JP2011011944A - Faraday rotator - Google Patents

Faraday rotator Download PDF

Info

Publication number
JP2011011944A
JP2011011944A JP2009157464A JP2009157464A JP2011011944A JP 2011011944 A JP2011011944 A JP 2011011944A JP 2009157464 A JP2009157464 A JP 2009157464A JP 2009157464 A JP2009157464 A JP 2009157464A JP 2011011944 A JP2011011944 A JP 2011011944A
Authority
JP
Japan
Prior art keywords
rig
magnetic field
oxide
result
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009157464A
Other languages
Japanese (ja)
Inventor
Yohei Hanaki
陽平 花木
Kazushi Shirai
一志 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Granopt Ltd
Original Assignee
Granopt Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Granopt Ltd filed Critical Granopt Ltd
Priority to JP2009157464A priority Critical patent/JP2011011944A/en
Publication of JP2011011944A publication Critical patent/JP2011011944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for making a Faraday rotator having a low saturation magnetic field and excellent in temperature property, and to provide the Faraday rotator.SOLUTION: The Faraday rotator is formed from a bismuth-substituted rare-earth iron garnet single crystal which contains Ca and is represented by chemical formula: TbGdCaBiFeAlO, wherein 0.15≤y/x≤0.65, 0.3≤z≤0.5, and 0.04≤w≤0.1, and a saturation magnetic field of ≤200 (Oe) and a temperature property of ≤0.07 deg/°C are attained at room temperature in a product shape.

Description

本発明は、光アイソレータや光サーキュレータなどのファラデー回転子に用いられる希土類鉄ガーネット単結晶に関する。詳しくは、上記光デバイスの小型化に有効な低飽和磁界を有するファラデー回転子に関する。   The present invention relates to a rare earth iron garnet single crystal used for a Faraday rotator such as an optical isolator or an optical circulator. Specifically, the present invention relates to a Faraday rotator having a low saturation magnetic field effective for downsizing the optical device.

光ファイバ通信や光計測では多くの場合、信号源として半導体レーザが使用されている。しかし、半導体レーザは、光ファイバ端面などから反射し、再び半導体レーザ自身に戻ってくるところの所謂反射戻り光があると、発振が不安定になるという重大な欠点がある。そのため半導体レーザの出射側に光アイソレータを設けて、反射戻り光を遮断し、半導体レーザの発振を安定化させることが行われている。
一般的に、光アイソレータは偏光子、検光子、ファラデー回転子およびファラデー回転子を磁気的に飽和させるための永久磁石からなる。そしてファラデー回転子としては、通常一般に、ファラデー効果が大きなビスマス置換希土類鉄ガーネット単結晶(以下、RIGと適宜略す)厚膜が用いられている。また、ファラデー回転子を磁気的に飽和させるための外部磁界、すなわち飽和磁界が低いと、永久磁石も小型化することができ、光アイソレータの小型化やコスト面において非常に大きなメリットがある。
In many cases of optical fiber communication and optical measurement, a semiconductor laser is used as a signal source. However, the semiconductor laser has a serious drawback that oscillation is unstable if there is so-called reflected return light that is reflected from the end face of the optical fiber and returns to the semiconductor laser itself. Therefore, an optical isolator is provided on the emission side of the semiconductor laser to block the reflected return light and stabilize the oscillation of the semiconductor laser.
In general, an optical isolator includes a polarizer, an analyzer, a Faraday rotator, and a permanent magnet for magnetically saturating the Faraday rotator. As the Faraday rotator, generally, a bismuth-substituted rare earth iron garnet single crystal (hereinafter abbreviated as RIG as appropriate) thick film having a large Faraday effect is used. In addition, when the external magnetic field for magnetically saturating the Faraday rotator, that is, the saturation magnetic field is low, the permanent magnet can also be miniaturized, and there is a great merit in the miniaturization and cost of the optical isolator.

ファラデー回転子の飽和磁界は、RIGの材料特性、すなわち飽和磁化と、これを研磨、切断など加工したファラデー回転子の形状によって決まる。ファラデー回転子は、1mm角程度の形状で使われるのが一般的であり、例えば飽和磁化300(Gauss)のRIGを1550nm波長の1mm角のファラデー回転子に加工すると、飽和磁界は飽和磁化のおおよそ2/3の約200(Oe)となる。これは試料形状が変化すると試料内部の反磁界が変化するためである。なお、本出願では、ファラデー回転子の試料形状は代表的な1550nm波長の1mm角を想定しており、飽和磁界もその形状相当で記載している。
また、さらに飽和磁界は環境温度においても変化するが、本願明細書内の飽和磁界は室温の値として記載している。
これまで、低い飽和磁化を特長とするビスマス置換希土類鉄ガーネット単結晶には、(GdYBi)(FeGa)12(特許文献1)、(TbBi)(FeGaAl)12(特許文献2)等が提案され、また、実用化されている。
The saturation magnetic field of the Faraday rotator is determined by the material properties of the RIG, that is, the saturation magnetization and the shape of the Faraday rotator processed by polishing, cutting, or the like. The Faraday rotator is generally used in a shape of about 1 mm square. For example, when a RIG having a saturation magnetization of 300 (Gauss) is processed into a 1 mm square Faraday rotator having a wavelength of 1550 nm, the saturation magnetic field is approximately equal to the saturation magnetization. It becomes about 200 (Oe) of 2/3. This is because the demagnetizing field inside the sample changes when the sample shape changes. In the present application, the sample shape of the Faraday rotator is assumed to be a 1 mm square with a typical wavelength of 1550 nm, and the saturation magnetic field is also described by its shape.
Further, although the saturation magnetic field also changes at the ambient temperature, the saturation magnetic field in this specification is described as a room temperature value.
So far, bismuth-substituted rare earth iron garnet single crystals characterized by low saturation magnetization include (GdYBi) 3 (FeGa) 5 O 12 (Patent Document 1), (TbBi) 3 (FeGaAl) 5 O 12 (Patent Document 2). ) Etc. have been proposed and put into practical use.

