JP2004219151A - Spent fuel storage facility and its maintenance method - Google Patents

Spent fuel storage facility and its maintenance method Download PDF

Info

Publication number
JP2004219151A
JP2004219151A JP2003004525A JP2003004525A JP2004219151A JP 2004219151 A JP2004219151 A JP 2004219151A JP 2003004525 A JP2003004525 A JP 2003004525A JP 2003004525 A JP2003004525 A JP 2003004525A JP 2004219151 A JP2004219151 A JP 2004219151A
Authority
JP
Japan
Prior art keywords
canister
air
cells
spent fuel
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003004525A
Other languages
Japanese (ja)
Other versions
JP4109125B2 (en
Inventor
Masahiro Tsutagawa
雅洋 蔦川
Munetaka Takahashi
宗孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003004525A priority Critical patent/JP4109125B2/en
Publication of JP2004219151A publication Critical patent/JP2004219151A/en
Application granted granted Critical
Publication of JP4109125B2 publication Critical patent/JP4109125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce worker's dose in maintenance of a spent fuel storage facility. <P>SOLUTION: The spent fuel storage facility has a storage room 2 storing in the air, a plurality of canisters 1 containing spent nuclear fuel and surrounded by walls having radiation shield function, an intake tunnel 8 for taking air in the storage room, an exhaust tunnel 9 for exhausting air in the storage room, and a canister carriage room 3 arranged adjacent to the storage room and letting the canister pass for carrying a plurality of canisters to a specific location in the storage room. The storage room is partitioned into a plurality of cells 35a, 35b and 35c by partitioning walls 15 having radiation shield function, and each of cells is connected with both the intake tunnel and the exhaust tunnel. A maintenance method for the spent fuel storage facility has a moving process for moving the canister in a part of a plurality of cells to other cell. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は原子力発電施設から取り出された使用済み原子燃料(以下、単に「使用済み燃料」ともいう)の貯蔵施設のうち、使用済み燃料を収納したキャニスタ(収納容器)を輸送用キャスクから取り出し、これを建屋のコンクリートなどで周囲を囲まれた部屋で空気中に貯蔵する(ボールト方式の)乾式燃料貯蔵施設に関する。
【0002】
【従来の技術】
従来のボールト貯蔵方式の中間貯蔵施設について図14(a)〜(c)を用いて説明する。従来のボールト貯蔵方式の中間貯蔵施設は、使用済み燃料を封入したキャニスタ1を複数個並べて貯蔵する貯蔵室2と、その上部に、キャニスタ1を貯蔵室2内の所定の位置に運搬するための搬送室3を設け、搬送室床(貯蔵室天井)33によって上下に区分した部屋構成としている。貯蔵室2内には格子状もしくは千鳥状にキャニスタ1を密集配置した一つの空間として建屋寸法を最小化するよう計画されている。なお、貯蔵室2が地面31以下の位置になるよう、中間貯蔵施設全体が半地下構造になっている。
【0003】
キャニスタ1は、収納管内に収納して貯蔵する方式と、直接貯蔵室2の床上のキャニスタ基礎5上に設置する方式などがある。図14(a)の例では、図14(b)のように、除熱のためにキャニスタ1の周囲に鋼管6を設置し、これを貯蔵室2床上の基礎5の上に直接設置する方法を示している。
【0004】
他の例として、図14(c)に示すように、内部にキャニスタ1を収納した収納管4の上端を貯蔵室2天井から支持して下端を貯蔵室2床で振れ止めした構造もある。
【0005】
使用済み燃料からの発熱に対し、これを冷却するため、貯蔵室2には一方の壁から給気を行ない、他方の壁から排気するよう外部に通じる開口を有する冷却風路を設置し、外気による自然循環によりキャニスタ1を冷却するように構成されている。
【0006】
すなわち、建屋外部に開口した給気口7から取り入れられた空気は、給気風路8を通って貯蔵室2の下部の貯蔵室入口50から貯蔵室2に導かれ、キャニスタ1からの発熱を冷却する。暖められて密度が小さくなった空気は、貯蔵室2の上部の貯蔵室出口52から排気風路9へ導かれ、排気風路9を上昇して排気口10から建屋外部に放出される。排気口10は吸気口7よりも高い位置にある。これによって、空気密度の差に基づく自然循環力(煙突効果)が生じる。この煙突効果により貯蔵室2内は自然換気により外気が供給され、冷却空気を確保する仕組みになっている。
【0007】
ここで収納管方式では、キャニスタ1からの発熱は収納管4を介して空気流で冷却される。冷却はファンなどにより強制換気とする方法もあるが、外部動力を必要とせず行なえる自然換気は、安全上および保守作業軽減や経済性上からも好ましい。
【0008】
さらに、貯蔵室2の周囲あるいは貯蔵室2の上部の搬送室3ならびに敷地周辺に対して、貯蔵室2内のキャニスタ1内部に封入している使用済み燃料から発する中性子およびガンマ線などの放射線を遮蔽するため、貯蔵室2の壁、および天井33は遮蔽性能を有する躯体で囲まれている。貯蔵室天井33にはキャニスタ1の搬出入のため、遮蔽性能を有するハッチカバー11を有する開口18を個々のキャニスタ1の直上位置に設置し、キャニスタ1の搬出入の際はハッチカバー11を開放する。
【0009】
また、貯蔵室2から外部に対して給気風路8、排気風路9を通じての放射線を遮蔽するため、それぞれの風路の途中に、遮蔽床12を交互に複数枚ラビリンス状に組み合わせて設置する方法が考えられる。
【0010】
また、前述の通り、キャニスタ搬送室床(貯蔵室天井)33には貯蔵可能なキャニスタ1の数だけ開口18が設けられており、搬送室床33は相当な量の開口18が設置されることになる。また、貯蔵室2の周囲壁が搬送室床33を支持するため、搬送室床33の支持スパンは長くなるのが一般的である。このため、搬送室床33は大きな上載荷重に対しては構造的に厳しく、搬送装置は、キャニスタ1の貯蔵部全体をまたぐ形に大型のクレーン13などを設置して主方向(図14(a)の紙面垂直方向)の移動をさせ、これと直角方向はクレーン13のガータ上を移動するトロリ14などで所定の貯蔵位置にキャニスタ1を運ぶ。
【0011】
また、搬送室3内を搬送中のキャニスタ1からの放射線を遮蔽するため、遮蔽体内にキャニスタ1を収納して移動させ、キャニスタ1の貯蔵位置では遮蔽体で開口18を覆ってハッチカバー11を開放したのちキャニスタ1を貯蔵室2内に下ろして貯蔵し、ハッチカバー11を閉じて搬送を完了する。
【0012】
【発明が解決しようとする課題】
乾式貯蔵方式はまだ歴史が浅く、我が国でもキャスクに密封したキャニスタ1を貯蔵する、一般にキャスク貯蔵という方式が主流である。ボールト方式は、キャスクに代えて、建屋内の貯蔵室2を堅牢に遮蔽してこの中にキャニスタ1を貯蔵する方式で、各種の概念が提案されている。
【0013】
ボールト貯蔵方式では、使用済み燃料からの中性子やガンマ線などにより放射線量が非常に高い。このため、一旦貯蔵室2内にキャニスタ1を貯蔵すれば、人員が直接この部屋内に入ることは被ばくの観点で好ましくない。一方、貯蔵室2内の冷却は外気による自然換気としているため貯蔵室2内は結露なども懸念され、貯蔵室2内の各種設備だけでなく建屋の床や壁の塗装なども長期間にわたって放置すれば劣化が懸念される。
【0014】
また貯蔵室2に面する給気風路8や排気風路9内、あるいは貯蔵室2の搬送室床33の開口部18やハッチカバー11の保守・点検でも同様の課題があった。このため、キャニスタ1の貯蔵期間中に貯蔵室2およびこれにつながる給排気風路内の建屋の床・壁・天井や設備の点検・保守時、あるいは点検で判明した不具合の補修時に作業者の受ける線量を抑制する方策が強く望まれていた。
【0015】
また、キャニスタ1は耐候性に優れた材料で強固に製作されるものの、万一の漏洩に対し監視する方策が検討されている。その一つが、キャニスタ1を収納した収納管4の一つずつから内部ガスをモニタリングする方法であるが、この場合は収納管4だけでなく、配管やファンなどの内部ガスの循環装置が必要であり、また一つ一つの収納管4の点検が常時必要なことから、経済性に優れかつ監視作業の負担も小さい代案が望まれていた。
【0016】
また、前述のように、貯蔵室2から給気風路8および排気風路9を通じての放射線を遮蔽するため、各風路に遮蔽床12を交互にラビリンス状に設置する方法が考えられる。しかしながら、ガンマ線だけでなく、床を回り込む中性子の遮蔽のためにも、組み合わせる遮蔽床12の枚数が多くなるのが一般的であり、このため風路の遮蔽が必要な壁も相当の高さになる。
【0017】
一方、この遮蔽床12の枚数は少ないほど冷却空気の流れによる圧力損失は小さくできるため、冷却性能上は床の枚数が少ないことが必要な冷却空気量の確保、あるいは排気風路9と給気風路8の高さ差を少なくでき、結果として排気風路9の高さが低減できるため好ましい。さらに、高さの高い排気風路9や遮蔽の必要な床・壁により重心が高い構造となるため、耐震設計上も風路の高さの短縮や軽量化が強く望まれていた。
【0018】
さらに貯蔵室2上部の搬送室3の搬送装置は、前述のように、多くの開口18があり大スパンになる搬送室床33に荷重をかけないため、貯蔵室2をまたぐ位置に壁や柱を設けて支持するクレーン13にすることが考えられる。この場合は、キャニスタ1やハッチカバー11の開閉装置をワイヤで吊ることとなり、位置決めに人手を介する必要がある。また、搬送室床33をまたぐブリッジタイプの装置とする例もあるが、スパンが大きいと強度的に必要なブリッジ高さが高くなる。このため貯蔵キャニスタの列数を少なくして貯蔵室2のスパンを抑制するなどの工夫がなされているが、その場合は貯蔵室2が細長くなり建屋の耐震性が悪化するだけでなく、経済性も悪くなり、合理的な搬送概念が求められていた。
【0019】
