JP2007308327A - Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal - Google Patents

Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal Download PDF

Info

Publication number
JP2007308327A
JP2007308327A JP2006138651A JP2006138651A JP2007308327A JP 2007308327 A JP2007308327 A JP 2007308327A JP 2006138651 A JP2006138651 A JP 2006138651A JP 2006138651 A JP2006138651 A JP 2006138651A JP 2007308327 A JP2007308327 A JP 2007308327A
Authority
JP
Japan
Prior art keywords
single crystal
thick film
bismuth
rare earth
earth iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006138651A
Other languages
Japanese (ja)
Inventor
Kazumitsu Endo
和光 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2006138651A priority Critical patent/JP2007308327A/en
Publication of JP2007308327A publication Critical patent/JP2007308327A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method capable of reducing and stabilizing an insertion loss of a magnetic garnet. <P>SOLUTION: In the manufacturing method of a bismuth-substituted rare earth iron garnet thick film single crystal represented by the formula (R, Bi)<SB>3</SB>(Fe, M)<SB>5</SB>O<SB>12</SB>(wherein R is at least one kind selected among Eu, Gd, Ho, Yb and Y, and M is Al, Ga or both and its amount may be zero) and grown on a single crystal substrate by a liquid phase epitaxial growing method, a molten liquid obtained by dissolving a raw material of the bismuth-substituted rare earth iron garnet thick film single crystal to a molten material consisting of PbO-Bi<SB>2</SB>O<SB>3</SB>-B<SB>2</SB>O<SB>3</SB>is agitated at a holding step of about 1,000°C and a temperature falling step to a thick film growing temperature of 760-780°C, then the thick film single crystal is grown. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液相エピタキシャル成長法による、ビスマス置換希土類鉄系ガーネット厚膜単結晶の製造方法に関する。   The present invention relates to a method for producing a bismuth-substituted rare earth iron-based garnet thick film single crystal by a liquid phase epitaxial growth method.

従来、光通信や光情報処理において、ファラデー回転を応用したデバイスが開発、実用化されている。半導体レーザー発振器を使用した光通信装置では、光ファイバーケーブルやコネクタなどの端部からの反射光がレーザー発振器に戻ると、ノイズが増加し、発振が不安定になる。このような戻り光を遮断し、安定した発振状態を確保するために、ファラデー回転の非相反性を利用した光アイソレータが使用されている。   In the past, devices using Faraday rotation have been developed and put into practical use in optical communications and optical information processing. In an optical communication device using a semiconductor laser oscillator, when reflected light from the end of an optical fiber cable or connector returns to the laser oscillator, noise increases and oscillation becomes unstable. In order to block such return light and ensure a stable oscillation state, an optical isolator using non-reciprocity of Faraday rotation is used.

現在、光ファイバーケーブルを用いた通信システムにおいては、波長が1.3μm〜1.6μmの帯域が利用されており、このような帯域で用いられる近赤外用ファラデー回転素子材料として、厚膜状のビスマス置換希土類鉄系ガーネット単結晶(以下磁性ガーネットと記す)がある。厚膜単結晶として実用化されているものとしては、希土類元素にEu,Tb,Gd,Ho,Ybなどを用いたものがある(特許文献1など)。   At present, in a communication system using an optical fiber cable, a band having a wavelength of 1.3 μm to 1.6 μm is used. There is a substituted rare earth iron-based garnet single crystal (hereinafter referred to as magnetic garnet). As a thick film single crystal, there is a material using Eu, Tb, Gd, Ho, Yb or the like as a rare earth element (Patent Document 1, etc.).

特開2002−308696号公報JP 2002-308696 A

磁性ガーネットに求められる特性として、ファラデー回転効果以外に、低い挿入損、すなわち磁性ガーネット内での光の減衰が少ないことが挙げられる。従来の磁性ガーネットでは、例えば一般式Gd2.1Bi0.9Fe4.5Al0.3Ga0.212のものでは、挿入損が波長λ=1.55μmで0.03〜0.15dBと、ばらつきが大きく、安定した挿入損が得られていなかった。 As characteristics required for the magnetic garnet, in addition to the Faraday rotation effect, there is a low insertion loss, that is, a small attenuation of light in the magnetic garnet. In the conventional magnetic garnet, for example, in the general formula Gd 2.1 Bi 0.9 Fe 4.5 Al 0.3 Ga 0.2 O 12 , the insertion loss is 0.03 to 0.15 dB at a wavelength λ = 1.55 μm, and the variation is large and stable. Insertion loss was not obtained.

