JP3921856B2 - Radioactive material dry storage facility - Google Patents

Radioactive material dry storage facility Download PDF

Info

Publication number
JP3921856B2
JP3921856B2 JP36895198A JP36895198A JP3921856B2 JP 3921856 B2 JP3921856 B2 JP 3921856B2 JP 36895198 A JP36895198 A JP 36895198A JP 36895198 A JP36895198 A JP 36895198A JP 3921856 B2 JP3921856 B2 JP 3921856B2
Authority
JP
Japan
Prior art keywords
storage
shield
storage chamber
air
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36895198A
Other languages
Japanese (ja)
Other versions
JP2000193793A (en
Inventor
仁 清水
紘一 真木
圭一郎 柴田
将史 小田
直己 熊谷
秀俊 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36895198A priority Critical patent/JP3921856B2/en
Priority to TW088120923A priority patent/TW444209B/en
Priority to US09/468,317 priority patent/US6430248B1/en
Publication of JP2000193793A publication Critical patent/JP2000193793A/en
Priority to US09/961,299 priority patent/US6501814B1/en
Application granted granted Critical
Publication of JP3921856B2 publication Critical patent/JP3921856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Ventilation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発熱を伴う放射性物質の乾式貯蔵施設に係り、特に高レベル放射性廃棄物や原子力発電所から発生する放射性物質等の放射性物質を貯蔵する施設に関する。
【0002】
【従来の技術】
原子力発電所から発生する放射性物質集合体は、ウラン及びプルトニウム等の再使用可能な核燃料物質を回収するために再処理するが、このときに発生する高レベル放射性廃棄物はガラス固化される。この放射性廃棄物ガラス固化体は崩壊熱が発生するため、発熱量が小さくなり処分が可能になるまでの間冷却しながら貯蔵する必要がある。また、放射性物質集合体は、再処理されるまでの間原子力発電所内の貯蔵プールに保管されるが、年々増大する放射性物質集合体に原子力発電所内の貯蔵プールが容量不足となり、長期間貯蔵可能な新たな貯蔵施設の建設が望まれている。
【0003】
これらの目的に対応した放射性物質貯蔵施設としては、放射性廃棄物ガラス固化体及び放射性物質集合体を周囲に流れる空気によって冷却しながら貯蔵する放射性物質乾式貯蔵施設がある。放射性物質の乾式貯蔵施設の例としては、特公平5−273392号公報及び特公平8−43591号公報に記載された貯蔵施設がある。
【0004】
特公平5−273392 号公報に示された放射性物質乾式貯蔵施設は、放射線遮蔽材料によって構成された隔壁を持つコンクリート製建屋内の貯蔵室に設置された収納管内に、放射性の放射性物質集合体を収納して貯蔵する。収納管内の放射性物質から発生する崩壊熱は、天井スラブと床スラブとの間に形成される冷却空気通路内の収納管相互間を水平方向に流れる空気によって除去される。
【0005】
一方、遮蔽構造に関する例は、特公平8−43591号公報に記載された貯蔵施設がある。
【0006】
特公平8−43591号公報に記載された放射性物質乾式貯蔵施設は、放射性物質を取り囲む材質に耐熱性のある樹脂を使用することを特徴とする。
【0007】
【発明が解決しようとする課題】
特公平5−273392 号に示された放射性物質乾式貯蔵施設は、放射性物質から発生する放射線の遮蔽は施設の壁によって達成するとしているだけで、遮蔽性能に関する検討はなされていない。
【0008】
また、特公平8−43591号公報に示された貯蔵施設については、構造材の一部を放射線に対する遮蔽能を有する物質で構成することによって、遮蔽するためだけの構造物を削減できるが、冷却性能と合わせた検討はなされていない。
【0009】