本発明はこのような事情に鑑みてなされたもので、▲1▼使用済み燃料貯蔵施設の貯蔵室および貯蔵室につながる風路内の設備・構造物や貯蔵室天井や開口まわりなど、設備や建屋の保守点検・補修時の貯蔵キャニスタからの放射線量を低減し、作業者が受ける線量を低減し、▲2▼万一のキャニスタからの漏洩に対し、収納管や多くの配管・ファンなどの附帯設備を必要としない簡便なモニタリングを可能とする乾式燃料貯蔵施設を提供することを目的とする。また、好ましくは、▲3▼給排気風路の遮蔽高さを低減し、かつ点検保守時の作業者の受ける線量低減も可能な構成とした乾式燃料貯蔵施設を提供する。さらに▲4▼搬送装置を小型化し、搬送室をコンパクトにする構成を提供するものである。
【0020】
【課題を解決するための手段】
本発明は上記目的を鑑みてなされたものであって、請求項1に記載の発明は、使用済み原子燃料を収納する複数のキャニスタを空気中で収納し、放射線遮蔽機能を有する壁に囲まれた貯蔵室と、前記貯蔵室内に空気を取り入れる給気風路と、前記貯蔵室内の空気を排出する排気風路と、前記貯蔵室に隣接して配置され、前記複数のキャニスタを前記貯蔵室内の所定位置に搬送するさいにそのキャニスタを通すキャニスタ搬送室と、を有する使用済み燃料貯蔵施設であって、前記貯蔵室は、放射線遮蔽機能を有する仕切り壁によって複数のセルに区画されていて、それら複数のセルそれぞれが前記給気風路および排気風路の両方に接続されていること、を特徴とする。
【0021】
また、請求項9に記載の発明は、使用済み原子燃料を収納する複数のキャニスタを空気中で収納し、放射線遮蔽機能を有する壁に囲まれた貯蔵室と、前記貯蔵室内に空気を取り入れる給気風路と、前記貯蔵室内の空気を排出する排気風路と、前記貯蔵室に隣接して配置され、前記複数のキャニスタを前記貯蔵室内の所定位置に搬送するさいにそのキャニスタを通すキャニスタ搬送室と、を有する使用済み燃料貯蔵施設で、前記貯蔵室が、放射線遮蔽機能を有する仕切り壁によって複数のセルに区画されていて、それら複数のセルそれぞれが前記給気風路および排気風路の両方に接続されている、当該使用済み燃料貯蔵施設を保守する保守方法において、前記複数のセルのうちの一部のセル内のキャニスタを他のセルに移動する移動工程と、前記移動工程の後に、当該一部のセル内の保守を行なう工程と、を有することを特徴とする。
【0022】
また、請求項11に記載の発明は、使用済み原子燃料を収納する複数のキャニスタを空気中で収納し、放射線遮蔽機能を有する壁に囲まれた貯蔵室と、前記貯蔵室内に空気を取り入れる給気風路と、前記貯蔵室内の空気を排出する排気風路と、前記貯蔵室に隣接して配置され、前記複数のキャニスタを前記貯蔵室内の所定位置に搬送するさいにそのキャニスタを通すキャニスタ搬送室と、を有する使用済み燃料貯蔵施設で、前記貯蔵室が、放射線遮蔽機能を有する仕切り壁によって複数のセルに区画されていて、それら複数のセルそれぞれが前記給気風路および排気風路の両方に接続されている、当該使用済み燃料貯蔵施設を保守する保守方法において、前記複数のセルのうちの一部のセルに仮設の換気装置または換気空調装置によって当該セル内の換気または換気空調を行なう工程と、当該セル内の保守を行なう工程と、を有することを特徴とする。
【0023】
【発明の実施の形態】
以下、本発明に係る使用済み燃料貯蔵施設またはその保守方法の実施の形態について、図面を参照して説明する。ここで、従来技術と共通もしくは類似の部分、または実施の形態相互に共通もしくは類似の部分には同じ符号を付して、重複説明は省略する。
【0024】
[第1の実施の形態]
まず、第1の実施の形態について、図1〜4を参照して説明する。図1は本発明の第1の実施の形態の立断面図、図2は図1の台車20を取り除いた状態におけるA−A線矢視平断面図、図3は図1のB−B線矢視平断面図である。貯蔵室2は遮蔽機能を有する相互に平行な複数の直立の仕切り壁15によって、複数のセル35a〜35dに区切られている。図1で、仕切り壁15の給気風路8側上端15aは給気風路8の下端位置付近にある。また、仕切り壁15の排気風路9側上端15bは排気風路9の下端位置付近にある。給気風路8から取り込まれた冷たい外気は、各セル35a〜35dに流入して、その内部に貯蔵されているキャニスタ1からの発熱を冷却した後、排気風路9から放出される。
【0025】
図2に示すように、この例では3列のキャニスタ1ごとに仕切り壁15を配置している。しかし、列数は3列に限定されるものではない。
また各セル35a〜35dの排気風路9の入口付近に該セルの排気の放射性物質を検出できるよう、検出装置につながるサンプリング配管16を設けており、万一のキャニスタ1からの漏洩で内部の放射性物質が漏洩した時に速やかに検知しできるようにしている。
【0026】
本実施の形態では貯蔵室2が複数のセル35a〜35dに分割され、各セル毎にサンプリングを行なうことで、漏洩が生じたキャニスタ群を該セル内のものに限定することができ、その後に行なう、漏洩が生じたキャニスタの特定作業を容易にしている。
【0027】
図1に示すように、貯蔵室天井33の上にはレール19が配置され、このレール19の上に台車20が載置されて、これらにより、貯蔵室2内のキャニスタ1を、搬送室3を通して移動することができる。
【0028】
図3は、貯蔵室2上部に配置されたキャニスタ1の搬送室の床33の上のレール19の配置などを示す。ただし、この図では台車20の図示を省略している。床33には下部の貯蔵室2のキャニスタ配置に合わせて開口18が設けられ、開口18は遮蔽機能を持つ開閉可能なハッチカバー11で塞がれている。図3からわかるように、床33はその下方の仕切り壁15で支持されることになり、1辺のスパンが大きく短縮され、この結果、床33の強度が向上する。したがって、仕切り壁15と垂直な方向に搬送装置のレール19を配置することで、搬送装置の台車20の荷重を床33などが容易に支持することができる。
【0029】
レール19は各ハッチの間に設置し、台車20が直接床33の上の任意の列を走行できるようになっている。この結果、搬送装置の位置決めが容易となり、作業性が大きく向上する。また、搬送装置の台車20は、貯蔵室2全体をまたぐクレーン13(図14(a))、あるいはブリッジタイプの装置に比べて高さを低減でき、施設全体をコンパクトにすることができる。
【0030】
さらに、クレーン13のスパンが貯蔵室2のスパンを制約することもなく、合理的な幅の貯蔵室2、ひいては建屋寸法として計画できる。さらに保守を行なうセル35a〜35d内のキャニスタ1を別のセルに移動する際、各セルが同じ配置であれば、同一レール19上の台車20の移動で目的のキャニスタ1を別のセルに移動させることができ、作業性が大きく向上する。
【0031】
キャニスタ1を乗せた状態の台車20は重心が高いので、転倒を避けるため、台車20は幅を大きく設計されており、図1の例では、同時に4本のレールに台車20の車輪(図示せず)が乗って走行するようになっている。このようにするとキャニスタを乗せた台車20の重量を分散して支持することができるため、レール19を支持する構造の補強を少なくすることができる。キャニスタ1を乗せた状態の台車20の転倒を防止する観点からは、台車20の中央よりの2つのレールに乗っている車輪を設けなくてもよい。
【0032】
なお、図1では、台車20が一番端のキャニスタ1の位置に来たときに外側の車輪がレール19に乗らないように見えるが、これは単に両端のレールの図示を省略しているものである。
【0033】
また、台車20をレール19の方向と垂直な方向(図1〜3の左右方向)に移動するときは、台車20をレール19の端の位置に移動したうえで、図示しない横移動用レールに載置された横移動台車に乗せてこの横移動用レールに沿って横移動を行なう。
【0034】
図4(a)〜(d)はそれぞれ、本発明の搬送装置のレール19と床33の関係の異なる例を模式的に示す。図4(a)は直接レール19を床33の上に設置した例である。図4(b)は、床33の上に型鋼43を配置し、この型鋼43の上にレール19を設置した例である。この場合は床33または型鋼43で荷重を受けるが、下部の貯蔵室2のセルを区切る仕切り壁15がそれぞれの支持をしているのは同様である。また、図4(c)は床33内に型鋼43を埋設し、その型鋼上にレール19を配置した例である。
【0035】
さらに、図4(d)は床33内に床強度を負担する型鋼43を埋設した例であり、この場合は、床強度を型鋼43と床33の鉄筋コンクリートが複合して負担することが可能となる。このため、床33の強度を負担する部分の幅を小さくすることが可能となり、キャニスタ搬出入用の開口18の間隔も小さくすることができる。そして、貯蔵室2内の収納キャニスタ1の間隔を小さくして施設の小型化を図ることができる。
【0036】
次に、この使用済み燃料貯蔵施設の保守方法について説明する。使用済み燃料貯蔵施設では、セル35a〜35dの内部のキャニスタ基礎5や鋼管6などの設備や構造物、床壁の躯体の清掃や排水装置、貯蔵室天井33の開口18やハッチカバー11などの点検・清掃・補修など(以下、併せて「保守」と呼ぶ)を行なうために、作業者がセル35a〜35d内に立ち入る必要がある。このとき、作業者の受ける線量をなるべく低く抑えることが好ましい。なお、図14(c)に示すようなキャニスタ1を収納した収納管4の上端を貯蔵室2天井から支持し下端を貯蔵室2床で振れ止めした構造にあっては、収納管4や収納管の振れ止めなどの設備も保守対象に含まれる。
【0037】
図2は、一つのセル35bの保守を行なうために、このセル35bのキャニスタ1をすべて他のセル35a、35c、35dに移動した状態を示している。すなわち、セル35b内にあるキャニスタ基礎5や除熱のための鋼管6などの設備や構造物、床壁の躯体の清掃や排水装置、貯蔵室天井33の開口18やハッチカバー11などの保守を行なうために作業員がセル35b内に入っても、他のセル35a、35cなどの貯蔵キャニスタ1からの線量は、遮蔽機能を有する仕切り壁15により遮蔽されており、作業者の受ける線量は低減され、安全な作業が可能である。
【0038】
また、セル35bの保守が完了したら、例えばセル35cの保守を行なう。このときは、セル35cに貯蔵されていたキャニスタ1を、保守が完了したセル35bに移動する。これにより、セル35c内のキャニスタ1をなくすことができ、セル35bの保守と同様に、作業者の受ける線量は低減され、安全な作業が可能である。このようにキャニスタを移動して、セル毎に順次保守を行なえば、貯蔵室2全体が保守可能となり、長期間にわたって健全な貯蔵施設全体の管理が容易に可能となる。
【0039】
また、順次保守の完了したセルに次に保守を行なうセルのキャニスタを移動する代わりに、予備セルを設定しておき、保守を行なうセルに貯蔵されたキャニスタをその予備セルに移動し、保守が完了したら予備セルからキャニスタを元のセルに戻して貯蔵する方法により保守を行なってもよい。
【0040】
例えば、予備セルをセル35aとすると、セル35bに貯蔵されているキャニスタ1をセル35aに移動し、セル35bの保守を行なう。そして、セル35bの保守が完了した後に、セル35aのキャニスタ1を元のセル35bに移動させる。セル35cを保守する場合も同様に、保守を行なう間、セル35cに貯蔵されているキャニスタ1をセル35aに一時的に移動させる。
【0041】
このようにすると、各セルには保守の前後を通じて同一のキャニスタが貯蔵されることになる。このため、どの使用済み燃料がどのセルに貯蔵されているか容易に把握することができ、使用済み燃料の管理を容易とすることができる。
【0042】
また、各セルに貯蔵できるキャニスタの量を同じにしておくことにより、保守時に過不足なくキャニスタをセル間で移動することができ、貯蔵施設の空間を無駄なく使用することができる。
【0043】
[第2の実施の形態]
次に、第2の実施の形態について、図5を参照して説明する。この実施の形態は第1の実施の形態に類似しているが、遮蔽機能を有する仕切り壁15を貯蔵室2だけでなく、給気風路8、および排気風路9の遮蔽が必要な範囲にまで延ばしたものである。すなわち、仕切り壁15の給気風路8側上端15aは給気風路8の上端位置にあり、仕切り壁15の排気風路9側上端15bは排気風路9の上端位置にある。
【0044】