そこで、本発明者は上記問題に鑑み、磁性ガーネットの挿入損を低く且つ安定にできる製造方法を提供することを目的とする。   In view of the above problems, the present inventor has an object to provide a manufacturing method capable of reducing and stably inserting a magnetic garnet.

本発明者による種々の検討の結果、PbO−Bi23−B23の融材に磁性ガーネット成分を溶解した融液において、Pt治具による攪拌を、約1000℃の保持から厚膜単結晶の育成開始温度まで連続して行い、続けて厚膜単結晶育成を行うことにより、挿入損を低下させ、且つ再現性良い、磁性ガーネットが得られることが分かった。 As a result of various investigations by the present inventors, in a melt obtained by dissolving a magnetic garnet component in a PbO—Bi 2 O 3 —B 2 O 3 melt, stirring with a Pt jig is continued from about 1000 ° C. to thick film. It was found that a magnetic garnet with reduced insertion loss and good reproducibility can be obtained by continuously performing the growth up to the single crystal growth start temperature and subsequently performing the thick film single crystal growth.

以上のように、本発明によれば、一般式(R,Bi)3(Fe,M)512(但し、RはY,Eu,Gd,Ho,Ybから選ばれた少なくとも1種、MはAl,Gaまたはその両方を示し、Mの量はゼロを含む)で表され、単結晶基板上に液相エピタキシャル成長法により育成される磁性ガーネットの製造方法において、PbO−Bi23−B23からなる融材に、該磁性ガーネット原料を溶解した融液を、約1000℃における保持から厚膜単結晶の育成開始温度760〜780℃まで攪拌することにより、安定した低挿入損の磁性ガーネットが得られる。 As described above, according to the present invention, the general formula (R, Bi) 3 (Fe, M) 5 O 12 (where R is at least one selected from Y, Eu, Gd, Ho, Yb, M Represents Al, Ga, or both, and the amount of M includes zero). In a method for producing a magnetic garnet grown on a single crystal substrate by liquid phase epitaxial growth, PbO—Bi 2 O 3 —B By stirring the melt obtained by dissolving the magnetic garnet raw material in the melt composed of 2 O 3 from the holding at about 1000 ° C. to the growth starting temperature of the thick single crystal 760 to 780 ° C., a stable low insertion loss Magnetic garnet is obtained.

本発明の一実施の形態でのビスマス置換希土類鉄系ガーネット厚膜単結晶の製造方法は以下のようである。   The manufacturing method of the bismuth-substituted rare earth iron-based garnet thick film single crystal in one embodiment of the present invention is as follows.

第1の工程では、所定量の金属酸化物粉末原料を秤量する。第2の工程では、(R,Bi)3(Fe,M)512(但し、RはEu,Gd,Ho,Yb,Yの中から選ばれた少なくとも1種、MはAl,Gaまたはその両方を示し、Mの量はゼロを含む)で表されるビスマス置換希土類鉄系ガーネットの原料粉末を、PbO−Bi23−B23系フラックスの粉末とともに、雰囲気ガスの酸素濃度を設定しながら溶融する。第3の工程では、それぞれの組成に対応して、980〜1020℃の温度で保持しながら、板状のPtにより融液の攪拌を行う。第4の工程では、前工程と同様の攪拌を継続しながら、それぞれの組成に対応した厚膜育成開始温度760〜780℃まで降温する。第5の工程では、格子定数のマッチングをはかった基板上にLPE法(液相エピタキシャル成長法)により厚膜単結晶を育成する。第6の工程では、基板を研磨により除去し、本実施の形態のビスマス置換希土類鉄系ガーネット厚膜単結晶を得る。 In the first step, a predetermined amount of the metal oxide powder raw material is weighed. In the second step, (R, Bi) 3 (Fe, M) 5 O 12 (where R is at least one selected from Eu, Gd, Ho, Yb, Y, and M is Al, Ga or Both are shown, and the amount of M includes zero). The raw material powder of the bismuth-substituted rare earth iron-based garnet represented by the PbO—Bi 2 O 3 —B 2 O 3 flux powder and the oxygen concentration of the atmospheric gas Melt while setting. In the third step, the melt is stirred with plate-like Pt while being held at a temperature of 980 to 1020 ° C. corresponding to each composition. In the fourth step, the temperature is lowered to a thick film growth start temperature 760 to 780 ° C. corresponding to each composition while continuing the same stirring as in the previous step. In the fifth step, a thick single crystal is grown by LPE (liquid phase epitaxial growth) on a substrate that matches the lattice constant. In the sixth step, the substrate is removed by polishing to obtain the bismuth-substituted rare earth iron garnet thick film single crystal of the present embodiment.