RIGの化学組成は、(RBi)(FeM)12(但し、Rは、Yや希土類元素を意味し、Mは、Al、Ga、In、Si、Scなどの元素を意味する)で表される。このRIGの飽和磁化は、その構成元素や置換量によって変化する。飽和磁化を低くするためには、希土類元素に特許文献1や特許文献2のように、磁気モーメントが大きく飽和磁化を下げる効果のあるTbやGdを選び、かつ四面体サイトの鉄を非磁性元素で置換する方法が一般的である。
四面体サイトの鉄を置換するための非磁性元素には、一般にGaやAlが使われる。これは、GaやAlが、四面体と八面体の2種類ある鉄サイトの内、四面体サイトの方に選択的に置換され、フェリ磁性体であるRIGの飽和磁化を下げる効果があるためである。特にGaの四面体へのサイト選択率は、一般に90%程度と言われていて飽和磁化を下げる目的に適している。また、Alの四面体へのサイト選択率は70%程度と言われていて、Gaよりも飽和磁化を下げる効果は小さいが、Alのイオン半径はGaのそれと比較して小さく、その結果ファラデー回転係数の増加に寄与するBiの置換量を大きくすることができるので、ファラデー回転係数を大きく保ち、飽和磁化を下げる目的に適している。ファラデー回転係数が小さいと、ファラデー回転角45degのファラデー回転子において、必要とする膜厚が大きくなり、結晶育成や研磨等の加工に問題が生じる。本質的にファラデー効果の起因である鉄を非磁性元素で置換するとファラデー効果は悪化することになるため、飽和磁化を調整するためにGaやAlで置換したRIGにおいては一定のファラデー回転係数を持つことも重要となる。
The chemical composition of RIG is (RBi) 3 (FeM) 5 O 12 (where R represents Y or a rare earth element, and M represents an element such as Al, Ga, In, Si, or Sc). expressed. The saturation magnetization of this RIG varies depending on its constituent elements and substitution amount. In order to lower the saturation magnetization, Tb and Gd having a large magnetic moment and an effect of lowering the saturation magnetization are selected as rare earth elements as in Patent Document 1 and Patent Document 2, and iron at the tetrahedral site is used as a nonmagnetic element. The method of replacing with is common.
In general, Ga or Al is used as a nonmagnetic element for substituting iron at a tetrahedral site. This is because Ga and Al are selectively replaced by the tetrahedral site out of the two types of tetrahedral and octahedral iron sites, and have the effect of reducing the saturation magnetization of the ferrimagnetic RIG. is there. In particular, the site selectivity to the tetrahedron of Ga is generally said to be about 90%, which is suitable for the purpose of lowering the saturation magnetization. The site selectivity to the tetrahedron of Al is said to be about 70%, and the effect of lowering the saturation magnetization is smaller than that of Ga, but the ionic radius of Al is smaller than that of Ga, and as a result, Faraday rotation Since the substitution amount of Bi that contributes to the increase in the coefficient can be increased, it is suitable for the purpose of keeping the Faraday rotation coefficient large and lowering the saturation magnetization. When the Faraday rotation coefficient is small, the required film thickness becomes large in the Faraday rotator having a Faraday rotation angle of 45 deg, which causes problems in processing such as crystal growth and polishing. Substituting iron, which is essentially the cause of the Faraday effect, with a nonmagnetic element will worsen the Faraday effect. Therefore, a RIG substituted with Ga or Al to adjust the saturation magnetization has a constant Faraday rotation coefficient. It is also important.

さらに飽和磁化を下げるため、上記のようにRIGの組成を調整する場合、RIGの磁気補償温度に注意しなければならない。RIGの磁気補償温度前後では、ファラデー回転角の符号は反転するため、光アイソレータなど光部品としての機能をまったく果たさなくなる。従って、RIGの磁気補償温度は、これら光部品の使用温度範囲に入らない、例えば−40℃以下にすることが望ましい。 In order to further reduce the saturation magnetization, when adjusting the RIG composition as described above, attention must be paid to the RIG magnetic compensation temperature. Before and after the magnetic compensation temperature of RIG, the sign of the Faraday rotation angle is reversed, so that it does not function as an optical component such as an optical isolator at all. Accordingly, it is desirable that the RIG magnetic compensation temperature is not within the operating temperature range of these optical components, for example, -40 ° C. or lower.

特許文献1や特許文献2では、希土類元素の種類と鉄を非磁性元素で置換するなどして、飽和磁界を下げている。しかし、特に鉄を非磁性元素で置換すると、ファラデー回転角の温度特性、すなわちファラデー回転角45degのファラデー回転子において、温度1℃当たりのファラデー回転角の変化が悪化することになる。RIGの温度特性が悪いと、光アイソレータは外部温度変化にて性能が低下する。
希土類元素の違いでも、例えばTbとGdを比較した場合、飽和磁界の低下について効果が大きい元素は磁気モーメントの大きいGdであるが、Tbを選択すると温度特性は良くなる。
In Patent Document 1 and Patent Document 2, the saturation magnetic field is lowered by replacing the kind of rare earth element and iron with a nonmagnetic element. However, particularly when iron is replaced with a nonmagnetic element, the change in the Faraday rotation angle per 1 ° C. of temperature becomes worse in the temperature characteristic of the Faraday rotation angle, that is, the Faraday rotator having a Faraday rotation angle of 45 deg. When the temperature characteristics of RIG are poor, the performance of the optical isolator is degraded due to external temperature changes.
Even if the difference between the rare earth elements is, for example, when Tb and Gd are compared, the element having a large effect on the reduction of the saturation magnetic field is Gd having a large magnetic moment. However, when Tb is selected, the temperature characteristics are improved.