このように給気風路8および排気風路9の仕切り壁15を貯蔵室2の仕切り壁15と連続して配置する。これにより、給気風路8から貯蔵室2、排気風路9に至る一連の貯蔵および冷却が可能な区画とすることができ、前記貯蔵室2と同時に風路も保守することで作業者の受ける線量は低減され、安全な作業が可能である。また、長期間にわたって健全な貯蔵施設全体の管理が容易に可能となる。さらに、キャニスタ1の漏洩に対する排気のサンプリングも排気風路9内で行なうことができる。
【0045】
[第3の実施の形態]
次に、第3の実施の形態について、図6を参照して説明する。この実施の形態は第1および第2の実施の形態に類似しているが、給気風路8および排気風路9がこれらの実施の形態と異なる。すなわちこの実施の形態では、給気風路8および排気風路9の各下部に、相互に平行な複数枚の遮蔽板17が配置され、その上方に、ラビリンスを構成する遮蔽床12が給気風路8および排気風路9それぞれに2枚だけ配置されている。図示のように、各遮蔽板17は、直立するように配置され、給気風路8および排気風路9と貯蔵室2または搬送室3との境界の壁37、39に平行に、すなわち使用済み燃料貯蔵施設の外壁41に平行に配置されている。
【0046】
風路の圧力損失を小さく抑えながら遮蔽効果を確保するために、相互の間隔の小さい平行な複数枚の遮蔽板17にしてあり、これにより風路の高さも低減できる。遮蔽板17の上方に複数の遮蔽床12をラビリンス構造で配置し、かつこの遮蔽床12に屋根と同様の防水と排水を行なうことで、下部の遮蔽板17や風路、貯蔵室2内に入り込む雨水を抑制し、あるいは外部から異物が進入して風路を塞ぐ不具合を抑制することができる。
【0047】
例えば、図7および図8に示すように、最上部の遮蔽床12およびその下の遮蔽床12の上面に防水塗装またはアスファルト60を敷いて防水するとともに一方に傾斜するように設定し、遮蔽床12の上面が傾斜して低くなった側に側溝62を設置し、側溝62内の雨水集める集水ファンネルと集水ファンネルから雨水を排水する排水管64を設置して雨水の排水を行なうようにする。
【0048】
なお、遮蔽板17のさらに上方の床にも遮蔽機能を持たせることで遮蔽板17自体の高さもさらに低減でき、全体として遮蔽の必要な風路の高さを低くすることができる。この実施の形態では、遮蔽の必要な高さを、搬送室3の屋根と同等以下にすることで、排気風路9の高さを低減できるだけでなく、上部は軽量な構造とすることができ、風路の耐震性を向上することができ、より安全な施設を安価に提供することができる。
【0049】
このとき、この遮蔽板17の高さや遮蔽床12の枚数は、キャニスタの貯蔵体数などによって決まる貯蔵室2内での発熱量や給気の温度によって適宜変更することができる。
【0050】
また、風路の仕切り壁上端15a、15bを遮蔽板17上部の遮蔽床12までとすることで、貯蔵室2および遮蔽板17などの風路の保守時などでの作業者の受ける線量を低減し、また適切な保守の結果、貯蔵施設全体の健全性が長期にわたり確保できるのは前述の通りである。
【0051】
[第4の実施の形態]
次に、第4の実施の形態について、図9および図10を参照して説明する。この実施の形態は第3の実施の形態に類似しているが、給気口7は、外気に開放する代わりに搬送室3と連絡しており、また、搬送室3には、外部と連絡する空気取り入れ口29が設けられている。
【0052】
貯蔵室2への給気は、空気取り入れ口29から一旦搬送室3に入り、さらにここから給気口7へ導かれ、給気風路8を経て貯蔵室2に供給される。給気ルートを、一旦搬送室3を通して給気することで、搬送室3の換気も自然換気できるため、貯蔵施設全体を自然力により換気でき、搬送室3用の換気設備が不要となり、経済性に優れる。さらに、雨水や異物が貯蔵室2に入りにくくなり、水や廃棄物に対する放射線管理上も好ましい。
【0053】
[第5の実施の形態]
次に、第5の実施の形態について、図11を参照して説明する。この実施の形態は第4の実施の形態(図9、10)に類似しているが、遮蔽板17の配置方向を第4の実施の形態から90°回転させて、仕切り壁15に平行にしたものである。この場合も、遮蔽板17は空気の流れの方向(鉛直方向)に平行であり、第4の実施の形態と同様の効果が得られる。
また、第3の実施の形態(図6)の遮蔽板17を本実施の形態の遮蔽板17の配置方向と同じにしても、第3の実施の形態と同様の効果が得られる。
【0054】
[第6の実施の形態]
次に、第6の実施の形態について、図12を参照して説明する。この実施の形態は第4の実施の形態(図9)に類似しているが、本発明の使用済み燃料貯蔵施設の保守時に、仮設の換気あるいは空調装置21を、例えば搬送室3内に設置し、貯蔵室2あるいは風路内の、保守対象となって作業者が入るセル内の換気、または換気空調を行なう。ただし、図12では、台車20の図示を省略している。図12の例では、貯蔵室2上部の搬送室3に仮設の換気あるいは空調装置21を設置し、開口18を通じて貯蔵室2内の空気を循環させ、埃などを除去しながら空調する。
【0055】
この場合、貯蔵室2内の空気の一部は換気されている。なお、仮設の換気あるいは空調装置21の吸込み側を搬送室2に開放し、図12の仮設の換気あるいは空調装置21の吸込み側になる開口18を閉じれば、搬送室3から貯蔵室2を通った空気が排気風路9を通じて排気されることになる。
【0056】
[第7の実施の形態]
次に、第7の実施の形態について、図13を参照して説明する。この実施の形態は第3の実施の形態(図6)に類似しているが、給気風路8の出口に仮設の換気あるいは空調装置21を設けている。この場合は給気風路8を通じて空気が強制的に供給され、排気風路9を通じて排気される。
【0057】
[その他の実施の形態]
キャニスタ1の配置は前述の実施の形態に限定されるものではなく、キャニスタ1の列数は冷却などの性能に対し自由度を増すことも可能である。あるいはキャニスタ1も正方配列ではなく、千鳥配置とすることもできる。また、キャニスタ1を鉛直方向に複数段積み重ねることも可能であり、積み重ね方として、複数段のキャニスタ1を直接積み重ねることもできるし、上下のキャニスタ1の間に水平支持板を配置してもよい。これらに対しても前述の実施の形態と同様の効果を得ることができる。
【0058】
また、上記実施の形態の特徴部分を種々に組み合わせることも可能である。例えば、第6、第7の実施の形態はそれぞれ、第4、第3の実施の形態に、仮設の換気あるいは空調装置21を適用する例を示しているが、他の実施の形態に適用することも可能である。また、第1の実施の形態(図4)で説明した搬送室床33とレール19の組合せ構造は他の実施の形態にも適用できる。さらに、第1の実施の形態(図2)で説明した使用済み燃料貯蔵施設の保守方法も、他の実施の形態にも適用できる。
【0059】
【発明の効果】
以上説明したように、本発明によれば、ボールト貯蔵法式の使用済み燃料貯蔵施設において、貯蔵室内の構造物などの保守時の貯蔵キャニスタからの放射線量を低減し、作業者の受ける線量を低減することができ、万一のキャニスタの漏洩に対し、簡便なモニタリングが可能となる。これらにより、経済性、安全性、耐震性、長期健全性に優れた乾式燃料貯蔵施設、およびその保守方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る使用済み燃料貯蔵施設の第1の実施の形態の立断面図。
【図2】図1のA−A線矢視平断面図。
【図3】図1の台車を取り除いた状態におけるB−B線矢視平断面図。
【図3】本発明に係る使用済み燃料貯蔵施設の第2の実施の形態の立断面図。
【図4】図1の搬送室床およびレール部を拡大して示す立断面図であって、(a)〜(d)はそれぞれ異なる実施例を示す図。
【図5】本発明に係る使用済み燃料貯蔵施設の第2の実施の形態の立断面図。
【図6】本発明に係る使用済み燃料貯蔵施設の第3の実施の形態の立断面図。
【図7】図6のC部拡大立断面図。
【図8】図6のD部拡大立断面図。
【図9】本発明に係る使用済み燃料貯蔵施設の第4の実施の形態の立断面図。
【図10】図9の台車を取り除いた状態におけるE−E線矢視平断面図。
【図11】本発明に係る使用済み燃料貯蔵施設の第5の実施の形態の平断面図であって、図10に対応する図。
【図12】本発明に係る使用済み燃料貯蔵施設の第6の実施の形態の立断面図。
【図13】本発明に係る使用済み燃料貯蔵施設の第7の実施の形態の立断面図。
【図14】従来の使用済み燃料貯蔵施設を示す図であって、(a)は立断面図、(b)は(a)のキャニスタおよび鋼管を一部切り欠いて示す拡大斜視図、(c)はキャニスタの収納方法の他の例を示す部分拡大立断面図。
【符号の説明】
1…キャニスタ、2…貯蔵室、3…搬送室、4…収納管、5…キャニスタ基礎、6…鋼管、7…給気口、8…給気風路、9…排気風路、10…排気口、11…ハッチカバー、12…遮蔽床、13…クレーン、14…トロリ、15…仕切り壁、16…サンプリング配管、17…遮蔽板、18…開口、19…レール、20…台車、29…空気取り入れ口、31…地面、33…搬送室床(貯蔵室天井)、35a,35b,35c,35d…セル、37…境界壁、39…境界壁、41…外壁、43…型鋼、50…貯蔵室入口、52…貯蔵室出口、60…防水塗装またはアスファルト、62…側溝、64…排水管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention takes out a canister (storage container) containing spent fuel from a transport cask in a storage facility of spent nuclear fuel (hereinafter, also simply referred to as “spent fuel”) taken out of a nuclear power generation facility, The present invention relates to a (vault-type) dry fuel storage facility for storing this in the air in a room surrounded by concrete or the like in a building.
[0002]
[Prior art]
A conventional vault storage type intermediate storage facility will be described with reference to FIGS. A conventional vault storage type intermediate storage facility includes a storage room 2 in which a plurality of canisters 1 each of which contains used fuel are stored side by side, and an upper portion thereof for transporting the canisters 1 to a predetermined position in the storage room 2. The transfer chamber 3 is provided, and has a room configuration vertically divided by a transfer chamber floor (storage room ceiling) 33. The storage room 2 is designed to minimize the size of the building as one space in which the canisters 1 are densely arranged in a lattice or staggered manner. The entire intermediate storage facility has a semi-underground structure so that the storage room 2 is located below the ground 31.
[0003]
