JP2008267902A - Radioactive material storage facility - Google Patents

Radioactive material storage facility Download PDF

Info

Publication number
JP2008267902A
JP2008267902A JP2007109250A JP2007109250A JP2008267902A JP 2008267902 A JP2008267902 A JP 2008267902A JP 2007109250 A JP2007109250 A JP 2007109250A JP 2007109250 A JP2007109250 A JP 2007109250A JP 2008267902 A JP2008267902 A JP 2008267902A
Authority
JP
Japan
Prior art keywords
air supply
side wall
storage
supply port
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007109250A
Other languages
Japanese (ja)
Inventor
Hirokuni Ishigaki
博邦 石垣
Hitoshi Shimizu
清水  仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007109250A priority Critical patent/JP2008267902A/en
Publication of JP2008267902A publication Critical patent/JP2008267902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radioactive material storage facility capable of improving the earthquake-proof performance of the storage building. <P>SOLUTION: The radioactive material storage facility 1 includes a storage building 2 containing a storage area 3. The storage building 2 has air supply-side side walls 4 and 6. Air supply openings 5 and 7 to take in cooling air are respectively formed on the air supply-side side walls 4 and 6. A supporting wall 12 working as a partitioning wall to define the storage area 3 and a supporting wall 15 as another partitioning wall are provided. Pressure-equalizing chambers 19 and 20 are formed between the supporting wall 12 and the air supply-side side wall 4 and between the supporting wall 15 and the air supply-side side wall 6. The air supply-side side wall 4 exists continuously between one end of the air supply-side side wall 4 and one end of the air supply opening 5 and between the other end of the air supply-side side wall 4 and the other end of the air supply opening 5. This can increase an earthquake load that the air supply-side side wall 4 can stand against earthquake motion in parallel to the air supply-side side wall 4 when an earthquake occurs. Consequently, the quake-proof performance of the storage building 2 increases. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放射性物質貯蔵施設に係り、特に、使用済燃料集合体を収納した放射性物質収納容器(例えば、金属キャスク)を貯蔵する放射性物質貯蔵施設に適用するのに好適な放射性物質貯蔵施設に関する。   The present invention relates to a radioactive material storage facility, and more particularly, to a radioactive material storage facility suitable for application to a radioactive material storage facility that stores a radioactive material storage container (for example, a metal cask) that stores spent fuel assemblies. .

原子力発電所では、原子炉に装荷された燃料集合体が、使用年数に応じて順次新しい燃料集合体と交換される。原子炉から取り出された使用済燃料集合体は、核分裂物質の崩壊に起因した放射線及び熱を放出するため、一般には、原子炉発電所内に設けられた貯蔵プールの水中で保管され、冷却される。   In a nuclear power plant, a fuel assembly loaded in a nuclear reactor is sequentially replaced with a new fuel assembly according to the age of use. Spent fuel assemblies removed from the reactor are generally stored and cooled in the storage pool water provided within the reactor power plant to release the radiation and heat resulting from the decay of the fission material. .

その貯蔵プール内に保管される使用済燃料集合体の体数が増加しているため、乾式の放射性物質貯蔵施設を建設し、原子力発電所内の貯蔵プールに保管されている使用済燃料集合体を放射性物質貯蔵施設に移送することが考えられている(特許文献1及び2参照)。   Since the number of spent fuel assemblies stored in the storage pool has increased, a dry-type radioactive material storage facility has been constructed, and spent fuel assemblies stored in the storage pool in the nuclear power plant It is considered to transfer to a radioactive substance storage facility (see Patent Documents 1 and 2).

特許文献1及び2は以下に述べる放射性物質貯蔵施設を記載している。貯蔵建屋を有するその放射性物質貯蔵施設は、複数の使用済燃料集合体を収納する多数の放射性物質収納容器を配置する、区画された貯蔵エリア、外部環境から貯蔵エリア内へ冷却空気を供給する冷却空気供給流路、及び貯蔵エリア内から外部環境へ冷却空気を排出する冷却空気排出流路を備えている。貯蔵エリア、冷却空気供給流路及び貯冷却空気排出流路が貯蔵建屋内に設けられる。貯蔵建屋の屋上に設けられた排気塔が冷却空気排出流路に接続されている。冷却空気を取り込む給気口が、貯蔵建屋の一つの側壁で排気塔と反対側の側壁に形成され、冷却空気供給流路に連絡される。各貯蔵エリアの相互間に隔壁が配置されている。   Patent Documents 1 and 2 describe radioactive material storage facilities described below. The radioactive material storage facility having a storage building is a compartmented storage area in which a large number of radioactive material storage containers for storing a plurality of spent fuel assemblies are arranged, cooling supplying cooling air from the external environment into the storage area An air supply flow path and a cooling air discharge flow path for discharging cooling air from the storage area to the external environment are provided. A storage area, a cooling air supply channel, and a stored cooling air discharge channel are provided in the storage building. An exhaust tower provided on the roof of the storage building is connected to the cooling air discharge passage. An air supply port for taking in cooling air is formed on one side wall of the storage building on the side wall opposite to the exhaust tower, and communicates with the cooling air supply flow path. A partition is arranged between each storage area.

特に、特許文献1は、複数の給気口が形成された側壁と貯蔵エリアの間に放射性物質収納容器に搬出入通路を形成し、貯蔵エリア相互間に隔壁が配置されている。給気口は貯蔵エリア毎に設けられる。貯蔵エリアと搬出入通路の間に給気側壁が貯蔵エリアと搬出入通路の間に設けられる。   In particular, in Patent Document 1, a carry-in / out passage is formed in a radioactive substance storage container between a side wall in which a plurality of air supply ports are formed and a storage area, and a partition wall is disposed between the storage areas. An air inlet is provided for each storage area. An air supply side wall is provided between the storage area and the loading / unloading passage between the storage area and the loading / unloading passage.