特許文献1記載の(GdYBi)(FeGa)12を使うと、ファラデー回転子の飽和磁界は130(Oe)であるが、温度特性が絶対値で0.1deg/℃と大きくなる(以下、温度特性値は絶対値の値で表記する)。また、特許文献2記載の(TbBi)(FeGaAl)12を使うと、温度特性は0.064deg/℃と小さい値であるが、飽和磁界が350(Oe)とやや大きい。このように、希土類及び非磁性元素の組み合わせで、飽和磁界の調整は従来行われてきた。言い換えると、目標とする飽和磁界を設定すればある程度その組成にて温度特性は決まってしまうのである。
しかし、鉄を置換する非磁性元素の、四面体サイトへのサイト選択率が高まれば、少ない非磁性元素の置換量で飽和磁化を小さくすることができることから、温度特性の悪化を従来よりも抑えることが期待できる。
本発明者らは、特許文献3において、鉄をGaにて置換することで飽和磁界を下げる場合において、Auるつぼを使うことで、従来のPtるつぼを用いた場合に生じるPt+4イオンのRIG中への混入を抑えること、及びCa2+をRIGに混入することで、Gaの四面体サイトへのサイト選択率が上がり、従来よりも少ないGa置換量にて、温度特性を低下させることなく、RIGの飽和磁界を低下させることが可能であるとの知見を得た。Ga以外の非磁性元素、特にAlにおいても同様の効果が得られるか否か検討して、鋭意検討した結果、本発明を完成させた。
When (GdYBi) 3 (FeGa) 5 O 12 described in Patent Document 1 is used, the saturation magnetic field of the Faraday rotator is 130 (Oe), but the temperature characteristic becomes an absolute value as large as 0.1 deg / ° C. The temperature characteristic value is expressed as an absolute value). When (TbBi) 3 (FeGaAl) 5 O 12 described in Patent Document 2 is used, the temperature characteristic is as small as 0.064 deg / ° C., but the saturation magnetic field is slightly large as 350 (Oe). As described above, the saturation magnetic field has been conventionally adjusted with a combination of rare earth elements and nonmagnetic elements. In other words, if the target saturation magnetic field is set, the temperature characteristics are determined to some extent by the composition.
However, if the site selectivity of tetrahedral sites for nonmagnetic elements that replace iron is increased, saturation magnetization can be reduced with a small amount of substitution of nonmagnetic elements, so that deterioration of temperature characteristics is suppressed compared to the conventional case. I can expect that.
In the patent document 3, the present inventors use an Au crucible when lowering a saturation magnetic field by substituting iron with Ga, so that in the RIG of Pt +4 ions generated when a conventional Pt crucible is used. Suppressing the mixing into Ca and adding Ca 2+ into the RIG increases the site selectivity to the tetrahedral site of Ga, and with a smaller Ga substitution amount than before, the RIG does not deteriorate the temperature characteristics. It was found that the saturation magnetic field can be reduced. The present invention was completed as a result of studying whether or not the same effect can be obtained even with nonmagnetic elements other than Ga, particularly Al.

特開平07−315995JP 07-315995 特開平11−1394JP-A-11-1394 特願2009−105979Japanese Patent Application No. 2009-105979

本発明者らは、光アイソレータの小型化につながり、かつ光アイソレータの外部温度変化による性能低下を抑える目的で、飽和磁界が小さく、かつファラデー回転角の温度特性の小さいファラデー回転子を提供することを課題とした。具体的な目標とするファラデー回転子の特性値は、飽和磁界200(Oe)以下、ファラデー回転角の温度特性0.07deg/℃以下、磁気補償温度−40℃以下、波長1550nmでのファラデー回転係数を900deg/cm以上と設定した。   The present inventors provide a Faraday rotator with a small saturation magnetic field and a small temperature characteristic of a Faraday rotation angle, for the purpose of reducing the size of the optical isolator and suppressing performance degradation due to external temperature changes of the optical isolator. Was an issue. Specific target Faraday rotator characteristic values are a saturation magnetic field of 200 (Oe) or less, a temperature characteristic of a Faraday rotation angle of 0.07 deg / ° C. or less, a magnetic compensation temperature of −40 ° C. or less, and a Faraday rotation coefficient at a wavelength of 1550 nm. Was set to 900 deg / cm or more.