The canister 1 may be stored in a storage tube and stored, or may be directly installed on a canister foundation 5 on the floor of the storage room 2. In the example of FIG. 14 (a), as shown in FIG. 14 (b), a method of installing a steel pipe 6 around the canister 1 for heat removal and installing it directly on the foundation 5 on the floor of the storage room 2 Is shown.
[0004]
As another example, as shown in FIG. 14 (c), there is a structure in which the upper end of a storage pipe 4 in which a canister 1 is stored is supported from the ceiling of the storage room 2 and the lower end is swung by the two floors of the storage room.
[0005]
In order to cool the generated heat from the spent fuel, the storage chamber 2 is supplied with air from one wall, and a cooling air path having an opening communicating with the outside is provided to exhaust air from the other wall. Is configured to cool the canister 1 by natural circulation.
[0006]
That is, the air taken in from the air supply opening 7 opened to the outside of the building is guided to the storage room 2 through the air supply passage 8 from the storage room entrance 50 at the lower part of the storage room 2, and cools the heat generated from the canister 1. I do. The warmed air having a reduced density is guided from the storage room outlet 52 at the upper part of the storage room 2 to the exhaust air passage 9, rises in the exhaust air passage 9, and is discharged from the exhaust port 10 to the outside of the building. The exhaust port 10 is located higher than the intake port 7. This produces a natural circulation force (chimney effect) based on the difference in air density. Due to this chimney effect, the inside of the storage room 2 is supplied with natural air by natural ventilation, so that the cooling air is secured.
[0007]
Here, in the storage tube method, heat generated from the canister 1 is cooled by an air flow through the storage tube 4. Although there is a method of performing forced ventilation using a fan or the like, natural ventilation that can be performed without requiring external power is preferable from the viewpoint of safety, reduction of maintenance work, and economy.
[0008]
Further, radiation such as neutrons and gamma rays emitted from the spent fuel sealed inside the canister 1 in the storage room 2 is shielded around the storage room 2 or the transfer room 3 above the storage room 2 and around the site. Therefore, the wall of the storage room 2 and the ceiling 33 are surrounded by a frame having a shielding performance. An opening 18 having a hatch cover 11 having shielding performance is installed at a position directly above each canister 1 for loading and unloading the canister 1 from the storage room ceiling 33, and the hatch cover 11 is opened when the canister 1 is loaded and unloaded. I do.
[0009]
Further, in order to shield radiation from the storage room 2 to the outside through the supply air passage 8 and the exhaust air passage 9, a plurality of shielding floors 12 are alternately arranged in a labyrinth manner in the middle of each air passage. There is a method.
[0010]
As described above, the canister transfer chamber floor (storage room ceiling) 33 is provided with openings 18 by the number of canisters 1 that can be stored, and the transfer chamber floor 33 is provided with a considerable amount of openings 18. become. In addition, since the peripheral wall of the storage room 2 supports the transfer room floor 33, the support span of the transfer room floor 33 is generally long. For this reason, the transfer chamber floor 33 is structurally severe against a large overload, and the transfer device is provided with a large crane 13 or the like over the entire storage portion of the canister 1 by setting a large crane 13 or the like in the main direction (FIG. The canister 1 is moved to a predetermined storage position by a trolley 14 or the like that moves on a gutter of a crane 13 in a direction perpendicular to this direction.
[0011]
Further, in order to shield the radiation from the canister 1 being transported in the transport chamber 3, the canister 1 is housed and moved in the shield, and the hatch cover 11 is covered by covering the opening 18 with the shield at the storage position of the canister 1. After opening, the canister 1 is lowered into the storage room 2 for storage, and the hatch cover 11 is closed to complete the transfer.
[0012]
[Problems to be solved by the invention]
The dry storage method has only a short history, and in Japan, the method of storing a canister 1 sealed in a cask, generally called a cask storage method, is mainly used. The vault system is a system in which a storage room 2 in a building is securely shielded and a canister 1 is stored therein, instead of a cask, and various concepts have been proposed.
[0013]
In the vault storage method, the radiation dose is extremely high due to neutrons and gamma rays from spent fuel. For this reason, once the canister 1 is stored in the storage room 2, it is not preferable from the viewpoint of exposure that personnel directly enter the room. On the other hand, since the inside of the storage room 2 is cooled by natural ventilation by the outside air, there is a concern that the inside of the storage room 2 may be condensed, and not only various facilities in the storage room 2 but also the painting of floors and walls of the building may be left for a long time. If this occurs, deterioration may be a concern.