次に特定組成のビスマス置換希土類鉄系ガーネット厚膜単結晶に限定した実施例について説明する。   Next, examples limited to a bismuth-substituted rare earth iron-based garnet thick film single crystal having a specific composition will be described.

純度99.99%の酸化ガドリニウムGd23、酸化第二鉄Fe23、酸化アルミニウムAl23、酸化ガリウムGa23、および純度99.9%の酸化鉛PbO、酸化ビスマスBi23、酸化硼素B23の粉末を使用し、PbO−Bi23−B23系をフラックスとして、LPE法にて、直径2インチの格子定数a=1.2509nmのNdGa12(以下、NGGと記す)基板に、一般式Gd2.1Bi0.9Fe4.5Al0.312の磁性系ガーネットを厚さ600〜660μm育成した。 99.99% pure gadolinium oxide Gd 2 O 3 , ferric oxide Fe 2 O 3 , aluminum oxide Al 2 O 3 , gallium oxide Ga 2 O 3 , and 99.9% pure lead oxide PbO, bismuth oxide Bi Using a powder of 2 O 3 and boron oxide B 2 O 3 and a PbO—Bi 2 O 3 —B 2 O 3 system as a flux, an Nd having a lattice constant of 2 inches in diameter and a = 1.2509 nm by the LPE method. A magnetic garnet of the general formula Gd 2.1 Bi 0.9 Fe 4.5 Al 0.3 O 12 was grown on a 3 Ga 5 O 12 (hereinafter referred to as NGG) substrate to a thickness of 600 to 660 μm.

このとき、育成中の雰囲気ガスの酸素濃度は18%とした。また、Pt治具による攪拌は、1000℃で8時間と、厚膜育成温度765℃までの降温中の3時間30分とを連続して行った。育成後、11mm×11mmに切断した後、NGG基板を研磨により除去し、厚膜単結晶試料を得た。   At this time, the oxygen concentration of the atmospheric gas being grown was set to 18%. Further, the stirring with the Pt jig was continuously performed at 1000 ° C. for 8 hours and for 3 hours 30 minutes during the temperature drop to the thick film growth temperature of 765 ° C. After the growth, the substrate was cut into 11 mm × 11 mm, and then the NGG substrate was removed by polishing to obtain a thick film single crystal sample.

次に、1.55μmでファラデー回転角が45degとなる厚さ500μmに化学機械研磨(以下、MC研磨と記す)により両面を鏡面に仕上げ、波長1.55μm用の無反射コート膜を両面に施し、挿入損失を測定した。   Next, both surfaces are mirror-finished by chemical mechanical polishing (hereinafter referred to as MC polishing) to a thickness of 500 μm with a Faraday rotation angle of 45 deg at 1.55 μm, and a non-reflective coating film for a wavelength of 1.55 μm is applied to both surfaces. The insertion loss was measured.

比較例として、従来方法である1000℃・8時間の攪拌により得た厚膜単結晶(すなわち、1000℃から厚膜育成開始温度までの降温中は攪拌を行わなかった場合)の挿入損の結果を表1および図1に示す。尚、実施例1および比較例ともに、5台の液相エピタキシャル育成炉で10回育成した、計50ロットの結果である。   As a comparative example, the result of insertion loss of a thick film single crystal obtained by conventional stirring at 1000 ° C. for 8 hours (that is, when stirring was not performed during the temperature drop from 1000 ° C. to thick film growth start temperature) Is shown in Table 1 and FIG. In addition, both Example 1 and the comparative example are the results of 50 lots in total grown 10 times in 5 liquid phase epitaxial growth furnaces.

Figure 2007308327
Figure 2007308327

表1および図1のように、実施例1では0.02〜0.04dBと低い挿入損が安定して得られているが、比較例では0.03〜0.13dBと挿入損のばらつきが大きく不安定である。   As shown in Table 1 and FIG. 1, in Example 1, a low insertion loss of 0.02 to 0.04 dB was stably obtained, but in the comparative example, the variation in insertion loss was 0.03 to 0.13 dB. Large and unstable.

本発明の実施例1と比較例の挿入損のヒストグラムを示す図。The figure which shows the histogram of the insertion loss of Example 1 and a comparative example of this invention.