本発明者らは、上記課題を解決すべく鋭意検討した結果、上記特性値における目標を達成するためには、希土類にGdとTbを選び、また鉄サイトへの置換元素にAlを選んだ上で、RIG中のCa2+の混入がAlのサイト選択率を上げる効果があることの知見を得て、従来よりも少ないAl置換量にて、温度特性を低下させることなく、RIGの飽和磁化を下げられることを見出し、本発明を完成させた。
すなわち、化学式GdTbCaBi3-x-y−wFe5−zAl12(式中、0.15≦y/x≦0.65,0.3≦z≦0.5,0.04≦w≦0.1)で示される、液相エピタキシャル法にて育成されるビスマス置換希土類鉄ガーネット単結晶からなるファラデー回転子において、温度特性に優れたことを特徴とする、低飽和磁界型のファラデー回転子を得ることができる。
ファラデー回転子の飽和磁界はできるだけ小さい方が好ましい。上記化学式のRIGにて、サイズ1mm角相当のファラデー回転子を得る場合、他の物性値、例えば光挿入損失やファラデー回転係数、温度特性などを考慮の上、TbとGdの比率を上記化学式の範囲内で選択して、Al置換量を微調整して一定の飽和磁界以下とすることは、当業者であれば容易であり、このとき本発明を用いることで、最小限のAl置換量にて、例えば、飽和磁界200(Oe)以下の飽和磁界が達成されるのである。
As a result of intensive studies to solve the above problems, the present inventors have selected Gd and Tb as rare earths and Al as a substitution element for iron sites in order to achieve the target in the above characteristic values. Thus, the knowledge that mixing of Ca 2+ in the RIG has the effect of increasing the Al site selectivity is obtained, and the saturation magnetization of the RIG is reduced with a lower Al substitution amount than before without degrading the temperature characteristics. As a result, the present invention was completed.
That is, the formula Gd x Tb y Ca w Bi 3 -x-y-w Fe 5-z Al z O 12 ( wherein, 0.15 ≦ y / x ≦ 0.65,0.3 ≦ z ≦ 0.5 , 0.04 ≦ w ≦ 0.1), a Faraday rotator comprising a bismuth-substituted rare earth iron garnet single crystal grown by a liquid phase epitaxial method, characterized by excellent temperature characteristics, A saturated magnetic field type Faraday rotator can be obtained.
The saturation field of the Faraday rotator is preferably as small as possible. In the case of obtaining a Faraday rotator equivalent to a size of 1 mm square by the RIG of the above chemical formula, the ratio of Tb and Gd is set in the above chemical formula in consideration of other physical properties such as optical insertion loss, Faraday rotation coefficient, temperature characteristics, etc. It is easy for those skilled in the art to select within the range and finely adjust the Al substitution amount to be equal to or less than a certain saturation magnetic field. At this time, by using the present invention, the minimum Al substitution amount can be obtained. Thus, for example, a saturation magnetic field of 200 (Oe) or less is achieved.

GdとTbとの比y/xと飽和磁界を調整するのに必要なAl置換量zの関係を示したグラフA graph showing the relationship between the ratio y / x of Gd and Tb and the Al substitution amount z necessary for adjusting the saturation magnetic field 飽和磁界を調整した組成において、GdとTbとの比y/xと温度特性値の関係を示したグラフA graph showing the relationship between the ratio y / x of Gd and Tb and the temperature characteristic value in the composition adjusted for the saturation magnetic field.

下表は、実施例1〜4、比較例1〜3の製法で作製したファラデー回転子の評価結果をまとめたものである。
また表内試料はいずれもファラデー回転子の飽和磁界を200(Oe)以下に組成を調整して、得られたものとなる。
The table below summarizes the evaluation results of the Faraday rotators produced by the production methods of Examples 1 to 4 and Comparative Examples 1 to 3.
All the samples in the table are obtained by adjusting the composition of the saturation field of the Faraday rotator to 200 (Oe) or less.





表1内、実施例及び比較例記載の(TbGdBi)(FeAl)12組成を有するRIGにおける、GdとTbとの比y/xとAlの置換量zの関係を図1に、またその時のRIGの温度特性の評価結果を図2に示した。
図1と図2では、RIG中のCa置換量が0.04以上とそれ以下で分類した。
図1において、Tbの増加(Gdの減少)と共に、飽和磁界を調整するためのAl置換量はより多く必要になってくる。しかし、図1の○(Ca置換量0.04f.u
未満)と比べ、Ca置換量を増やした●(Ca置換量0.04f.u以上)の方が、飽和磁界の調整のためのAl置換量を減少させることができ、その結果、図2ように温度特性が改善される。
すなわち本発明によると、(TbGdBi)(FeAl)12組成を有するRIG中のCa置換量を0.04以上とし、適宜、TbとGdの比率及びAlの置換量を調整することで、飽和磁界200(Oe)以下、磁気補償温度−40℃以下、波長1550nmでのファラデー回転係数を900deg/cm以上を保ちながら、温度特性0.07deg/℃以下のファラデー回転子が得られる。
また、本発明の実施例はすべて白金るつぼを用いているが、特許文献3と同様に、金るつぼを用いることで、より、飽和磁界を調整するためのAl置換量をさらに減らすことができ、温度特性がより改善される、ということも期待できる。
FIG. 1 shows the relationship between the ratio y / x of Gd and Tb and the amount of substitution z of Al in RIG having the (TbGdBi) 3 (FeAl) 5 O 12 composition described in Table 1, Examples and Comparative Examples. The evaluation results of the temperature characteristics of the RIG at that time are shown in FIG.
In FIG. 1 and FIG. 2, the amount of Ca substitution in RIG is classified into 0.04 or more and less.
In FIG. 1, with the increase in Tb (decrease in Gd), a larger amount of Al substitution is required for adjusting the saturation magnetic field. However, in FIG. 1 ◯ (Ca substitution amount 0.04 f.u
Compared with (less than)), the amount of Ca substitution increased (Ca substitution amount of 0.04 fu. Or more) can reduce the amount of Al substitution for adjusting the saturation magnetic field, and as a result, as shown in FIG. The temperature characteristics are improved.
That is, according to the present invention, the amount of Ca substitution in the RIG having the (TbGdBi) 3 (FeAl) 5 O 12 composition is set to 0.04 or more, and the ratio of Tb and Gd and the amount of substitution of Al are appropriately adjusted. A Faraday rotator having a temperature characteristic of 0.07 deg / ° C. or less can be obtained while maintaining a Faraday rotation coefficient of 900 deg / cm or less at a saturation magnetic field of 200 (Oe) or less, a magnetic compensation temperature of −40 ° C. or less, and a wavelength of 1550 nm.
Moreover, although all the examples of the present invention use a platinum crucible, as in Patent Document 3, by using a gold crucible, it is possible to further reduce the amount of Al substitution for adjusting the saturation magnetic field, It can also be expected that the temperature characteristics are further improved.

