE film to be grown and has an action of shifting the compensation temperature of the LPE film to a high temperature side after the growing operation is excessively added to the melt. Because it is a method for producing bismuth-substituted rare earth iron garnet single crystals by the method, it is possible to reduce or cancel out characteristic fluctuations due to platinum inclusion in the LPE film, so that the magnetic properties can be obtained even if the growth operation is repeated many times in succession. The fluctuation range of (for example, a saturation magnetic field) can be minimized (specifically, 10% or less). In this way, LPE films with uniform magnetic properties can be mass-produced, the cost can be reduced, and the design of the magnetic field in the device is facilitated.

LPE法によるビスマス置換希土類鉄ガーネット単結晶膜の育成は、例えば図1に示すようなLPE膜育成装置(LPE炉)を用いて、次のように行う。竪型の3ゾーンの電気炉10内に、白金坩堝12を搭載した支持台14を下方から挿入する。白金坩堝12内には、所定の酸化物原料(PbO−B2 3 −Bi2 3 フラックス成分とビスマス置換希土類鉄ガーネット成分)を充填しておき、均一に混合攪拌された融液16とする。なお、熱電対18によって融液温度を計測制御可能としておく。上方から、支持部材20により非磁性ガーネット単結晶基板22を吊り下げ、回転及び下降・上昇可能とする。基板22を電気炉10内の適当な位置に置くことで、基板温度を制御し、また融液16に接離可能とする。これによって、基板22上にLPE単結晶膜を育成することができる。基板22としては、育成する単結晶膜と同様の結晶構造を持つ非磁性ガーネット単結晶を用いる。LPE膜を育成した後、基板を取り出し、新しい基板を装着して、上記の育成作業を繰り返す。このようにして、多数のビスマス置換希土類鉄ガーネット単結晶膜を連続的に製造することができる。 The growth of the bismuth-substituted rare earth iron garnet single crystal film by the LPE method is performed as follows using, for example, an LPE film growth apparatus (LPE furnace) as shown in FIG. A support base 14 equipped with a platinum crucible 12 is inserted from below into a vertical three-zone electric furnace 10. The platinum crucible 12 is filled with predetermined oxide raw materials (PbO—B 2 O 3 —Bi 2 O 3 flux component and bismuth-substituted rare earth iron garnet component), and the melt 16 uniformly mixed and stirred To do. Note that the melt temperature can be measured and controlled by the thermocouple 18. From above, the nonmagnetic garnet single crystal substrate 22 is suspended by the support member 20 so that it can be rotated, lowered and raised. By placing the substrate 22 at an appropriate position in the electric furnace 10, the substrate temperature is controlled and the melt 16 can be contacted and separated. Thereby, an LPE single crystal film can be grown on the substrate 22. As the substrate 22, a nonmagnetic garnet single crystal having the same crystal structure as that of the single crystal film to be grown is used. After growing the LPE film, the substrate is taken out, a new substrate is mounted, and the above-described growing operation is repeated. In this way, a large number of bismuth-substituted rare earth iron garnet single crystal films can be continuously produced.

本発明では、白金坩堝内に、PbO−B2 3 −Bi2 3 フラックス成分と、TbとGaを有するビスマス置換希土類鉄ガーネット成分を仕込み、加熱攪拌することで均一な溶融状態とする。フラックス成分としてPbO−B2 3 −Bi2 3 を用いると、坩堝材料である白金が徐々に融液に溶け込む。融液に溶け込んだ白金は、育成中のLPE膜中に混入し、補償温度を低温側にシフトし、それによって室温での飽和磁界が大きくなる。そこで本発明では、1回の育成作業後に、育成した結晶成分に相当する材料を融液に加える他に、育成するLPE膜の補償温度を高温側にシフトさせる作用を有するTb(実際にはTb酸化物)を融液に過剰に添加する。これによってLPE膜への白金混入による補償温度の低温側へのシフトを低減もしくは相殺する。従って、本発明方法によれば、育成作業回数が増えるほど、LPE膜中の白金濃度及びTb濃度は増加することになる。LPE膜の組成としては、典型的には(TbYBi)3 (FeGa)5 12があり、それをSGGG基板上に育成する。 In the present invention, a PbO—B 2 O 3 —Bi 2 O 3 flux component and a bismuth-substituted rare earth iron garnet component having Tb and Ga are charged into a platinum crucible and heated and stirred to obtain a uniform molten state. When PbO—B 2 O 3 —Bi 2 O 3 is used as a flux component, platinum as a crucible material gradually dissolves in the melt. The platinum dissolved in the melt is mixed into the growing LPE film, and the compensation temperature is shifted to the low temperature side, thereby increasing the saturation magnetic field at room temperature. Therefore, in the present invention, after one growth operation, in addition to adding a material corresponding to the grown crystal component to the melt, Tb (actually Tb having the effect of shifting the compensation temperature of the LPE film to be grown to the high temperature side) Oxide) is added to the melt in excess. This reduces or cancels the shift of the compensation temperature to the low temperature side due to the platinum mixture in the LPE film. Therefore, according to the method of the present invention, the platinum concentration and the Tb concentration in the LPE film increase as the number of times of growing work increases. The composition of the LPE film is typically (TbYBi) 3 (FeGa) 5 O 12 , which is grown on the SGGG substrate.