Claims (1)

一般式(R,Bi)3(Fe,M)512(但し、RはEu,Gd,Ho,Yb,Yの中から選ばれた少なくとも1種、MはAl,Gaまたはその両方を示し、Mの量はゼロを含む)で表され、単結晶基板上に液相エピタキシャル成長法により育成されるビスマス置換希土類鉄系ガーネット厚膜単結晶の製造方法において、PbO−Bi23−B23からなる融材に該ビスマス置換希土類鉄系ガーネット厚膜単結晶の原料を溶解した融液を、980〜1020℃の保持温度において攪拌すると共に前記保持温度から厚膜育成開始温度760〜780℃まで降温しながら攪拌することを特徴とする、ビスマス置換希土類鉄系ガーネット厚膜単結晶の製造方法。 General formula (R, Bi) 3 (Fe, M) 5 O 12 (where R is at least one selected from Eu, Gd, Ho, Yb, Y, and M is Al, Ga, or both) In the method for producing a bismuth-substituted rare earth iron-based garnet thick film single crystal grown on a single crystal substrate by a liquid phase epitaxial growth method, the PbO—Bi 2 O 3 —B 2 A melt obtained by dissolving the raw material of the bismuth-substituted rare earth iron-based garnet thick film single crystal in a flux composed of O 3 is stirred at a holding temperature of 980 to 1020 ° C., and a thick film growth start temperature 760 to 780 is maintained from the holding temperature. A method for producing a bismuth-substituted rare earth iron-based garnet thick film single crystal, which is stirred while the temperature is lowered to ° C.
JP2006138651A 2006-05-18 2006-05-18 Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal Abandoned JP2007308327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138651A JP2007308327A (en) 2006-05-18 2006-05-18 Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138651A JP2007308327A (en) 2006-05-18 2006-05-18 Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal

Publications (1)

Publication Number Publication Date
JP2007308327A true JP2007308327A (en) 2007-11-29

Family

ID=38841539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138651A Abandoned JP2007308327A (en) 2006-05-18 2006-05-18 Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal

Country Status (1)

Country Link
JP (1) JP2007308327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801149A (en) * 2021-08-17 2021-12-17 中国计量大学 Rare earth luminescent material, preparation method thereof and ammonia sensing application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113801149A (en) * 2021-08-17 2021-12-17 中国计量大学 Rare earth luminescent material, preparation method thereof and ammonia sensing application
CN113801149B (en) * 2021-08-17 2023-10-20 中国计量大学 Rare earth luminescent material, preparation method thereof and ammonia gas sensing application

Similar Documents

Publication Publication Date Title
JP5033945B2 (en) Rare earth iron garnet single crystal
JP2004083390A (en) Magnetic garnet material, faraday rotator, optical device, manufacturing method of bismuth substitution type rare earth iron garnet single crystal film, and single crystal film
JP2007217257A (en) Magnetic garnet single crystal and optical element using the same
JP3959099B2 (en) Method for producing magnetic garnet single crystal
JP4650943B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP2007308327A (en) Manufacturing method of bismuth-substituted rare earth iron garnet thick film single crystal
WO2004070091A1 (en) Substrate for forming magnetic garnet single-crystal film, process for producing the same, optical device and process for producing the same
JP4720730B2 (en) Optical element manufacturing method
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JPH06281902A (en) Magneto-optical element material
JP2006273594A (en) Magnetooptic garnet thick-film single crystal and method for producing the same
JP2011011944A (en) Faraday rotator
JP2989654B2 (en) Method for producing bismuth-substituted rare earth iron garnet
JP2006225204A (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP4432896B2 (en) Method for producing garnet single crystal
JP2010180071A (en) Magnetic garnet single crystal
JP5439931B2 (en) Manufacturing method of Faraday rotator
JP3864185B2 (en) Faraday rotator manufacturing method
WO2019193950A1 (en) Magnetic garnet single crystal and production method for magnetic garnet single crystal
JP2006265066A (en) Method of manufacturing magneto-optic garnet thick film single crystal
JP2008021691A (en) Process for producing bismuth-substitution rare-earth iron garnet single crystal
JP4807288B2 (en) Magnetic garnet single crystal, optical element using the same, and method for producing magnetic garnet single crystal
JP2003252699A (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JP2009016548A (en) Method of manufacturing bismuth-substituted iron garnet single crystal
JP5507934B2 (en) Faraday rotator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090513

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A762 Written abandonment of application

Effective date: 20110221

Free format text: JAPANESE INTERMEDIATE CODE: A762