Gdの置換量xとTbの置換量yの比率(y/x)は、0.15以上0.65以下が好ましい。y/xが、0.15未満ではBi置換量が減り、必要な膜厚が厚くなるので好ましくない。また、y/xが、0.65を超えると逆にBiの置換量が増え、結晶内部でのひずみ等が原因で、育成中の割れ及びクラック等により必要な膜厚を得るための育成が困難となる。加えてTbの置換量が増えると、1650nm域での挿入損失が増えるなど、好ましくない。Alの置換量zは、少ないことが好ましい。本発明を用いるとAlの置換量は、0.3〜0.5の範囲に抑えられる。また、Caの置換量wは0.1を超えると挿入損失が上昇し、光学素子として相応しくない。
The ratio (y / x) between the substitution amount x of Gd and the substitution amount y of Tb is preferably 0.15 or more and 0.65 or less. If y / x is less than 0.15, the amount of Bi substitution decreases and the required film thickness increases, which is not preferable. On the other hand, if y / x exceeds 0.65, the amount of substitution of Bi increases, and the growth to obtain the required film thickness due to cracks and cracks during the growth due to the strain inside the crystal and the like. It becomes difficult. In addition, an increase in the amount of substitution of Tb is not preferable, such as an increase in insertion loss in the 1650 nm region. The substitution amount z of Al is preferably small. When the present invention is used, the substitution amount of Al is suppressed to a range of 0.3 to 0.5. Further, when the Ca substitution amount w exceeds 0.1, the insertion loss increases, which is not suitable as an optical element.

本発明に用いる上記RIG膜の製造に用いる種結晶基板としては、公知のものが使用できる。一般には、格子定数が1.2490nmから1.2515nmの非磁性ガーネット[(GdCa)(GaMgZr)12]基板から適宜選択する。
以下、表1に記載したRIGの製法と評価結果の詳細を記載する。なお、実施例及び比較例に用いている試薬はすべて3Nかそれ以上の高純度試薬を用いている。


A known substrate can be used as the seed crystal substrate used for manufacturing the RIG film used in the present invention. In general, it is appropriately selected from a nonmagnetic garnet [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate having a lattice constant of 1.2490 nm to 1.2515 nm.
The details of the RIG production methods and evaluation results described in Table 1 are described below. All reagents used in Examples and Comparative Examples are high purity reagents of 3N or more.


実施例1
白金るつぼに酸化ビスマス[Bi]4700g、酸化第2鉄[Fe]310g、酸化ほう素[B]85g、酸化鉛[PbO]900g、酸化テルビウム[Tb]20g、酸化ガドリニウム[Gd]45g、酸化アルミニウム[Al]15g、酸化カルシウム [CaO]3gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液の温度を飽和温度以下の温度まで低下させて後、融液表面に、厚さが760μmで、格子定数が1.2.497±0.0002nmの3インチ(111)ガーネット単結晶[(GdCa)(GaMgZr)12]基板の片面を接触させ、基板を回転させながらエピタキシャル成長を行った結果、膜厚520μmのRIG(以下RIG-1と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.63Tb0.33Ca0.04Bi1.00Fe4.66Al0.3412であった。得られたRIG−1を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは476μmであった。すなわち、ファラデー回転係数は945deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-1を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-1を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は140(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.069(deg/℃)であった。
Example 1
In a platinum crucible, 4700 g of bismuth oxide [Bi 2 O 3 ], 310 g of ferric oxide [Fe 2 O 3 ], 85 g of boron oxide [B 2 O 3 ], 900 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 20 g, 45 g of gadolinium oxide [Gd 2 O 3 ], 15 g of aluminum oxide [Al 2 O 3 ] and 3 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. After the temperature of the melt thus obtained is lowered to a temperature below the saturation temperature, 3 inches (111) having a thickness of 760 μm and a lattice constant of 1.2.497 ± 0.0002 nm are formed on the surface of the melt. One side of a garnet single crystal [(GdCa) 3 (GaMgZr) 5 O 12 ] substrate was brought into contact and epitaxial growth was performed while rotating the substrate. As a result, an RIG having a thickness of 520 μm (hereinafter referred to as RIG-1) was obtained. As a result of analyzing the composition of the crystal by EPMA quantitative analysis, the composition was Gd 1.63 Tb 0.33 Ca 0.04 Bi 1.00 Fe 4.66 Al 0.34 O 12 . After dividing the obtained RIG-1 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 476 μm. That is, the Faraday rotation coefficient was 945 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, an arbitrary 11 mm × 11 mm RIG-1 was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-1 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 140 (Oe). Moreover, as a result of measuring the temperature characteristics of the Faraday rotation angle, the value was 0.069 (deg / ° C.).