より好ましい育成方法としては、1回の育成作業後に、育成した結晶成分に相当する材料と、育成するLPE膜の補償温度を高温側にシフトさせる作用を有する元素の他に、融液と同じ成分を融液に添加し、白金坩堝中における融液の液位を移動させる方法がある。白金坩堝は、融液の液面位置で局所的に侵食される。1回で侵食される範囲は5mm程度であり、液位を1回の育成毎に0.5mm程度ずつ移動させれば、侵食位置が徐々にずれるために、穴が開くことなく同じ白金坩堝を使用し続けることができる。因みに、侵食位置を変えなければ15回程度の育成作業で穴が開き融液漏れが生じるが、侵食位置を移動させるようにすると、40〜80回程度の育成作業も可能となる。このように多数回に及ぶ育成作業が可能となるので、磁気特性の変動を抑えることができる本発明は、量産化の際には、より有効である。   As a more preferable growth method, in addition to the material corresponding to the grown crystal component and the element having the action of shifting the compensation temperature of the grown LPE film to the high temperature side after one growth operation, the same component as the melt Is added to the melt to move the level of the melt in the platinum crucible. The platinum crucible is locally eroded at the liquid surface position of the melt. The range of erosion at one time is about 5 mm, and if the liquid level is moved by about 0.5 mm for each growth, the erosion position gradually shifts. Can continue to use. By the way, if the erosion position is not changed, a hole is opened by about 15 times of growth work, and melt leakage occurs. However, if the erosion position is moved, the growth work of about 40 to 80 times becomes possible. As described above, since the growing operation can be performed many times, the present invention capable of suppressing the fluctuation of the magnetic characteristics is more effective in mass production.

なお、飽和磁界の変化は、連続育成回数の少ない初期段階では変化が大きく、育成回数が多くなった段階では変化が小さく且つ変化幅が安定する傾向にある。このことから、補償温度を高温側にシフトさせる作用を有する元素を、初期の段階では多く、その後は少なく、量を変えて加えるのが好ましい。また、初期の段階での磁気特性の変化が大きいことから、融液と同じ成分を融液に添加しない通常の育成方法でも、磁気特性安定化の効果は非常に大きい。   Note that the change in the saturation magnetic field tends to be large at the initial stage where the number of continuous growths is small, and small at the stage where the number of growths is large, and the change width tends to be stable. For this reason, it is preferable to add a large amount of elements having an effect of shifting the compensation temperature to the high temperature side in the initial stage and then to change the amount in small amounts. In addition, since the change in the magnetic characteristics at the initial stage is large, the effect of stabilizing the magnetic characteristics is very large even with a normal growth method in which the same components as the melt are not added to the melt.