[0014]
Further, there is a similar problem in the maintenance / inspection of the inside of the supply air passage 8 or the exhaust air passage 9 facing the storage room 2 or the opening 18 and the hatch cover 11 of the transfer room floor 33 of the storage room 2. For this reason, during the storage period of the canister 1, the worker is required to inspect or maintain the floor, walls, ceiling, and facilities of the storage room 2 and the building in the air supply / exhaust air passage connected to the storage room 2 or to repair a defect found in the inspection. There was a strong need for measures to reduce the dose received.
[0015]
In addition, although the canister 1 is made of a material having excellent weather resistance, a method of monitoring for leakage should be considered. One of them is a method of monitoring the internal gas from each of the storage pipes 4 storing the canister 1. In this case, not only the storage pipe 4 but also an internal gas circulation device such as a pipe or a fan is required. In addition, since each storage pipe 4 needs to be inspected at all times, an alternative that is economically efficient and has a small burden on monitoring work has been desired.
[0016]
Further, as described above, in order to shield radiation from the storage room 2 through the supply air passage 8 and the exhaust air passage 9, a method of alternately installing a shielding floor 12 in a labyrinth shape in each air passage may be considered. However, in order to shield not only gamma rays but also neutrons circling around the floor, it is general that the number of shielded floors 12 to be combined is large. Become.
[0017]
On the other hand, since the pressure loss due to the flow of the cooling air can be reduced as the number of the shielding floors 12 decreases, the cooling air amount required to have a small number of floors in terms of cooling performance is secured, or the exhaust air passage 9 and the supply air This is preferable because the height difference of the passage 8 can be reduced, and as a result, the height of the exhaust air passage 9 can be reduced. Furthermore, since the structure has a high center of gravity due to the high exhaust air path 9 and the floors and walls that need to be shielded, it has been strongly desired that the height and the weight of the air path be reduced in terms of seismic design.
[0018]
Further, as described above, the transfer device in the transfer chamber 3 above the storage room 2 does not apply a load to the transfer room floor 33 which has many openings 18 and has a large span. It can be considered that the crane 13 is provided and supported. In this case, the opening and closing device of the canister 1 and the hatch cover 11 is hung by a wire, and it is necessary to manually perform positioning. In addition, there is an example in which a bridge-type device straddles the transfer chamber floor 33. However, if the span is large, the bridge height required for strength increases. For this reason, measures such as reducing the number of rows of storage canisters to suppress the span of the storage room 2 have been made. In this case, however, the storage room 2 is elongated and the seismic resistance of the building is deteriorated, and economical efficiency is also reduced. And the rational transport concept was required.
[0019]
The present invention has been made in view of such circumstances, and (1) equipment and structures such as a storage room of a spent fuel storage facility, facilities and structures in an air path leading to the storage room, a storage room ceiling and openings, and the like. The radiation dose from the storage canister during maintenance and repair of the building is reduced, and the dose received by workers is reduced. (2) In the event of leakage from the canister, storage pipes and many pipes, fans, etc. An object of the present invention is to provide a dry fuel storage facility that enables simple monitoring without requiring additional equipment. Preferably, the present invention also provides (3) a dry fuel storage facility configured to reduce the shielding height of the air supply / exhaust air path and to reduce the dose received by an operator during inspection and maintenance. Further, (4) the present invention provides a configuration in which the transfer device is downsized and the transfer chamber is made compact.
[0020]
[Means for Solving the Problems]
The present invention has been made in view of the above-mentioned object, and the invention according to claim 1 accommodates a plurality of canisters accommodating spent nuclear fuel in air and is surrounded by a wall having a radiation shielding function. A storage chamber, an air supply path for taking in air into the storage chamber, an exhaust air path for discharging air from the storage chamber, and a plurality of canisters arranged adjacent to the storage chamber, and A canister transfer chamber through which the canister passes when transported to a position, wherein the storage chamber is divided into a plurality of cells by a partition wall having a radiation shielding function, and the plurality of cells are divided into a plurality of cells. Are connected to both the supply air path and the exhaust air path.
[0021]
According to a ninth aspect of the present invention, a plurality of canisters for storing spent nuclear fuel are stored in the air, and a storage room surrounded by a wall having a radiation shielding function, and a supply chamber for taking air into the storage room. An air path, an exhaust path for discharging air from the storage chamber, and a canister transfer chamber disposed adjacent to the storage chamber and passing through the canister when transferring the plurality of canisters to a predetermined position in the storage chamber. In the spent fuel storage facility having, the storage room is divided into a plurality of cells by a partition wall having a radiation shielding function, and each of the plurality of cells is in both the supply air passage and the exhaust air passage. In the maintenance method for maintaining the connected spent fuel storage facility, a moving step of moving a canister in some of the plurality of cells to another cell, After the transfer step, characterized in that it and a step of performing maintenance within the part of the cell.
[0022]
Further, according to the present invention, a plurality of canisters for storing spent nuclear fuel are stored in air, and a storage room surrounded by a wall having a radiation shielding function, and a supply chamber for taking air into the storage room. An air path, an exhaust path for discharging air from the storage chamber, and a canister transfer chamber disposed adjacent to the storage chamber and passing through the canister when transferring the plurality of canisters to a predetermined position in the storage chamber. In the spent fuel storage facility having, the storage room is divided into a plurality of cells by a partition wall having a radiation shielding function, and each of the plurality of cells is in both the supply air passage and the exhaust air passage. In the maintenance method for maintaining the connected spent fuel storage facility, the temporary storage device may include a temporary ventilation device or a ventilation air conditioning device for some of the plurality of cells. And having a step of performing ventilation or ventilation air conditioning in Le, a step of performing maintenance in the cell, the.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a spent fuel storage facility or a maintenance method thereof according to the present invention will be described with reference to the drawings. Here, the same reference numerals are given to portions common or similar to the related art, or portions common or similar to the embodiments, and redundant description is omitted.
[0024]
[First Embodiment]
First, a first embodiment will be described with reference to FIGS. FIG. 1 is a vertical sectional view of the first embodiment of the present invention, FIG. 2 is a plan sectional view taken along line AA of FIG. 1 with the trolley 20 removed, and FIG. 3 is a line BB of FIG. It is an arrow flat sectional view. The storage room 2 is divided into a plurality of cells 35a to 35d by a plurality of mutually upright partition walls 15 having a shielding function. In FIG. 1, the upper end 15 a of the partition wall 15 on the supply air passage 8 side is near the lower end position of the supply air passage 8. Further, the upper end 15 b of the partition wall 15 on the exhaust air passage 9 side is near the lower end position of the exhaust air passage 9. The cold outside air taken in from the supply air passage 8 flows into each of the cells 35a to 35d, cools the heat generated from the canister 1 stored therein, and is discharged from the exhaust air passage 9.
[0025]
As shown in FIG. 2, in this example, partition walls 15 are arranged for each of the three rows of canisters 1. However, the number of columns is not limited to three.
Further, a sampling pipe 16 connected to a detector is provided near the entrance of the exhaust air passage 9 of each of the cells 35a to 35d so as to detect radioactive substances of the exhaust of the cell. When radioactive material leaks, it can be detected immediately.
[0026]
In the present embodiment, the storage room 2 is divided into a plurality of cells 35a to 35d, and sampling is performed for each cell, so that the group of canisters in which leakage has occurred can be limited to those in the cell. This facilitates the work of identifying the leaked canister.
[0027]
As shown in FIG. 1, a rail 19 is arranged on a ceiling 33 of a storage room, and a trolley 20 is placed on the rail 19, thereby moving the canister 1 in the storage room 2 to the transfer room 3 Can be moved through.
[0028]
FIG. 3 shows the arrangement of the rails 19 on the floor 33 of the transfer chamber of the canister 1 arranged above the storage room 2. However, illustration of the cart 20 is omitted in this figure. An opening 18 is provided on the floor 33 in accordance with the arrangement of the canister in the lower storage room 2, and the opening 18 is closed by an openable and closable hatch cover 11 having a shielding function. As can be seen from FIG. 3, the floor 33 is supported by the partition wall 15 thereunder, so that the span of one side is greatly reduced, and as a result, the strength of the floor 33 is improved. Therefore, by arranging the rails 19 of the transfer device in a direction perpendicular to the partition wall 15, the load of the carriage 20 of the transfer device can be easily supported by the floor 33 or the like.
[0029]
The rails 19 are installed between the hatches so that the carriage 20 can travel directly on any floor on the floor 33. As a result, the positioning of the transfer device becomes easy, and workability is greatly improved. In addition, the carriage 20 of the transfer device can be reduced in height as compared with a crane 13 (FIG. 14A) or a bridge type device that straddles the entire storage room 2, and the entire facility can be made compact.
[0030]
Further, the span of the crane 13 does not limit the span of the storage room 2, and the storage room 2 having a reasonable width, and thus the building dimensions can be planned. Further, when the canister 1 in the cells 35a to 35d to be maintained is moved to another cell, if the cells are arranged in the same manner, the target canister 1 is moved to another cell by moving the carriage 20 on the same rail 19. And the workability is greatly improved.