実施例2
白金るつぼに酸化ビスマス[Bi]4650g、酸化第2鉄[Fe]370g、酸化ほう素[B]35g、酸化鉛[PbO]900g、酸化テルビウム[Tb]13g、酸化ガドリニウム[Gd]30g、酸化アルミニウム[Al]14g、酸化カルシウム[CaO]3gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚550μmのRIG(以下RIG-2と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.29Tb0.54Ca0.05Bi1.12Fe4.52Al0.4812であった。得られたRIG−2を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは437μmであった。すなわち、ファラデー回転係数は1030deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-2を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-2を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は160(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.069(deg/℃)であった。
Example 2
In a platinum crucible, 4650 g of bismuth oxide [Bi 2 O 3 ], 370 g of ferric oxide [Fe 2 O 3 ], 35 g of boron oxide [B 2 O 3 ], 900 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 13 g, 30 g of gadolinium oxide [Gd 2 O 3 ], 14 g of aluminum oxide [Al 2 O 3 ] and 3 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. Using the melt obtained here, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG (hereinafter referred to as RIG-2) having a film thickness of 550 μm was obtained. As a result of analyzing the composition of this crystal by EPMA quantitative analysis, the composition was Gd 1.29 Tb 0.54 Ca 0.05 Bi 1.12 Fe 4.52 Al 0.48 O 12 . After dividing the obtained RIG-2 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 437 μm. That is, the Faraday rotation coefficient was 1030 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, one arbitrary RIG-2 of 11 mm × 11 mm was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-2 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 160 (Oe). Moreover, as a result of measuring the temperature characteristics of the Faraday rotation angle, the value was 0.069 (deg / ° C.).

実施例3
白金るつぼに酸化ビスマス[Bi]4700g、酸化第2鉄[Fe]380g、酸化ほう素[B]30g、酸化鉛[PbO]850g、酸化テルビウム[Tb]15g、酸化ガドリニウム[Gd]35g、酸化アルミニウム[Al]12g、酸化カルシウム[CaO]3gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚530μmのRIG(以下RIG-3と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.27Tb0.59Ca0.05Bi1.09Fe4.56Al0.4412であった。得られたRIG−3を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは470μmであった。すなわち、ファラデー回転係数は957deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-3を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-3を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は143(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.069(deg/℃)であった。
Example 3
In a platinum crucible, 4700 g of bismuth oxide [Bi 2 O 3 ], 380 g of ferric oxide [Fe 2 O 3 ], 30 g of boron oxide [B 2 O 3 ], 850 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 15 g, 35 g of gadolinium oxide [Gd 2 O 3 ], 12 g of aluminum oxide [Al 2 O 3 ] and 3 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. Using the melt obtained here, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG (hereinafter referred to as RIG-3) having a film thickness of 530 μm was obtained. As a result of analyzing the composition of this crystal by EPMA quantitative analysis, the composition was Gd 1.27 Tb 0.59 Ca 0.05 Bi 1.09 Fe 4.56 Al 0.44 O 12 . After the obtained RIG-3 was divided into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 470 μm. That is, the Faraday rotation coefficient was 957 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, one arbitrary RIG-3 of 11 mm × 11 mm was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-3 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 143 (Oe). Moreover, as a result of measuring the temperature characteristics of the Faraday rotation angle, the value was 0.069 (deg / ° C.).

実施例4
白金るつぼに酸化ビスマス[Bi]4500g、酸化第2鉄[Fe]350g、酸化ほう素[B]50g、酸化鉛[PbO]900g、酸化テルビウム[Tb]15g、酸化ガドリニウム[Gd]30g、酸化アルミニウム[Al]15g、酸化カルシウム[CaO]3gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚560μmのRIG(以下RIG-4と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.30Tb0.58Ca0.05Bi1.07Fe4.58Al0.4212であった。得られたRIG−4を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは454μmであった。すなわち、ファラデー回転係数は992deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-4を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-4を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は147(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.068(deg/℃)であった。
Example 4
In a platinum crucible, 4500 g of bismuth oxide [Bi 2 O 3 ], 350 g of ferric oxide [Fe 2 O 3 ], 50 g of boron oxide [B 2 O 3 ], 900 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 15 g, 30 g of gadolinium oxide [Gd 2 O 3 ], 15 g of aluminum oxide [Al 2 O 3 ] and 3 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. Using the melt obtained here, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG (hereinafter referred to as RIG-4) having a film thickness of 560 μm was obtained. As a result of analyzing the composition of the crystals by EPMA quantitative analysis, the composition was Gd 1.30 Tb 0.58 Ca 0.05 Bi 1.07 Fe 4.58 Al 0.42 O 12 . After dividing the obtained RIG-4 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 454 μm. That is, the Faraday rotation coefficient was 992 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, one arbitrary RIG-4 of 11 mm × 11 mm was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-4 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 147 (Oe). Moreover, as a result of measuring the temperature characteristics of the Faraday rotation angle, the value was 0.068 (deg / ° C.).

