JP2008271642A - Axial gap motor - Google Patents

Axial gap motor Download PDF

Info

Publication number
JP2008271642A
JP2008271642A JP2007108129A JP2007108129A JP2008271642A JP 2008271642 A JP2008271642 A JP 2008271642A JP 2007108129 A JP2007108129 A JP 2007108129A JP 2007108129 A JP2007108129 A JP 2007108129A JP 2008271642 A JP2008271642 A JP 2008271642A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
rotation axis
sub
axial gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007108129A
Other languages
Japanese (ja)
Other versions
JP4960749B2 (en
Inventor
Hirobumi Shin
博文 新
Shoei Abe
昇栄 阿部
Keiichi Yamamoto
恵一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007108129A priority Critical patent/JP4960749B2/en
Publication of JP2008271642A publication Critical patent/JP2008271642A/en
Application granted granted Critical
Publication of JP4960749B2 publication Critical patent/JP4960749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve operation efficiency. <P>SOLUTION: An axial gap motor is structured with a rotor which can rotate around a rotating shaft and stators which are arranged to face the rotor from both sides in the direction of the axis rotation parallel to the axis of rotation of the rotor. The rotor is structured with a plurality of main permanent magnet pieces 41 whose magnetized direction is in the direction of the axis of rotation and which are arranged in the circumferential direction, a plurality of sub-permanent magnet pieces 43 whose magnetized direction intersects at right angles the direction of the axis of rotation and which are arranged near the end of the main permanent magnet pieces 41, and magnetic material members 42 arranged on one side and the other side in the direction of the axis of rotation of the main permanent magnet pieces 41 between the two sub-permanent magnet pieces 43, 43 adjacent in the circumferential direction. The magnetic material members 42 is made of a rolled material formed by the rolling processing. The rolling direction in the region inside the radial direction or outside the radial direction is made to correspond to the direction of the axis of rotation, while the rolling direction in the region between the inside the radial direction and outside the radial direction is made to correspond to the circumferential direction of the rotor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、アキシャルギャップ型モータに関する。   The present invention relates to an axial gap type motor.

従来、例えば回転軸方向の両側からロータを挟み込むようにして対向配置された1対のステータを備え、ロータの永久磁石による界磁磁束に対して、1対のステータを介した磁束ループを形成する軸ギャップ型の永久磁石同期機が知られている(例えば、特許文献1、特許文献2参照)。
特開平10−271784号公報 特開2001−136721号公報
2. Description of the Related Art Conventionally, for example, a pair of stators arranged opposite to each other so as to sandwich a rotor from both sides in the rotation axis direction is provided, and a magnetic flux loop via a pair of stators is formed with respect to a field magnetic flux generated by a permanent magnet of the rotor. A shaft gap type permanent magnet synchronous machine is known (see, for example, Patent Document 1 and Patent Document 2).
JP-A-10-271784 JP 2001-136721 A

ところで、上記従来技術に係る永久磁石同期機においては、例えば1対のステータの各固定子巻線に通電される電流の通電量が相対的に小さい場合等において、回転磁界を発生する磁束(固定子磁束)のうちロータを鎖交する磁束の量(鎖交磁束量)が低下し、漏洩磁束が増大してしまう場合があり、永久磁石同期機の運転効率を向上させることができないという問題が生じる。   By the way, in the permanent magnet synchronous machine according to the above prior art, for example, when the energization amount of the current energized to each stator winding of a pair of stators is relatively small, etc., the magnetic flux (fixed) The amount of magnetic flux (linkage magnetic flux) that links the rotor in the magnetic flux) may decrease, and the leakage magnetic flux may increase, and the operation efficiency of the permanent magnet synchronous machine cannot be improved. Arise.

本発明は上記事情に鑑みてなされたもので、運転効率を向上させることが可能なアキシャルギャップ型モータを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an axial gap type motor capable of improving driving efficiency.

上記課題を解決して係る目的を達成するために、本発明の第1態様に係るアキシャルギャップ型モータは、回転軸周りに回転可能なロータ(例えば、実施の形態でのロータ11)と、前記ロータの回転軸に平行な回転軸方向の少なくとも一方側から前記ロータに対向配置されたステータ(例えば、実施の形態でのステータ12)とを備えるアキシャルギャップ型モータであって、前記ロータは、磁化方向が前記回転軸方向であって周方向に配置された複数の主永久磁石(例えば、実施の形態での主永久磁石片41)と、磁化方向が前記回転軸方向に直交する方向であって前記主永久磁石の端部近傍に配置された複数の副永久磁石(例えば、実施の形態での副永久磁石片43)と、前記周方向で隣り合う2つの前記副永久磁石間において前記主永久磁石の前記回転軸方向の少なくとも一方側の表面上に配置された磁性部材(例えば、実施の形態での磁性材部材42)とを備え、前記磁性部材は、圧延加工により形成された圧延材から成り、少なくとも径方向内方または径方向外方の領域での圧延方向が前記回転軸方向であり、前記径方向内方と前記径方向外方との間の領域での圧延方向が前記ロータの周方向である。   In order to solve the above problems and achieve the object, an axial gap type motor according to a first aspect of the present invention includes a rotor that can rotate around a rotation axis (for example, the rotor 11 in the embodiment), and An axial gap type motor comprising a stator (for example, the stator 12 in the embodiment) disposed opposite to the rotor from at least one side in a rotation axis direction parallel to the rotation axis of the rotor, wherein the rotor is magnetized A plurality of main permanent magnets (for example, the main permanent magnet piece 41 in the embodiment) arranged in the circumferential direction with the direction being the rotation axis direction, and the magnetization direction being a direction perpendicular to the rotation axis direction, A plurality of sub permanent magnets (for example, the sub permanent magnet piece 43 in the embodiment) arranged in the vicinity of the end of the main permanent magnet and the two sub permanent magnets adjacent to each other in the circumferential direction. A magnetic member (for example, magnetic material member 42 in the embodiment) disposed on the surface of at least one side of the permanent magnet in the rotational axis direction, and the magnetic member is a rolled material formed by rolling. The rolling direction in at least the radially inward or radially outward region is the rotational axis direction, and the rolling direction in the region between the radially inward and the radially outward region is the rotor. In the circumferential direction.

さらに、本発明の第2態様に係るアキシャルギャップ型モータでは、前記圧延材は電磁鋼板であり、前記磁性部材は前記ロータの径方向に複数の前記電磁鋼板が積層された積層鋼板から成る。   Furthermore, in the axial gap type motor according to the second aspect of the present invention, the rolled material is an electromagnetic steel plate, and the magnetic member is a laminated steel plate in which a plurality of the electromagnetic steel plates are laminated in the radial direction of the rotor.

さらに、本発明の第3態様に係るアキシャルギャップ型モータでは、前記副永久磁石は、前記主永久磁石の回転軸方向の両端部近傍に配置された1対の第1副永久磁石(例えば、実施の形態での副永久磁石片43)および第2副永久磁石(例えば、実施の形態での副永久磁石片43)を備え、前記ステータは前記回転軸方向で対向配置されて前記回転軸方向の両側から前記ロータを挟み込む1対の第1ステータ(例えば、実施の形態でのステータ12)および第2ステータ(例えば、実施の形態でのステータ12)を備える。   Furthermore, in the axial gap type motor according to the third aspect of the present invention, the sub permanent magnet is a pair of first sub permanent magnets (for example, implemented) disposed near both ends in the rotation axis direction of the main permanent magnet. Sub-permanent magnet piece 43) and a second sub-permanent magnet (for example, sub-permanent magnet piece 43 in the embodiment), and the stator is arranged oppositely in the rotation axis direction so as to extend in the rotation axis direction. A pair of first stators (for example, the stator 12 in the embodiment) and a second stator (for example, the stator 12 in the embodiment) that sandwich the rotor from both sides are provided.

本発明の第1態様に係るアキシャルギャップ型モータによれば、ロータの主永久磁石の表面上に配置された磁性部材は圧延材から成ることから、この圧延材の圧延方向において初期透磁率が相対的に高くなる。このため、磁性部材の少なくとも径方向内方または径方向外方の領域での圧延方向が回転軸方向、つまりロータからステータに向かう方向に設定されることにより、ロータとステータとの間の磁路空隙部での電流磁束(つまり、ステータの固定子巻線に通電される電流に起因する磁束)がロータを鎖交せずに径方向内方または径方向外方に漏れ出てしまうことを抑制することができ、電流磁界と主永久磁石との間に発生する吸引/反発力に起因する磁石トルクを増大させることができる。また、磁性部材の径方向内方と径方向外方との間の領域での圧延方向がロータの周方向、つまりロータの回転方向に設定されることにより、電流磁界と磁性部材との間に発生する吸引力に起因する回転トルク(リラクタンストルク)を増大させることができると共に、ヒステリシス損失を低減することができることから、反回転方向のバックトルクの発生を抑制することができ、コギングトルクおよびトルクリップルを低減することができる。これらにより、アキシャルギャップ型モータの運転効率を向上させることができる。   According to the axial gap type motor according to the first aspect of the present invention, the magnetic member disposed on the surface of the main permanent magnet of the rotor is made of a rolled material, so that the initial magnetic permeability is relative in the rolling direction of the rolled material. Become expensive. Therefore, the magnetic path between the rotor and the stator is set by setting the rolling direction of the magnetic member at least in the radially inner region or the radially outer region to the rotation axis direction, that is, the direction from the rotor to the stator. Suppresses leakage of current magnetic flux in the air gap (that is, magnetic flux caused by the current applied to the stator winding of the stator) radially inward or outward without linking the rotor The magnet torque resulting from the attraction / repulsion force generated between the current magnetic field and the main permanent magnet can be increased. In addition, the rolling direction in the region between the radially inner side and the radially outer side of the magnetic member is set to the circumferential direction of the rotor, that is, the rotational direction of the rotor, so that the current magnetic field and the magnetic member are placed between each other. Since the rotational torque (reluctance torque) resulting from the generated attractive force can be increased and the hysteresis loss can be reduced, the occurrence of back torque in the counter-rotating direction can be suppressed, and the cogging torque and torque can be suppressed. Ripple can be reduced. As a result, the operation efficiency of the axial gap type motor can be improved.

さらに、本発明の第2態様に係るアキシャルギャップ型モータによれば、磁石トルクおよびリラクタンストルクを増大させることができ、アキシャルギャップ型モータの運転効率を向上させることができる。   Furthermore, according to the axial gap type motor according to the second aspect of the present invention, the magnet torque and the reluctance torque can be increased, and the operation efficiency of the axial gap type motor can be improved.

さらに、本発明の第3態様に係るアキシャルギャップ型モータによれば、主永久磁石と第1副永久磁石および第2副永久磁石とによる所謂永久磁石のハルバッハ配置による磁束レンズ効果によって界磁磁束を適切に収束させつつ、回転軸方向で対をなす第1および第2ステータ間で界磁磁束を掃引することができ、各ステータの固定子巻線に鎖交する磁束量を増大させることができる。   Furthermore, according to the axial gap type motor according to the third aspect of the present invention, the field magnetic flux is generated by the magnetic lens effect by the so-called permanent magnet Halbach arrangement of the main permanent magnet, the first sub permanent magnet, and the second sub permanent magnet. The field magnetic flux can be swept between the first and second stators paired in the direction of the rotation axis while properly converging, and the amount of magnetic flux interlinked with the stator winding of each stator can be increased. .

以下、本発明のアキシャルギャップ型モータの一実施形態について添付図面を参照しながら説明する。
本実施の形態によるアキシャルギャップ型モータ10は、例えば図1および図2に示すように、このアキシャルギャップ型モータ10の回転軸O周りに回転可能に設けられた略円環状のロータ11と、回転軸O方向の両側からロータ11を挟みこむようにして対向配置され、ロータ11を回転させる回転磁界を発生する複数相の各固定子巻線を有する1対のステータ12,12とを備えて構成されている。
Hereinafter, an embodiment of an axial gap type motor of the present invention will be described with reference to the accompanying drawings.
An axial gap type motor 10 according to the present embodiment includes, for example, a substantially annular rotor 11 provided to be rotatable around a rotation axis O of the axial gap type motor 10, as shown in FIGS. And a pair of stators 12 and 12 having a plurality of stator windings that are arranged opposite to each other so as to sandwich the rotor 11 from both sides in the direction of the axis O and generate a rotating magnetic field that rotates the rotor 11. Yes.

このアキシャルギャップ型モータ10は、例えばハイブリッド車両や電動車両等の車両に駆動源として搭載され、出力軸がトランスミッション(図示略)の入力軸に接続されることで、アキシャルギャップ型モータ10の駆動力がトランスミッションを介して車両の駆動輪(図示略)に伝達されるようになっている。   The axial gap type motor 10 is mounted as a drive source in a vehicle such as a hybrid vehicle or an electric vehicle, for example, and an output shaft is connected to an input shaft of a transmission (not shown), whereby the driving force of the axial gap type motor 10 is obtained. Is transmitted to drive wheels (not shown) of the vehicle via a transmission.

また、車両の減速時に駆動輪側からアキシャルギャップ型モータ10に駆動力が伝達されると、アキシャルギャップ型モータ10は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。さらに、例えばハイブリッド車両においては、アキシャルギャップ型モータ10の回転軸が内燃機関(図示略)のクランクシャフトに連結されると、内燃機関の出力がアキシャルギャップ型モータ10に伝達された場合にもアキシャルギャップ型モータ10は発電機として機能して発電エネルギーを発生する。   Further, when the driving force is transmitted from the driving wheel side to the axial gap type motor 10 during deceleration of the vehicle, the axial gap type motor 10 functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is electrically converted. Recover as energy (regenerative energy). Further, for example, in a hybrid vehicle, when the rotating shaft of the axial gap type motor 10 is connected to the crankshaft of an internal combustion engine (not shown), the axial gap motor 10 is also axially transmitted when the output of the internal combustion engine is transmitted to the axial gap type motor 10. The gap type motor 10 functions as a generator and generates power generation energy.

各ステータ12は、略円環板状のヨーク部21と、ロータ11に対向するヨーク部21の対向面上で周方向に所定間隔をおいた位置から回転軸O方向に沿ってロータ11に向かい突出すると共に径方向に伸びる複数のティース22,…,22と、適宜のティース22,22間に装着される固定子巻線(例えば、図4に示す固定子巻線12a)とを備えて構成されている。   Each stator 12 faces the rotor 11 along the direction of the rotation axis O from a substantially annular plate-shaped yoke portion 21 and a position at a predetermined interval in the circumferential direction on the facing surface of the yoke portion 21 facing the rotor 11. A plurality of teeth 22,..., 22 that protrude and extend in the radial direction, and a stator winding (for example, stator winding 12 a shown in FIG. 4) that is mounted between the appropriate teeth 22, 22. Has been.

各ステータ12は、例えば主極が6個(例えば、U,V,W,U,V,W)とされた6N型であって、一方のステータ12の各U,V,W極に対して、他方のステータ12の各U,V,W極が回転軸O方向で対向するように設定されている。
例えば回転軸O方向で対向する1対のステータ12,12に対し、U,V,W極およびU,V,W極の一方に対応する一方のステータ12の3個のティース22,22,22と、U,V,W極およびU,V,W極の他方に対応する他方のステータ12の3個のティース22,22,22とが、回転軸O方向で対向するように設定され、回転軸O方向で対向する一方のステータ12のティース22と、他方のステータ12のティース22とに対する通電状態が電気角で反転状態となるように設定されている。
Each stator 12 is a 6N type having, for example, six main poles (for example, U + , V + , W + , U , V , W ), and each stator 12 has a U + , The U , V , and W poles of the other stator 12 are set to face the V + and W + poles in the direction of the rotation axis O.
For example, with respect to a pair of stators 12 and 12 facing in the direction of the rotation axis O, three stators 12 corresponding to one of U + , V + , W + poles and one of U , V , W poles are provided. The teeth 22, 22, 22 and the three teeth 22, 22, 22 of the other stator 12 corresponding to the other of the U + , V + , W + pole and the other of the U , V , W poles rotate. It is set so as to face each other in the direction of the axis O, and is set so that the energized state with respect to the teeth 22 of one stator 12 and the teeth 22 of the other stator 12 facing each other in the direction of the rotation axis O is reversed in electrical angle. ing.

そして、ティース22の周方向幅は、例えば径方向の内方から外方に向かい、例えば内周側幅Taから外周側幅Tb(>Ta)へと漸次増大し、周方向で隣り合うティース22,22同士間の周方向での間隔、つまり周方向で隣り合うティース22,22間に形成されて径方向に伸びるスロット23のスロット幅は、径方向において所定の一定値となるように設定されている。   The circumferential width of the teeth 22 is, for example, from the inside in the radial direction to the outside, and gradually increases from, for example, the inner circumference side width Ta to the outer circumference side width Tb (> Ta), and adjacent teeth 22 in the circumferential direction. , 22 in the circumferential direction, that is, the slot width of the slot 23 formed between the adjacent teeth 22 and 22 in the circumferential direction and extending in the radial direction is set to be a predetermined constant value in the radial direction. ing.

ロータ11は、複数の主磁石極部31,…,31と、複数の副磁石部32,…,32と、非磁性材からなるロータフレーム33とを備えて構成され、主磁石極部31と副磁石部32とは、周方向において交互に配置された状態で、ロータフレーム33内に収容されている。   The rotor 11 includes a plurality of main magnet pole portions 31,..., A plurality of sub magnet portions 32,... 32, and a rotor frame 33 made of a nonmagnetic material. The sub magnet parts 32 are accommodated in the rotor frame 33 in a state of being alternately arranged in the circumferential direction.

ロータフレーム33は、周方向に所定間隔をおいて配置された複数の径方向リブ34,…,34によって接続された内周側筒状部35と外周側筒状部36と、内周側筒状部35の内周面上から内方に向かい突出する円環板状に形成され、外部の駆動軸(例えば、車両のトランスミッションの入力軸等)に接続される接続部37とを備えて構成されている。
この実施の形態では、ロータフレーム33の内周側筒状部35が外部の駆動軸に接続されることから、径方向リブ34の径方向の内方側がシャフト部側となり、径方向リブ34の径方向の外方側がリム部側となる。
The rotor frame 33 includes an inner peripheral side cylindrical portion 35, an outer peripheral side cylindrical portion 36, and an inner peripheral side cylinder connected by a plurality of radial ribs 34,. And a connecting portion 37 that is formed in an annular plate shape protruding inward from the inner peripheral surface of the shaped portion 35 and connected to an external drive shaft (for example, an input shaft of a vehicle transmission). Has been.
In this embodiment, since the inner peripheral cylindrical portion 35 of the rotor frame 33 is connected to an external drive shaft, the radially inner side of the radial rib 34 is the shaft portion side, and the radial rib 34 The radially outer side is the rim portion side.

径方向リブ34の径方向に対する断面積は、径方向において所定の一定値となるように設定されている。そして、径方向リブ34の周方向幅は、後述する副永久磁石片43の周方向幅と同等とされている。また、径方向リブ34の回転軸O方向の厚さは、径方向において所定の一定値となるように設定されている。   The cross-sectional area of the radial rib 34 in the radial direction is set to be a predetermined constant value in the radial direction. The circumferential width of the radial rib 34 is equal to the circumferential width of a sub permanent magnet piece 43 described later. Further, the thickness of the radial rib 34 in the direction of the rotation axis O is set to be a predetermined constant value in the radial direction.

主磁石極部31は、例えば図3に示すように、厚さ方向(つまり、回転軸O方向)に磁化された略扇形板状の主永久磁石片41と、この主永久磁石片41を厚さ方向の両側から挟み込む1対の略扇形板状の磁性材部材42,42とを備えて構成され、周方向で隣り合う主磁石極部31,31の各主永久磁石片41,41は、例えば図4に示すように、磁化方向が互いに異方向となるように設定されている。   For example, as shown in FIG. 3, the main magnet pole portion 31 has a substantially sector plate-shaped main permanent magnet piece 41 magnetized in the thickness direction (that is, the rotation axis O direction), and the main permanent magnet piece 41 is thickened. The main permanent magnet pieces 41 and 41 of the main magnet pole portions 31 and 31 adjacent to each other in the circumferential direction are configured to include a pair of substantially fan-shaped magnetic material members 42 and 42 sandwiched from both sides in the vertical direction. For example, as shown in FIG. 4, the magnetization directions are set to be different from each other.

そして、ロータフレーム33内に収容された複数の主磁石極部31,…,31は、径方向の両側から内周側筒状部35と外周側筒状部36とにより挟み込まれると共に、径方向リブ34を介して周方向で隣り合うように配置されている。
ロータフレーム33内において、各主磁石極部31の主永久磁石片41は2つの径方向リブ34によって周方向の両側から挟み込まれ、主永久磁石片41の回転軸O方向での厚さは、径方向リブ34と同様に、径方向において所定の一定値となるように設定されている。
また、磁性材部材42の回転軸O方向での厚さは、後述する副永久磁石片43と同様に、径方向において所定の一定値となるように設定されている。
The plurality of main magnet pole portions 31,..., 31 accommodated in the rotor frame 33 are sandwiched by the inner peripheral cylindrical portion 35 and the outer peripheral cylindrical portion 36 from both sides in the radial direction, and also in the radial direction. The ribs 34 are arranged adjacent to each other in the circumferential direction.
In the rotor frame 33, the main permanent magnet piece 41 of each main magnet pole portion 31 is sandwiched from both sides in the circumferential direction by two radial ribs 34, and the thickness of the main permanent magnet piece 41 in the rotation axis O direction is: Similar to the radial rib 34, it is set to have a predetermined constant value in the radial direction.
Further, the thickness of the magnetic material member 42 in the direction of the rotation axis O is set to be a predetermined constant value in the radial direction, similarly to the sub permanent magnet piece 43 described later.

副磁石部32は、例えば図2および図3に示すように、ロータフレーム33内において回転軸O方向の両側から径方向リブ34を挟み込む1対の副永久磁石片43,43を備えて構成され、回転軸O方向で対向する1対の副永久磁石片43,43は、例えば図4に示すように、それぞれ回転軸O方向および径方向に直行する方向(略周方向)に磁化され、互いに磁化方向が異方向とされている。
副永久磁石片43の回転軸O方向での厚さは、磁性材部材42と同様に、径方向において所定の一定値であって、副永久磁石片43の周方向幅は、径方向リブ34の周方向幅と同等とされている。
そして、ロータフレーム33内において、周方向で隣り合う副磁石部32,32の副永久磁石片43,43同士は、主磁石極部31の磁性材部材42を周方向の両側から挟み込んでいる。
なお、ロータ11のロータフレーム33とロータフレーム33以外の構成要素(つまり、主磁石極部31および副磁石部32)とを分離して示す図2においては、回転軸O方向で対向する1対の副永久磁石片43,43間および周方向で隣り合う主永久磁石片41,41間に、ロータフレーム33の径方向リブ34が配置される空間部34aが形成されている。
For example, as shown in FIGS. 2 and 3, the sub-magnet portion 32 includes a pair of sub-permanent magnet pieces 43 and 43 that sandwich the radial ribs 34 from both sides in the rotation axis O direction in the rotor frame 33. The pair of sub permanent magnet pieces 43, 43 facing each other in the direction of the rotation axis O are magnetized in a direction (substantially circumferential direction) orthogonal to the direction of the rotation axis O and the radial direction, respectively, for example, as shown in FIG. The magnetization direction is different.
The thickness of the secondary permanent magnet piece 43 in the direction of the rotation axis O is a predetermined constant value in the radial direction, like the magnetic member 42, and the circumferential width of the secondary permanent magnet piece 43 is the radial rib 34. It is equivalent to the circumferential width of.
In the rotor frame 33, the sub permanent magnet pieces 43 and 43 of the sub magnet portions 32 and 32 adjacent in the circumferential direction sandwich the magnetic material member 42 of the main magnet pole portion 31 from both sides in the circumferential direction.
In FIG. 2, which shows the rotor frame 33 of the rotor 11 and the components other than the rotor frame 33 (that is, the main magnet pole portion 31 and the sub magnet portion 32) separated from each other, a pair facing each other in the direction of the rotation axis O. A space portion 34a in which the radial rib 34 of the rotor frame 33 is disposed is formed between the sub permanent magnet pieces 43, 43 and between the main permanent magnet pieces 41, 41 adjacent in the circumferential direction.

磁性材部材42を介して周方向で対向する1対の副永久磁石片43,43同士は、例えば図4に示すように、互いに磁化方向が異方向とされている。
そして、回転軸O方向の一方側に配置された1対の副永久磁石片43,43同士は、回転軸O方向に磁化された主永久磁石片41の一方側の磁極と同極の磁極を対向させ、回転軸O方向の他方側に配置された1対の副永久磁石片43,43同士は、回転軸O方向に磁化された主永久磁石片41の他方側の磁極と同極の磁極を対向させるように配置されている。
As shown in FIG. 4, for example, the pair of sub permanent magnet pieces 43 and 43 facing each other in the circumferential direction via the magnetic material member 42 have different magnetization directions.
The pair of sub permanent magnet pieces 43 and 43 arranged on one side in the direction of the rotation axis O have the same polarity as the magnetic pole on one side of the main permanent magnet piece 41 magnetized in the direction of the rotation axis O. A pair of sub-permanent magnet pieces 43, 43 that are opposed to each other and arranged on the other side in the direction of the rotation axis O are magnetic poles having the same polarity as the magnetic pole on the other side of the main permanent magnet piece 41 magnetized in the direction of the rotation axis O. Are arranged to face each other.

つまり、例えば回転軸O方向の一方側がN極かつ他方側がS極とされた主永久磁石片41に対して、回転軸O方向の一方側において磁性材部材42を周方向の両側から挟み込む1対の副永久磁石片43,43は、互いのN極が周方向で対向するように配置され、回転軸O方向の他方側において磁性材部材42を周方向の両側から挟み込む1対の副永久磁石片43,43は、互いのS極が周方向で対向するように配置されている。
これにより、所謂永久磁石のハルバッハ配置による磁束レンズ効果により主永久磁石片41および各副永久磁石片43,43の各磁束が収束し、各ステータ12,12に鎖交する有効磁束が相対的に増大するようになっている。
That is, for example, a pair of magnetic material members 42 sandwiched from both sides in the circumferential direction on one side in the rotational axis O direction with respect to the main permanent magnet piece 41 having one side in the rotational axis O direction as the N pole and the other side as the S pole. The sub-permanent magnet pieces 43 and 43 are arranged so that their N poles face each other in the circumferential direction, and a pair of sub-permanent magnets sandwiching the magnetic material member 42 from both sides in the circumferential direction on the other side in the rotation axis O direction. The pieces 43 and 43 are arranged so that the S poles of each other face each other in the circumferential direction.
Accordingly, the magnetic fluxes of the main permanent magnet piece 41 and the sub permanent magnet pieces 43 and 43 are converged by the magnetic lens effect due to the so-called permanent magnet Halbach arrangement, and the effective magnetic flux linked to the stators 12 and 12 is relatively relative to each other. It is going to increase.

そして、この実施の形態では、磁性材部材42は圧延加工により形成された複数の電磁鋼板がロータ11の径方向に積層されて構成されている。
そして、磁性材部材42を構成する各電磁鋼板は、例えば図3から図5に示すように、少なくとも径方向内方または径方向外方の領域(例えば、径方向内方領域および径方向外方領域)での圧延方向が回転軸O方向であり、径方向内方と径方向外方との間の領域(例えば、径方向央部領域)での圧延方向がロータ11の周方向となるように設定されている。
つまり、磁性材部材42は、例えば図3に示すように、圧延方向がロータ11の周方向とされた周方向圧延部42aと、圧延方向が回転軸O方向とされた軸方向圧延部42bとを備えて構成され、径方向で対向する1対の軸方向圧延部42b,42bによって周方向圧延部42aが径方向の両側から挟みこまれて構成されている。
なお、ロータ11のロータフレーム33以外の構成要素(つまり、主磁石極部31および副磁石部32)のみを示す図5においては、回転軸O方向で対向する1対の副永久磁石片43,43間および周方向で隣り合う主永久磁石片41,41間に、ロータフレーム33の径方向リブ34が配置される空間部34aが形成されている。
In this embodiment, the magnetic material member 42 is configured by laminating a plurality of electromagnetic steel plates formed by rolling in the radial direction of the rotor 11.
Each of the electromagnetic steel plates constituting the magnetic member 42 has at least a radially inward or radially outward region (for example, a radially inward region and a radially outward side) as shown in FIGS. 3 to 5, for example. The rolling direction in the region) is the rotation axis O direction, and the rolling direction in the region between the radially inner side and the radially outer side (for example, the radially central region) is the circumferential direction of the rotor 11. Is set to
That is, for example, as shown in FIG. 3, the magnetic material member 42 includes a circumferential rolling portion 42 a in which the rolling direction is the circumferential direction of the rotor 11, and an axial rolling portion 42 b in which the rolling direction is the rotational axis O direction. The circumferentially rolled portion 42a is sandwiched from both sides in the radial direction by a pair of axially rolled portions 42b and 42b opposed in the radial direction.
In FIG. 5, which shows only components (that is, the main magnet pole portion 31 and the sub magnet portion 32) other than the rotor frame 33 of the rotor 11, a pair of sub permanent magnet pieces 43 facing each other in the direction of the rotation axis O. A space portion 34a in which the radial ribs 34 of the rotor frame 33 are disposed is formed between the main permanent magnet pieces 41 and 41 adjacent to each other in the circumferential direction.

つまり、圧延加工により形成される電磁鋼板は、たとえ無方向性の電磁鋼板であっても、圧延方向に対する相対的な方向に応じて磁気特性が変化しており、例えば図6に示すように、圧延方向に平行な方向と、圧延方向に対して45°だけ傾いた方向と、圧延方向の直交方向とに対して、相対的に高磁束密度領域での各直流磁化曲線はほぼ同等となるものの、相対的に低磁束密度領域では互いの直流磁化曲線同士間の偏差が増大していることから、初期透磁率が互いに異なっており、特に、圧延方向に磁化され易くなっている。   That is, even if the electrical steel sheet formed by rolling is a non-oriented electrical steel sheet, the magnetic properties change according to the relative direction with respect to the rolling direction, for example, as shown in FIG. Although each DC magnetization curve in a high magnetic flux density region is substantially equivalent to a direction parallel to the rolling direction, a direction inclined by 45 ° with respect to the rolling direction, and a direction orthogonal to the rolling direction, In the relatively low magnetic flux density region, since the deviation between the direct current magnetization curves increases, the initial magnetic permeability is different from each other, and in particular, it is easily magnetized in the rolling direction.

このため、磁性材部材42を構成する各電磁鋼板に対して、径方向内方と径方向外方との間の径方向央部領域での圧延方向がロータ11の周方向、つまりロータ11の回転方向となるように設定されることにより、この径方向央部領域はロータ11の回転方向に磁化され易くなり、例えば図4に示すように、ステータ12の固定子巻線12aに通電される電流に起因する電流磁束によってN極およびS極の何れかに変化する磁性材部材42の周方向端部のリラクタンストルク発生部と、電流磁界との間に発生する吸引力に起因する回転トルク(つまりリラクタンストルク)を増大させることができると共に、ヒステリシス損失を低減することができることから、反回転方向のバックトルクの発生を抑制することができ、コギングトルクおよびトルクリップルを低減することができる。
例えば図7に示す相電流進角に応じたトルク変化の一例において、圧延材から成る磁性材部材42に対し、径方向央部領域においてロータ11の周方向つまりロータ11の回転方向に相対的に初期透磁率が高い方向が配置された実施例では、径方向央部領域において相対的に初期透磁率が高い方向がロータ11の周方向以外の方向に設定された比較例に比べて、リラクタンストルクが増大している。
For this reason, the rolling direction in the central region in the radial direction between the radially inner side and the radially outer side is the circumferential direction of the rotor 11, that is, the rotor 11 By setting it to be in the rotational direction, this central region in the radial direction is easily magnetized in the rotational direction of the rotor 11, and for example, as shown in FIG. 4, the stator winding 12 a of the stator 12 is energized. Rotational torque due to the attractive force generated between the reluctance torque generating portion at the circumferential end of the magnetic material member 42 that changes to either the N pole or the S pole by the current magnetic flux caused by the current and the current magnetic field ( That is, the reluctance torque) can be increased and the hysteresis loss can be reduced, so that the occurrence of back torque in the counter-rotating direction can be suppressed, and the cogging torque and It is possible to reduce the Rukurippuru.
For example, in an example of the torque change according to the phase current advance shown in FIG. 7, relative to the circumferential direction of the rotor 11, that is, the rotational direction of the rotor 11 in the radially central region with respect to the magnetic material member 42 made of a rolled material. In the embodiment in which the direction having a high initial permeability is arranged, the reluctance torque is compared with the comparative example in which the direction having a relatively high initial permeability is set in a direction other than the circumferential direction of the rotor 11 in the radially central region. Has increased.

さらに、磁性材部材42を構成する各電磁鋼板に対して、少なくとも径方向内方または径方向外方の領域(例えば、径方向内方領域および径方向外方領域)での圧延方向が回転軸O方向(つまり磁路空隙方向)となるように設定されることにより、この方向に磁束が集束され易くなり、例えば図5に示すように、ロータ11とステータ12との間の磁路空隙部での漏洩磁束の発生、つまりステータ12から発生する電流磁束がロータ11を鎖交せずに径方向内方または径方向外方に漏れ出てしまうことを抑制することができ、固定子巻線12aによる電流磁界と、主永久磁石片41および副永久磁石片43による界磁磁束との間に発生する吸引/反発力に起因する磁石トルクを増大させることができる。
例えば図7に示す相電流進角に応じたトルク変化の一例において、圧延材から成る磁性材部材42に対し、径方向内方領域および径方向外方領域において回転軸O方向に相対的に初期透磁率が高い方向が配置された実施例では、径方向内方領域および径方向外方領域において相対的に初期透磁率が高い方向が回転軸O方向以外の方向に設定された比較例に比べて、磁石トルクが増大している。
Further, with respect to each electromagnetic steel sheet constituting the magnetic material member 42, the rolling direction is at least in the radially inward or radially outward region (for example, the radially inward region and the radially outward region). By setting it to be in the O direction (that is, the magnetic path gap direction), the magnetic flux is easily focused in this direction. For example, as shown in FIG. 5, the magnetic path gap between the rotor 11 and the stator 12 Generation of leakage magnetic flux at the stator, that is, current magnetic flux generated from the stator 12 can be prevented from leaking radially inward or radially outward without interlinking the rotor 11. The magnet torque resulting from the attraction / repulsion force generated between the current magnetic field by 12a and the field magnetic flux by the main permanent magnet piece 41 and the sub permanent magnet piece 43 can be increased.
For example, in the example of the torque change corresponding to the phase current advance angle shown in FIG. 7, relative to the magnetic material member 42 made of a rolled material, the initial is relatively in the rotational axis O direction in the radially inner region and the radially outer region. In the example in which the direction having a high magnetic permeability is arranged, the direction having a relatively high initial permeability in the radially inner region and the radially outer region is set to a direction other than the rotation axis O direction. Thus, the magnet torque is increasing.

上述したように、本実施の形態によるアキシャルギャップ型モータ10によれば、圧延材から成る磁性材部材42に対し、径方向内方と径方向外方との間の径方向央部領域ではロータ11の周方向つまりロータ11の回転方向に相対的に初期透磁率が高い方向を配置することにより、リラクタンストルクを増大させることができ、さらに、ヒステリシス損失およびバックトルクおよびコギングトルクおよび引きずり損失および運転時の騒音や振動等の発生を低減することができる。
さらに、径方向内方領域および径方向外方領域では回転軸O方向(つまり磁路空隙方向)に相対的に初期透磁率が高い方向を配置することにより、磁石トルクを増大させることができ、リラクタンストルクおよび磁石トルクが合成された合成トルクを増大させることができることから、アキシャルギャップ型モータ10の運転効率を向上させることができる。
As described above, according to the axial gap type motor 10 according to the present embodiment, the rotor in the radially central region between the radially inner side and the radially outer side with respect to the magnetic material member 42 made of a rolled material. 11, the reluctance torque can be increased by arranging a direction having a relatively high initial permeability in the circumferential direction of the rotor 11, that is, the rotation direction of the rotor 11, and further, hysteresis loss, back torque, cogging torque, drag loss, and operation Generation of noise and vibration at the time can be reduced.
Further, in the radially inner region and the radially outer region, the magnet torque can be increased by arranging the direction having a relatively high initial permeability in the rotation axis O direction (that is, the magnetic path gap direction), Since the combined torque obtained by combining the reluctance torque and the magnet torque can be increased, the operation efficiency of the axial gap motor 10 can be improved.

なお、上述した実施の形態では、回転軸O方向の両側からロータ11を挟みこむようにして対向配置された1対のステータ12,12を備えるとしたが、これに限定されず、例えば1対のステータ12,12のうち、何れか一方のステータ12のみを備えてもよい。
また、上述した実施の形態では、主磁石極部31は主永久磁石片41を厚さ方向の両側から挟み込む1対の磁性材部材42,42を備え、副磁石部32は回転軸O方向の両側から径方向リブ34を挟み込む1対の副永久磁石片43,43を備えるとしたが、これに限定されず、回転軸O方向の何れか一方側のみに磁性材部材42と副永久磁石片43とを備えてもよい。
In the above-described embodiment, the pair of stators 12 and 12 are provided so as to face each other so as to sandwich the rotor 11 from both sides in the direction of the rotation axis O. However, the present invention is not limited to this. Only one of the stators 12 may be provided.
In the above-described embodiment, the main magnet pole portion 31 includes a pair of magnetic material members 42 and 42 that sandwich the main permanent magnet piece 41 from both sides in the thickness direction, and the sub magnet portion 32 extends in the direction of the rotation axis O. The pair of secondary permanent magnet pieces 43, 43 sandwiching the radial rib 34 from both sides are provided, but the present invention is not limited to this, and the magnetic material member 42 and the secondary permanent magnet piece are provided only on one side of the rotation axis O direction. 43 may be provided.

本発明の一実施形態に係るアキシャルギャップ型モータの斜視図である。It is a perspective view of an axial gap type motor concerning one embodiment of the present invention. 本発明の一実施形態に係るアキシャルギャップ型モータのロータの分解斜視図である。It is a disassembled perspective view of the rotor of the axial gap type motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るアキシャルギャップ型モータのロータの要部分解斜視図である。It is a principal part disassembled perspective view of the rotor of the axial gap type motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るアキシャルギャップ型モータの径方向に対する要部断面図である。It is principal part sectional drawing with respect to the radial direction of the axial gap type motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るアキシャルギャップ型モータの要部斜視図である。It is a principal part perspective view of the axial gap type motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係るアキシャルギャップ型モータの磁性材部材の圧延方向に対する相対的な各方向での直流磁化曲線を示す図である。It is a figure which shows the DC magnetization curve in each direction relative to the rolling direction of the magnetic material member of the axial gap type motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る実施例および比較例に係るアキシャルギャップ型モータの相電流進角に応じたトルクの変化を示す図である。It is a figure which shows the change of the torque according to the phase current advance angle of the axial gap type motor which concerns on the Example and comparative example which concern on one Embodiment of this invention.

符号の説明Explanation of symbols

10 アキシャルギャップ型モータ
11 ロータ
12 ステータ(ステータ、第1ステータ、第2ステータ)
22 ティース
23 スロット
41 主永久磁石片(主永久磁石)
42 磁性材部材(磁性部材)
43 副永久磁石片(副永久磁石、第1副永久磁石、第2副永久磁石)
10 Axial gap type motor 11 Rotor 12 Stator (stator, first stator, second stator)
22 Teeth 23 Slot 41 Main permanent magnet piece (Main permanent magnet)
42 Magnetic material members (magnetic members)
43 secondary permanent magnet pieces (secondary permanent magnet, first secondary permanent magnet, second secondary permanent magnet)

Claims (3)

回転軸周りに回転可能なロータと、前記ロータの回転軸に平行な回転軸方向の少なくとも一方側から前記ロータに対向配置されたステータとを備えるアキシャルギャップ型モータであって、
前記ロータは、磁化方向が前記回転軸方向であって周方向に配置された複数の主永久磁石と、磁化方向が前記回転軸方向に直交する方向であって前記主永久磁石の端部近傍に配置された複数の副永久磁石と、前記周方向で隣り合う2つの前記副永久磁石間において前記主永久磁石の前記回転軸方向の少なくとも一方側の表面上に配置された磁性部材とを備え、
前記磁性部材は、圧延加工により形成された圧延材から成り、少なくとも径方向内方または径方向外方の領域での圧延方向が前記回転軸方向であり、前記径方向内方と前記径方向外方との間の領域での圧延方向が前記ロータの周方向であることを特徴とするアキシャルギャップ型モータ。
An axial gap type motor comprising: a rotor rotatable around a rotation axis; and a stator disposed opposite to the rotor from at least one side in a rotation axis direction parallel to the rotation axis of the rotor,
The rotor includes a plurality of main permanent magnets arranged in a circumferential direction with a magnetization direction in the rotation axis direction, and a direction in which the magnetization direction is perpendicular to the rotation axis direction and in the vicinity of the end of the main permanent magnet. A plurality of sub-permanent magnets arranged, and a magnetic member arranged on the surface of at least one side of the main permanent magnet in the rotational axis direction between the two sub-permanent magnets adjacent in the circumferential direction,
The magnetic member is made of a rolled material formed by rolling, and the rolling direction in at least the radially inward or radially outward region is the rotational axis direction, and the radially inward and radially outward An axial gap type motor characterized in that the rolling direction in the region between the two is the circumferential direction of the rotor.
前記圧延材は電磁鋼板であり、
前記磁性部材は前記ロータの径方向に複数の前記電磁鋼板が積層された積層鋼板から成ることを特徴とする請求項1に記載のアキシャルギャップ型モータ。
The rolled material is a magnetic steel sheet,
2. The axial gap motor according to claim 1, wherein the magnetic member is a laminated steel plate in which a plurality of the electromagnetic steel plates are laminated in a radial direction of the rotor.
前記副永久磁石は、前記主永久磁石の回転軸方向の両端部近傍に配置された1対の第1副永久磁石および第2副永久磁石を備え、
前記ステータは前記回転軸方向で対向配置されて前記回転軸方向の両側から前記ロータを挟み込む1対の第1ステータおよび第2ステータを備えることを特徴とする請求項1または請求項2に記載のアキシャルギャップ型モータ。
The sub-permanent magnet includes a pair of first sub-permanent magnets and second sub-permanent magnets arranged in the vicinity of both end portions in the rotation axis direction of the main permanent magnet,
The said stator is equipped with a pair of 1st stator and 2nd stator which are opposingly arranged by the said rotating shaft direction, and pinch | interpose the said rotor from the both sides of the said rotating shaft direction. Axial gap type motor.
JP2007108129A 2007-04-17 2007-04-17 Axial gap type motor Expired - Fee Related JP4960749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108129A JP4960749B2 (en) 2007-04-17 2007-04-17 Axial gap type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108129A JP4960749B2 (en) 2007-04-17 2007-04-17 Axial gap type motor

Publications (2)

Publication Number Publication Date
JP2008271642A true JP2008271642A (en) 2008-11-06
JP4960749B2 JP4960749B2 (en) 2012-06-27

Family

ID=40050449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108129A Expired - Fee Related JP4960749B2 (en) 2007-04-17 2007-04-17 Axial gap type motor

Country Status (1)

Country Link
JP (1) JP4960749B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525722A (en) * 2016-08-16 2019-09-05 宇生自然能源科技股▲分▼有限公司 Coaxial electromagnetic device
CN113131644A (en) * 2019-12-31 2021-07-16 日本电产株式会社 Rotor core and motor having the same
CN115001172A (en) * 2022-07-21 2022-09-02 南京理工大学 Axial-magnetizing permanent magnet motor rotor structure and permanent magnet motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341696A (en) * 2004-05-26 2005-12-08 Nissan Motor Co Ltd Axial gap type rotating electric machine
JP2006025482A (en) * 2004-07-06 2006-01-26 Nissan Motor Co Ltd Rotor structure of disc-type rotary electric machine, and process for manufacturing rotor
JP2006222131A (en) * 2005-02-08 2006-08-24 Neomax Co Ltd Permanent magnet body
JP2007053844A (en) * 2005-08-17 2007-03-01 Asmo Co Ltd Fan motor
JP2007104819A (en) * 2005-10-05 2007-04-19 Nissan Motor Co Ltd Rotating electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341696A (en) * 2004-05-26 2005-12-08 Nissan Motor Co Ltd Axial gap type rotating electric machine
JP2006025482A (en) * 2004-07-06 2006-01-26 Nissan Motor Co Ltd Rotor structure of disc-type rotary electric machine, and process for manufacturing rotor
JP2006222131A (en) * 2005-02-08 2006-08-24 Neomax Co Ltd Permanent magnet body
JP2007053844A (en) * 2005-08-17 2007-03-01 Asmo Co Ltd Fan motor
JP2007104819A (en) * 2005-10-05 2007-04-19 Nissan Motor Co Ltd Rotating electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019525722A (en) * 2016-08-16 2019-09-05 宇生自然能源科技股▲分▼有限公司 Coaxial electromagnetic device
CN113131644A (en) * 2019-12-31 2021-07-16 日本电产株式会社 Rotor core and motor having the same
CN115001172A (en) * 2022-07-21 2022-09-02 南京理工大学 Axial-magnetizing permanent magnet motor rotor structure and permanent magnet motor
CN115001172B (en) * 2022-07-21 2023-08-04 南京理工大学 Axial magnetizing permanent magnet motor rotor structure and permanent magnet motor

Also Published As

Publication number Publication date
JP4960749B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4961302B2 (en) Axial gap type motor
JP4394115B2 (en) Axial gap type motor
JP4707696B2 (en) Axial gap type motor
JP4729551B2 (en) Axial gap type motor
JP4678549B2 (en) Axial gap type motor
JP2008271640A (en) Axial gap motor
JP6789451B1 (en) Hybrid field double gap synchronous machine and drive system
WO2016060232A1 (en) Double stator-type rotary machine
JP4906606B2 (en) Axial gap type motor
JP4500843B2 (en) Axial gap type motor
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP4605480B2 (en) Axial gap type motor
JP4960749B2 (en) Axial gap type motor
JP5292953B2 (en) Axial gap type motor
JP2009095089A (en) Axial gap motor
JP4896690B2 (en) Axial gap type motor
JP5017045B2 (en) Axial gap type motor
JP4808529B2 (en) Electric motor
JP5114135B2 (en) Axial gap type motor
JP5126584B2 (en) Axial gap type motor
JP2010028993A (en) Axial gap motor
JP2009131113A (en) Axial gap type motor
JP6126873B2 (en) Permanent magnet rotating electric machine
JP4482900B2 (en) Axial gap type motor
JP4453051B2 (en) Axial gap type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees