JP6126873B2 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
JP6126873B2
JP6126873B2 JP2013044669A JP2013044669A JP6126873B2 JP 6126873 B2 JP6126873 B2 JP 6126873B2 JP 2013044669 A JP2013044669 A JP 2013044669A JP 2013044669 A JP2013044669 A JP 2013044669A JP 6126873 B2 JP6126873 B2 JP 6126873B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
axial direction
magnetized
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013044669A
Other languages
Japanese (ja)
Other versions
JP2014176145A (en
Inventor
坂本 正文
正文 坂本
重善 佐藤
重善 佐藤
俊輔 竹口
俊輔 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2013044669A priority Critical patent/JP6126873B2/en
Publication of JP2014176145A publication Critical patent/JP2014176145A/en
Application granted granted Critical
Publication of JP6126873B2 publication Critical patent/JP6126873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は電動機や発電機等の永久磁石式回転子を有した回転電機に関する。   The present invention relates to a rotating electrical machine having a permanent magnet rotor such as an electric motor or a generator.

電動機や発電機である回転電機は、市場より軽薄短小化の要求が強く、また最近は地球温暖化対策として、省エネルギー化や高効率化の要求も増加してきている。このため回転子に永久磁石を用いた高効率な永久磁石式回転電機が広く使用されている。例えば最近では環境問題から自動車もガソリンエンジンから電気モータ一化が進んでいる。この場合、永久磁石式回転電機では低速時の大トルクは強め界磁制御、高速時は弱め界磁制御が用いられることが多く、それに適したモータが求められている。これに適したモータとして、ハイブリッド型ステッピングモータ(以下HBSTMと略す)の構造が注目されている。一方、関係する従来技術として下記の2つの文献がある。   Rotating electrical machines such as electric motors and generators are more demanding to be lighter, thinner and smaller than the market, and recently, demands for energy saving and higher efficiency are increasing as a countermeasure against global warming. For this reason, a high-efficiency permanent magnet type rotating electrical machine using a permanent magnet as a rotor is widely used. For example, recently, automobiles are also being integrated into electric motors from gasoline engines due to environmental problems. In this case, in the permanent magnet type rotating electric machine, strong field control is often used for large torque at low speed, and weak field control is used at high speed, and a motor suitable for this is required. As a motor suitable for this, the structure of a hybrid stepping motor (hereinafter abbreviated as HBSTM) has been attracting attention. On the other hand, there are the following two documents as related prior art.

日経ものづくり(2008/12)「補助磁石やコイルの巻き方も検討 新しいモータ構造の検討も進む」(名古屋工大/NEDO)Nikkei Manufacturing (2008/12) “Considering how to wrap auxiliary magnets and coils” (Nagoya Institute of Technology / NEDO) ステッピングモータの使い方 坂本正文 著 47ページ 図2.39 図 2.40 オーム社How to use a stepping motor Masafumi Sakamoto, page 47 Fig. 2.39 Fig. 2.40 Ohmsha

HBSTM型構造は多極であるため、低速大トルクで、車両の始動時に必要な大トルクが得られ、またこれを弱め界磁制御すれば高速まで回転する。また回転子磁石が軸方向に磁化されているので、外部から電磁石で磁束を軸方向から回転子に加えて、永久磁石磁束を高速時は磁石磁化方向と逆方向に加えて界磁を弱めることが容易にできる。このため電気自動車等に適したモータ構造であることが非特許文献1に述べられている。   Since the HBSTM type structure has multiple poles, a large torque required at the start of the vehicle can be obtained at a low speed and a large torque, and if this is weakened and field-controlled, it rotates to a high speed. Also, since the rotor magnet is magnetized in the axial direction, the magnetic field is weakened by applying a magnetic flux from the outside to the rotor with an electromagnet from the outside, and adding a permanent magnet magnetic flux in the direction opposite to the magnet magnetization direction at high speed. Can be easily done. Therefore, Non-Patent Document 1 describes that the motor structure is suitable for an electric vehicle or the like.

しかし、回転子の構造はN極とS極が軸方向に2分割されて、回転子の外周な歯と溝が交互にあり、回転子外周面積の半分以下しかトルク発生に寄与してない構造が欠点である。この点を指摘し、更にその改良型モータであるRM型を提案しているのが、非特許文献2の47から48ページ及び図2.39、図2.40(本明細書に添付した図5および図6)である。しかしここでの提案のRM型は円筒型永久磁石の外周にN極S極が交互に磁化されている構造なので軸方向に電磁石で磁束を加えて界磁制御することはできない。   However, the structure of the rotor is such that the N pole and the S pole are divided into two in the axial direction, and the teeth and grooves on the outer periphery of the rotor are alternately arranged, and only half or less of the rotor outer peripheral area contributes to torque generation. Is a drawback. This point is pointed out, and the RM type, which is an improved motor, has been proposed as shown in Non-Patent Document 2, pages 47 to 48 and FIGS. 2.39 and 2.40 (the figure attached to this specification). 5 and FIG. 6). However, since the proposed RM type has a structure in which N poles and S poles are alternately magnetized on the outer periphery of a cylindrical permanent magnet, field control cannot be performed by applying magnetic flux with an electromagnet in the axial direction.

本発明を実現するには以下の手段による。
「手段1」
固定子と、回転子とを有する回転電機であって、前記回転子は、軸方向に磁化した略円盤状あるいは円筒状の第1の永久磁石を、軟磁性鉄粉あるいは磁性体鉄板で成形された磁性体円盤の外周あるいは内周部から軸方向に複数n個のアームが突き出た回転子鉄心2個で挟持すると共に、前記第1の永久磁石の外周あるいは内周部でn個のアームを交互に隙間を有してかみ合わせて構成し、前記n個のアームを交互にかみ合わせたアームの周方向隙間に第2の永久磁石を介在させ、前記第1の永久磁石と前記第2の永久磁石は一体成型品とし、前記回転子を無着磁で固定子に組み込んだ後、軸方向のみに磁化し、前記第2の永久磁石は周方向磁化をしないことを手段とする回転電機。
「手段2」
手段1において、前記回転子の軸方向に電磁石磁束を加えて、その方向と強さで、軸方向に磁化した回転子永久磁石磁束を増減させることを手段とする回転電機。
「手段3」
手段1又は2において、軟磁性鉄粉の成形体から成るブラケットを備えることを手段とする回転電機。
The present invention is realized by the following means.
"Means 1"
A rotating electric machine having a stator and a rotor, wherein the rotor is formed of a substantially disk-shaped or cylindrical first permanent magnet magnetized in the axial direction by soft magnetic iron powder or a magnetic iron plate. The n-arm is sandwiched between two rotor cores projecting a plurality of n arms in the axial direction from the outer circumference or inner circumference of the magnetic disk, and n arms are arranged at the outer circumference or inner circumference of the first permanent magnet. The first permanent magnet and the second permanent magnet are configured by alternately engaging with each other, interposing a second permanent magnet in a circumferential clearance of the arms in which the n arms are alternately engaged. Is an integrally molded product, and after the rotor is incorporated in the stator without magnetization, it is magnetized only in the axial direction, and the second permanent magnet is not magnetized in the circumferential direction .
"Means 2"
The rotating electrical machine according to means 1, wherein an electromagnet magnetic flux is applied in the axial direction of the rotor, and the rotor permanent magnet magnetic flux magnetized in the axial direction is increased or decreased by the direction and strength .
"Means 3"
A rotating electrical machine having means 1 or 2 comprising a bracket made of a molded body of soft magnetic iron powder .

1)HBSTM構造の回転電機は回転子表面の約半分は歯溝でその残りを磁極歯が占めているが、本発明の回転子は磁極歯が交互に存在するので、HBSTMより高トルクが得られる。
2)回転子は軸方向に磁化されて磁極が作られているので、弱めあるいは強めの界磁制御が電磁石を用いて簡単にでき、広範囲の速度制御が可能となる。
3)本発明に係る回転子は、クローポール型永久磁石回転子であるが漏洩磁束防止の永久磁石が各ポール間に設けられているのでコイルとの鎖交磁束が大きい。
4)ブラケットを圧粉鉄心や磁性鉄で構成すれば、またコイル心もブラケットと一体とすれば界磁制御磁束が大きく出来制御が容易となる。
1) About half of the rotor surface of the rotating electrical machine with the HBSTM structure is a tooth groove, and the remainder is occupied by magnetic pole teeth. However, the rotor of the present invention has alternating magnetic pole teeth, so that higher torque is obtained than HBSTM It is done.
2) Since the rotor is magnetized in the axial direction to create a magnetic pole, weak or strong field control can be easily performed using an electromagnet, and a wide range of speed control is possible.
3) Although the rotor according to the present invention is a claw pole type permanent magnet rotor, the interlinkage magnetic flux with the coil is large because a permanent magnet for preventing leakage magnetic flux is provided between the poles.
4) If the bracket is made of a dust core or magnetic iron, and if the coil core is also integrated with the bracket, the field control magnetic flux can be increased and control can be facilitated.

本発明一例の回転機の軸を含む断面図Sectional drawing including the axis | shaft of the rotary machine of an example of this invention 図1の回転電機の軸と垂直なA−A断面図AA sectional view perpendicular to the axis of the rotating electrical machine of FIG. 第1、第2の永久磁石を別磁石とした本発明の回転子詳細図Detailed view of rotor of the present invention in which the first and second permanent magnets are separate magnets 図3の軸方向から見た図View from the axial direction of FIG. 従来技術の回転子の図Diagram of a prior art rotor 図5の回転電機の軸と垂直な断面図Sectional view perpendicular to the axis of the rotating electrical machine in FIG.

以下図面によって説明する。   This will be described below with reference to the drawings.

図1は本発明を適用する回転電機の構成の一例を示したもので、軸を含む断面図である。符号1は回転子でエアギャップを介して回転自在に固定子2と対向している。回転子1は磁性体鉄板あるいは軟磁性鉄粉より成形した符号11、12と第1の永久磁石13と必要により符号14である第2の永久磁石よりなる。図1、図2は符号13と符号14を一体的に成形した図で図示されている。この場合、第1の永久磁石13と第2の永久磁石14は同一材質の永久磁石で一体成形される。回転子の詳細説明は図3、図4にて後述する。
符号3は固定子巻き線である。図1の回転電機の軸と垂直な断面A−A図である図2を参照すれば6スロットで集中巻きの6巻き線極構造の例で示してある。
符号4は回転子軸、符号5はボールベアリング等の軸受けである。符号6はブラケットであり回転子軸方向の両側に位置し、軸受け5を介して回転子を支持し、固定子2に固着している。この場合、このブラケット6には符号8なるコイルがブラケット6の一部である符号7に巻かれている。回転子1の第1の永久磁石13は軸方向に磁化されているがコイル8を励磁して、回転子磁束を高速回転時は弱めたり、低速回転時は強めたり、中速回転時は無励磁にしたりして、界磁制御をするものである。モータが回転時は符号11,12には磁束の変化があるので鉄損が発生する。そのため符号11,12の材料は前述した軟磁性鉄粉を樹脂コーテング等で電気的に絶縁して加圧成形した所謂圧粉鉄心とするのが望ましい。これにより鉄損の内の渦電流損をなくすことができる。また透磁率の方向性がないのもクローポール構造の3次元磁路にはよい。電磁石の界磁制御磁束も積層鉄心の積み方向より圧粉鉄心の方が通過しやすい。
FIG. 1 shows an example of the configuration of a rotating electrical machine to which the present invention is applied, and is a cross-sectional view including a shaft. Reference numeral 1 denotes a rotor which faces the stator 2 so as to be rotatable through an air gap. The rotor 1 includes reference numerals 11 and 12 formed from a magnetic iron plate or soft magnetic iron powder, a first permanent magnet 13, and a second permanent magnet 14 as necessary. FIGS. 1 and 2 are illustrated by integrally forming reference numerals 13 and 14. In this case, the first permanent magnet 13 and the second permanent magnet 14 are integrally formed of permanent magnets of the same material. Details of the rotor will be described later with reference to FIGS.
Reference numeral 3 denotes a stator winding. Referring to FIG. 2, which is a cross-sectional AA view perpendicular to the axis of the rotating electrical machine in FIG. 1, an example of a 6-winding pole structure with 6 slots and concentrated winding is shown.
Reference numeral 4 denotes a rotor shaft, and reference numeral 5 denotes a bearing such as a ball bearing. Reference numeral 6 denotes brackets which are located on both sides in the rotor axial direction, support the rotor via bearings 5, and are fixed to the stator 2. In this case, a coil 8 is wound around the bracket 6 and is a part 7 of the bracket 6. The first permanent magnet 13 of the rotor 1 is magnetized in the axial direction, but the coil 8 is excited to weaken the rotor magnetic flux during high speed rotation, strengthen it during low speed rotation, and none during medium speed rotation. The field control is performed by excitation. When the motor rotates, there is a change in the magnetic flux at reference numerals 11 and 12, and iron loss occurs. Therefore, it is desirable that the materials denoted by reference numerals 11 and 12 are so-called dust cores obtained by pressure-molding the above-described soft magnetic iron powder by electrically insulating it with a resin coating or the like. Thereby, eddy current loss in iron loss can be eliminated. Also, the lack of magnetic permeability is good for the three-dimensional magnetic path of the claw pole structure. The field control magnetic flux of the electromagnet also passes through the dust core more easily than the stacking direction of the laminated core.

図3は本発明の回転子部の詳細断面図、図4は図3の軸方向から見た図である。符号11,12は電磁鉄板や電磁軟鉄粉を加圧成形等で製作した磁極である。所謂クローポールあるいはクローテイースなどともよばれるものである。そして符号11と符号12を用いて軸方向に磁化した第1の永久磁石なる符号13をサンドイッチ状に挟持している。即ち、軸方向に磁化した略円柱状あるいは円筒状の符号13なる第1の永久磁石を、軟磁性鉄粉で成形された磁性体円盤の外周あるいは内周部から軸方向に複数n個のアームが突き出た回転子鉄心11,12を用いて挟持するようにして、該第1の永久磁石13の外周あるいは内周部でn個のアームを交互に隙間を有してかみ合わせて構成した回転子である。符号11と符号12は同一品であるが回転子として構成する場合、その向きが軸方向で逆に、またそれらのn個のアームは交互に接触しないように等間隔で隙間を保って組み合わされる。n個のアームを交互にかみ合わせたアームの周方向隙間には、お互いに同極性が対向するように磁化した符号14なる第2の永久磁石を介在させた構成である。この様に第2の永久磁石14を介在させるのは第1の永久磁石13の磁化で符号11と符号12のアームは異なる極性に磁化されるため、その間隔が狭いので大きな漏洩磁束が発生し、モータとした場合、固定子コイルとの鎖交磁束が減少する。それを同極性が対向するように磁化した符号14なる第2の永久磁石を符号11と符号12の隙間に介在させることで防止するものである。即ち図4で説明すれば符号11がN極に磁化され、符号12がS極に磁化されているので、符号14は符号11のアームと接触する側はN極に符号12のアームと接触する側はS極に磁化するように符号14を回転子1の周方向に磁化して符号11と符号12間の漏洩磁束を防ぐものである。
図示した図1から図4は極対数2である、n=2の場合の回転子極数4の場合で示した。また内転(インナーロータ)型回転電機で示したが外転型も可能である。外転型の場合は第1の永久磁石13の内周部でクローポール11,12が交互に噛み合うことになる。
3 is a detailed cross-sectional view of the rotor portion of the present invention, and FIG. 4 is a view seen from the axial direction of FIG. Reference numerals 11 and 12 are magnetic poles made of an electromagnetic iron plate or electromagnetic soft iron powder by pressure molding or the like. It is also called a claw pole or clotase. And the code | symbol 13 which becomes the 1st permanent magnet magnetized to the axial direction using the code | symbol 11 and the code | symbol 12 is clamped. That is, a plurality of n arms are arranged in the axial direction from the outer periphery or inner periphery of a magnetic disk formed of soft magnetic iron powder by using a first permanent magnet having a substantially columnar or cylindrical code 13 magnetized in the axial direction. The rotor cores 11 and 12 projecting from each other are sandwiched between n arms on the outer periphery or inner periphery of the first permanent magnet 13 so that they are alternately meshed with a gap. It is. Reference numerals 11 and 12 are the same product, but when configured as a rotor, their orientations are reversed in the axial direction, and the n arms are combined with a gap at equal intervals so that they do not contact each other alternately. . In the circumferential gap between the arms that are alternately engaged with the n arms, a second permanent magnet having a reference numeral 14 magnetized so as to face each other with the same polarity is interposed. In this way, the second permanent magnet 14 is interposed by the magnetization of the first permanent magnet 13 and the arms of reference numerals 11 and 12 are magnetized to have different polarities. When the motor is used, the flux linkage with the stator coil decreases. This is prevented by interposing a second permanent magnet having a reference numeral 14 magnetized so that the same polarity is opposed to each other in a gap between the reference numerals 11 and 12. That is, as illustrated in FIG. 4, since the reference numeral 11 is magnetized to the N pole and the reference numeral 12 is magnetized to the S pole, the reference numeral 14 contacts the arm of the reference numeral 11 and the N pole contacts the arm of the reference numeral 12. On the side, the reference numeral 14 is magnetized in the circumferential direction of the rotor 1 so as to be magnetized to the south pole, thereby preventing leakage magnetic flux between the reference numerals 11 and 12.
The illustrated FIGS. 1 to 4 show the case where the number of pole pairs is 2 and the number of rotor poles is 4 when n = 2. In addition, although an inner rotation (inner rotor) type rotating electric machine is shown, an outer rotation type is also possible. In the case of the outer rotation type, the claw poles 11 and 12 are alternately meshed with each other at the inner peripheral portion of the first permanent magnet 13.

回転子用の第1の永久磁石13と第2の永久磁石14は別磁石として図示したものが図3、図4である。そして第2の永久磁石14の保磁力は第1の永久磁石13の保磁力より大きい材質の永久磁石とするのが望ましい。たとえば第1の永久磁石13はアルニコ磁石(Hc=0.8kOe)やフェライト磁石(Hc=3.7kOe)として、第2の永久磁石14はネオジム磁石(Hc=12kOe)やサマリウムコバルト磁石(Hc=8kOe)とすれば、界磁制御時、第2の永久磁石14は減磁されづらくなる。第2の永久磁石14が保磁力が弱く、磁化が失われると符号11と符号12間の漏洩磁束防止効果が減少するためである。また、第1の永久磁石13の保磁力が小さいので界磁コイル8で容易に高速回転時の回転に弱め制御や、低速回転時の強め界磁制御ができることとなる。この場合、例えば、弱め界磁制御している時は界磁コイル8には適切な値の励磁電流を流し続ける方法に対して、界磁コイル8に瞬間的に逆磁化方向に大電流を流した後、励磁電流を切り、第1の永久磁石13を適度に減じさせた状態で高速運転対応させ、低速運転時は界磁コイル8に瞬間的に磁化方向の大電流を流した後、励磁電流を切り、第1の永久磁石13をフル着磁状態に戻して低速運転に対応させてもよい。   FIGS. 3 and 4 show the first permanent magnet 13 and the second permanent magnet 14 for the rotor as separate magnets. The coercive force of the second permanent magnet 14 is preferably a permanent magnet made of a material larger than the coercive force of the first permanent magnet 13. For example, the first permanent magnet 13 is an alnico magnet (Hc = 0.8 kOe) or a ferrite magnet (Hc = 3.7 kOe), and the second permanent magnet 14 is a neodymium magnet (Hc = 12 kOe) or a samarium cobalt magnet (Hc = 8 kOe), the second permanent magnet 14 is difficult to be demagnetized during field control. This is because when the second permanent magnet 14 has a weak coercive force and the magnetization is lost, the effect of preventing the leakage magnetic flux between the reference numerals 11 and 12 decreases. Further, since the coercive force of the first permanent magnet 13 is small, the field coil 8 can easily perform the weakening control to the rotation at the high speed rotation and the strong field control at the low speed rotation. In this case, for example, when field-weakening control is being performed, a method in which an excitation current having an appropriate value is continuously supplied to the field coil 8 is applied to the field coil 8 after a large current is instantaneously applied in the reverse magnetization direction. The excitation current is turned off and the first permanent magnet 13 is appropriately reduced so that it can be operated at high speed. During low speed operation, a large current in the magnetization direction is instantaneously supplied to the field coil 8 and then the excitation current is supplied. The first permanent magnet 13 may be returned to the fully magnetized state to correspond to low speed operation.

回転子用の第1の永久磁石13と第2の永久磁石14を一体成型した図が図1と図2である。このようにすればモータが安価となる。この場合、第1の永久磁石13と第2の永久磁石14は一体成型品とし、回転子1を軸方向磁化と2n極の周方向磁化して固定子2に組み込むことができる。図ではn=2の4極の場合である。このとき後者の磁化は回転子表面でよいので第1の永久磁石13まで磁化が及ばないように磁化力を調整すればよい。   FIGS. 1 and 2 are views in which the first permanent magnet 13 and the second permanent magnet 14 for the rotor are integrally molded. In this way, the motor becomes inexpensive. In this case, the first permanent magnet 13 and the second permanent magnet 14 can be integrally molded, and the rotor 1 can be incorporated into the stator 2 by axial magnetization and circumferential magnetization of 2n poles. In the figure, this is a case of n = 2 n = 4. At this time, since the latter magnetization may be on the rotor surface, the magnetization force may be adjusted so that the magnetization does not reach the first permanent magnet 13.

前述したように、第1の永久磁石13は軸方向に、また第2の永久磁石14は周方向に磁化する。そして符号13と符号14は保磁力が異なる別磁石が好ましい。しかし符号13と符号14を別磁石として、nが大きな数字の多極の場合は、この方法では高価なモータとなってしまう。そこで安価に重点を置く場合は、図1、図2の如く第1の永久磁石13と第2の永久磁石14を一体品として、磁石の磁化も固定子に組み込み、ブラケットを取り付けてモータをアッセイ後にモータ外部から軸方向だけの磁化をすることができる。この場合、第2の永久磁石14は周方向でなく軸方向に磁化される。しかし、第2の永久磁石14が無着磁の場合より、軸方向に磁化されていれば、漏洩磁束は第2の永久磁石14の磁化方向と垂直に漏洩磁束が通過するため、逆方向よりは磁気抵抗は小さいが、漏洩磁束は通過しづらくなり、安価な方法で、漏洩磁束防止効果が生まれることになる。なお、この界磁強め又は弱めと、第2の永久磁石14の軸方向磁化の強め又は弱め効果が一致するため、第2の永久磁石14によって隣接するアーム間における漏洩磁束防止効果が生まれることとなる。これが手段4の第1の永久磁石と第2の永久磁石は一体成型品とし、回転子を無着磁で固定子に組み込み後、軸方向のみに磁化し、第2の永久磁石は周方向磁化をしないことを手段とする回転電機に相当する。   As described above, the first permanent magnet 13 is magnetized in the axial direction, and the second permanent magnet 14 is magnetized in the circumferential direction. Reference numerals 13 and 14 are preferably separate magnets having different coercive forces. However, if the code 13 and the code 14 are separate magnets and n is a large number of multipoles, this method results in an expensive motor. Therefore, when focusing on low cost, the first permanent magnet 13 and the second permanent magnet 14 are integrated as shown in FIGS. 1 and 2, the magnet magnetization is also incorporated in the stator, the bracket is attached, and the motor is assayed. Later, only the axial direction can be magnetized from the outside of the motor. In this case, the second permanent magnet 14 is magnetized not in the circumferential direction but in the axial direction. However, if the second permanent magnet 14 is magnetized in the axial direction, the leakage flux passes perpendicularly to the magnetization direction of the second permanent magnet 14 as compared with the case where the second permanent magnet 14 is not magnetized. Although the magnetic resistance is small, the leakage magnetic flux is difficult to pass through, and the leakage magnetic flux prevention effect is produced by an inexpensive method. Since the field strengthening or weakening and the effect of strengthening or weakening the axial magnetization of the second permanent magnet 14 coincide with each other, the second permanent magnet 14 has an effect of preventing leakage magnetic flux between adjacent arms. Become. This means that the first permanent magnet and the second permanent magnet of the means 4 are integrally molded, and after the rotor is incorporated in the stator without magnetization, it is magnetized only in the axial direction, and the second permanent magnet is circumferentially magnetized. This corresponds to a rotating electrical machine that does not perform the above.

図5は従来技術の回転子の図であり、HB型がHBSTMの回転子の外観図である。この図から回転子表面の約半分は歯溝であり、トルク発生の歯磁極は残りの表面積の半分以下であることが分かる。その改良版の回転子がRM型である。そしてこのRM型を固定子に組み込んで軸方向から見た図が図6である。しかし、前述したようにこのRM型の構造では回転子表面積のトルク発生利用率は本発明と同程度に倍増するが回転子磁極の磁化方向が軸方向ではないので、界磁制御が簡単にできない欠点を有していた。   FIG. 5 is a view of a conventional rotor, and is an external view of a rotor whose HB type is HBSTM. From this figure, it can be seen that about half of the rotor surface is a tooth groove, and the tooth magnetic pole for torque generation is less than half of the remaining surface area. The improved version of the rotor is the RM type. FIG. 6 shows the RM type incorporated into the stator and viewed from the axial direction. However, as described above, in this RM type structure, the torque generation utilization factor of the rotor surface area is doubled to the same extent as the present invention, but the magnetization direction of the rotor magnetic pole is not the axial direction, so the field control is not easy. Had.

なお、本実施形態においては、回転電機をモータとして用いた例について説明を行ったが、当該回転電機は、発電機として用いてもよく、この場合、固定子に安価なクローポール型固定子を使用して環状コイルを1個有した単相構造としても構わない。これにより単相交流が得られ、自転車の発電機等に適したものとなる。また固定子を通常の積層鉄心で3相巻き線を有する固定子と組み合わせれば3相交流が得られる。   In the present embodiment, the example in which the rotating electrical machine is used as a motor has been described. However, the rotating electrical machine may be used as a generator, and in this case, an inexpensive claw pole type stator is used as the stator. It may be used as a single-phase structure having one annular coil. As a result, a single-phase alternating current is obtained, which is suitable for a bicycle generator or the like. If the stator is combined with a stator having a three-phase winding with a normal laminated iron core, a three-phase alternating current can be obtained.

本発明による回転電機は電動機または発電機に活用でき、安価で堅牢で軽薄短小、高トルク化、高効率化に適し、界磁制御による広範囲な相度制御が可能な、きわめて実用的なものである。従って工業的に大きな貢献が期待される。   The rotating electrical machine according to the present invention can be used for an electric motor or a generator, is inexpensive, robust, light and thin, suitable for high torque and high efficiency, and is capable of performing a wide range of phase control by field control. Therefore, it is expected to make a significant industrial contribution.

1 回転子
2 固定子
3 巻き線
4 回転子軸
5 軸受け
6 ブラケット
7 コイル心
8 界磁コイル
11,12 回転子鉄心
13 第1の永久磁石
14 第2の永久磁石
DESCRIPTION OF SYMBOLS 1 Rotor 2 Stator 3 Winding 4 Rotor shaft 5 Bearing 6 Bracket 7 Coil core 8 Field coil 11, 12 Rotor core 13 1st permanent magnet 14 2nd permanent magnet

Claims (3)

固定子と、回転子とを有する回転電機であって、
前記回転子は、軸方向に磁化した略円盤状あるいは円筒状の第1の永久磁石を、軟磁性鉄粉あるいは磁性体鉄板で成形された磁性体円盤の外周あるいは内周部から軸方向に複数n個のアームが突き出た回転子鉄心2個で挟持すると共に、前記第1の永久磁石の外周あるいは内周部でn個のアームを交互に隙間を有してかみ合わせて構成し、
前記n個のアームを交互にかみ合わせたアームの周方向隙間に第2の永久磁石を介在させ、
前記第1の永久磁石と前記第2の永久磁石は一体成型品とし、前記回転子を無着磁で固定子に組み込んだ後、軸方向のみに磁化し、前記第2の永久磁石は周方向磁化をしないことを特徴とする回転電機。但し、nは2以上の整数。
A rotating electric machine having a stator and a rotor,
The rotor includes a plurality of substantially disc-shaped or cylindrical first permanent magnets magnetized in the axial direction in the axial direction from the outer periphery or inner peripheral portion of a magnetic disc formed of soft magnetic iron powder or a magnetic iron plate. n arms are sandwiched between two protruding rotor cores, and n arms are alternately meshed with an outer periphery or an inner periphery of the first permanent magnet.
A second permanent magnet is interposed in the circumferential clearance of the arms that are alternately meshed with the n arms;
The first permanent magnet and the second permanent magnet are integrally molded, and the rotor is magnetized only in the axial direction after being incorporated in the stator without magnetization, and the second permanent magnet is circumferentially A rotating electric machine characterized by not being magnetized . However, n is an integer of 2 or more.
請求項1に記載の回転電機において、
前記回転子の軸方向に電磁石磁束を加えて、その方向と強さで、軸方向に磁化した回転子永久磁石磁束を増減させることを特徴とした回転電機。
In the rotating electrical machine according to claim 1,
A rotating electrical machine characterized in that an electromagnet magnetic flux is applied in the axial direction of the rotor, and the rotor permanent magnet magnetic flux magnetized in the axial direction is increased or decreased according to the direction and strength .
請求項1又は2に記載の回転電機において、
軟磁性鉄粉の成形体から成るブラケットを備えることを特徴とした回転電機。
In the rotating electrical machine according to claim 1 or 2 ,
A rotating electrical machine comprising a bracket made of a molded body of soft magnetic iron powder .
JP2013044669A 2013-03-06 2013-03-06 Permanent magnet rotating electric machine Active JP6126873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044669A JP6126873B2 (en) 2013-03-06 2013-03-06 Permanent magnet rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044669A JP6126873B2 (en) 2013-03-06 2013-03-06 Permanent magnet rotating electric machine

Publications (2)

Publication Number Publication Date
JP2014176145A JP2014176145A (en) 2014-09-22
JP6126873B2 true JP6126873B2 (en) 2017-05-10

Family

ID=51696911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044669A Active JP6126873B2 (en) 2013-03-06 2013-03-06 Permanent magnet rotating electric machine

Country Status (1)

Country Link
JP (1) JP6126873B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649732B (en) * 2019-10-28 2024-02-23 山东大学 Mixed excitation rotor and mixed excitation surface-mounted permanent magnet motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163788U (en) * 1979-05-15 1980-11-25
JP2924184B2 (en) * 1990-12-27 1999-07-26 株式会社デンソー AC generator
JP5739651B2 (en) * 2010-11-26 2015-06-24 アスモ株式会社 Rotor and motor
KR101751246B1 (en) * 2010-11-19 2017-06-27 아스모 가부시키가이샤 Rotor and motor
JP5921244B2 (en) * 2011-02-24 2016-05-24 株式会社東芝 Permanent magnet type rotating electric machine

Also Published As

Publication number Publication date
JP2014176145A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
US7595575B2 (en) Motor/generator to reduce cogging torque
JP4707696B2 (en) Axial gap type motor
TWI422121B (en) Rotation machinery and rotor thereof
JP5849890B2 (en) Double stator type motor
JP6319973B2 (en) Permanent magnet type rotating electric machine
JP2009072009A (en) Permanent magnet rotating machine
CN107181382B (en) Rotor stagger angle stator magnetism-isolating type axial permanent magnet auxiliary doubly salient motor
JP2007330025A (en) Motor
JP4791013B2 (en) Brushless motor
EP2568577A2 (en) Brushless DC electric motor
JP6406355B2 (en) Double stator type rotating machine
JP2019097359A (en) Rotary electric machine with magnetic flux variable mechanism
CN110635641B (en) Axial magnetic field reverse salient pole permanent magnet synchronous motor
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
US20220060070A1 (en) Rotating electric machine
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
JP2013106499A (en) Rotary electric machine and rotor of rotary electric machine
JP2013066339A (en) Embedded-magnet rotary electric machine
JP2015027160A (en) Permanent magnet type rotary electric machine
JP4080273B2 (en) Permanent magnet embedded motor
JP2009065803A (en) Magnet synchronous machine
JP5041415B2 (en) Axial gap type motor
JP6126873B2 (en) Permanent magnet rotating electric machine
JP4960749B2 (en) Axial gap type motor
JP2008187863A (en) Axial gap rotary electric machine and compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6126873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150