比較例1
白金るつぼに酸化ビスマス[Bi]5100g、酸化第2鉄[Fe]290g、酸化ほう素[B]50g、酸化鉛[PbO]500g、酸化テルビウム[Tb]20g、酸化ガドリニウム[Gd]45g、酸化アルミニウム[Al]13g、酸化カルシウム[CaO]1gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚530μmのRIG(以下RIG-5と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.69Tb0.26Ca0.02Bi1.03Fe4.52Al0.4812であった。得られたRIG−5を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは478μmであった。すなわち、ファラデー回転係数は942deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-5を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-5を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は154(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.073(deg/℃)であった。
Comparative Example 1
In a platinum crucible, 5100 g of bismuth oxide [Bi 2 O 3 ], 290 g of ferric oxide [Fe 2 O 3 ], 50 g of boron oxide [B 2 O 3 ], 500 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 20 g, 45 g of gadolinium oxide [Gd 2 O 3 ], 13 g of aluminum oxide [Al 2 O 3 ], and 1 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. Using the melt obtained here, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG (hereinafter referred to as RIG-5) having a film thickness of 530 μm was obtained. As a result of analyzing the composition of this crystal by EPMA quantitative analysis, the composition was Gd 1.69 Tb 0.26 Ca 0.02 Bi 1.03 Fe 4.52 Al 0.48 O 12 . After dividing the obtained RIG-5 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 478 μm. That is, the Faraday rotation coefficient was 942 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, an arbitrary 11 mm × 11 mm RIG-5 was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-5 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 154 (Oe). Moreover, as a result of measuring the temperature characteristic of the Faraday rotation angle, the value was 0.073 (deg / ° C.).

比較例2
白金るつぼに酸化ビスマス[Bi]5200g、酸化第2鉄[Fe]280g、酸化ほう素[B]40g、酸化鉛[PbO]450g、酸化テルビウム[Tb]20g、酸化ガドリニウム[Gd]40g、酸化アルミニウム[Al]13g、酸化カルシウム[CaO]1gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚540μmのRIG(以下RIG-6と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.28Tb0.64Ca0.01Bi1.07Fe4.38Al0.6212であった。得られたRIG−6を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは474μmであった。すなわち、ファラデー回転係数は950deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-6を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-6を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は152(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.074(deg/℃)であった。
Comparative Example 2
In a platinum crucible, 5200 g of bismuth oxide [Bi 2 O 3 ], 280 g of ferric oxide [Fe 2 O 3 ], 40 g of boron oxide [B 2 O 3 ], 450 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 20 g, 40 g of gadolinium oxide [Gd 2 O 3 ], 13 g of aluminum oxide [Al 2 O 3 ], and 1 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. Using the melt obtained here, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG (hereinafter referred to as RIG-6) having a film thickness of 540 μm was obtained. The composition of this crystal was analyzed by EPMA quantitative analysis. As a result, the composition was Gd 1.28 Tb 0.64 Ca 0.01 Bi 1.07 Fe 4.38 Al 0.62 O 12 . After dividing the obtained RIG-6 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 474 μm. That is, the Faraday rotation coefficient was 950 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, an arbitrary 11 mm × 11 mm RIG-6 was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-6 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 152 (Oe). Moreover, as a result of measuring the temperature characteristics of the Faraday rotation angle, the value was 0.074 (deg / ° C.).

比較例3
白金るつぼに酸化ビスマス[Bi]4500g、酸化第2鉄[Fe]350g、酸化ほう素[B]35g、酸化鉛[PbO]890g、酸化テルビウム[Tb]15g、酸化ガドリニウム[Gd]25g、酸化アルミニウム[Al]15g、酸化カルシウム[CaO]3gを仕込み融液とした。
この融液を精密縦型管状電気炉の所定の位置に設置し、1000℃に加熱溶融し、十分に攪拌することで均一に混合してRIG育成融液とした。ここに得られた融液を用い、実施例1と同様にエピタキシャル成長を行った結果、膜厚480μmのRIG(以下RIG-7と記す)を得た。この結晶をEPMA定量分析により組成分析した結果、組成はGd1.08Tb0.71Ca0.05Bi1.16Fe4.46Al0.5412であった。得られたRIG−7を11mm×11mmに分割した後、基板を除去し、波長1550nmでのファラデー回転角が45度になるように厚さを調整した。厚さは403μmであった。すなわち、ファラデー回転係数は1116deg/cmであった。その後、波長1550nmを中心とする反射防止膜を付与した。
次に、任意の11mm×11mmのRIG-7を1枚選択し、磁気補償温度を測定した結果、−40℃以下であったことを確認した。その後、このRIG-7を1mm×1mmに切断後、そのうちの1チップを選択し、飽和磁界を測定した結果、値は172(Oe)であった。また、ファラデー回転角の温度特性を測定した結果、値は0.067(deg/℃)であった。次いで波長1650nm挿入損失を測定した結果、0.23dBであった。このような大きな損失はファラデー回転子の特性として相応しくないものである。
Comparative Example 3
In a platinum crucible, 4500 g of bismuth oxide [Bi 2 O 3 ], 350 g of ferric oxide [Fe 2 O 3 ], 35 g of boron oxide [B 2 O 3 ], 890 g of lead oxide [PbO], terbium oxide [Tb 4 O 7 15 g, 25 g of gadolinium oxide [Gd 2 O 3 ], 15 g of aluminum oxide [Al 2 O 3 ] and 3 g of calcium oxide [CaO] were used as a melt.
This melt was placed at a predetermined position of a precision vertical tubular electric furnace, heated and melted to 1000 ° C., and sufficiently mixed with sufficient stirring to obtain a RIG growth melt. Using the melt obtained here, epitaxial growth was performed in the same manner as in Example 1. As a result, RIG (hereinafter referred to as RIG-7) having a film thickness of 480 μm was obtained. As a result of analyzing the composition of this crystal by EPMA quantitative analysis, the composition was Gd 1.08 Tb 0.71 Ca 0.05 Bi 1.16 Fe 4.46 Al 0.54 O 12 . After dividing the obtained RIG-7 into 11 mm × 11 mm, the substrate was removed, and the thickness was adjusted so that the Faraday rotation angle at a wavelength of 1550 nm was 45 degrees. The thickness was 403 μm. That is, the Faraday rotation coefficient was 1116 deg / cm. Thereafter, an antireflection film centered on a wavelength of 1550 nm was applied.
Next, an arbitrary 11 mm × 11 mm RIG-7 was selected and the magnetic compensation temperature was measured. As a result, it was confirmed that the temperature was −40 ° C. or lower. Then, after cutting this RIG-7 into 1 mm × 1 mm, one chip was selected and the saturation magnetic field was measured. As a result, the value was 172 (Oe). Moreover, as a result of measuring the temperature characteristics of the Faraday rotation angle, the value was 0.067 (deg / ° C.). Next, the insertion loss at a wavelength of 1650 nm was measured and found to be 0.23 dB. Such a large loss is not suitable as a characteristic of a Faraday rotator.