(実施例)
初期仕込材料として、Tb4 7 :34.5g,Y2 3 :14.6g,Fe2 3 :375g,Ga2 3 :83.7g,PbO:2696g,B2 3 :168.2g,Bi2 3 :5628gの合計9000gを白金坩堝に入れ、温度950℃で60時間溶融した。その後、同じ950℃で24時間撹拌し、育成温度730℃に降温させSGGG基板上にLPE膜を育成した。このSGGG基板は、形状3インチ、格子定数1.2497±0.0003nmの(CaGd)3 (MgZrGa)5 12基板である。育成後、基板を室温まで降温して取り出した。LPE膜育成前のSGGG基板の重量と、LPE育成後の(SGGG基板+LPE膜)の重量の差からLPE膜の重量を算出したところ、15.84gであった。また、育成した結晶の主成分組成(白金、酸化鉛等の不純物は除く)はTb1.0 0.6 Bi1.4 Fe4.1 Ga0.9 12であった。次に、このLPE膜を7.6mm角に切断し、基板を削除した後、大気中1100℃で24時間熱処理した。そして、両面を鏡面研磨して縦1mm、横1.2mm、厚さ0.34mmのチップに加工した。このチップの鏡面と垂直方向の室温での飽和磁界は9.5kA/mであった。
(Example)
As initial charge materials, Tb 4 O 7 : 34.5 g, Y 2 O 3 : 14.6 g, Fe 2 O 3 : 375 g, Ga 2 O 3 : 83.7 g, PbO: 2696 g, B 2 O 3 : 168. A total of 9000 g of 2 g, Bi 2 O 3 : 5628 g was put in a platinum crucible and melted at a temperature of 950 ° C. for 60 hours. Thereafter, the mixture was stirred at the same 950 ° C. for 24 hours, and the temperature was lowered to 730 ° C. to grow an LPE film on the SGGG substrate. This SGGG substrate is a (CaGd) 3 (MgZrGa) 5 O 12 substrate having a shape of 3 inches and a lattice constant of 1.2497 ± 0.0003 nm. After the growth, the substrate was cooled to room temperature and taken out. The weight of the LPE film was calculated from the difference between the weight of the SGGG substrate before growing the LPE film and the weight of (SGGG substrate + LPE film) after growing the LPE, and it was 15.84 g. The main component composition of the grown crystal (excluding impurities such as platinum and lead oxide) was Tb 1.0 Y 0.6 Bi 1.4 Fe 4.1 Ga 0.9 O 12 . Next, this LPE film was cut into 7.6 mm square and the substrate was removed, followed by heat treatment in the atmosphere at 1100 ° C. for 24 hours. Then, both surfaces were mirror-polished and processed into chips having a length of 1 mm, a width of 1.2 mm, and a thickness of 0.34 mm. The saturation magnetic field at room temperature in the direction perpendicular to the mirror surface of this chip was 9.5 kA / m.

次に、表1に示すように材料を秤量(単位:g)して白金坩堝に補充した。

Figure 2006225204
まず、1枚目に育成した結晶組成とその重量(15.84g)から各酸化物原料の重量を求め、白金坩堝に追加した(表1の「結晶成分」)。また、初期仕込材料と同じ材料を同じ重量比で合計50gとなるように求め、白金坩堝に追加した(表1の「融液と同じ成分」)。更に、Tbの酸化物1gを過剰に追加した(表1の「磁気特性相殺分」)。 Next, as shown in Table 1, the material was weighed (unit: g) and replenished to the platinum crucible.
Figure 2006225204
First, the weight of each oxide raw material was determined from the crystal composition grown on the first sheet and its weight (15.84 g), and added to the platinum crucible (“Crystal component” in Table 1). Further, the same materials as the initial charge materials were obtained so as to have a total weight of 50 g and added to the platinum crucible ("Same components as melt" in Table 1). Furthermore, 1 g of Tb oxide was added in excess (“Magnetic property offset” in Table 1).

その後、再び950℃に昇温して20時間溶融した。そして、同じ950℃で12時間撹拌した後、育成温度730℃に降温させSGGG基板上にLPE膜を育成した。この時のLPE膜の重量は15.53gであった。また、1枚目と同様にチップに加工し飽和磁化を測定した結果、9.8kA/mであった。   Thereafter, the temperature was raised again to 950 ° C. and melted for 20 hours. And after stirring for 12 hours at the same 950 ° C., the temperature was lowered to 730 ° C. to grow an LPE film on the SGGG substrate. At this time, the weight of the LPE film was 15.53 g. Moreover, as a result of processing into a chip and measuring the saturation magnetization as in the first sheet, it was 9.8 kA / m.

1枚目育成後と同様に、2枚目の結晶重量と育成膜の組成から各酸化物原料の重量を求めた「結晶成分」15.53gと、「融液と同じ成分」50gと、「磁気特性相殺分」としてTbの酸化物0.1gを表2に示すように白金坩堝に追加した。

Figure 2006225204
In the same manner as after the growth of the first sheet, 15.53 g of “crystal component” obtained by determining the weight of each oxide raw material from the crystal weight of the second sheet and the composition of the grown film, “the same component as the melt” 50 g, “ As shown in Table 2, 0.1 g of Tb oxide was added to the platinum crucible as “magnetic property offset”.
Figure 2006225204

LPE膜育成2枚目以降の一連の作業を繰り返し、LPE膜を35枚育成した。なお、「結晶成分」は、その都度、結晶重量と育成膜の組成から各酸化物原料の重量を求めて調整している。「磁気特性相殺分」としてのTbの酸化物過剰量は0.1gで一定である。35枚目の単結晶チップの飽和磁界は10.5kA/mであり、1枚目との差は1.0kA/mであった。   A series of operations after the second LPE film growth was repeated to grow 35 LPE films. The “crystal component” is adjusted each time by obtaining the weight of each oxide raw material from the crystal weight and the composition of the grown film. The excess amount of oxide of Tb as “magnetic property offset” is constant at 0.1 g. The saturation magnetic field of the 35th single crystal chip was 10.5 kA / m, and the difference from the first was 1.0 kA / m.

(比較例)
前記実施例と同じ初期仕込材料9000gを白金坩堝に入れ、温度950℃で60時間溶融した。その後、同じ950℃で24時間撹拌し、育成温度730℃に降温させSGGG基板上にLPE膜を育成した。育成後、基板を室温まで降温して取り出した。LPE膜の重量は15.93gであった。また、育成した結晶の主成分組成(白金、酸化鉛等の不純物は除く)は前記実施例と同じであった。実施例と同様に、このLPE膜を加工して縦1mm、横1.2mm、厚さ0.34mmのチップを得た。このチップの室温での飽和磁界は9.5kA/mであった。
(Comparative example)
The same initial charge 9000 g as in the above example was placed in a platinum crucible and melted at a temperature of 950 ° C. for 60 hours. Thereafter, the mixture was stirred at the same 950 ° C. for 24 hours, and the temperature was lowered to 730 ° C. to grow an LPE film on the SGGG substrate. After the growth, the substrate was cooled to room temperature and taken out. The weight of the LPE film was 15.93 g. Further, the main component composition of the grown crystal (excluding impurities such as platinum and lead oxide) was the same as in the above example. Similarly to the example, this LPE film was processed to obtain a chip having a length of 1 mm, a width of 1.2 mm, and a thickness of 0.34 mm. The saturation magnetic field of this chip at room temperature was 9.5 kA / m.

次に、表3に示すように材料を秤量(単位:g)して白金坩堝に補充した。

Figure 2006225204
まず、1枚目に育成した結晶組成とその重量(15.93g)から各酸化物原料の重量を求め、白金坩堝に追加した(表3の「結晶成分」)。また、初期仕込材料と同じ材料を同じ重量比で合計50gとなるように求め、白金坩堝に追加した(表1の「融液と同じ成分」)。 Next, as shown in Table 3, the material was weighed (unit: g) and replenished to the platinum crucible.
Figure 2006225204
First, the weight of each oxide raw material was determined from the crystal composition grown on the first sheet and its weight (15.93 g), and added to the platinum crucible ("Crystal component" in Table 3). Further, the same materials as the initial charge materials were obtained so as to have a total weight of 50 g and added to the platinum crucible ("Same components as melt" in Table 1).

その後、再び950℃に昇温して20時間溶融した。そして、同じ950℃で12時間撹拌した後、育成温度730℃に降温させSGGG基板上にLPE膜を育成した。1枚目と同様にチップに加工し飽和磁化を測定した結果、10.5kA/mであった。次に、1枚目育成後と同様に、2枚目の結晶重量と育成膜の組成から各酸化物原料の重量を求めた「結晶成分」と「融液と同じ成分」50gを白金坩堝に追加した。   Thereafter, the temperature was raised again to 950 ° C. and melted for 20 hours. And after stirring for 12 hours at the same 950 ° C., the temperature was lowered to 730 ° C. to grow an LPE film on the SGGG substrate. As a result of processing into a chip and measuring saturation magnetization in the same manner as the first sheet, it was 10.5 kA / m. Next, as in the case after the growth of the first sheet, 50 g of “crystal component” and “the same component as the melt” obtained from the weight of the crystal of the second sheet and the composition of the grown film were obtained in a platinum crucible. Added.

この2枚目の育成及び測定の一連の作業を繰り返し、LPE膜を35枚育成した。35枚目の飽和磁界は14.3kA/mであり、1枚目との差は4.8kA/mであった。   This second series of growth and measurement series was repeated to grow 35 LPE films. The saturation magnetic field of the 35th sheet was 14.3 kA / m, and the difference from the first sheet was 4.8 kA / m.

実施例と比較例との作業の違いは、実施例(本発明方法)では1回の育成作業毎にTbの酸化物を初回に1g、2回目以降は0.1gずつ過剰に追加しているのに対して、比較例(従来技術)ではそれをしていない点のみである。ここでは、初期仕込材料と同じ重量比で50gずつ追加することで液位は約0.5mm上昇させている。なお、前回育成した単結晶に相当する結晶成分の原料の量は、育成した膜厚によって変化する。   The difference between the work of the example and the comparative example is that in the example (the method of the present invention), 1 g of Tb oxide is added excessively for the first time every time the growing work is performed, and 0.1 g is added excessively after the second time. On the other hand, the comparative example (prior art) is not doing so. Here, the liquid level is raised by about 0.5 mm by adding 50 g at the same weight ratio as the initial charge material. Note that the amount of the raw material of the crystal component corresponding to the single crystal grown last time varies depending on the grown film thickness.

表4に、連続育成回数に対する育成したLPE膜の飽和磁界の関係を示す。また、それをグラフ化したのが図2である。

Figure 2006225204
Table 4 shows the relationship of the saturation magnetic field of the grown LPE film with respect to the number of times of continuous growth. FIG. 2 is a graph of this.
Figure 2006225204

35枚育成時点では、比較例では約50%もの変動が生じていたが、実施例では約10%の変動範囲内で収まることが確認できた。飽和磁界は、連続育成回数の少ないところでは変化が大きく、育成回数の多いところでは変化が小さく且つ変化幅が安定する傾向にある。従って、Tb量を更に細かに制御すると、飽和磁界の変動量を更に小さく抑えることも可能である。   At the time of growing 35 sheets, about 50% of the fluctuation occurred in the comparative example, but it was confirmed that it was within the fluctuation range of about 10% in the example. The saturation magnetic field tends to change greatly when the number of continuous growths is small, and changes little and the range of change is stable where the number of growths is large. Therefore, if the amount of Tb is controlled more finely, the amount of fluctuation of the saturation magnetic field can be further reduced.

本発明で用いるLPE膜育成装置の一例を示す説明図。Explanatory drawing which shows an example of the LPE film | membrane growing apparatus used by this invention. 磁気特性変動の一例を示す説明図。Explanatory drawing which shows an example of a magnetic characteristic fluctuation | variation. 初期膜と繰り返し育成膜における温度と飽和磁化との関係図。The relationship diagram of the temperature and saturation magnetization in the initial film and the repetitively grown film.

符号の説明Explanation of symbols

10 電気炉
12 白金坩堝
16 融液
22 基板
10 Electric furnace 12 Platinum crucible 16 Melt 22 Substrate

Claims (3)

白金坩堝内に、PbO−B2 3 −Bi2 3 フラックス成分とビスマス置換希土類鉄ガーネット成分からなる融液が充填され、LPE法により非磁性ガーネット基板上にビスマス置換希土類鉄ガーネットLPE膜を育成する作業を繰り返す方法において、
1回もしくは複数回の育成作業後に、育成した結晶成分に相当する材料を融液に加える他に、育成するLPE膜の主要構成成分となる元素であって且つ該LPE膜の補償温度を高温側にシフトさせる作用を有する元素を融液に過剰に添加することを特徴とするビスマス置換希土類鉄ガーネット単結晶の製造方法。
A platinum crucible is filled with a melt composed of a PbO—B 2 O 3 —Bi 2 O 3 flux component and a bismuth-substituted rare earth iron garnet component, and a bismuth-substituted rare earth iron garnet LPE film is formed on the nonmagnetic garnet substrate by the LPE method. In a method of repeating the training work,
In addition to adding a material corresponding to the grown crystal component to the melt after one or a plurality of growth operations, it is an element which is a main component of the LPE film to be grown, and the compensation temperature of the LPE film is set to the high temperature side. A process for producing a bismuth-substituted rare earth iron garnet single crystal, wherein an element having an action of shifting to an excessive amount is added to the melt.
1回もしくは複数回の育成作業後に、育成した結晶成分に相当する材料と、育成するLPE膜の補償温度を高温側にシフトさせる作用を有する元素の他に、融液と同じ成分を融液に加え、白金坩堝中における融液の液位を移動させるようにした請求項1記載のビスマス置換希土類鉄ガーネット単結晶の製造方法。   In addition to the material corresponding to the grown crystal component and the element having the action of shifting the compensation temperature of the grown LPE film to the high temperature side after one or more growth operations, the same component as the melt is added to the melt. In addition, the method for producing a bismuth-substituted rare earth iron garnet single crystal according to claim 1, wherein the liquid level of the melt in the platinum crucible is moved. 育成するLPE膜が、主要構成成分となる元素としてTbとGaを有するビスマス置換希土類鉄ガーネット組成であって、該LPE膜の補償温度を高温側にシフトさせる作用を有する元素がTbであり、そのTb酸化物の過剰添加によって融液への白金混入による補償温度の低温側へのシフトを低減もしくは相殺するようにした請求項1又は2記載のビスマス置換希土類鉄ガーネット単結晶の製造方法。
The LPE film to be grown is a bismuth-substituted rare earth iron garnet composition having Tb and Ga as the main constituent elements, and the element having the action of shifting the compensation temperature of the LPE film to the high temperature side is Tb, The method for producing a bismuth-substituted rare earth iron garnet single crystal according to claim 1 or 2, wherein a shift of the compensation temperature to a low temperature side due to platinum mixing in the melt is reduced or offset by excessive addition of Tb oxide.
JP2005041329A 2005-02-17 2005-02-17 Method for producing bismuth-substituted rare earth iron garnet single crystal Pending JP2006225204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041329A JP2006225204A (en) 2005-02-17 2005-02-17 Method for producing bismuth-substituted rare earth iron garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041329A JP2006225204A (en) 2005-02-17 2005-02-17 Method for producing bismuth-substituted rare earth iron garnet single crystal

Publications (1)

Publication Number Publication Date
JP2006225204A true JP2006225204A (en) 2006-08-31

Family

ID=36986894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041329A Pending JP2006225204A (en) 2005-02-17 2005-02-17 Method for producing bismuth-substituted rare earth iron garnet single crystal

Country Status (1)

Country Link
JP (1) JP2006225204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057489A (en) * 2009-09-09 2011-03-24 Shin-Etsu Chemical Co Ltd Bismuth-substituted rare earth iron garnet crystal, method for manufacturing the same, and faraday rotator produced using the same
CN115418704A (en) * 2022-08-30 2022-12-02 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175898A (en) * 1995-12-27 1997-07-08 Mitsubishi Gas Chem Co Inc Production of bismuth-substituted rare earth iron garnet single crystal
JP2004083390A (en) * 2002-07-05 2004-03-18 Tdk Corp Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175898A (en) * 1995-12-27 1997-07-08 Mitsubishi Gas Chem Co Inc Production of bismuth-substituted rare earth iron garnet single crystal
JP2004083390A (en) * 2002-07-05 2004-03-18 Tdk Corp Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057489A (en) * 2009-09-09 2011-03-24 Shin-Etsu Chemical Co Ltd Bismuth-substituted rare earth iron garnet crystal, method for manufacturing the same, and faraday rotator produced using the same
CN115418704A (en) * 2022-08-30 2022-12-02 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet single crystal
CN115418704B (en) * 2022-08-30 2023-10-03 广东省科学院资源利用与稀土开发研究所 Flux growth method of rare earth iron boron permanent magnet monocrystal

Similar Documents

Publication Publication Date Title
JP5377785B1 (en) Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
JPH0513916B2 (en)
DE102010021203B4 (en) Terbium titanate for use as a Faraday rotator - Faraday rotator and optical isolator
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JP2006225204A (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP4650943B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
Giess et al. Europium‐yttrium iron‐gallium garnet films grown by liquid phase epitaxy on gadolinium gallium garnet
JPS6034806B2 (en) Magnetic structure for magnetic bubble
Kučera et al. Growth and characterization of high purity epitaxial yttrium iron garnet films grown from BaO–B2O3–BaF2 flux
JP5311474B2 (en) Magnetic garnet single crystal
JP2011011944A (en) Faraday rotator
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP6887678B2 (en) Method for manufacturing magnetic garnet single crystal
Koohpayeh et al. The influence of growth rate on the microstructural and magnetic properties of float-zone grown ErFeO3 crystals
Syvorotka et al. Growth peculiarities and magnetic properties of (LuBi) 3Fe5O12 films by LPE method
JP5439931B2 (en) Manufacturing method of Faraday rotator
JP5757484B2 (en) Faraday rotator manufacturing method
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
US4354254A (en) Devices depending on garnet materials
JP4432896B2 (en) Method for producing garnet single crystal
White et al. Bubble materials—composition, growth and evaluation
JP4432875B2 (en) Method for producing garnet single crystal
JP2007308327A (en) Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal
JP2868166B2 (en) Garnet crystal film and method of manufacturing the same
JP2000264789A (en) Magnetic garnet material and faraday rotor using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330