特開2004−045230号公報JP 2004-045230 A 特開2006−292694号公報JP 2006-292694 A

乾式の放射性物質貯蔵施設は、放射性物質収納容器を配置している各貯蔵エリアに冷却空気を均一に供給するため、貯蔵建屋の側壁に貯蔵エリア毎に給気口を形成している。上記の側壁は、複数の給気口が形成される(特許文献1及び2参照)ので、その側壁と平行な地震動に対して受け持つことができる地震荷重が小さい。このため、給気側の側壁が受け持つことができる地震荷重を増大させることが望まれる。   In the dry type radioactive material storage facility, in order to uniformly supply cooling air to each storage area in which the radioactive material storage container is arranged, an air supply port is formed for each storage area on the side wall of the storage building. Since the plurality of air supply openings are formed on the side wall (see Patent Documents 1 and 2), the seismic load that can be handled with respect to the earthquake motion parallel to the side wall is small. For this reason, it is desired to increase the seismic load that can be handled by the supply side wall.

本発明の目的は、貯蔵建屋の耐震性を向上させることができる放射性物質貯蔵施設を提供することにある。   The objective of this invention is providing the radioactive substance storage facility which can improve the earthquake resistance of a storage building.

上記した目的を達成する本発明の特徴は、放射性物質収納容器を貯蔵する貯蔵領域を内部に有する貯蔵建屋が、対向する一対の第1側壁及びこの第1側壁と交差する方向に配置されて対向する第2側壁を有し、貯蔵領域が一対の第1側壁及び一対の第2側壁によって取り囲まれており、貯蔵領域に供給される外気を取り込む給気口が一対の第1側壁の少なくとも1つに形成され、給気口の少なくとも一部が、給気口が形成された第1側壁の両端間で中央部に位置しており、給気口が形成された第1側壁が、一方の第2側壁に結合される一端から、その中央部に位置している給気口の一端までの間、及び他方の第2側壁に結合される他端から、その中央部に位置している前記給気口の他端までの間で、連続して存在していることにある。   A feature of the present invention that achieves the above-described object is that a storage building having a storage area for storing a radioactive substance storage container is disposed in a direction crossing the pair of first side walls and the first side walls. A storage area is surrounded by the pair of first side walls and the pair of second side walls, and an air supply port for taking in outside air supplied to the storage area is at least one of the pair of first side walls. And at least a part of the air supply port is located in the center between both ends of the first side wall where the air supply port is formed, and the first side wall formed with the air supply port is one of the first side walls. 2 from the one end connected to the side wall to one end of the air supply port located in the central portion thereof, and from the other end connected to the other second side wall, the supply portion located in the central portion thereof. There is a continuous presence between the other end of the mouth.

給気口が形成された第1側壁が、一方の第2側壁に結合される一端から、その中央部に位置している給気口の一端までの間、及び他方の第2側壁に結合される他端から、その中央部に位置している前記給気口の他端までの間で、連続して存在しているので、給気口が形成された第1側壁の、第2側壁に結合される端から、給気口の一端までにおける第1側壁の長さを長くすることができる。このため、地震時における第1側壁と平行な地震動に対して、給気口が形成された第1側壁が受け持つことができる地震荷重を増大させることができ、貯蔵建屋の耐震性が向上する。   The first side wall in which the air supply port is formed is connected from one end connected to one second side wall to one end of the air supply port located in the center thereof and to the other second side wall. Between the other end of the air supply port and the other end of the air supply port located at the center of the second side wall of the first side wall formed with the air supply port. The length of the first side wall from the joined end to one end of the air supply port can be increased. For this reason, it is possible to increase the seismic load that the first side wall in which the air supply port is formed can handle the earthquake motion parallel to the first side wall at the time of the earthquake, and the earthquake resistance of the storage building is improved.

本発明によれば、放射性物質貯蔵施設の貯蔵建屋の耐震性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the earthquake resistance of the storage building of a radioactive substance storage facility can be improved.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

本発明の好適な一実施例である放射性物質貯蔵施設を、図1〜図3を用いて以下に説明する。本実施例の放射性物質貯蔵施設1は、内部に貯蔵エリア3を有する貯蔵建屋2を備えている。貯蔵建屋2は、一対の給気側側壁4,6、一対の側壁8A,8B及び屋根9を有する。給気側側壁4,6及び側壁8A,8Bは貯蔵建屋2の外壁である。給気側側壁4と給気側側壁6は互いに平行に配置され、側壁8A,8Bは互いに平行に配置されて給気側側壁4,6のそれぞれに直交している。貯蔵建屋2は、内部に、側壁8A,8Bと並行に配置された隔壁10を設置している。屋根9は、給気側側壁4,6、側壁8A,8B及び隔壁10等によって支持され、貯蔵エリア3を覆っている。貯蔵エリア3は、側壁8Aと隔壁10の間に配置される。複数の放射性物質収納容器24が、貯蔵エリア3内で床23上に正方格子状に整列されて配置される。   A radioactive substance storage facility according to a preferred embodiment of the present invention will be described below with reference to FIGS. The radioactive substance storage facility 1 of the present embodiment includes a storage building 2 having a storage area 3 therein. The storage building 2 includes a pair of air supply side walls 4 and 6, a pair of side walls 8 </ b> A and 8 </ b> B, and a roof 9. The supply side walls 4 and 6 and the side walls 8A and 8B are outer walls of the storage building 2. The air supply side wall 4 and the air supply side wall 6 are arranged in parallel to each other, and the side walls 8A and 8B are arranged in parallel to each other and are orthogonal to the air supply side walls 4 and 6, respectively. The storage building 2 has a partition wall 10 disposed in parallel with the side walls 8A and 8B. The roof 9 is supported by the supply side walls 4 and 6, the side walls 8 </ b> A and 8 </ b> B, the partition wall 10, and the like, and covers the storage area 3. The storage area 3 is disposed between the side wall 8A and the partition wall 10. A plurality of radioactive substance storage containers 24 are arranged in a square lattice pattern on the floor 23 in the storage area 3.