これらの放射性物質乾式貯蔵施設においては、冷却するための構造、あるいは遮蔽能のためだけに関する考察に基づいて構造の検討はされているが、放射線の遮蔽に関する検討はなされていない。
【0010】
放射性物質乾式貯蔵施設は、貯蔵する放射性物質の崩壊熱を空気流で除熱するため、貯蔵施設には、空気の取り入れ口あるいは空気排気口の開口部が必要である。冷却空気流については、開口が広いほどあるいは直線的な流路であるほど空気流の流動抵抗が小さく、施設に対して効率よく冷却できる。一方、放射線の遮蔽に関しては、大きな開口あるいは直線的な空気の流路では、遮蔽性能が低下する。このため、冷却と遮蔽の2つの性能が両立する施設が必要である。
【0011】
本発明の目的は、冷却性能を著しく損なうことがなく、遮蔽性能が高い放射性物質乾式貯蔵施設を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成する第1発明の特徴は、放射性物質を内蔵した容器を内部に貯蔵する貯蔵室を備え、放射性物質から放出する放射線が冷却空気の流入口および排出口から外部に放出されることを防ぐ施設の遮蔽構造において、貯蔵室の周囲に放射線に対する遮蔽効果を有する構造物で覆う構造とすることにある。とくに、遮蔽性能を持つ構造体の配置を冷却空気の流入口あるいは排出口に向かう放射線を低減するようにする。これにより、空気の流入口及び排出口に向かう放射線を効率よく遮蔽することができる。
【0013】
上記の目的を達する第2発明の特徴は、第1発明の特徴に加えて、遮蔽体の形状が冷却空気の流れに対する妨げを小さくする事により、遮蔽性能が低下することなく冷却性能の低下を小さくすることができる。
【0014】
上記の他の目的を達成する第3発明の特徴は、第1発明の特徴に加えて、遮蔽体を放射性物質を収納する収納容器と熱的に接続することにより、遮蔽体が冷却空気により冷却されるため、収納容器が遮蔽体に覆われることによる冷却性能の低下を防ぐことができる。
【0015】
上記の目的を達成する第4発明の特徴は、放射性物質を収納する収納容器と同等な形状の遮蔽体にすることにより、異なった形状の遮蔽体を使用することがなくなり、施設構造が簡素化できる特徴がある。
【0016】
【発明の実施の形態】
本発明の好適な一実施例である放射性物質乾式貯蔵施設を、図1を用いて説明する。本実施例の放射性物質乾式貯蔵施設1は、原子力発電所から発生した放射性物質集合体を貯蔵する施設である。この施設はコンクリート製の建屋からなり、内部に放射性物質を収納する収納管2,収納管2が配置されて、放射性物質を取り囲む外壁が放射線を遮蔽するための性能を持つ貯蔵室3,放射性物質を冷却する空気を取り込む空気流入口4、及び冷却した空気を排出する排出口5が貯蔵室3に連絡される。放射性物質を遮蔽するための遮蔽体6が、貯蔵室3内で、空気の入口側及び出口側に設置される。空気の流れ7によって、放射性物質からの発熱が除去される。また、図1における貯蔵室の平面図を図2を用いて説明する。放射性物質を収納する収納管に対して、空気流の流れ方向7に対して円柱状である上流側の遮蔽体6−aと下流側の遮蔽体6−bを設置する。
【0017】
この構造によると、収納管内に収納されている放射性物質から放射された放射線のうち、空気流の開口部に向かう成分は、直接収納管から放射された成分と、収納管から放射された成分のうち遮蔽体を透過した成分の和になる。この両者の比は、開口部から収納管を見込む立体角と遮蔽体を透過する透過率を考慮した遮蔽体を見込む立体角の比で定まる。このため、遮蔽体を通過する放射線の透過率を小さくすること、あるいは、開口部から直接収納管を見込む立体角を小さくすることで、開口部に向かう放射線量を低減することができる。
【0018】
図2に示す位置に遮蔽体を配置することで、収納管から放出された放射線のうち、空気の流れ方向に向かう放射線は遮蔽体を通過することになる。遮蔽体を通過する成分は遮蔽体により吸収され減衰するので、直接開口部に向かう放射線量を低減することができる。また、同時に開口部から直接収納管を見込む立体角を小さくできるので、遮蔽体内を通過せず直接開口部に向かう放射線量を低減することができる。このため、貯蔵室に貯蔵された放射性物質から放射され、開口部に向かう放射線量が低減できるので、空気の流れ方向の最上流側と最下流側にある施設の開口部から放射性物質貯蔵施設の外部に放出される放射線量を低減することができる。
【0019】
一方、収納管の上流側と下流側に遮蔽体を設置したことによる空気の流れの抵抗は増加するが、収納管の形状と同等な形状にすることによって、その増加分を小さくすることができ、冷却性能を大幅に低下することなく、前記開口に向かう放射線量を低減することができる。
【0020】
図2に示す遮蔽体による遮蔽性能を、(数1)を用いて説明する。(数1)は放射線の進行方向に対する遮蔽体の厚みをaとしたときの遮蔽体を通過する放射線量との関係を示したもので、通過するエネルギーEである放射線に対する遮蔽体の吸収係数σ(E)とし、遮蔽体を通過する前後の線量をそれぞれ、μo ,μとすると、(数1)に示す関係式が成立する。
【0021】
【数1】

