JP2002214392A - Glass solidified body storing facility - Google Patents

Glass solidified body storing facility

Info

Publication number
JP2002214392A
JP2002214392A JP2001012239A JP2001012239A JP2002214392A JP 2002214392 A JP2002214392 A JP 2002214392A JP 2001012239 A JP2001012239 A JP 2001012239A JP 2001012239 A JP2001012239 A JP 2001012239A JP 2002214392 A JP2002214392 A JP 2002214392A
Authority
JP
Japan
Prior art keywords
cooling air
radiation shielding
plates
vitrified
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001012239A
Other languages
Japanese (ja)
Inventor
Mitsunari Iwashita
充成 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001012239A priority Critical patent/JP2002214392A/en
Publication of JP2002214392A publication Critical patent/JP2002214392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent leakage of primary radiation while securing flow of cooling air in a cell room. SOLUTION: In a glass solidified body storing facility in which glass solidified bodies 1 are stored in the cell room 3 and the cooling air 12 is made to flow, two radiation shielding plates 19 having a desired number of through holes 20 with shifted phases are arranged with a desired interval in the flowing direction of the cooling air 12 in an inlet 13 and an outlet 14 of the cooling air in the cell room 3. The radiation shielding plates 19 have a sandwich structure of two front and back iron plates for attenuating γ rays and a polyethylene plate for attenuating neutron rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放射性廃棄物ガラス
固化体の収納、貯蔵管理を行うガラス固化体貯蔵施設に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vitrified storage facility for storing and managing a vitrified radioactive waste.

【0002】[0002]

【従来の技術】原子力プラントにおいて廃出される放射
性廃棄物は、ガラスの結晶中に封じ込めるようにガラス
固化処理してなるガラス固化体として、自然崩壊を繰り
返して放射能レベルが低下するまで、所要の貯蔵区域に
て長期間に亘り厳重に貯蔵し管理しなければならない。
2. Description of the Related Art Radioactive waste discharged from a nuclear power plant is a vitrified material obtained by vitrifying so as to be contained in a crystal of glass. They must be strictly stored and managed in storage areas for long periods of time.

【0003】上記放射性廃棄物をガラス固化処理してな
るガラス固化体を長期間に亘り貯蔵するために従来より
提案されているガラス固化体の貯蔵施設は、図8に一例
を示す如きものがある。すなわち、クレーンを用いてガ
ラス固化体1を取り扱うための搬送室2の直下に、ガラ
ス固化体1の貯蔵区域として厚いコンクリート遮蔽壁に
て包囲してなるセル室(貯蔵ピット)3を構築して、該
セル室3の内部にガラス固化体1を収納するための多数
の筒状の収納管4を、上端を開口させて天井スラブ5よ
り所要の間隔で吊り下げて支持させ、それぞれの収納管
4内に上方より多数のガラス固化体1を積み重ね状態に
収納させると、各収納管4の上端部内に収納管プラグ6
を詰めて上端開口部を収納管蓋7にて閉塞することによ
り、収納管4内にガラス固化体1を封入するようにして
あり、且つ上記収納管4の周囲には外筒8を配して収納
管4との間に筒状流路9を形成すると共に、筒状流路9
の上方及び下方にそれぞれ上部プレナム部10と下部プ
レナム部11を区画形成し、更に、下部プレナム部11
の一端部には、冷却空気12の入口13を、又、上部プ
レナム部10の一端部には、冷却空気12の出口14
を、それぞれ通気口として設け、冷却空気入口13に吸
気通路15を連通させると共に、冷却空気出口14に排
気塔16を連通させ、大気より吸気通路15及び入口1
3を通して下部プレナム部11に取り入れられた冷却空
気12が筒状流路9に送り込まれ、上部プレナム部10
より出口14及び排気塔16を流通させられて放出され
ることにより、収納管4内のガラス固化体1が自然空冷
にて冷却されるようにしてある。
[0003] FIG. 8 shows an example of a storage facility for a vitrified body that has been conventionally proposed for storing a vitrified body obtained by vitrifying the above-mentioned radioactive waste for a long period of time. . That is, a cell room (storage pit) 3 surrounded by a thick concrete shielding wall as a storage area for the vitrified body 1 is constructed immediately below the transfer chamber 2 for handling the vitrified body 1 using a crane. A large number of cylindrical storage tubes 4 for storing the vitrified body 1 inside the cell chamber 3 are supported by being suspended at required intervals from a ceiling slab 5 with an open upper end. When a large number of vitrified bodies 1 are stored in a stacked state from above in the inside of each storage tube 4, the storage tube plug 6 is placed in the upper end portion of each storage tube 4.
The vitrified body 1 is sealed in the storage tube 4 by closing the upper end opening with the storage tube lid 7, and an outer cylinder 8 is arranged around the storage tube 4. To form a cylindrical flow path 9 between the storage pipe 4 and the cylindrical flow path 9.
Upper and lower plenum sections 10 and 11 are respectively defined above and below the lower plenum section 11.
One end of the upper plenum section 10 has an inlet 13 for cooling air 12, and one end of the upper plenum section 10 has an outlet 14 for cooling air 12.
Are provided as vents, and the cooling air inlet 13 communicates with the intake passage 15, and the cooling air outlet 14 communicates with the exhaust tower 16.
The cooling air 12 taken into the lower plenum section 11 through 3 is sent into the cylindrical flow path 9 and is moved into the upper plenum section 10.
The vitrified body 1 in the storage tube 4 is cooled by natural air cooling by being discharged through the outlet 14 and the exhaust tower 16.

【0004】[0004]

【発明が解決しようとする課題】ところが、かかるガラ
ス固化体貯蔵施設では、主に、ガラス固化体1から発生
する熱を冷却するために、冷却空気12の流れを確保す
べくセル室3に通気口としての冷却空気入口13及び出
口14を設けているが、この際、この冷却空気入口13
及び出口14は放射線の漏洩を防止することから、冷却
空気入口13に連通させる吸気通路15及び冷却空気出
口14に連通させる排気塔16の上端を高い位置に設定
し、且つ冷却空気入口13及び出口14に面するセル室
3の外側の壁厚を増加させる等の遮蔽措置を講じてい
る。
However, in such a vitrified storage facility, mainly in order to cool the heat generated from the vitrified body 1, the cell space 3 is ventilated to secure the flow of the cooling air 12. A cooling air inlet 13 and an outlet 14 are provided as ports.
In order to prevent radiation from leaking, the upper end of the intake passage 15 communicating with the cooling air inlet 13 and the upper end of the exhaust tower 16 communicating with the cooling air outlet 14 are set at a high position. Shielding measures such as increasing the wall thickness on the outside of the cell chamber 3 facing 14 are taken.

【0005】そこで、本発明は、セル室の冷却空気の流
れを確保しつつ、主要放射線を効率よく減衰させること
ができるようにして、施設の壁厚を薄くできるようにす
ると共に、吸気通路及び排気塔の上端位置を低くするこ
とができるようにしようとするものである。
Accordingly, the present invention is to reduce the wall thickness of the facility by efficiently attenuating the main radiation while securing the flow of the cooling air in the cell chamber. It is intended to lower the upper end position of the exhaust tower.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、コンクリート製セル室内にガラス固化体
を貯蔵して冷却空気を流すようにしてあるガラス固化体
貯蔵施設における上記セル室の冷却空気出入口となる通
気口内に、複数枚の放射線遮蔽板を、冷却空気の流れ方
向に所要間隔を隔てて重なるように並べて配置し、且つ
該各放射線遮蔽板の所要個所に、冷却空気を流通させる
ための通気流路を、隣り合う放射線遮蔽板同士で互いに
位相がずれるように設けた構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a vitrified cell storage facility in which a vitrified body is stored in a concrete cell chamber and cooling air flows. A plurality of radiation shielding plates are arranged side by side so as to overlap at a required interval in a flow direction of the cooling air in a ventilation opening serving as a cooling air inlet / outlet. The ventilation passage for circulation is provided so that the phase is shifted between adjacent radiation shielding plates.

【0007】冷却空気は放射線遮蔽板の通気流路を通過
できるため、セル室内の冷却空気の流通性が確保され
る。又、放射線は上流側の放射線遮蔽板で遮蔽され、通
気流路を通り抜けたものは下流側の放射線遮蔽板で遮蔽
される。
Since the cooling air can pass through the ventilation passage of the radiation shielding plate, the circulation of the cooling air in the cell chamber is ensured. The radiation is shielded by the upstream radiation shielding plate, and the radiation passing through the ventilation passage is shielded by the downstream radiation shielding plate.