本発明によれば、飽和磁界が低く、また温度特性に優れたファラデー回転子を得ることができ、その産業上の意義は極めて高い。

According to the present invention, a Faraday rotator having a low saturation magnetic field and excellent temperature characteristics can be obtained, and its industrial significance is extremely high.

Claims (2)

液相エピタキシャル法にて育成され、飽和磁化の小さなことを特徴とする、化学式TbGdCaBi3−x−y−wFe5−zAl12(式中、0.15≦y/x≦0.65,0.3≦z≦0.5,0.04≦w≦0.1)で表わされるビスマス置換希土類鉄ガーネット単結晶。 Is grown by liquid phase epitaxial method, wherein the small that saturation magnetization, the formula Tb y Gd x Ca w Bi 3 -x-y-w Fe 5-z Al z O 12 ( wherein, 0.15 ≦ bismuth-substituted rare earth iron garnet single crystal represented by y / x ≦ 0.65, 0.3 ≦ z ≦ 0.5, 0.04 ≦ w ≦ 0.1). 請求項1記載のビスマス置換希土類鉄ガーネット単結晶膜からなるファラデー回転子の飽和磁界が200(Oe)以下、かつファラデー回転角の温度特性が0.07deg/℃以下であることを特徴とする請求項1に記載のファラデー回転子。 The saturation magnetic field of the Faraday rotator comprising the bismuth-substituted rare earth iron garnet single crystal film according to claim 1 is 200 (Oe) or less, and the temperature characteristic of the Faraday rotation angle is 0.07 deg / ° C or less. Item 5. The Faraday rotator according to Item 1.
JP2009157464A 2009-07-02 2009-07-02 Faraday rotator Pending JP2011011944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157464A JP2011011944A (en) 2009-07-02 2009-07-02 Faraday rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157464A JP2011011944A (en) 2009-07-02 2009-07-02 Faraday rotator

Publications (1)

Publication Number Publication Date
JP2011011944A true JP2011011944A (en) 2011-01-20

Family

ID=43591206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157464A Pending JP2011011944A (en) 2009-07-02 2009-07-02 Faraday rotator

Country Status (1)

Country Link
JP (1) JP2011011944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377785B1 (en) * 2013-03-28 2013-12-25 株式会社グラノプト Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
JP2018028499A (en) * 2016-08-19 2018-02-22 シチズンファインデバイス株式会社 Magnetic field sensor element and magnetic field sensor device
GB2600860A (en) * 2015-06-15 2022-05-11 Skyworks Solutions Inc Ultra-high dielectric constant garnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377785B1 (en) * 2013-03-28 2013-12-25 株式会社グラノプト Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
GB2600860A (en) * 2015-06-15 2022-05-11 Skyworks Solutions Inc Ultra-high dielectric constant garnet
GB2600860B (en) * 2015-06-15 2022-08-17 Skyworks Solutions Inc Ultra-high dielectric constant garnet
US11987531B2 (en) 2015-06-15 2024-05-21 Skyworks Solutions, Inc. Ultra-high dielectric constant garnet
JP2018028499A (en) * 2016-08-19 2018-02-22 シチズンファインデバイス株式会社 Magnetic field sensor element and magnetic field sensor device

Similar Documents

Publication Publication Date Title
JP5033945B2 (en) Rare earth iron garnet single crystal
US5898516A (en) Faraday rotator having a rectangular shaped hysteresis
JP2011011944A (en) Faraday rotator
JP4650943B2 (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
US6673146B2 (en) Method of manufacturing a magnet-free faraday rotator
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
JP5439931B2 (en) Manufacturing method of Faraday rotator
JP4802995B2 (en) Magnetic garnet single crystal and optical element using the same
JP5311474B2 (en) Magnetic garnet single crystal
EP0690153B1 (en) Oxide garnet single crystal
JP5757484B2 (en) Faraday rotator manufacturing method
JPH06281902A (en) Magneto-optical element material
US6351331B1 (en) Faraday rotator and magneto-optical element using the same
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP3917859B2 (en) Faraday rotator
US6031654A (en) Low magnet-saturation bismuth-substituted rare-earth iron garnet single crystal film
JP2010072263A (en) Faraday rotator
JP2679157B2 (en) Terbium iron garnet and magneto-optical element using the same
JP2006273594A (en) Magnetooptic garnet thick-film single crystal and method for producing the same
JP2008021691A (en) Process for producing bismuth-substitution rare-earth iron garnet single crystal
CN100346195C (en) 45 deg. Faraday rotator without adding bias magnetic field
JPH0727823B2 (en) Magnetic material for magneto-optical element
JP2007302490A (en) Bismuth-substituted type terbium-iron-garnet single crystal and its producing method
JP2001142039A (en) Hard magnetic garnet thick film material and method for manufacturing the same
JP2004331454A (en) Bismuth substitution type magnetic garnet film and its manufacturing method