[0031]
Since the bogie 20 with the canister 1 mounted thereon has a high center of gravity, the bogie 20 is designed to have a large width in order to avoid overturning. In the example of FIG. 1, the wheels of the bogie 20 (shown in FIG. 1) are simultaneously mounted on four rails. ) Is to ride and run. In this way, the weight of the truck 20 carrying the canister can be dispersed and supported, so that the reinforcement of the structure that supports the rail 19 can be reduced. From the viewpoint of preventing the truck 20 with the canister 1 from falling, it is not necessary to provide wheels on two rails from the center of the truck 20.
[0032]
In FIG. 1, the outer wheels do not appear to ride on the rails 19 when the bogie 20 comes to the position of the endmost canister 1, but this is simply an illustration of the rails at both ends omitted. It is.
[0033]
When the carriage 20 is moved in a direction perpendicular to the direction of the rail 19 (the left-right direction in FIGS. 1 to 3), the carriage 20 is moved to an end position of the rail 19, and then moved to a lateral movement rail (not shown). The vehicle is mounted on a mounted laterally moving carriage and laterally moved along the laterally moving rail.
[0034]
FIGS. 4A to 4D schematically show different examples of the relationship between the rail 19 and the floor 33 of the transport device of the present invention. FIG. 4A shows an example in which the rail 19 is directly installed on the floor 33. FIG. 4B is an example in which a mold steel 43 is arranged on the floor 33 and the rail 19 is installed on the mold steel 43. In this case, the load is received by the floor 33 or the mold steel 43, but the partition walls 15 that partition the cells of the lower storage room 2 similarly support each other. FIG. 4C shows an example in which a mold steel 43 is buried in the floor 33 and the rail 19 is arranged on the mold steel.
[0035]
Further, FIG. 4D shows an example in which a mold steel 43 that bears the floor strength is embedded in the floor 33. In this case, it is possible that the steel floor 43 and the reinforced concrete of the floor 33 can bear the floor strength in combination. Become. For this reason, it is possible to reduce the width of the portion that bears the strength of the floor 33, and it is also possible to reduce the interval between the canister carrying-in / out openings 18. And the space of the storage canister 1 in the storage room 2 can be made small, and the facility can be downsized.
[0036]
Next, a maintenance method for the spent fuel storage facility will be described. In the spent fuel storage facility, facilities and structures such as canister foundations 5 and steel pipes 6 inside the cells 35a to 35d, cleaning and drainage of floor frame skeletons, openings 18 of the storage room ceiling 33, hatch covers 11, and the like. In order to perform inspection, cleaning, repair, and the like (hereinafter, also referred to as “maintenance”), an operator needs to enter the cells 35a to 35d. At this time, it is preferable that the dose received by the worker be kept as low as possible. As shown in FIG. 14C, in a structure in which the upper end of the storage tube 4 storing the canister 1 is supported from the ceiling of the storage room 2 and the lower end is swung by the two floors of the storage room, the storage tube 4 and the storage Equipment such as pipe steady rests is also included in the scope of maintenance.
[0037]
FIG. 2 shows a state where all the canisters 1 of this cell 35b have been moved to the other cells 35a, 35c, 35d in order to perform maintenance of one cell 35b. In other words, cleaning and drainage of equipment and structures such as the canister foundation 5 and the steel pipe 6 for heat removal in the cell 35b, and maintenance of the opening 18 and the hatch cover 11 of the storage room ceiling 33, etc. Even if the worker enters the cell 35b to perform the operation, the dose from the storage canister 1 such as the other cells 35a and 35c is shielded by the partition wall 15 having a shielding function, and the dose received by the worker is reduced. And safe work is possible.
[0038]
When the maintenance of the cell 35b is completed, for example, the maintenance of the cell 35c is performed. At this time, the canister 1 stored in the cell 35c is moved to the cell 35b whose maintenance has been completed. Thereby, the canister 1 in the cell 35c can be eliminated, and similarly to the maintenance of the cell 35b, the dose received by the worker can be reduced, and safe work can be performed. If the canister is moved and maintenance is sequentially performed for each cell as described above, the entire storage room 2 can be maintained, and it is easy to manage the entire storage facility for a long period of time.
[0039]
Also, instead of moving the canister of the cell to be maintained next to the cell for which maintenance has been completed sequentially, a spare cell is set, and the canister stored in the cell to be maintained is moved to the spare cell, and maintenance is performed. Upon completion, maintenance may be performed by a method of storing the canister from the spare cell back to the original cell.
[0040]
For example, if the spare cell is the cell 35a, the canister 1 stored in the cell 35b is moved to the cell 35a, and the cell 35b is maintained. After the maintenance of the cell 35b is completed, the canister 1 of the cell 35a is moved to the original cell 35b. Similarly, when the cell 35c is maintained, the canister 1 stored in the cell 35c is temporarily moved to the cell 35a during the maintenance.
[0041]
In this way, the same canister is stored in each cell before and after maintenance. For this reason, it is possible to easily grasp which spent fuel is stored in which cell, and it is possible to easily manage the spent fuel.
[0042]
Further, by maintaining the same amount of canisters that can be stored in each cell, canisters can be moved between cells without any excess or shortage during maintenance, and the space of the storage facility can be used without waste.
[0043]
[Second embodiment]
Next, a second embodiment will be described with reference to FIG. This embodiment is similar to the first embodiment, except that a partition wall 15 having a shielding function is provided not only in the storage room 2 but also in a range where the supply air passage 8 and the exhaust air passage 9 need to be shielded. It has been extended. That is, the upper end 15 a of the partition wall 15 on the supply air passage 8 side is at the upper end position of the supply air passage 8, and the upper end 15 b of the partition wall 15 on the exhaust air passage 9 side is at the upper end position of the exhaust air passage 9.
[0044]
In this way, the partition wall 15 of the supply air passage 8 and the exhaust air passage 9 is arranged continuously with the partition wall 15 of the storage room 2. Thus, a series of storage and cooling from the supply air passage 8 to the storage room 2 and the exhaust air passage 9 can be performed. The maintenance of the air passage at the same time as the storage room 2 receives the worker. The dose is reduced and safe work is possible. In addition, it is possible to easily manage a healthy storage facility over a long period of time. Further, sampling of exhaust gas for leakage of the canister 1 can be performed in the exhaust air passage 9.
[0045]
[Third Embodiment]
Next, a third embodiment will be described with reference to FIG. This embodiment is similar to the first and second embodiments, but the supply air passage 8 and the exhaust air passage 9 are different from these embodiments. That is, in this embodiment, a plurality of mutually parallel shielding plates 17 are arranged below each of the supply air passage 8 and the exhaust air passage 9, and a shielding floor 12 forming a labyrinth is provided above the supply air passage 8. 8 and two in the exhaust air passage 9. As shown, each shielding plate 17 is arranged upright and is parallel to the walls 37, 39 at the boundary between the supply air passage 8 and the exhaust air passage 9 and the storage room 2 or the transfer room 3, that is, used. It is arranged parallel to the outer wall 41 of the fuel storage facility.
[0046]
In order to secure the shielding effect while keeping the pressure loss in the air passage small, a plurality of parallel shielding plates 17 with a small interval between each other are used, so that the height of the air passage can also be reduced. A plurality of shielding floors 12 are arranged in a labyrinth structure above the shielding plate 17, and the same waterproofing and drainage as that of the roof are performed on the shielding floor 12, so that the lower shielding plate 17, the air passage, and the storage room 2 are provided. It is possible to suppress rainwater from entering, or to suppress a problem that foreign matter enters from outside and blocks the air path.
[0047]
For example, as shown in FIG. 7 and FIG. 8, waterproof coating or asphalt 60 is laid on the upper surfaces of the uppermost shielding floor 12 and the lower shielding floor 12 to make them waterproof and to be inclined to one side. A side groove 62 is installed on the side where the upper surface of the 12 is inclined and lowered, and a collecting funnel for collecting rainwater in the side groove 62 and a drain pipe 64 for draining rainwater from the collecting funnel are installed to drain rainwater. I do.
[0048]
It should be noted that the height of the shield plate 17 itself can be further reduced by providing the floor above the shield plate 17 with a shielding function, so that the height of the air passage that needs to be shielded as a whole can be reduced. In this embodiment, not only the height of the exhaust air passage 9 can be reduced, but also the upper portion can be made to have a lightweight structure by making the required height of shielding equal to or less than that of the roof of the transfer chamber 3. Thus, the earthquake resistance of the wind path can be improved, and safer facilities can be provided at low cost.
[0049]
At this time, the height of the shielding plate 17 and the number of shielding floors 12 can be appropriately changed according to the amount of heat generated in the storage chamber 2 and the temperature of the supply air, which are determined by the number of storage bodies of the canisters.
[0050]
In addition, since the upper ends 15a and 15b of the partition walls of the air passage are extended to the shield floor 12 above the shield plate 17, the dose received by the worker at the time of maintenance of the air passage such as the storage room 2 and the shield plate 17 is reduced. As mentioned above, as a result of proper maintenance, the soundness of the entire storage facility can be ensured over a long period of time.
[0051]
[Fourth Embodiment]
Next, a fourth embodiment will be described with reference to FIGS. This embodiment is similar to the third embodiment, but the air supply port 7 communicates with the transfer chamber 3 instead of opening to the outside air, and the transfer chamber 3 communicates with the outside. An air intake port 29 is provided.