Figure 0003921856
【0022】
(数1)に示すように材質が厚いほど遮蔽性能が高いことがわかる。また、同様に、遮蔽性能として必要な最小限の遮蔽体厚みを求めることができる。
【0023】
遮蔽体構造の他の実施例を図3を用いて説明する。遮蔽体はパイプで構成し、その肉厚を(数1)を用いて求めた必要な遮蔽効果を得る厚みとする。この実施例によれば、パイプ状の遮蔽体構造であっても、棒状の遮蔽体と同等な性能を持つ遮蔽体を得ることができる。
【0024】
図4は、放射性物質を収納する貯蔵室における遮蔽体配置を示す他の実施例である。この実施例は、図2に示す2列の遮蔽体のうち収納管に近い遮蔽体を収納管に接続し、遮蔽効果を持たせた収納管の実施例である。この実施例による収納管に遮蔽体を接続した事による除熱性の低下を検討する。
【0025】
遮蔽体を付けた事による収納管表面での温度上昇は、(数2)によって求めることができる。ここで、Δθは上昇する温度、δは遮蔽体の厚み、λは遮蔽体の熱伝導率である。
【0026】
【数2】
Figure 0003921856
【0027】
遮蔽体を接続したことによる遮蔽性能と除熱性能を(数1)及び(数2)より求めた結果を図5に示す。図5は、遮蔽体を鉄とし、放射線のエネルギーを1MeVとした場合の結果を示したものである。図5より、その厚みを10cmにした場合、放射線としてガンマ線を例にすると、エネルギーが1MeVであった場合、遮蔽体による放射線の減衰率は約1/100に低減することができる。これに対して、遮蔽体を通る熱流束が100W/mの場合で温度上昇は約0.1 度、熱流束が1kW/mの場合で温度上昇は1度である。このため、上記検討した程度の放射線エネルギーあるいは熱流束であれば、遮蔽体の接続による収納管の温度上昇は小さく、除熱性能の低下は小さいことがわかる。この実施例によれば、2列目の遮蔽体と収納管との間を隙間なくすることができるので、貯蔵室の流れ方向の大きさを小さくすることができる。
【0028】
図6は、放射性物質を収納する貯蔵室における遮蔽体配置を示す他の実施例である。図6に示す実施例は、図2に示す実施例で千鳥配置した放射性物質を収納した収納管を碁盤目状に配置した場合における遮蔽体の配置を示す実施例である。本実施例によれば、収納管の配置方法を変えた場合においても、空気流の開口部に向かう放射線を低減することができる。
【0029】
図7は、放射性物質を収納する貯蔵室における遮蔽体配置を示す他の実施例である。図7に示す実施例は、図6に示す実施例に空気流に対して直交方向の間隔の中央部の最上流,最下流の位置に遮蔽体を設置した実施例である。本実施例によると、収納管から放出され放射線のうち、収納管と収納管の間を通過した成分が直接開口部に向かうことを防ぐことができる。
【0030】
図8は、放射性物質を収納する貯蔵室における遮蔽体配置を示す他の実施例である。図8に示す実施例は、図7に示す実施例の遮蔽体のうち、放射性物質を収納する収納管に近い遮蔽体を空気の流れ方向に延長した遮蔽体形状とした実施例である。本実施例によると、収納管と収納管の間を通過する放射線の量を低減することができ、しかも、開口部から直接収納管を見込む立体角をさらに低減することができる。
【0031】
図9は、放射性物質を収納する貯蔵室における遮蔽体配置を示す他の実施例である。図9に示す実施例は、図8に示す実施例の遮蔽体のうち、遮蔽体の空気の流れ方向に延長した遮蔽体形状とした実施例である。本実施例によると、収納管と収納管の間を通過する放射線の量を低減することができ、しかも、開口部から直接収納管を見込む立体角をさらに低減することができる。
【0032】
図10は、放射性物質を収納する貯蔵室における遮蔽体配置を示す他の実施例である。図10は、図4に示す収納管に直接接続した遮蔽体における他の形状の遮蔽体の形状を示す実施例である。本実施例によると空気の流れ方向と遮蔽体系状のくさび頂点方向を一致することにより、空気流の遮蔽体による流れの抵抗を小さくすることができる。
【0033】
【発明の効果】
第1発明によれば、放射性物質から放射された放射線のうち、空気の流入出部に向かう成分を遮蔽体により遮蔽することができるので、施設の開口部に向かう放射線量を低減することができる。
【0034】
第2発明によれば、遮蔽体を設置した事による空気の流れに対する抵抗の増加を小さくすることができ、空気の流れによる冷却性能の低下を低減することができる。
【0035】
第3発明によれば、遮蔽体を収納管に密着して設置する場合、遮蔽体による冷却効率の低下を低減することができる。
【0036】
第4発明によれば、遮蔽体を収納管の配置と同等に配置することにより、空気の流れに対する抵抗の増加を小さくすることができ、空気の流れによる冷却性能の低下を低減することができる。
【図面の簡単な説明】
【図1】本発明の好適な一実施例である放射性物質乾式貯蔵施設の縦断面図である。
【図2】図1の実施例における放射性物質を貯蔵する貯蔵室の平面図である。
【図3】遮蔽体構造の他の実施例を示す図である。
【図4】遮蔽体の配置を示す収納室の平面図である。
【図5】遮蔽体の厚みによる上昇温度と減衰率との関係を示す図である。
【図6】遮蔽体の配置を示す収納室の平面図である。
【図7】遮蔽体の配置を示す収納室の平面図である。
【図8】遮蔽体の配置を示す収納室の平面図である。
【図9】遮蔽体の配置を示す収納室の平面図である。
【図10】遮蔽体の形状を示す収納室の平面図である。
【符号の説明】
1…放射性物質乾式貯蔵施設、2…収納管、3…貯蔵室、4…空気流入口、5…空気排出口、6…遮蔽体、7…空気の流れ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry storage facility for radioactive materials that generate heat, and more particularly to a facility for storing radioactive materials such as high-level radioactive waste and radioactive materials generated from nuclear power plants.
[0002]
[Prior art]
Radioactive material aggregates generated from nuclear power plants are reprocessed to recover reusable nuclear fuel materials such as uranium and plutonium, and the high level radioactive waste generated at this time is vitrified. Since this radioactive waste vitrified body generates decay heat, it is necessary to store it while cooling until the calorific value becomes small and disposal becomes possible. In addition, radioactive material aggregates are stored in the storage pool in the nuclear power plant until they are reprocessed, but the storage pool in the nuclear power plant becomes insufficient due to the radioactive material aggregates that are increasing year by year and can be stored for a long time. Construction of a new storage facility is desired.
[0003]
As a radioactive material storage facility corresponding to these purposes, there is a radioactive material dry storage facility that stores radioactive waste vitrified bodies and radioactive material aggregates while cooling them with air flowing around them. Examples of radioactive material dry storage facilities include storage facilities described in Japanese Patent Publication No. 5-273392 and Japanese Patent Publication No. 8-43591.
[0004]
The radioactive material dry storage facility disclosed in Japanese Examined Patent Publication No. 5-273392 has a radioactive radioactive material aggregate placed in a storage pipe installed in a storage room of a concrete building having a partition wall made of radiation shielding material. Store and store. The decay heat generated from the radioactive material in the storage pipe is removed by the air flowing in the horizontal direction between the storage pipes in the cooling air passage formed between the ceiling slab and the floor slab.
[0005]
On the other hand, an example of a shielding structure is a storage facility described in Japanese Patent Publication No. 8-43591.
[0006]
The radioactive substance dry storage facility described in Japanese Patent Publication No. 8-43591 is characterized by using a heat-resistant resin as a material surrounding the radioactive substance.
[0007]
[Problems to be solved by the invention]