【0008】又、放射線遮蔽板を、前後2枚の鉄板と該
2枚の鉄板の間に配置するポリエチレン板とのサンドイ
ッチ構造とした構成とすることによって、γ線を前側の
鉄板により、中性子線をポリエチレン板によりそれぞれ
減衰でき、中性子とポリエチレン板との相互作用により
放出された二次生成放射線を後側の鉄板で遮蔽すること
ができる。
Further, the radiation shielding plate has a sandwich structure of two front and rear iron plates and a polyethylene plate disposed between the two iron plates, so that the γ-rays can be irradiated by the neutron beam by the front iron plate. Can be attenuated by the polyethylene plate, and the secondary radiation generated by the interaction between the neutrons and the polyethylene plate can be shielded by the iron plate on the rear side.

【0009】更に、放射線遮蔽板を分解可能とすること
によって、ポリエチレン板の交換を容易に行うことがで
きる。
Further, by making the radiation shielding plate disassemblable, it is possible to easily replace the polyethylene plate.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1乃至図5は本発明の実施の一形態を示
すもので、図8に示したと同様な構成としてあるガラス
固化体貯蔵施設において、セル室3の通気口である冷却
空気入口13及び出口14内に、γ線を減衰させるため
の前後2枚の鉄板17と該2枚の鉄板17の間に配置し
た中性子線を減衰させるためのポリエチレン板18との
サンドイッチ構造とした2枚の放射線遮蔽板19を、冷
却空気12の流れ方向に所要間隔を隔てて重なるように
並べて配置し、且つ該各放射線遮蔽板19の所要個所
に、冷却空気12を厚み方向に流通させるための通気流
路としての貫通孔20を、隣り合う2枚の放射線遮蔽板
19同士で互いに位相がずれるように設けた構成とす
る。
FIGS. 1 to 5 show an embodiment of the present invention. In a vitrified storage facility having the same structure as that shown in FIG. 8, a cooling air inlet 13 serving as a vent of a cell chamber 3 is provided. In the outlet 14, two sandwiched structures of two front and rear iron plates 17 for attenuating γ-rays and a polyethylene plate 18 for attenuating a neutron beam disposed between the two iron plates 17 are provided. The radiation shielding plates 19 are arranged side by side so as to overlap with each other at a required interval in the flow direction of the cooling air 12, and a ventilation flow for flowing the cooling air 12 in a thickness direction at a required portion of each radiation shielding plate 19. The through holes 20 as paths are provided so that the phases are shifted between two adjacent radiation shielding plates 19.

【0012】上記放射線遮蔽板19は、図2乃至図4に
詳細を示す如く、周辺部17aのみを片面側へ向けて突
出するように厚肉に縁取りした炭素鋼やステンレス鋼等
の2枚の鉄板17を、厚肉とした周辺部17aが向かい
合うように配置して、該2枚の鉄板17の間に、重ね合
わせた2枚の鉄板17により形成される空間部の大きさ
に対応する大きさとしたポリエチレン板18を挟み込ま
せてサンドイッチ構造とし、2枚の鉄板17の周辺部1
7a同士を、該周辺部17aに穿設した複数のピン孔2
1に固定ピン22を差し通すことにより分解可能に固定
した構成としてある。更に、各放射線遮蔽板19には、
互いに位相がずれるように、鉄板17、ポリエチレン板
18、鉄板17の3枚の板を一連に貫通する貫通孔20
が、冷却空気12の通気流路として厚み方向に設けてあ
る。
As shown in detail in FIGS. 2 to 4, the radiation shielding plate 19 is made of two pieces of carbon steel, stainless steel, or the like, which are thickly edged so that only the peripheral portion 17a protrudes toward one side. The iron plate 17 is arranged so that the thickened peripheral portions 17a face each other, and a size corresponding to the size of the space formed by the two iron plates 17 overlapped between the two iron plates 17. And a sandwich structure in which a polyethylene plate 18 is sandwiched between the two iron plates 17.
7a, a plurality of pin holes 2 formed in the peripheral portion 17a.
1 is configured so as to be disassembled by inserting a fixing pin 22 therethrough. Furthermore, each radiation shielding plate 19 has
A through-hole 20 penetrating through the three plates of the iron plate 17, the polyethylene plate 18, and the iron plate 17 so that the phases are shifted from each other.
Are provided in the thickness direction as ventilation passages for the cooling air 12.

【0013】上記固定ピン22は、図4及び図5に詳細
を示す如く、基端にフランジ22aを備え、且つ重ね合
わせた2枚の鉄板17の周辺部17aのピン孔21から
先端部22bが突出する長さを有し、更に、先端部22
bをヒンジ23により屈曲可能に構成し、2枚の鉄板1
7のピン孔21に差し通してから先端部22bを横へ直
角に折り曲げることで2枚の鉄板17を固定するように
してある。
As shown in detail in FIGS. 4 and 5, the fixing pin 22 has a flange 22a at a base end, and a pin hole 21 of a peripheral portion 17a of two superposed iron plates 17 from a pin hole 21 to a tip portion 22b. A protruding length;
b is configured to be bendable by a hinge 23, and two iron plates 1
7, the two iron plates 17 are fixed by bending the distal end portion 22b sideways at right angles.

【0014】かかる構成としてあるガラス固化体貯蔵施
設において、セル室3の冷却空気入口13と冷却空気出
口14には、通気性を有する放射線遮蔽板19が冷却空
気12の流れ方向に二重に配置してあることから、冷却
空気12の流動性を確保しつつ、セル室3外への放射線
の漏洩を防止することができる。
In the vitrified storage facility having such a configuration, a radiation shielding plate 19 having air permeability is arranged in the cooling air inlet 13 and the cooling air outlet 14 of the cell chamber 3 in the direction of flow of the cooling air 12. Accordingly, it is possible to prevent the radiation from leaking out of the cell chamber 3 while ensuring the fluidity of the cooling air 12.

【0015】詳述すると、たとえば、図1及び図2に示
す如く、セル室3の冷却空気出口14の部分について見
ると、冷却空気12の流れ方向に配列させた2枚の放射
線遮蔽板19には、厚み方向に所要数の貫通孔20が設
けてあるため、冷却空気12はこれら貫通孔20を通り
抜けることができる。したがって、セル室3内での冷却
空気12の流通性を確保することができて、熱の冷却が
行われる。
More specifically, for example, as shown in FIGS. 1 and 2, when the cooling air outlet 14 of the cell chamber 3 is viewed, two radiation shielding plates 19 arranged in the flow direction of the cooling air 12 are formed. Since a required number of through holes 20 are provided in the thickness direction, the cooling air 12 can pass through these through holes 20. Therefore, the flowability of the cooling air 12 in the cell chamber 3 can be ensured, and heat is cooled.

【0016】又、上記各貫通孔20は、冷却空気12の
流れ方向に並列配置されている2枚の放射線遮蔽板19
で互いに位相がずれているため、放射線が、冷却空気1
2の流れ方向で上流側に位置する放射線遮蔽板19の貫
通孔20を通り抜けても、下流側に位置する放射線遮蔽
板19で遮蔽されることになる。この場合、放射性廃棄
物から発生する放射線は、主としてγ線と中性子線であ
るが、γ線はサンドイッチ構造の放射線遮蔽板19の前
側の鉄板17に当ることにより効果的に減衰させられ
る。一方、中性子線に対してはポリエチレン板18によ
り減衰効果を与えることができる。この際、中性子線は
ポリエチレンとの相互作用によって消滅するときに、二
次生成放射線(通常、二次γ線)を放出することになる
が、この二次生成放射線は後側の鉄板17にて遮蔽され
る。又、上記の場合、鉄板17によって、高エネルギー
の中性子線が一気に中エネルギーにまで減速するため、
ポリエチレン板18を2枚の鉄板17で挟む構造とする
ことにより、遮蔽材単独で使用する場合よりも単位厚さ
当りの中性子遮蔽性能を向上させることができる。した
がって、図1に示す如く、冷却空気入口13及び出口1
4に面するセル室3の外側の壁厚を薄くすることができ
ると共に、吸気通路15及び排気塔16の上端位置を低
く設定することが可能となる。
Each of the through holes 20 is provided with two radiation shielding plates 19 arranged in parallel in the flow direction of the cooling air 12.
Are out of phase with each other, so that the radiation
Even through the through-hole 20 of the radiation shielding plate 19 located on the upstream side in the flow direction 2, the radiation shielding plate 19 located on the downstream side will shield the radiation. In this case, the radiation generated from the radioactive waste is mainly γ-rays and neutron rays, and the γ-rays are effectively attenuated by hitting the iron plate 17 on the front side of the sandwiched radiation shielding plate 19. On the other hand, a neutron beam can be attenuated by the polyethylene plate 18. At this time, when the neutron beam is extinguished by the interaction with the polyethylene, secondary radiation (usually secondary γ-ray) is emitted, and this secondary radiation is emitted by the iron plate 17 on the rear side. Be shielded. In the above case, the high-energy neutron beam is quickly reduced to medium energy by the iron plate 17,
By having the structure in which the polyethylene plate 18 is sandwiched between the two iron plates 17, neutron shielding performance per unit thickness can be improved as compared with the case where the shielding material is used alone. Therefore, as shown in FIG.
The thickness of the outer wall of the cell chamber 3 facing the fuel cell 4 can be reduced, and the upper end positions of the intake passage 15 and the exhaust tower 16 can be set low.

【0017】上記において、ポリエチレン板18が経時
的に劣化した場合は、2枚の鉄板17の周辺部17aを
止めている固定ピン22の先端部22bを、折り曲げ状
態から直線状態に戻すことで後側の鉄板17を取り外す
ことができるので、ポリエチレン板18を容易に交換す
ることができる。
In the above, when the polyethylene plate 18 has deteriorated with time, the distal end portion 22b of the fixing pin 22, which stops the peripheral portion 17a of the two iron plates 17, is returned from the bent state to the linear state. Since the iron plate 17 on the side can be removed, the polyethylene plate 18 can be easily replaced.

【0018】次に図6及び図7は本発明の実施の他の形
態を示すもので、図1乃至図5に示したと同様な構成に
おいて、2枚の放射線遮蔽板19に通気流路としての貫
通孔20を設けることに代えて、2枚の放射線遮蔽板1
9の上端側及び下端側位置に、互いに位相がずれるよう
にして厚み方向に貫通する切欠き24を、幅方向へ千鳥
状に設けたものである。その他の構成は図1乃至図5に
示したものと同じであり、同一部分には同一符号が付し
てある。
FIGS. 6 and 7 show another embodiment of the present invention. In a configuration similar to that shown in FIGS. 1 to 5, two radiation shielding plates 19 are used as ventilation passages. Instead of providing the through holes 20, two radiation shielding plates 1
At the upper end side and the lower end side of 9, notches 24 penetrating in the thickness direction so as to be out of phase with each other are provided in a staggered manner in the width direction. Other configurations are the same as those shown in FIGS. 1 to 5, and the same portions are denoted by the same reference numerals.

【0019】図6及び図7に示すように構成しても、図
1乃至図5に示す実施の形態の場合と同様な作用効果を
奏し得る。
The configuration shown in FIGS. 6 and 7 can provide the same operation and effects as those of the embodiment shown in FIGS.

【0020】なお、上記実施の形態では、セル室3の冷
却空気入口13及び出口14に、それぞれ2枚の放射線
遮蔽板19を配置した場合を示したが、3枚以上として
もよいこと、その他本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
In the above embodiment, two radiation shielding plates 19 are arranged at the cooling air inlet 13 and the cooling air inlet 14 of the cell chamber 3, respectively. However, three or more radiation shielding plates 19 may be provided. It goes without saying that various changes can be made without departing from the spirit of the present invention.

【0021】[0021]

【発明の効果】以上述べた如く、本発明のガラス固化体
貯蔵施設によれば、コンクリート製セル室内にガラス固
化体を貯蔵して冷却空気を流すようにしてあるガラス固
化体貯蔵施設における上記セル室の冷却空気出入口とな
る通気口内に、複数枚の放射線遮蔽板を、冷却空気の流
れ方向に所要間隔を隔てて重なるように並べて配置し、
且つ該各放射線遮蔽板の所要個所に、冷却空気を流通さ
せるための通気流路を、隣り合う放射線遮蔽板同士で互
いに位相がずれるように設けた構成とし、又、放射線遮
蔽板を、前後2枚の鉄板と該2枚の鉄板の間に配置する
ポリエチレン板とのサンドイッチ構造とした構成として
あるので、冷却空気は放射線遮蔽板の通気流路を通り抜
けることができることにより、セル室内の冷却空気の流
通性を確保することができると共に、放射線は複数枚の
放射線遮蔽板により確実に遮蔽することができ、この
際、主要放射線であるγ線に対しては放射線遮蔽板の前
側の鉄板により減衰効果を与えることができ、中性子線
に対してはポリエチレン板により減衰効果を与えること
ができ、且つ中性子とポリエチレン板との相互作用によ
り放出された二次生成放射線には後側の鉄板で遮蔽する
ことができ、したがって、通気口に面するセル室の外側
の壁厚を薄くすることができると共に、通気口に連通す
る吸気通路や排気塔の上端位置を低く設定することが可
能となり、更に、放射線遮蔽板を分解可能とした構成と
することにより、ポリエチレン板の交換を容易に行うこ
とができる、等の優れた効果を発揮する。
As described above, according to the vitrified material storage facility of the present invention, the above-mentioned cell in the vitrified material storage facility in which the vitrified material is stored in the concrete cell chamber and the cooling air is caused to flow therethrough. A plurality of radiation shielding plates are arranged side by side so as to overlap at a required interval in a flow direction of the cooling air, in a ventilation opening serving as a cooling air inlet / outlet of the chamber,
In addition, ventilation passages for circulating cooling air are provided at required positions of the respective radiation shielding plates so that adjacent radiation shielding plates are out of phase with each other. The cooling air can pass through the ventilation flow path of the radiation shielding plate because of the sandwiched structure of the iron plate and the polyethylene plate disposed between the two iron plates. Radiation can be ensured, and radiation can be reliably shielded by a plurality of radiation shielding plates. At this time, the main radiation γ-rays are attenuated by the iron plate in front of the radiation shielding plates Neutron beam can be attenuated by the polyethylene plate, and the secondary products released by the interaction between the neutron and the polyethylene plate Radiation can be shielded by the iron plate on the rear side, so that the outer wall thickness of the cell chamber facing the vent can be reduced, and the upper end position of the intake passage and the exhaust tower communicating with the vent can be reduced. It is possible to set a low value, and furthermore, by adopting a configuration in which the radiation shielding plate can be disassembled, excellent effects such as easy replacement of the polyethylene plate are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガラス固化体貯蔵施設の実施の一形態
を示す概要図である。
FIG. 1 is a schematic diagram showing one embodiment of a vitrified material storage facility of the present invention.

【図2】図1のA部拡大図である。FIG. 2 is an enlarged view of a portion A in FIG.

【図3】図2のB−B方向矢視図である。FIG. 3 is a view taken in the direction of arrows BB in FIG. 2;

【図4】放射線遮蔽板の斜視図である。FIG. 4 is a perspective view of a radiation shielding plate.

【図5】図4のC部拡大図である。FIG. 5 is an enlarged view of a portion C in FIG. 4;

【図6】本発明の実施の他の形態を示すもので、図1の
A部に相当する拡大図である。
6 shows another embodiment of the present invention, and is an enlarged view corresponding to a portion A in FIG. 1. FIG.

【図7】図6のD−D方向矢視図である。FIG. 7 is a view in the direction of arrows DD in FIG. 6;

【図8】ガラス固化体貯蔵施設の一例を示す概要図であ
る。
FIG. 8 is a schematic view showing an example of a vitrified storage facility.

【符号の説明】[Explanation of symbols]

3 セル室 12 冷却空気 13 冷却空気入口(通気口) 14 冷却空気出口(通気口) 17 鉄板 18 ポリエチレン板 19 放射線遮蔽板 20 貫通孔(通気流路) 24 切欠き(通気流路) 3 Cell Room 12 Cooling Air 13 Cooling Air Inlet (Vent) 14 Cooling Air Outlet (Vent) 17 Iron Plate 18 Polyethylene Plate 19 Radiation Shielding Plate 20 Through Hole (Vent Flow Channel) 24 Notch (Vent Flow Channel)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート製セル室内にガラス固化体
を貯蔵して冷却空気を流すようにしてあるガラス固化体
貯蔵施設における上記セル室の冷却空気出入口となる通
気口内に、複数枚の放射線遮蔽板を、冷却空気の流れ方
向に所要間隔を隔てて重なるように並べて配置し、且つ
該各放射線遮蔽板の所要個所に、冷却空気を流通させる
ための通気流路を、隣り合う放射線遮蔽板同士で互いに
位相がずれるように設けた構成を有することを特徴とす
るガラス固化体貯蔵施設。
1. A plurality of radiation shielding plates are provided in an air vent serving as a cooling air inlet / outlet of said cell room in a vitrified material storage facility in which a vitrified material is stored in a concrete cell room to flow cooling air. Are arranged side by side so as to overlap at a required interval in the flow direction of the cooling air, and at a required position of each radiation shielding plate, a ventilation flow path for flowing cooling air is formed between adjacent radiation shielding plates. A vitrified material storage facility having a configuration provided so as to be out of phase with each other.
【請求項2】 放射線遮蔽板を、前後2枚の鉄板と該2
枚の鉄板の間に配置するポリエチレン板とのサンドイッ
チ構造とした請求項1記載のガラス固化体貯蔵施設。
2. A radiation shielding plate comprising: two front and rear iron plates;
The vitrified material storage facility according to claim 1, wherein the vitrified material storage facility has a sandwich structure with a polyethylene plate disposed between two iron plates.
【請求項3】 放射線遮蔽板を分解可能とした請求項2
記載のガラス固化体貯蔵施設。
3. The radiation shielding plate can be disassembled.
A vitrified storage facility as described.
JP2001012239A 2001-01-19 2001-01-19 Glass solidified body storing facility Pending JP2002214392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012239A JP2002214392A (en) 2001-01-19 2001-01-19 Glass solidified body storing facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012239A JP2002214392A (en) 2001-01-19 2001-01-19 Glass solidified body storing facility

Publications (1)

Publication Number Publication Date
JP2002214392A true JP2002214392A (en) 2002-07-31

Family

ID=18879281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012239A Pending JP2002214392A (en) 2001-01-19 2001-01-19 Glass solidified body storing facility

Country Status (1)

Country Link
JP (1) JP2002214392A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267902A (en) * 2007-04-18 2008-11-06 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
JP2010281832A (en) * 2010-08-23 2010-12-16 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
CN104681115A (en) * 2015-02-28 2015-06-03 中科华核电技术研究院有限公司 Glass solidifying body protection system
WO2019183995A1 (en) * 2018-03-27 2019-10-03 深圳市中核共创科技有限公司 Concrete void detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267902A (en) * 2007-04-18 2008-11-06 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
JP2010281832A (en) * 2010-08-23 2010-12-16 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
CN104681115A (en) * 2015-02-28 2015-06-03 中科华核电技术研究院有限公司 Glass solidifying body protection system
WO2019183995A1 (en) * 2018-03-27 2019-10-03 深圳市中核共创科技有限公司 Concrete void detection system

Similar Documents

Publication Publication Date Title
ES2215141T3 (en) SPORTS DEVICE FOR NEUTRON PRODUCTION.
JP2002214392A (en) Glass solidified body storing facility
Arena et al. The design of the DONES lithium target system
JP3810589B2 (en) Radioactive waste storage facility
CN216007940U (en) Anti-radiation structure of gamma knife machine room
CN209357469U (en) Nuclear power station ventilating hole channel structure and spentnuclear fuel Dry storage device
WO2023087501A1 (en) Passive residual heat removal device and miniature horizontal reactor system
JP2003167095A (en) Cask storage facility
JP6302264B2 (en) Cooling equipment and nuclear equipment
JP2017201260A (en) Radioactive waste storage facility
JP5875942B2 (en) Radioactive material storage facility
JP4609291B2 (en) Equipment for reducing pressure loss in radioactive material storage facilities
JP2001099993A (en) Radioactive substance dry storage facility
JP2001311796A (en) Solidified glass storage facilities
JP2004045230A (en) Facility for storing radioactive substance
JP2013250198A (en) Cooling storage facility for radioactive waste body
KR20100081865A (en) Equipments to reduce the temperatures in concrete structure for storing spent nuclear fuel
JP5346893B2 (en) Radioactive material storage facility
JP3921856B2 (en) Radioactive material dry storage facility
JP2001235598A (en) Radioactive material dry storage facility
JPH05281400A (en) Ventilation hole device for electron irradiation device
JPH1184089A (en) Radioactive material storage facility
JP2008267902A (en) Radioactive material storage facility
JP2001311795A (en) Solidified glass storage facilities
RU2023123693A (en) LIQUID SALT NUCLEAR REACTOR WITH BUILT-IN PRIMARY HEAT EXCHANGER AND ELECTRIC GENERATOR CONTAINING SUCH REACTOR