[0052]
The air supply to the storage chamber 2 enters the transfer chamber 3 once from the air intake port 29, is further guided to the air supply port 7 from here, and is supplied to the storage chamber 2 via the air supply air passage 8. Once the air supply route is supplied through the transfer room 3, the ventilation of the transfer room 3 can also be naturally ventilated. Therefore, the whole storage facility can be ventilated by natural force, and the ventilation equipment for the transfer room 3 is not required, which is economical. Excellent. Further, rainwater and foreign matters are less likely to enter the storage room 2, which is preferable in radiation management of water and waste.
[0053]
[Fifth Embodiment]
Next, a fifth embodiment will be described with reference to FIG. This embodiment is similar to the fourth embodiment (FIGS. 9 and 10), except that the arrangement direction of the shielding plate 17 is rotated by 90 ° from that of the fourth embodiment so that it is parallel to the partition wall 15. It was done. Also in this case, the shielding plate 17 is parallel to the direction of air flow (vertical direction), and the same effect as in the fourth embodiment can be obtained.
Further, even if the shielding plate 17 of the third embodiment (FIG. 6) is the same as the arrangement direction of the shielding plate 17 of the present embodiment, the same effect as that of the third embodiment can be obtained.
[0054]
[Sixth Embodiment]
Next, a sixth embodiment will be described with reference to FIG. This embodiment is similar to the fourth embodiment (FIG. 9), except that a temporary ventilation or air conditioner 21 is installed, for example, in the transfer room 3 during maintenance of the spent fuel storage facility of the present invention. Then, ventilation or air-conditioning in the storage room 2 or in the cell where the worker enters as a maintenance target in the air passage is performed. However, illustration of the cart 20 is omitted in FIG. In the example of FIG. 12, a temporary ventilation or air conditioner 21 is installed in the transfer room 3 above the storage room 2, and the air in the storage room 2 is circulated through the opening 18 to perform air conditioning while removing dust and the like.
[0055]
In this case, a part of the air in the storage room 2 is ventilated. If the suction side of the temporary ventilation or air conditioning device 21 is opened to the transfer chamber 2 and the opening 18 on the temporary ventilation or air conditioning device 21 shown in FIG. The exhausted air is exhausted through the exhaust air passage 9.
[0056]
[Seventh Embodiment]
Next, a seventh embodiment will be described with reference to FIG. This embodiment is similar to the third embodiment (FIG. 6), except that a temporary ventilation or air conditioner 21 is provided at the outlet of the air supply passage 8. In this case, air is forcibly supplied through the supply air passage 8 and exhausted through the exhaust air passage 9.
[0057]
[Other embodiments]
The arrangement of the canisters 1 is not limited to the above-described embodiment, and the number of rows of the canisters 1 can increase the degree of freedom with respect to performance such as cooling. Alternatively, the canisters 1 can also be arranged in a staggered arrangement instead of a square arrangement. Further, the canisters 1 can be stacked in a plurality of stages in the vertical direction, and as a stacking method, the canisters 1 in a plurality of stages can be directly stacked, or a horizontal support plate may be arranged between the upper and lower canisters 1. . The same effects as those of the above-described embodiment can be obtained for these.
[0058]
Further, the features of the above-described embodiments can be combined in various ways. For example, the sixth and seventh embodiments show examples in which a temporary ventilation or air conditioner 21 is applied to the fourth and third embodiments, respectively, but are applied to other embodiments. It is also possible. Further, the combination structure of the transfer chamber floor 33 and the rail 19 described in the first embodiment (FIG. 4) can be applied to other embodiments. Furthermore, the maintenance method for the spent fuel storage facility described in the first embodiment (FIG. 2) can also be applied to other embodiments.
[0059]
【The invention's effect】
As described above, according to the present invention, in a spent fuel storage facility of a vault storage method, a radiation dose from a storage canister during maintenance of a structure or the like in a storage room is reduced, and a dose received by an operator is reduced. And simple monitoring of the leakage of the canister is possible. Thus, it is possible to provide a dry fuel storage facility excellent in economy, safety, earthquake resistance, and long-term soundness, and a maintenance method thereof.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a first embodiment of a spent fuel storage facility according to the present invention.
FIG. 2 is a plan sectional view taken along line AA of FIG. 1;
FIG. 3 is a plan sectional view taken along the line BB in a state where the bogie of FIG. 1 is removed.
FIG. 3 is a vertical sectional view of a second embodiment of the spent fuel storage facility according to the present invention.
FIG. 4 is an enlarged sectional view showing a transfer chamber floor and a rail portion of FIG. 1, wherein (a) to (d) show different embodiments.
FIG. 5 is an elevational sectional view of a second embodiment of the spent fuel storage facility according to the present invention.
FIG. 6 is a vertical sectional view of a third embodiment of the spent fuel storage facility according to the present invention.
FIG. 7 is an enlarged vertical sectional view of a portion C in FIG. 6;
FIG. 8 is an enlarged vertical sectional view of a portion D in FIG. 6;
FIG. 9 is a vertical sectional view of a fourth embodiment of the spent fuel storage facility according to the present invention.
FIG. 10 is a cross-sectional plan view taken along line EE in a state where the bogie of FIG. 9 is removed.
FIG. 11 is a plan sectional view of a fifth embodiment of the spent fuel storage facility according to the present invention, and is a view corresponding to FIG. 10;
FIG. 12 is a vertical sectional view of a sixth embodiment of the spent fuel storage facility according to the present invention.
FIG. 13 is a vertical sectional view of a seventh embodiment of the spent fuel storage facility according to the present invention.
14A and 14B are views showing a conventional spent fuel storage facility, wherein FIG. 14A is an elevational sectional view, FIG. 14B is an enlarged perspective view showing the canister and the steel pipe of FIG. () Is a partially enlarged vertical sectional view showing another example of the canister storage method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Canister, 2 ... Storage room, 3 ... Transport room, 4 ... Storage pipe, 5 ... Canister base, 6 ... Steel pipe, 7 ... Air supply port, 8 ... Air supply path, 9 ... Exhaust air path, 10 ... Exhaust port , 11 ... hatch cover, 12 ... shielding floor, 13 ... crane, 14 ... trolley, 15 ... partition wall, 16 ... sampling piping, 17 ... shielding plate, 18 ... opening, 19 ... rail, 20 ... truck, 29 ... air intake Mouth, 31 ... ground, 33 ... transfer room floor (storage room ceiling), 35a, 35b, 35c, 35d ... cell, 37 ... boundary wall, 39 ... boundary wall, 41 ... outer wall, 43 ... steel, 50 ... storage room entrance 52, storage chamber outlet, 60, waterproof paint or asphalt, 62, gutter, 64, drain pipe.

Claims (11)

使用済み原子燃料を収納する複数のキャニスタを空気中で収納し、放射線遮蔽機能を有する壁に囲まれた貯蔵室と、
前記貯蔵室内に空気を取り入れる給気風路と、
前記貯蔵室内の空気を排出する排気風路と、
前記貯蔵室に隣接して配置され、前記複数のキャニスタを前記貯蔵室内の所定位置に搬送するさいにそのキャニスタを通すキャニスタ搬送室と、
を有する使用済み燃料貯蔵施設であって、
前記貯蔵室は、放射線遮蔽機能を有する仕切り壁によって複数のセルに区画されていて、それら複数のセルそれぞれが前記給気風路および排気風路の両方に接続されていること、
を特徴とする使用済み燃料貯蔵施設。
A storage room surrounded by walls that stores a plurality of canisters that store spent nuclear fuel in the air and has a radiation shielding function,
An air supply passage for taking air into the storage chamber,
An exhaust air passage for discharging air in the storage chamber;
A canister transfer chamber that is disposed adjacent to the storage chamber and passes through the canisters when transferring the plurality of canisters to a predetermined position in the storage chamber.
A spent fuel storage facility having
The storage room is partitioned into a plurality of cells by a partition wall having a radiation shielding function, and each of the plurality of cells is connected to both the supply air passage and the exhaust air passage.
A spent fuel storage facility.