In the radioactive material dry storage facility shown in Japanese Patent Publication No. 5-273392, the shielding of radiation generated from the radioactive material is only achieved by the wall of the facility, and the shielding performance has not been studied.
[0008]
In addition, for the storage facility disclosed in Japanese Patent Publication No. 8-43591, by constructing a part of the structural material with a substance having a shielding ability against radiation, it is possible to reduce the structure only for shielding. No consideration has been given to performance.
[0009]
In these radioactive material dry storage facilities, the structure is examined based on the structure for cooling or the consideration only for the shielding ability, but the radiation shielding is not studied.
[0010]
In the radioactive material dry storage facility, the decay heat of the radioactive material to be stored is removed by the air flow. Therefore, the storage facility requires an air intake port or an air exhaust port opening. As for the cooling air flow, the wider the opening or the straight flow path, the smaller the flow resistance of the air flow, and the more efficiently the facility can be cooled. On the other hand, with respect to shielding of radiation, shielding performance is degraded in a large opening or a straight air flow path. For this reason, a facility in which the two performances of cooling and shielding are compatible is necessary.
[0011]
An object of the present invention is to provide a radioactive material dry storage facility having high shielding performance without significantly impairing cooling performance.
[0012]
[Means for Solving the Problems]
A feature of the first invention that achieves the above object is that a storage chamber for storing a container containing a radioactive substance therein is provided, and radiation emitted from the radioactive substance is emitted to the outside from an inlet and an outlet of cooling air. In the shielding structure of the facility which prevents this, the structure is to cover the storage room with a structure having a shielding effect against radiation. In particular, the arrangement of the structure having shielding performance is designed to reduce the radiation toward the cooling air inlet or outlet. Thereby, the radiation which goes to the inflow port and discharge port of air can be shielded efficiently.
[0013]
The feature of the second invention that achieves the above object is that, in addition to the feature of the first invention, the shape of the shield reduces the hindrance to the flow of cooling air, thereby reducing the cooling performance without lowering the shielding performance. Can be small.
[0014]
In addition to the features of the first invention, the feature of the third invention that achieves the above-mentioned other object is that the shield is cooled by cooling air by thermally connecting the shield to a storage container that stores the radioactive substance. Therefore, it is possible to prevent a decrease in cooling performance due to the storage container being covered with the shield.
[0015]
The feature of the fourth invention that achieves the above object is that the use of a shield having the same shape as the storage container for storing the radioactive substance eliminates the use of a shield having a different shape, thereby simplifying the facility structure. There are features that can be done.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A radioactive material dry storage facility according to a preferred embodiment of the present invention will be described with reference to FIG. The radioactive material dry storage facility 1 of the present embodiment is a facility for storing a radioactive material aggregate generated from a nuclear power plant. This facility consists of a concrete building, with storage tubes 2 and 2 that store radioactive materials inside, and a storage room 3 that has the ability to shield radiation from the outer wall that surrounds the radioactive materials. An air inlet 4 for taking in air for cooling the air and an outlet 5 for discharging the cooled air are connected to the storage chamber 3. Shields 6 for shielding radioactive substances are installed in the storage chamber 3 on the air inlet side and the outlet side. The heat flow from the radioactive material is removed by the air flow 7. Moreover, the top view of the storage chamber in FIG. 1 is demonstrated using FIG. An upstream shielding body 6-a and a downstream shielding body 6-b that are cylindrical with respect to the flow direction 7 of the air flow are installed in the storage pipe that stores the radioactive substance.
[0017]
According to this structure, of the radiation radiated from the radioactive material stored in the storage tube, the component directed to the opening of the air flow is the component radiated directly from the storage tube and the component radiated from the storage tube. Of these, the sum of the components transmitted through the shield. The ratio between the two is determined by the ratio of the solid angle at which the storage tube is viewed from the opening and the solid angle at which the shield is viewed in consideration of the transmittance through the shield. For this reason, the radiation dose toward the opening can be reduced by reducing the transmittance of the radiation passing through the shield, or by reducing the solid angle at which the storage tube is directly viewed from the opening.
[0018]
By disposing the shield at the position shown in FIG. 2, among the radiation emitted from the storage tube, the radiation toward the air flow direction passes through the shield. Since the component passing through the shield is absorbed and attenuated by the shield, the amount of radiation directly directed to the opening can be reduced. At the same time, the solid angle at which the storage tube is directly seen from the opening can be reduced, so that the radiation dose directly toward the opening without passing through the shielding body can be reduced. For this reason, the amount of radiation emitted from the radioactive material stored in the storage room and directed toward the opening can be reduced, so that the radioactive material storage facility is opened from the opening of the facility on the most upstream side and the most downstream side in the air flow direction. The amount of radiation emitted to the outside can be reduced.
[0019]
On the other hand, the resistance of the air flow due to the installation of the shields on the upstream and downstream sides of the storage tube increases, but the increase can be reduced by making the shape equivalent to the shape of the storage tube. The radiation dose toward the opening can be reduced without significantly reducing the cooling performance.
[0020]
The shielding performance by the shield shown in FIG. 2 will be described using (Equation 1). (Equation 1) shows the relationship between the amount of radiation passing through the shielding body when the thickness of the shielding body with respect to the traveling direction of radiation is a, and the absorption coefficient σ of the shielding body with respect to radiation that is energy E passing through. Assuming that (E) and the dose before and after passing through the shield are μ o and μ, respectively, the relational expression shown in (Expression 1) is established.
[0021]
[Expression 1]
Figure 0003921856
[0022]
As shown in (Equation 1), the thicker the material, the higher the shielding performance. Similarly, the minimum shield thickness necessary for the shielding performance can be obtained.
[0023]
Another embodiment of the shield structure will be described with reference to FIG. The shielding body is constituted by a pipe, and the thickness thereof is set to a thickness for obtaining a necessary shielding effect obtained by using (Equation 1). According to this embodiment, even with a pipe-shaped shield structure, a shield having performance equivalent to that of a rod-shaped shield can be obtained.
[0024]
FIG. 4 is another embodiment showing a shield arrangement in a storage room for storing radioactive substances. This embodiment is an embodiment of a storage tube having a shielding effect obtained by connecting a shield close to the storage tube among the two rows of shields shown in FIG. 2 to the storage tube. The reduction of the heat removal property due to the connection of the shield to the storage tube according to this embodiment will be examined.
[0025]
The temperature rise on the surface of the storage tube due to the attachment of the shield can be obtained by (Equation 2). Here, Δθ is the rising temperature, δ is the thickness of the shield, and λ is the thermal conductivity of the shield.
[0026]
[Expression 2]
Figure 0003921856
[0027]
FIG. 5 shows the results of obtaining the shielding performance and heat removal performance by connecting the shielding body from (Equation 1) and (Equation 2). FIG. 5 shows the results when the shield is iron and the radiation energy is 1 MeV. From FIG. 5, when the thickness is 10 cm and gamma rays are taken as an example of radiation, when the energy is 1 MeV, the attenuation rate of radiation by the shield can be reduced to about 1/100. On the other hand, when the heat flux through the shield is 100 W / m, the temperature rise is about 0.1 degree, and when the heat flux is 1 kW / m, the temperature rise is 1 degree. For this reason, it can be seen that if the radiation energy or heat flux is as examined above, the temperature rise of the storage tube due to the connection of the shield is small and the degradation of the heat removal performance is small. According to this embodiment, since there is no gap between the second row of shields and the storage tube, the size of the storage chamber in the flow direction can be reduced.
[0028]
FIG. 6 is another embodiment showing a shield arrangement in a storage room for storing a radioactive substance. The embodiment shown in FIG. 6 is an embodiment showing the arrangement of the shield when the storage tubes containing the radioactive substances arranged in a staggered manner in the embodiment shown in FIG. 2 are arranged in a grid pattern. According to this embodiment, even when the arrangement method of the storage tube is changed, the radiation toward the opening of the airflow can be reduced.
[0029]
FIG. 7 is another embodiment showing a shield arrangement in a storage room for storing radioactive substances. The embodiment shown in FIG. 7 is an embodiment in which a shielding body is installed at the most upstream and downstream positions in the center of the interval perpendicular to the air flow in the embodiment shown in FIG. According to the present embodiment, it is possible to prevent a component of the radiation emitted from the storage tube and having passed between the storage tube from going directly to the opening.
[0030]
FIG. 8 is another embodiment showing a shield arrangement in a storage room for storing a radioactive substance. The embodiment shown in FIG. 8 is an embodiment of the shield body of the embodiment shown in FIG. 7 that has a shield body shape in which the shield body close to the storage tube for storing the radioactive substance is extended in the air flow direction. According to the present embodiment, the amount of radiation passing between the storage tube and the storage tube can be reduced, and the solid angle at which the storage tube is directly viewed from the opening can be further reduced.
[0031]
FIG. 9 is another embodiment showing a shield arrangement in a storage room for storing radioactive substances. The embodiment shown in FIG. 9 is an embodiment having a shielding body shape extending in the air flow direction of the shielding body among the shielding bodies of the embodiment shown in FIG. According to the present embodiment, the amount of radiation passing between the storage tube and the storage tube can be reduced, and the solid angle at which the storage tube is directly viewed from the opening can be further reduced.
[0032]
FIG. 10 is another embodiment showing a shield arrangement in a storage room for storing a radioactive substance. FIG. 10 is an embodiment showing another shape of the shield in the shield directly connected to the storage tube shown in FIG. According to the present embodiment, by matching the air flow direction and the wedge system apex direction of the shielding system, the flow resistance by the air flow shield can be reduced.
[0033]
【The invention's effect】
According to the first aspect of the present invention, the radiation emitted from the radioactive substance can be shielded by the shield from the component directed to the air inflow / outflow portion, so that the amount of radiation directed toward the opening of the facility can be reduced. .
[0034]
According to the second invention, an increase in resistance to the air flow due to the installation of the shield can be reduced, and a decrease in cooling performance due to the air flow can be reduced.
[0035]
According to the third aspect of the present invention, when the shield is installed in close contact with the storage tube, it is possible to reduce the decrease in cooling efficiency due to the shield.
[0036]
According to the fourth aspect of the present invention, by arranging the shield in the same manner as the storage tube, it is possible to reduce an increase in resistance to the air flow, and to reduce a decrease in cooling performance due to the air flow. .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a radioactive substance dry storage facility according to a preferred embodiment of the present invention.
FIG. 2 is a plan view of a storage chamber for storing a radioactive substance in the embodiment of FIG.
FIG. 3 is a view showing another embodiment of a shield structure.
FIG. 4 is a plan view of a storage chamber showing the arrangement of shields.
FIG. 5 is a diagram showing the relationship between the temperature rise due to the thickness of the shield and the attenuation rate.
FIG. 6 is a plan view of a storage chamber showing the arrangement of shields.
FIG. 7 is a plan view of a storage chamber showing the arrangement of shields.
FIG. 8 is a plan view of the storage chamber showing the arrangement of the shields.
FIG. 9 is a plan view of the storage chamber showing the arrangement of the shields.
FIG. 10 is a plan view of the storage chamber showing the shape of the shield.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Radioactive material dry-type storage facility, 2 ... Storage pipe, 3 ... Storage room, 4 ... Air inlet, 5 ... Air outlet, 6 ... Shield, 7 ... Air flow.

Claims (7)

放射性物質を内蔵した容器を収納する複数の収納管が内部に配置された貯蔵室と、前記容器を冷却するための空気を前記貯蔵室に取り込む空気吸入口と、前記貯蔵室から排出された前記空気を外部に排出する空気排出口と、収納管群よりも前記吸入口側、又は前記収納管群よりも前記排出口側で、前記貯蔵室内に設けられた複数の遮蔽体とを備え、
前記遮蔽体は、前記貯蔵室の天井スラブ、及び床スラブに接続して設けられ、
前記遮蔽体は、円柱状である放射性物質乾式貯蔵施設。
A storage chamber in which a plurality of storage tubes for storing a container containing a radioactive substance are disposed, an air intake port for taking air for cooling the container into the storage chamber, and the exhaust discharged from the storage chamber An air discharge port for discharging air to the outside, and a plurality of shields provided in the storage chamber on the suction port side of the storage tube group, or on the discharge port side of the storage tube group,
The shield is provided connected to a ceiling slab of the storage room and a floor slab,
The shield is a radioactive material dry storage facility having a cylindrical shape.
放射性物質を内蔵した容器を収納する複数の収納管が内部に配置された貯蔵室と、前記容器を冷却するための空気を前記貯蔵室に取り込む空気吸入口と、前記貯蔵室から排出された前記空気を外部に排出する空気排出口と、収納管群よりも前記吸入口側、又は前記収納管群よりも前記排出口側で、前記貯蔵室内に設けられた複数の遮蔽体とを備え、
前記遮蔽体は、前記貯蔵室の天井スラブの荷重を、前記貯蔵室の床スラブで支える構造を有し、
前記遮蔽体は、円柱状である放射性物質乾式貯蔵施設。
A storage chamber in which a plurality of storage tubes for storing a container containing a radioactive substance are disposed, an air intake port for taking air for cooling the container into the storage chamber, and the exhaust discharged from the storage chamber An air discharge port for discharging air to the outside, and a plurality of shields provided in the storage chamber on the suction port side of the storage tube group, or on the discharge port side of the storage tube group,
The shield has a structure for supporting the load of the ceiling slab of the storage room with the floor slab of the storage room,
The shield is a radioactive material dry storage facility having a cylindrical shape.
放射性物質を内蔵した容器を収納する複数の収納管が内部に配置された貯蔵室と、前記容器を冷却するための空気を前記貯蔵室に取り込む空気吸入口と、前記貯蔵室から排出された前記空気を外部に排出する空気排出口と、収納管群よりも前記吸入口側、又は前記収納管群よりも前記排出口側で、前記貯蔵室内に設けられた複数の遮蔽体とを備え、
前記遮蔽体は、前記貯蔵室の天井スラブ、及び床スラブに接続して設けられ、
前記遮蔽体は、パイプ状である放射性物質乾式貯蔵施設。
A storage chamber in which a plurality of storage tubes for storing a container containing a radioactive substance are disposed, an air intake port for taking air for cooling the container into the storage chamber, and the exhaust discharged from the storage chamber An air discharge port for discharging air to the outside, and a plurality of shields provided in the storage chamber on the suction port side of the storage tube group, or on the discharge port side of the storage tube group,
The shield is provided connected to a ceiling slab of the storage room and a floor slab,
The shield is a radioactive material dry storage facility in the form of a pipe.
放射性物質を内蔵した容器を収納する複数の収納管が内部に配置された貯蔵室と、前記容器を冷却するための空気を前記貯蔵室に取り込む空気吸入口と、前記貯蔵室から排出された前記空気を外部に排出する空気排出口と、収納管群よりも前記吸入口側、又は前記収納管群よりも前記排出口側で、前記貯蔵室内に設けられた複数の遮蔽体とを備え、
前記遮蔽体は、前記貯蔵室の天井スラブの荷重を、前記貯蔵室の床スラブで支え、
前記遮蔽体は、パイプ状である放射性物質乾式貯蔵施設。
A storage chamber in which a plurality of storage tubes for storing a container containing a radioactive substance are disposed, an air intake port for taking air for cooling the container into the storage chamber, and the exhaust discharged from the storage chamber An air discharge port for discharging air to the outside, and a plurality of shields provided in the storage chamber on the suction port side of the storage tube group, or on the discharge port side of the storage tube group,
The shield supports the load of the ceiling slab of the storage room with the floor slab of the storage room,
The shield is a radioactive material dry storage facility in the form of a pipe.
放射性物質を内蔵した容器を収納する複数の収納管が内部に配置された貯蔵室と、前記容器を冷却するための空気を前記貯蔵室に取り込む空気吸入口と、前記貯蔵室から排出された前記空気を外部に排出する空気排出口と、収納管群よりも前記吸入口側、又は前記収納管群よりも前記排出口側で、前記貯蔵室内に設けられた複数の遮蔽体とを備え、
前記遮蔽体は、前記貯蔵室の天井スラブ、及び床スラブに接続して設けられ、
前記収納管群に隣接する前記複数の遮蔽体、及び前記複数の収納管が碁盤目状に配置され、
前記収納管群に隣接する前記複数の遮蔽体、及び他の前記複数の遮蔽体が千鳥配置された放射性物質乾式貯蔵施設。
A storage chamber in which a plurality of storage tubes for storing a container containing a radioactive substance are disposed, an air intake port for taking air for cooling the container into the storage chamber, and the exhaust discharged from the storage chamber An air discharge port for discharging air to the outside, and a plurality of shields provided in the storage chamber on the suction port side of the storage tube group, or on the discharge port side of the storage tube group,
The shield is provided connected to a ceiling slab of the storage room and a floor slab,
The plurality of shields adjacent to the storage tube group, and the plurality of storage tubes are arranged in a grid pattern,
A radioactive material dry storage facility in which the plurality of shields adjacent to the storage tube group and the other plurality of shields are arranged in a staggered manner.
放射性物質を内蔵した容器を収納する複数の収納管が内部に配置された貯蔵室と、前記容器を冷却するための空気を前記貯蔵室に取り込む空気吸入口と、前記貯蔵室から排出された前記空気を外部に排出する空気排出口と、収納管群よりも前記吸入口側、又は前記収納管群よりも前記排出口側で、前記貯蔵室内に設けられた複数の遮蔽体とを備え、
前記遮蔽体は、前記貯蔵室の天井スラブの荷重を、前記貯蔵室の床スラブで支える構造を有し、
前記収納管群に隣接する前記複数の遮蔽体、及び前記複数の収納管が碁盤目状に配置され、
前記収納管群に隣接する前記複数の遮蔽体、及び他の前記複数の遮蔽体が千鳥配置された放射性物質乾式貯蔵施設。
A storage chamber in which a plurality of storage tubes for storing a container containing a radioactive substance are disposed, an air intake port for taking air for cooling the container into the storage chamber, and the exhaust discharged from the storage chamber An air discharge port for discharging air to the outside, and a plurality of shields provided in the storage chamber on the suction port side of the storage tube group, or on the discharge port side of the storage tube group,
The shield has a structure for supporting the load of the ceiling slab of the storage room with the floor slab of the storage room,
The plurality of shields adjacent to the storage tube group, and the plurality of storage tubes are arranged in a grid pattern,
A radioactive material dry storage facility in which the plurality of shields adjacent to the storage tube group and the other plurality of shields are arranged in a staggered manner.
請求項1乃至6の何れかに記載の放射性乾式貯蔵施設において、前記遮蔽体の材質が鉄である放射性乾式貯蔵施設。 The radioactive dry storage facility according to any one of claims 1 to 6, wherein the shield is made of iron.
JP36895198A 1998-12-24 1998-12-25 Radioactive material dry storage facility Expired - Lifetime JP3921856B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP36895198A JP3921856B2 (en) 1998-12-25 1998-12-25 Radioactive material dry storage facility
TW088120923A TW444209B (en) 1998-12-24 1999-11-30 Radioactive material dry storage facility
US09/468,317 US6430248B1 (en) 1998-12-24 1999-12-21 Dry radioactive substance storage facility
US09/961,299 US6501814B1 (en) 1998-12-24 2001-09-25 Dry radioactive substance storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36895198A JP3921856B2 (en) 1998-12-25 1998-12-25 Radioactive material dry storage facility

Publications (2)

Publication Number Publication Date
JP2000193793A JP2000193793A (en) 2000-07-14
JP3921856B2 true JP3921856B2 (en) 2007-05-30

Family

ID=18493181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36895198A Expired - Lifetime JP3921856B2 (en) 1998-12-24 1998-12-25 Radioactive material dry storage facility

Country Status (1)

Country Link
JP (1) JP3921856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814274B1 (en) * 2000-09-15 2002-11-29 Commissariat Energie Atomique INSTALLATION FOR STORING IRRADIATED FUEL OR RADIOACTIVE MATERIAL

Also Published As

Publication number Publication date
JP2000193793A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JPS6330791A (en) Device for maintaining heating element, particularly, substance such as radioactive substance under dry state
RU2606751C2 (en) Filtration device for filtering containing aerosol and/or gaseous iodine of gas stream
KR20210046812A (en) Flood and wind resistant ventilated modules for spent nuclear fuel storage
JPH0659073A (en) Nuclear reactor building and method of operation
JP4567839B2 (en) Radioactive material storage equipment
JP3921856B2 (en) Radioactive material dry storage facility
JPH0348560Y2 (en)
US6501814B1 (en) Dry radioactive substance storage facility
JP3810589B2 (en) Radioactive waste storage facility
KR100449792B1 (en) Method of controlling the temperature of a closed vessel containing radioactive substance, system for storing a closed vessel, and storage facility
JPH05509164A (en) BWR zero pressure containment vessel
JP2003167095A (en) Cask storage facility
JP2001099993A (en) Radioactive substance dry storage facility
JP2000187100A (en) Facility for dry storage of radioactive substance
JP2001099992A (en) Radioactive substance dry storage facility
JP3566971B2 (en) Radioactive material dry storage facility
JP2001235598A (en) Radioactive material dry storage facility
JPH1184068A (en) Storage facility for radioactive material
JP2001349987A (en) Radioactive material storage facility
JP3156982B2 (en) Reactor containment venting equipment
JP2001311796A (en) Solidified glass storage facilities
JP2000284094A (en) Radioactive material storage facility
GB2096520A (en) Dry storage cell for radioactive material
JP2001296392A (en) Radioactive material storage facility
JP4609291B2 (en) Equipment for reducing pressure loss in radioactive material storage facilities

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term