貯蔵建屋2は、給気側側壁4から給気側側壁6に向かって細長くなっている。給気口5は、給気側側壁4に形成され、給気側側壁4の両端の間で中央部に配置されて屋根9付近に位置している(図3参照)。水平方向において、給気側側壁4の各端(側壁8Aに結合される端及び隔壁35に結合される端)から給気口5のそれぞれの端面まで、給気側側壁4が連続して存在する。給気口7は、給気側側壁6に形成され、給気側側壁6の両端の間で中央部に配置されて屋根9付近に位置している。水平方向において、給気側側壁6の各端(側壁8Aに結合される端及び隔壁36に結合される端)から給気口7のそれぞれの端面まで、給気側側壁6が連続して存在する。給気口5,7よりも下方では、給気側側壁4,6は、それぞれの両端の間において連続して存在している。   The storage building 2 is elongated from the air supply side wall 4 toward the air supply side wall 6. The air supply port 5 is formed in the air supply side wall 4 and is disposed in the center between both ends of the air supply side wall 4 and is located near the roof 9 (see FIG. 3). In the horizontal direction, the air supply side wall 4 continuously exists from each end of the air supply side wall 4 (an end connected to the side wall 8A and an end connected to the partition wall 35) to each end face of the air supply port 5. To do. The air supply port 7 is formed in the air supply side wall 6, is disposed in the center between both ends of the air supply side wall 6, and is located near the roof 9. In the horizontal direction, the air supply side wall 6 continuously exists from each end of the air supply side wall 6 (an end connected to the side wall 8A and an end connected to the partition wall 36) to each end face of the air supply port 7. To do. Below the air inlets 5 and 7, the air supply side walls 4 and 6 continuously exist between both ends.

貯蔵エリア3を画定する仕切り壁11が、貯蔵エリア3と給気側側壁4の間に設置される。冷却空気供給用の複数の開口部13が仕切り壁11に形成される。仕切り壁11の、開口部13の相互間の部分は、支持壁12になって、貯蔵エリア3の床23に達している。貯蔵建屋2内で給気側側壁4と仕切り壁11との間に、放射線遮へい壁17が配置される。放射線遮へい壁17は、貯蔵建屋2の天井32から下方に向かって伸びており、両端が側壁8A及び隔壁35に取り付けられている。放射性物質収納容器24の搬送通路を兼ねる均圧室19が、仕切り壁11と放射線遮へい壁17の間に形成される。給気口5に連絡される冷却空気流路21が、放射線遮へい壁17と空気側側壁4の間に形成される。冷却空気流路21は、隔壁10の延長線上に位置する隔壁35から側壁8Aまでの範囲に広がっている。放射線遮へい壁17の下端と床23の間には、冷却空気流路21から均圧室19に冷却空気を供給する開口部33が形成されている。この開口部33も隔壁35から側壁8Aまでの範囲に広がっている。給気口5は給気側側壁4の外側に形成される外気取入流路28に連絡されている。   A partition wall 11 that defines the storage area 3 is installed between the storage area 3 and the supply side wall 4. A plurality of openings 13 for supplying cooling air are formed in the partition wall 11. The part of the partition wall 11 between the openings 13 becomes the support wall 12 and reaches the floor 23 of the storage area 3. A radiation shielding wall 17 is disposed between the air supply side wall 4 and the partition wall 11 in the storage building 2. The radiation shielding wall 17 extends downward from the ceiling 32 of the storage building 2, and both ends thereof are attached to the side wall 8 </ b> A and the partition wall 35. A pressure equalizing chamber 19 that also serves as a transport passage for the radioactive substance storage container 24 is formed between the partition wall 11 and the radiation shielding wall 17. A cooling air flow path 21 communicated with the air supply port 5 is formed between the radiation shielding wall 17 and the air side wall 4. The cooling air passage 21 extends in a range from the partition wall 35 located on the extension line of the partition wall 10 to the side wall 8A. Between the lower end of the radiation shielding wall 17 and the floor 23, an opening 33 for supplying cooling air from the cooling air flow path 21 to the pressure equalizing chamber 19 is formed. The opening 33 also extends from the partition wall 35 to the side wall 8A. The air supply port 5 is connected to an outside air intake passage 28 formed outside the supply side wall 4.

貯蔵エリア3を画定する仕切り壁14が、貯蔵エリア3と給気側側壁6の間に設置される。冷却空気供給用の複数の開口部16が仕切り壁14に形成される。仕切り壁14の、開口部16の相互間の部分は、支持壁15になって、貯蔵エリア3の床23に達している。貯蔵建屋2内で給気側側壁6と仕切り壁14との間に、放射線遮へい壁18が配置される。放射線遮へい壁18は、貯蔵建屋2の天井32から下方に向かって伸びており、両端が側壁8A及び隔壁36に取り付けられている。放射性物質収納容器24の搬送通路を兼ねる均圧室20が、仕切り壁14と放射線遮へい壁18の間に形成される。給気口7に連絡される冷却空気供給流路22が、放射線遮へい壁18と空気側側壁6の間に形成される。冷却空気流路22は、隔壁10の延長線上に位置する隔壁36から側壁8Aまでの範囲に広がっている。放射線遮へい壁18の下端と床23の間には、冷却空気供給流路22から均圧室20に冷却空気を供給する開口部34が形成されている。この開口部34も隔壁36から側壁8Aまでの範囲に広がっている。給気口75は給気側側壁6の外側に形成される外気取入流路29に連絡されている。   A partition wall 14 that defines the storage area 3 is installed between the storage area 3 and the supply side wall 6. A plurality of openings 16 for supplying cooling air are formed in the partition wall 14. A portion of the partition wall 14 between the openings 16 serves as a support wall 15 and reaches the floor 23 of the storage area 3. A radiation shielding wall 18 is disposed between the air supply side wall 6 and the partition wall 14 in the storage building 2. The radiation shielding wall 18 extends downward from the ceiling 32 of the storage building 2, and both ends are attached to the side wall 8 </ b> A and the partition wall 36. A pressure equalizing chamber 20 that also serves as a transport passage for the radioactive substance storage container 24 is formed between the partition wall 14 and the radiation shielding wall 18. A cooling air supply flow path 22 communicated with the air supply port 7 is formed between the radiation shielding wall 18 and the air side wall 6. The cooling air flow path 22 extends in a range from the partition wall 36 located on the extension line of the partition wall 10 to the side wall 8A. Between the lower end of the radiation shielding wall 18 and the floor 23, an opening 34 for supplying cooling air from the cooling air supply flow path 22 to the pressure equalizing chamber 20 is formed. The opening 34 also extends from the partition wall 36 to the side wall 8A. The air supply port 75 is connected to an outside air intake passage 29 formed outside the air supply side wall 6.

支持壁12,15は、給気側側壁と平行な方向において隣り合う放射性物質収納容器24の相互に形成される間隙に対向するように、配置される。隔壁10と側壁8Bの間に容器受入れエリア27が形成されている。上方に向かって伸びる排気筒25が屋根9に設置される。排気筒25は、給気側側壁4と給気側側壁6の間の中央部に配置されている。排気筒25内に形成される冷却空気排気流路26は、貯蔵エリア3に連絡され、排気筒25の排気口30にも連絡される。   The support walls 12 and 15 are disposed so as to face a gap formed between the radioactive substance storage containers 24 adjacent to each other in a direction parallel to the supply side wall. A container receiving area 27 is formed between the partition wall 10 and the side wall 8B. An exhaust pipe 25 extending upward is installed on the roof 9. The exhaust cylinder 25 is disposed in the central portion between the air supply side wall 4 and the air supply side wall 6. The cooling air exhaust passage 26 formed in the exhaust cylinder 25 is connected to the storage area 3 and is also connected to the exhaust port 30 of the exhaust cylinder 25.

貯蔵プール内に貯蔵されている使用済燃料集合体は、原子力発電所内で放射性物質収納容器(例えば、金属キャスク)24内に収納される。使用済燃料集合体を収納して密封された放射性物質収納容器24は、搬送用のトラックにて、放射性物質貯蔵施設1の貯蔵建屋2内の容器受入れエリア27まで搬送される。放射性物質収納容器24は、容器受入れエリア27内でトラックから容器搬送装置(図示せず)に移される。放射性物質収納容器24は、容器搬送装置の移動によって、均圧室19(または均圧室20)を通って貯蔵エリア3まで搬送され、貯蔵エリア3内の所定の位置に貯蔵される。   The spent fuel assembly stored in the storage pool is stored in a radioactive substance storage container (for example, a metal cask) 24 in the nuclear power plant. The radioactive material storage container 24 that contains the spent fuel assembly and is sealed is transported to a container receiving area 27 in the storage building 2 of the radioactive material storage facility 1 by a transport truck. The radioactive substance storage container 24 is moved from the truck to a container transfer device (not shown) in the container receiving area 27. The radioactive substance storage container 24 is transported to the storage area 3 through the pressure equalizing chamber 19 (or the pressure equalizing chamber 20) by the movement of the container transport device, and stored in a predetermined position in the storage area 3.

排気筒25の煙突効果によって、外気取入流路28から取り込まれた空気(外気)は、給気口5、冷却空気流路21、開口部33、均圧室19及び開口部13を経て貯蔵エリア3内に流入する。貯蔵エリア3内に置かれた放射性物質収納容器24は、流入された冷却空気によって冷却される。すなわち、放射性物質収納容器24内の使用済燃料集合体で発生する熱が、冷却空気によって除去される。放射性物質収納容器24を冷却した冷却空気は、温められて冷却空気排気流路26内を上昇し、排気口30より外部に排気される。外気取入流路29から取り込まれた空気(外気)は、給気口7、冷却空気流路22、開口部34、均圧室20及び開口部16を経て貯蔵エリア3内に流入し、放射性物質収納容器24を冷却する。この冷却空気も温められて冷却空気排気流路26内に流入する。なお、給気口5,7は、貯蔵エリア3内に貯蔵された放射性物質収納容器24の冷却に必要な冷却空気量が供給できる開口面積を有している。   Due to the chimney effect of the exhaust cylinder 25, the air (outside air) taken in from the outside air intake passage 28 passes through the air supply port 5, the cooling air passage 21, the opening 33, the pressure equalizing chamber 19, and the opening 13, and the storage area 3 flows in. The radioactive substance storage container 24 placed in the storage area 3 is cooled by the inflowing cooling air. That is, the heat generated in the spent fuel assembly in the radioactive substance storage container 24 is removed by the cooling air. The cooling air that has cooled the radioactive substance storage container 24 is warmed and ascends in the cooling air exhaust passage 26 and is exhausted to the outside through the exhaust port 30. The air (outside air) taken in from the outside air intake passage 29 flows into the storage area 3 through the air supply port 7, the cooling air passage 22, the opening 34, the pressure equalizing chamber 20 and the opening 16, and is radioactive material. The storage container 24 is cooled. This cooling air is also warmed and flows into the cooling air exhaust passage 26. The air supply ports 5 and 7 have an opening area capable of supplying a cooling air amount necessary for cooling the radioactive substance storage container 24 stored in the storage area 3.

本実施例は、1つの給気口5が給気側側壁4の幅方向(側壁8Aから隔壁35に向う方向)の中央部で給気側側壁4に形成されているので、側壁8Aに結合される、給気側側壁4の一端から、給気口5の一端までの間、及び隔壁35に結合される、給気側側壁4の他端から、給気口5の他端までの間は、給気側側壁4が連続して存在する。このため、給気口5が形成された給気側側壁4の、側壁8Aに結合される端から、給気口5の一端までの給気側側壁4の長さ、及び給気側側壁4の、隔壁35に結合される端から、給気口5の一端までの給気側側壁4の長さを、それぞれ長くすることができる。このような構造は、地震時における給気側側壁4と平行な地震動に対して、給気側側壁4が受け持つことができる地震荷重を増大させることができる。すなわち、貯蔵建屋2の耐震性が向上する。給気側側壁6もその幅方向(側壁8Aから隔壁36に向う方向)の中央部に1つの給気口7を形成しているので、給気側側壁4の場合と同様に、上記の地震動に対して、給気側側壁6が受け持つことができる地震荷重を増大させることができる。貯蔵建屋2の耐震性はさらに向上する。(以上の効果に基づいて、「給気口を給気側側壁の中央部に配置し、給気側側壁の両端から給気口の両端までは給気側側壁が連続して存在する」ことを構成要件にしたクレームを作成しましたが、この構成は、貯蔵建屋の耐震性が向上しない例、逆に貯蔵建屋の耐震性が従来よりも低下する例も含まれてしまいます。例えば、横幅が10の給気側側壁に対して横幅が0.5である給気口を形成しても上記の構成要件に含まれます。しかしながら、この例では、給気側側壁4と平行な地震動に対して、給気側側壁が受け持つことができる地震荷重は従来よりも低下しないでしょうか。「中央部」の概念も人によって解釈が異なります。請求項1及び請求項2が審査官によって拒絶された場合を想定して、給気側側壁の幅に対する給気口の幅の割合を一点ではなく、範囲で規定し(例えば、『給気側側壁の幅に対して給気口の幅の割合がA%〜B%』または『給気側側壁の幅に対して給気側側壁の一端から給気口の一端までの長さがC%〜D%』)、この範囲を請求項1及び2の従属項に記載し、併せて実施例にも記載した方が良いと思います。条件によって代るでしょうが、実現の確度が高い範囲をお知らせ願います。)
貯蔵エリア3、すなわち、仕切り壁11と給気側側壁4との間に配置された放射線遮へい壁(例えば、コンクリート製または鉄製)17が、貯蔵エリア3から見たとき放射線遮へい壁17が給気口5の前面を覆っているので、貯蔵エリア3に貯蔵された放射性物質収納容器24内の使用済燃料集合体から放出されるγ線が、放射線遮へい壁17によって遮へいされる。放射線遮へい壁17の配置によって、開口部33、冷却空気流路21及び給気口5を含む、均圧室19と貯蔵建屋2の外部を連絡して冷却空気を導く通路が、折れ曲がって形成される。このため、上記のγ線がこの通路を通って外部に漏洩することも防止できる。γ線のそのような2つの遮へい機能は、放射線遮へい壁18の配置によっても達成できる。
In the present embodiment, since one air supply port 5 is formed in the air supply side wall 4 at the center in the width direction of the air supply side wall 4 (the direction from the side wall 8A toward the partition wall 35), it is coupled to the side wall 8A. Between one end of the air supply side wall 4 to one end of the air supply port 5 and between the other end of the air supply side wall 4 coupled to the partition wall 35 to the other end of the air supply port 5. The air supply side wall 4 is continuously present. For this reason, the length of the air supply side wall 4 from the end connected to the side wall 8 </ b> A of the air supply side wall 4 in which the air supply port 5 is formed to the one end of the air supply port 5, and the air supply side wall 4. The length of the air supply side wall 4 from the end coupled to the partition wall 35 to one end of the air supply port 5 can be increased. Such a structure can increase the seismic load that the supply side wall 4 can handle with respect to earthquake motion parallel to the supply side wall 4 during an earthquake. That is, the earthquake resistance of the storage building 2 is improved. Since the air supply side wall 6 also has one air supply port 7 at the center in the width direction (the direction from the side wall 8A to the partition wall 36), as in the case of the air supply side wall 4, the above-mentioned earthquake motion On the other hand, the seismic load that the supply side wall 6 can handle can be increased. The earthquake resistance of the storage building 2 is further improved. (Based on the above effects, “the air supply port is arranged at the center of the air supply side wall, and the air supply side wall continuously exists from both ends of the air supply side wall to both ends of the air supply port”. However, this configuration also includes cases where the earthquake resistance of the storage building is not improved, and conversely, the case where the earthquake resistance of the storage building is lower than before is included. However, in this example, it is included in the ground motion parallel to the supply side wall 4 even if an intake port having a width of 0.5 is formed with respect to the supply side wall of 10. On the other hand, is the seismic load that the supply side wall can handle less reduced than before, and the concept of “central part” is also differently interpreted by people? Assuming that the width of the air supply port is smaller than the width of the air supply side wall (For example, “the ratio of the width of the air inlet to the air supply side wall is A% to B%” or “the air supply side relative to the air supply side wall width”) The length from one end of the side wall to one end of the air supply port is C% to D% ”), and this range should be described in the dependent claims of claims 1 and 2 and also in the examples. Please let us know the range where the accuracy of realization is high.
The radiation shielding wall (for example, made of concrete or iron) 17 disposed between the storage area 3, that is, the partition wall 11 and the air supply side wall 4 is supplied to the radiation shielding wall 17 when viewed from the storage area 3. Since the front surface of the mouth 5 is covered, γ rays emitted from the spent fuel assembly in the radioactive substance storage container 24 stored in the storage area 3 are shielded by the radiation shielding wall 17. Depending on the arrangement of the radiation shielding wall 17, a passage including the opening 33, the cooling air flow path 21 and the air supply port 5, which connects the pressure equalizing chamber 19 and the outside of the storage building 2 and guides the cooling air, is bent and formed. The For this reason, it can also prevent that said gamma ray leaks outside through this channel | path. Two such shielding functions for gamma rays can also be achieved by the arrangement of the radiation shielding wall 18.

放射線遮へい壁17,18は、γ線の遮へい機能だけでなく、給気口5,7から流入した冷却空気を給気側側壁の幅方向において均圧室19,20内により均一に配分する機能も有する。この冷却空気の均一配分機能を、放射線遮へい壁17を例に挙げて説明する。給気口5から流入した冷却空気は、放射線遮へい壁17によって遮られ、放射線遮へい壁17に沿って冷却空気流路21内を下方に向かって流れる。冷却空気流路21を画定する放射線遮へい壁17が側壁8Aから隔壁35までの範囲に存在するので、冷却空気流路21内に流入した冷却空気は、冷却空気流路21内を下降する際に、給気口5の水平方向の幅よりも広がり、側壁8A及び隔壁35の近くまで分布するようになる。したがって、開口部33から均圧室19に供給される冷却空気は、給気口5の水平方向の幅の位置に集中せず、均圧室19の、側壁8Aから隔壁35までの幅の全域に広がっている。このように、放射線遮へい壁17は、その幅の方向において、冷却空気を均圧室19内へより均一に分配させることができる。   The radiation shielding walls 17 and 18 not only have a function of shielding γ rays, but also a function of evenly distributing the cooling air flowing from the air supply ports 5 and 7 in the pressure equalizing chambers 19 and 20 in the width direction of the air supply side wall. Also have. The function of uniformly distributing the cooling air will be described by taking the radiation shielding wall 17 as an example. The cooling air flowing in from the air supply port 5 is blocked by the radiation shielding wall 17 and flows downward along the radiation shielding wall 17 in the cooling air flow path 21. Since the radiation shielding wall 17 that defines the cooling air flow path 21 exists in the range from the side wall 8A to the partition wall 35, the cooling air that has flowed into the cooling air flow path 21 falls when the cooling air flow path 21 descends. The air supply port 5 is wider than the horizontal width, and is distributed to the vicinity of the side wall 8A and the partition wall 35. Accordingly, the cooling air supplied from the opening 33 to the pressure equalizing chamber 19 does not concentrate at the position of the horizontal width of the air supply port 5, and the entire width of the pressure equalizing chamber 19 from the side wall 8 </ b> A to the partition wall 35. Has spread. Thus, the radiation shielding wall 17 can distribute the cooling air more uniformly into the pressure equalizing chamber 19 in the width direction.

本実施例は、開口部13を形成した仕切り壁11を設けているので均圧室19から貯蔵エリア3内への冷却空気の分配をさらに均一化することができ、開口部16を形成した仕切り壁14を設けているので均圧室20から貯蔵エリア3内への冷却空気の分配をさらに均一化することができる。均圧室から貯蔵エリア3に供給する冷却空気の配分をより均一化できる本実施例の効果を、仕切り壁11を例に挙げて詳細に説明する。複数の支持壁12を含む仕切り壁11が貯蔵エリア3と均圧室19の境界に配置されており、均圧室19から貯蔵エリア3にかけての圧力損失が増大する。これにより、開口部33から冷却空気が流入した均圧室19内の圧力を、上記幅方向において一様にすることができる。均圧室19から各開口部13を通して貯蔵エリア3に供給されるそれぞれの冷却空気の圧力が実質的に同じになり、貯蔵エリア3内で、側壁8Aから隔壁10までの幅の全域において冷却空気をさらに均一に分配することができる。したがって、貯蔵エリア3内の各放射性物質収納容器24は、上記幅の方向においてほぼ一様に冷却される。   In this embodiment, since the partition wall 11 having the opening 13 is provided, the distribution of the cooling air from the pressure equalizing chamber 19 into the storage area 3 can be made more uniform, and the partition having the opening 16 formed therein. Since the wall 14 is provided, the distribution of the cooling air from the pressure equalizing chamber 20 into the storage area 3 can be made more uniform. The effect of this embodiment that can make the distribution of the cooling air supplied from the pressure equalizing chamber to the storage area 3 more uniform will be described in detail by taking the partition wall 11 as an example. The partition wall 11 including a plurality of support walls 12 is arranged at the boundary between the storage area 3 and the pressure equalizing chamber 19, and the pressure loss from the pressure equalizing chamber 19 to the storage area 3 increases. Thereby, the pressure in the pressure equalizing chamber 19 into which the cooling air has flowed from the opening 33 can be made uniform in the width direction. The pressure of the respective cooling air supplied from the pressure equalizing chamber 19 to the storage area 3 through each opening 13 is substantially the same, and the cooling air in the entire area from the side wall 8 </ b> A to the partition wall 10 in the storage area 3. Can be more evenly distributed. Therefore, each radioactive substance storage container 24 in the storage area 3 is cooled substantially uniformly in the width direction.

本実施例は、支持壁12が、前述したように、給気側側壁4と平行な方向において隣り合う放射性物質収納容器24の相互に形成される間隙に対向するように配置されているので、支持壁12の近辺に位置する放射性物質収納容器24の冷却効果も増大する。支持壁15近辺に位置する放射性物質収納容器24の冷却効果も増大する。   In this embodiment, the support wall 12 is disposed so as to face the gap formed between the radioactive substance storage containers 24 adjacent to each other in the direction parallel to the air supply side wall 4 as described above. The cooling effect of the radioactive substance storage container 24 located in the vicinity of the support wall 12 is also increased. The cooling effect of the radioactive substance storage container 24 located in the vicinity of the support wall 15 is also increased.

仕切り壁11の一部である支持壁12の下端が貯蔵建屋2の床23に設置され、仕切り壁11の上端が屋根9を支えている。仕切り壁14の一部である支持壁15の下端が貯蔵建屋2の床23に設置され、仕切り壁14の上端が屋根9を支えている。仕切り壁11,14も屋根9及び排気筒25の荷重を支えることができる。したがって、側壁8Aと隔壁10の間隔及び給気側側壁4と給気側側壁6の間隔を拡げることができ、貯蔵エリア3を広くすることができる。その分、貯蔵エリア3に収納できる放射性物質収納容器24の戸数も増加できる。   The lower end of the support wall 12 which is a part of the partition wall 11 is installed on the floor 23 of the storage building 2, and the upper end of the partition wall 11 supports the roof 9. The lower end of the support wall 15 that is a part of the partition wall 14 is installed on the floor 23 of the storage building 2, and the upper end of the partition wall 14 supports the roof 9. The partition walls 11 and 14 can also support the load of the roof 9 and the exhaust stack 25. Therefore, the space | interval of the side wall 8A and the partition 10 and the space | interval of the air supply side wall 4 and the air supply side wall 6 can be expanded, and the storage area 3 can be enlarged. Accordingly, the number of radioactive substance storage containers 24 that can be stored in the storage area 3 can be increased.

本実施例は、均圧室19,20を放射性物質収納容器24の搬送通路として使用しているため、貯蔵建屋2内に均圧室及び搬送通路を別々に設ける必要がない。したがって、貯蔵建屋2をコンパクト化することができる。   In the present embodiment, the pressure equalization chambers 19 and 20 are used as the transport passages for the radioactive substance storage container 24, so that it is not necessary to separately provide the pressure equalization chamber and the transport passage in the storage building 2. Therefore, the storage building 2 can be made compact.

本発明の好適な一実施例である放射性物質貯蔵施設の構成を示し、図2のI−I断面図である。FIG. 3 is a cross-sectional view taken along the line II of FIG. 2, showing a configuration of a radioactive substance storage facility according to a preferred embodiment of the present invention. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 図1のA方向の矢視図である。It is an arrow view of the A direction of FIG.

符号の説明Explanation of symbols

1…放射性物質貯蔵施設、2…貯蔵建屋、3…貯蔵エリア、4,6…給気側側壁、5,7…給気口、11,14…仕切り壁、12,15…支持壁、13,16,33,34…開口部、17,18…放射線遮へい壁、19,20…均圧室、21,22…冷却空気供給流路、24…放射性物質収納容器、25…排気筒、26…冷却空気排気流路、27…容器受入エリア。   DESCRIPTION OF SYMBOLS 1 ... Radioactive material storage facility, 2 ... Storage building, 3 ... Storage area, 4, 6 ... Supply side wall, 5, 7 ... Supply port, 11, 14 ... Partition wall, 12, 15 ... Support wall, 13, 16, 33, 34 ... opening, 17, 18 ... radiation shielding wall, 19, 20 ... pressure equalization chamber, 21, 22 ... cooling air supply flow path, 24 ... radioactive substance storage container, 25 ... exhaust pipe, 26 ... cooling Air exhaust flow path, 27 ... container receiving area.

Claims (6)

放射性物質収納容器を貯蔵する貯蔵領域を内部に有する貯蔵建屋を備えた放射性物質貯蔵施設において、
前記貯蔵建屋は、対向する一対の第1側壁及び前記第1側壁と交差する方向に配置されて対向する第2側壁を有し、
前記貯蔵領域が前記一対の第1側壁及び前記一対の第2側壁によって取り囲まれており、
前記貯蔵領域に供給される外気を取り込む給気口が一対の前記第1側壁の少なくとも1つに形成され、前記給気口の少なくとも一部は前記給気口が形成された前記第1側壁の両端間で中央部に位置しており、
前記給気口が形成された前記第1側壁が、一方の前記第2側壁に結合される一端から、前記中央部に位置している前記給気口の一端までの間、及び他方の前記第2側壁に結合される他端から、前記中央部に位置している前記給気口の他端までの間で、連続して存在していることを特徴とする放射性物質貯蔵施設。
In a radioactive material storage facility provided with a storage building having a storage area for storing radioactive material storage containers inside,
The storage building has a pair of first side walls facing each other and a second side wall facing and arranged in a direction intersecting the first side walls,
The storage area is surrounded by the pair of first sidewalls and the pair of second sidewalls;
An air supply port for taking in outside air supplied to the storage area is formed in at least one of the pair of first side walls, and at least a part of the air supply port is formed in the first side wall in which the air supply port is formed. Located at the center between both ends,
The first side wall in which the air supply port is formed extends from one end coupled to one of the second side walls to one end of the air supply port located in the central portion, and the other of the first side wall. The radioactive substance storage facility, which is continuously present between the other end coupled to the two side walls and the other end of the air supply port located in the central portion.
放射性物質収納容器を貯蔵する貯蔵領域を内部に有する貯蔵建屋を備えた放射性物質貯蔵施設において、
前記貯蔵建屋は、対向する一対の第1側壁及び前記第1側壁と交差する方向に配置されて対向する第2側壁を有し、
前記貯蔵領域が前記一対の第1側壁及び前記一対の第2側壁によって取り囲まれており、
前記貯蔵領域に供給される外気を取り込む1つの給気口が一対の前記第1側壁の少なくとも1つに形成され、
前記給気口が形成された前記第1側壁が、一方の前記第2側壁に結合される一端から前記給気口の一端までの間、及び他方の前記第2側壁に結合される他端から前記給気口の他端までの間で、連続して存在していることを特徴とする放射性物質貯蔵施設。
In a radioactive material storage facility provided with a storage building having a storage area for storing radioactive material storage containers inside,
The storage building has a pair of first side walls facing each other and a second side wall facing and arranged in a direction intersecting the first side walls,
The storage area is surrounded by the pair of first sidewalls and the pair of second sidewalls;
One air supply port for taking in outside air supplied to the storage area is formed in at least one of the pair of first side walls,
The first side wall in which the air supply port is formed is between one end coupled to one of the second side walls and one end of the air supply port, and from the other end coupled to the other second side wall. The radioactive substance storage facility, which is continuously present up to the other end of the air supply port.
前記給気口が形成された前記第1側壁と前記貯蔵領域の間に仕切り壁を設置し、前記給気口から流入した外気を前記貯蔵領域に導く複数の第1開口部が前記仕切り壁に形成されており、前記仕切り壁と前記給気口が形成された前記第1側壁の間に前記複数の第1開口部及び前記給気口に連絡される均圧室が形成される請求項1または請求項2に記載の放射性物質貯蔵施設。   A partition wall is installed between the first side wall in which the air supply port is formed and the storage region, and a plurality of first openings for guiding the outside air flowing in from the air supply port to the storage region are formed in the partition wall. 2. A pressure equalizing chamber is formed between the plurality of first openings and the air supply port, and is formed between the partition wall and the first side wall in which the air supply port is formed. Or the radioactive substance storage facility of Claim 2. 前記仕切り壁が前記貯蔵建屋の屋根を支えている請求項3に記載の放射性物質貯蔵施設。   The radioactive substance storage facility according to claim 3, wherein the partition wall supports a roof of the storage building. 前記均圧室は前記放射性物質収納容器を前記貯蔵領域に搬送する際に利用する搬送通路を兼ねている請求項3または請求項4に記載の放射性物質貯蔵施設。   5. The radioactive substance storage facility according to claim 3, wherein the pressure equalizing chamber also serves as a transfer passage used when transferring the radioactive substance storage container to the storage area. 前記貯蔵建屋の天井から下方に向かって伸びる放射線遮へい壁が前記給気口が形成された前記第1側壁と前記仕切り壁との間に設置され、前記放射線遮へい壁の下端と前記貯蔵建屋の床との間に前記外気が通る第2開口部が形成され、前記給気口と前記第2開口部を連絡する外気供給通路が、前記給気口が形成された前記第1側壁と前記放射線遮へい壁の間に形成される請求項3ないし請求項5のいずれか1項に記載の放射性物質貯蔵施設。   A radiation shielding wall extending downward from the ceiling of the storage building is installed between the first side wall in which the air supply port is formed and the partition wall, and the lower end of the radiation shielding wall and the floor of the storage building A second opening through which the outside air passes is formed, and an outside air supply passage connecting the supply opening and the second opening is formed between the first side wall in which the supply opening is formed and the radiation shielding. The radioactive substance storage facility according to claim 3, which is formed between the walls.
JP2007109250A 2007-04-18 2007-04-18 Radioactive material storage facility Pending JP2008267902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109250A JP2008267902A (en) 2007-04-18 2007-04-18 Radioactive material storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109250A JP2008267902A (en) 2007-04-18 2007-04-18 Radioactive material storage facility

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010185713A Division JP5346893B2 (en) 2010-08-23 2010-08-23 Radioactive material storage facility

Publications (1)

Publication Number Publication Date
JP2008267902A true JP2008267902A (en) 2008-11-06

Family

ID=40047612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109250A Pending JP2008267902A (en) 2007-04-18 2007-04-18 Radioactive material storage facility

Country Status (1)

Country Link
JP (1) JP2008267902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148434A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Radioactive material storage facility

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312200U (en) * 1989-06-21 1991-02-07
JPH09113679A (en) * 1995-10-16 1997-05-02 Jgc Corp Spent nuclear fuel storage building
JP2001141890A (en) * 1999-11-10 2001-05-25 Mitsubishi Heavy Ind Ltd Dry spent fuel storage facility
JP2002214392A (en) * 2001-01-19 2002-07-31 Ishikawajima Harima Heavy Ind Co Ltd Glass solidified body storing facility
JP2002323592A (en) * 2001-04-25 2002-11-08 Toshiba Corp Cask storage building and its carrying equipment
JP2004045230A (en) * 2002-07-12 2004-02-12 Hitachi Ltd Facility for storing radioactive substance
JP2004150906A (en) * 2002-10-30 2004-05-27 Hitachi Ltd Dry storage building for radioactive material
JP2004170258A (en) * 2002-11-20 2004-06-17 Tokyo Electric Power Co Inc:The Storage facility for radioactive material
JP2004219151A (en) * 2003-01-10 2004-08-05 Toshiba Corp Spent fuel storage facility and its maintenance method
JP2005106554A (en) * 2003-09-29 2005-04-21 Ohbayashi Corp Building for storing radioactive substance and method for ventilation in the same
JP2006292694A (en) * 2005-04-15 2006-10-26 Hitachi Ltd Facility and device for storing radioactive material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312200U (en) * 1989-06-21 1991-02-07
JPH09113679A (en) * 1995-10-16 1997-05-02 Jgc Corp Spent nuclear fuel storage building
JP2001141890A (en) * 1999-11-10 2001-05-25 Mitsubishi Heavy Ind Ltd Dry spent fuel storage facility
JP2002214392A (en) * 2001-01-19 2002-07-31 Ishikawajima Harima Heavy Ind Co Ltd Glass solidified body storing facility
JP2002323592A (en) * 2001-04-25 2002-11-08 Toshiba Corp Cask storage building and its carrying equipment
JP2004045230A (en) * 2002-07-12 2004-02-12 Hitachi Ltd Facility for storing radioactive substance
JP2004150906A (en) * 2002-10-30 2004-05-27 Hitachi Ltd Dry storage building for radioactive material
JP2004170258A (en) * 2002-11-20 2004-06-17 Tokyo Electric Power Co Inc:The Storage facility for radioactive material
JP2004219151A (en) * 2003-01-10 2004-08-05 Toshiba Corp Spent fuel storage facility and its maintenance method
JP2005106554A (en) * 2003-09-29 2005-04-21 Ohbayashi Corp Building for storing radioactive substance and method for ventilation in the same
JP2006292694A (en) * 2005-04-15 2006-10-26 Hitachi Ltd Facility and device for storing radioactive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148434A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Radioactive material storage facility

Similar Documents

Publication Publication Date Title
US5753925A (en) Radioactive waste storage facility
US20190103197A1 (en) Apparatus for storing and/or transporting radioactive materials
KR102544946B1 (en) Flood and Wind Resistant Ventilated Modules for Spent Nuclear Fuel Storage
US12100525B2 (en) Nuclear materials apparatus and implementing the same
US20180301231A1 (en) Apparatus for supporting spent nuclear fuel
JP2009210412A (en) Facility for storing exothermic body
JP2008267902A (en) Radioactive material storage facility
JP5346893B2 (en) Radioactive material storage facility
KR101333066B1 (en) Transport or storage concrete cask for spent nuclear fuel
KR20170042511A (en) Spent fuel storage rack
JP3169451B2 (en) Spent fuel silo storage and transport system
JP2004045230A (en) Facility for storing radioactive substance
JP2017201260A (en) Radioactive waste storage facility
JP5875942B2 (en) Radioactive material storage facility
JP2007010527A (en) Radioactive material storage body and radioactive material storage facility
JP5936365B2 (en) Radioactive material storage facility
JP4708927B2 (en) Radioactive material storage facility
JP6728971B2 (en) Radioactive waste storage facility
KR101033761B1 (en) Equipments to reduce the temperatures in concrete structure for storing spent nuclear fuel
JP2001159697A (en) Building for storage of spent fuel
JP5912786B2 (en) Storage method of radioactive material
JP2007127500A (en) Cask storage facility
JP2006010313A (en) Radioactive material storage building
JP2023552915A (en) High-density underground storage system for nuclear fuel and radioactive waste
JP2005106554A (en) Building for storing radioactive substance and method for ventilation in the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109