請求項1に記載の使用済み燃料貯蔵施設において、前記複数のセルは水平方向に並列され、前記キャニスタ搬送室は前記複数のセルの真上に配置されていることを特徴とする使用済み燃料貯蔵施設。The spent fuel storage facility according to claim 1, wherein the plurality of cells are arranged in parallel in a horizontal direction, and the canister transfer chamber is disposed right above the plurality of cells. Facility. 請求項2に記載の使用済み燃料貯蔵施設において、前記キャニスタ搬送室には空気取り入れ口が配置され、前記給気風路は前記キャニスタ搬送室に接続されていることを特徴とする使用済み燃料貯蔵施設。3. The spent fuel storage facility according to claim 2, wherein an air intake is arranged in the canister transfer chamber, and the air supply passage is connected to the canister transfer chamber. . 請求項2または3に記載の使用済み燃料貯蔵施設において、前記キャニスタ搬送室には、前記複数のセルに前記キャニスタを搬送する搬送装置が走行できるレールが、前記仕切り壁に交差する方向に配置されていることを特徴とする使用済み燃料貯蔵施設。4. The spent fuel storage facility according to claim 2, wherein a rail on which a transport device that transports the canister to the plurality of cells can run is arranged in the canister transport chamber in a direction intersecting the partition wall. 5. Spent fuel storage facility characterized by the following. 請求項1ないし4のいずれかに記載の使用済み燃料貯蔵施設において、前記複数のセルそれぞれの排気を監視する検出器を有することを特徴とする使用済み燃料貯蔵施設。The spent fuel storage facility according to any one of claims 1 to 4, further comprising a detector for monitoring exhaust gas of each of the plurality of cells. 請求項1ないし5のいずれかに記載の使用済み燃料貯蔵施設において、前記給気風路および排気風路の少なくとも一部が、前記セルの区画に合わせて放射線遮蔽機能を有する仕切り壁によって区画されていることを特徴とする使用済み燃料貯蔵施設。The spent fuel storage facility according to any one of claims 1 to 5, wherein at least a part of the supply air passage and the exhaust air passage is partitioned by a partition wall having a radiation shielding function in accordance with the partition of the cell. A spent fuel storage facility. 請求項1ないし6のいずれかに記載の使用済み燃料貯蔵施設において、前記給気風路および排気風路の少なくとも一方に、屈曲した風路を形成しながら放射線遮蔽機能を有するように複数の遮蔽床を配置したことを特徴とする使用済み燃料貯蔵施設。7. The spent fuel storage facility according to claim 1, wherein a plurality of shielding floors have a radiation shielding function while forming a bent air path in at least one of the supply air path and the exhaust air path. A spent fuel storage facility, wherein 請求項7に記載の使用済み燃料貯蔵施設において、前記遮蔽床の下方に、ほぼ鉛直方向に、放射線遮蔽機能を有する複数の平行な遮蔽板を配置したことを特徴とする使用済み燃料貯蔵施設。8. The spent fuel storage facility according to claim 7, wherein a plurality of parallel shielding plates having a radiation shielding function are arranged substantially vertically below the shielding floor. 使用済み原子燃料を収納する複数のキャニスタを空気中で収納し、放射線遮蔽機能を有する壁に囲まれた貯蔵室と、前記貯蔵室内に空気を取り入れる給気風路と、前記貯蔵室内の空気を排出する排気風路と、前記貯蔵室に隣接して配置され、前記複数のキャニスタを前記貯蔵室内の所定位置に搬送するさいにそのキャニスタを通すキャニスタ搬送室と、を有する使用済み燃料貯蔵施設で、前記貯蔵室が、放射線遮蔽機能を有する仕切り壁によって複数のセルに区画されていて、それら複数のセルそれぞれが前記給気風路および排気風路の両方に接続されている、当該使用済み燃料貯蔵施設を保守する保守方法において、
前記複数のセルのうちの一部のセル内のキャニスタを他のセルに移動する移動工程と、
前記移動工程の後に、当該一部のセル内の保守を行なう工程と、
を有することを特徴とする、使用済み燃料貯蔵施設の保守方法。
A plurality of canisters for storing spent nuclear fuel are stored in the air, a storage room surrounded by a wall having a radiation shielding function, an air supply passage for taking air into the storage room, and discharging air in the storage room. An exhaust air passage that is disposed adjacent to the storage chamber, and a canister transfer chamber that passes the canister when transferring the plurality of canisters to a predetermined position in the storage chamber. The storage facility, wherein the storage room is divided into a plurality of cells by a partition wall having a radiation shielding function, and each of the plurality of cells is connected to both the supply air passage and the exhaust air passage. In the maintenance method for maintaining
A moving step of moving a canister in some of the plurality of cells to another cell,
After the moving step, a step of performing maintenance in the partial cells;
A maintenance method for a spent fuel storage facility, comprising:
請求項9に記載の使用済み燃料貯蔵施設の保守方法において、前記移動工程でキャニスタが移動される他のセルが予備セルであり、かつ、前記一部のセル内の保守を行なう工程の後に、前記予備セル内のキャニスタを、保守を行なった当該セルに戻す工程をさらに有することを特徴とする、使用済み燃料貯蔵施設の保守方法。The method for maintaining a spent fuel storage facility according to claim 9, wherein the other cell to which the canister is moved in the moving step is a spare cell, and after the step of performing maintenance in some of the cells, A method for maintaining a spent fuel storage facility, further comprising a step of returning a canister in the spare cell to the cell in which maintenance has been performed. 使用済み原子燃料を収納する複数のキャニスタを空気中で収納し、放射線遮蔽機能を有する壁に囲まれた貯蔵室と、前記貯蔵室内に空気を取り入れる給気風路と、前記貯蔵室内の空気を排出する排気風路と、前記貯蔵室に隣接して配置され、前記複数のキャニスタを前記貯蔵室内の所定位置に搬送するさいにそのキャニスタを通すキャニスタ搬送室と、を有する使用済み燃料貯蔵施設で、前記貯蔵室が、放射線遮蔽機能を有する仕切り壁によって複数のセルに区画されていて、それら複数のセルそれぞれが前記給気風路および排気風路の両方に接続されている、当該使用済み燃料貯蔵施設を保守する保守方法において、前記複数のセルのうちの一部のセルに仮設の換気装置または換気空調装置によって当該セル内の換気または換気空調を行なう工程と、
当該セル内の保守を行なう工程と、
を有することを特徴とする、使用済み燃料貯蔵施設の保守方法。
A plurality of canisters for storing spent nuclear fuel are stored in the air, a storage room surrounded by a wall having a radiation shielding function, an air supply passage for taking air into the storage room, and discharging air in the storage room. An exhaust air passage that is disposed adjacent to the storage chamber, and a canister transfer chamber that passes the canister when transferring the plurality of canisters to a predetermined position in the storage chamber. The storage facility, wherein the storage room is divided into a plurality of cells by a partition wall having a radiation shielding function, and each of the plurality of cells is connected to both the supply air passage and the exhaust air passage. In the maintenance method for performing maintenance, ventilation or ventilation air conditioning in the cells is performed by a temporary ventilation device or a ventilation air conditioning device in some of the plurality of cells. And a step,
Performing maintenance in the cell;
A maintenance method for a spent fuel storage facility, comprising:
JP2003004525A 2003-01-10 2003-01-10 How to maintain spent fuel storage facilities Expired - Fee Related JP4109125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004525A JP4109125B2 (en) 2003-01-10 2003-01-10 How to maintain spent fuel storage facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004525A JP4109125B2 (en) 2003-01-10 2003-01-10 How to maintain spent fuel storage facilities

Publications (2)

Publication Number Publication Date
JP2004219151A true JP2004219151A (en) 2004-08-05
JP4109125B2 JP4109125B2 (en) 2008-07-02

Family

ID=32895479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004525A Expired - Fee Related JP4109125B2 (en) 2003-01-10 2003-01-10 How to maintain spent fuel storage facilities

Country Status (1)

Country Link
JP (1) JP4109125B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064462A (en) * 2006-09-04 2008-03-21 Toyo Eng Corp Facility for storing radioactive material and its cooling system with natural ventilation
JP2008267902A (en) * 2007-04-18 2008-11-06 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
JP2015087326A (en) * 2013-10-31 2015-05-07 三菱重工業株式会社 Jet fuel discharge structure and cast storage building using the same
KR101596951B1 (en) * 2014-11-28 2016-02-24 한국원자력연구원 Storage vault apparatus for radioactive waste
JP2020128921A (en) * 2019-02-08 2020-08-27 日立Geニュークリア・エナジー株式会社 Method for carrying used fuel storage container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064462A (en) * 2006-09-04 2008-03-21 Toyo Eng Corp Facility for storing radioactive material and its cooling system with natural ventilation
JP2008267902A (en) * 2007-04-18 2008-11-06 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
JP2015087326A (en) * 2013-10-31 2015-05-07 三菱重工業株式会社 Jet fuel discharge structure and cast storage building using the same
KR101596951B1 (en) * 2014-11-28 2016-02-24 한국원자력연구원 Storage vault apparatus for radioactive waste
JP2020128921A (en) * 2019-02-08 2020-08-27 日立Geニュークリア・エナジー株式会社 Method for carrying used fuel storage container
JP7018407B2 (en) 2019-02-08 2022-02-10 日立Geニュークリア・エナジー株式会社 How to transport the spent fuel storage container

Also Published As

Publication number Publication date
JP4109125B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US5862195A (en) Canister, transport, storage, monitoring, and retrieval system
US10311987B2 (en) Wet storage facility for nuclear fuel
CN101512672A (en) Manifold system for the ventilated storage of high level waste and a method of using the same to store high level waste in a below-grade environment
JP5133900B2 (en) Stackable nuclear fuel storage element and storage module formed by stacking said elements
CN101523506A (en) System and method of storing high level waste
JP2004219151A (en) Spent fuel storage facility and its maintenance method
WO2017113362A1 (en) Waste heat exhaust and ventilation system for dry storage of spent fuel of nuclear power station
JP6056284B2 (en) Reactor removal method
JP4014748B2 (en) Spent fuel storage building
JP3169451B2 (en) Spent fuel silo storage and transport system
JP4708927B2 (en) Radioactive material storage facility
JP2004045230A (en) Facility for storing radioactive substance
JP3068088B1 (en) Storage Cask Shield and Storage Method
JP4473770B2 (en) Radioactive material storage facility
JPH11218596A (en) Storage room for spent nuclear fuel
JP4987196B2 (en) Cask storage building
JP4276828B2 (en) Radioactive material dry storage building
JPH1090464A (en) Accepting equipment for radioactive material container
CN116829274A (en) High density underground storage system for nuclear fuel and radioactive waste
Kalinkin et al. RBMK-1000 spent nuclear fuel transfer from wet to dry storage
JPH0476438B2 (en)
Cathro Progress with Scottish Nuclear's proposals for the construction of dry fuel stores at Torness and Hunterston'B'power stations
JP2004170258A (en) Storage facility for radioactive material
JP2004108795A (en) Radioactive material storage method and its facilities
CA2016923A1 (en) Radioactive material storage structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4109125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees