JP2009210412A - Facility for storing exothermic body - Google Patents

Facility for storing exothermic body Download PDF

Info

Publication number
JP2009210412A
JP2009210412A JP2008053611A JP2008053611A JP2009210412A JP 2009210412 A JP2009210412 A JP 2009210412A JP 2008053611 A JP2008053611 A JP 2008053611A JP 2008053611 A JP2008053611 A JP 2008053611A JP 2009210412 A JP2009210412 A JP 2009210412A
Authority
JP
Japan
Prior art keywords
storage
air
storage container
air inlet
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053611A
Other languages
Japanese (ja)
Other versions
JP5119982B2 (en
Inventor
Shinsuke Matsuno
伸介 松野
Hiroaki Fujiwara
寛明 藤原
Hiroyuki Uchida
博幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008053611A priority Critical patent/JP5119982B2/en
Publication of JP2009210412A publication Critical patent/JP2009210412A/en
Application granted granted Critical
Publication of JP5119982B2 publication Critical patent/JP5119982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Storage Of Harvested Produce (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the quantity of steel materials required to store canisters. <P>SOLUTION: A pair of storage rooms 2 are placed in the right and left positions in a storage building 1 composed of shielding walls made of thick reinforced concrete. An air inlet 3 is placed in the lower part of the outside wall at the right and left of the storage rooms 2 to allow the air inlet to communicate with an outside air intake 4 placed on the sidewall 1a of the storage building 1. An air outlet 5 is placed in the center in the width direction of a ceiling wall 1b of the storage building 1 and is connected with the lower end of the outlet shaft 6 with an exhaust port 7 at its upper end. The canisters 8 are sealed and accommodated in storage containers 9 made of carbon steel and each storage container 9 as a whole is stored in the storage rooms 2. The heat release from the canisters is conducted to the air in the storage rooms 2 by way of the storage containers 9. The air in the storage rooms 2 is naturally ventilated by the draft force based on the differential pressure between the air whose temperature is raised by the heat release from the canisters 8 and which is released through the air outlet 5, the outlet shaft 6 and the exhaust port 7 and the low-temperature air flowing in through the outside air intake 4 and the air inlet 3 to continuously cool the storage containers 9 accommodating the canisters 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原子力発電所の使用済燃料やガラス固化体を格納したキャニスタを、放射性核種の崩壊熱を自然空冷しながら一時貯蔵するために用いる発熱体貯蔵施設に関するものである。   The present invention relates to a heating element storage facility used for temporarily storing a canister storing spent fuel and vitrified material of a nuclear power plant while naturally decaying the decay heat of a radionuclide.

一般に、原子力発電所で発生する使用済燃料(使用済み核燃料)は、ステンレス製の使用済燃料格納用の円筒形状の密封容器、いわゆるキャニスタに格納(封入)して、再処理するまでの間、中間貯蔵することが考えられている。この中間貯蔵の際、上記使用済燃料から発生する放射性核種の崩壊熱は、自然空冷により除去することが考えられている。   In general, spent fuel generated at nuclear power plants (used nuclear fuel) is stored (enclosed) in a cylindrical sealed container for storing spent fuel made of stainless steel, so-called canister, and reprocessed. Interim storage is considered. During this intermediate storage, it is considered that the decay heat of the radionuclide generated from the spent fuel is removed by natural air cooling.

又、上記使用済燃料の再処理工場から発生するキャニスタに格納(封入)された高レベル放射性廃棄物のガラス固化体についても、最終処分するまでの間、自然空冷式の貯蔵施設で貯蔵することが考えられている。   In addition, high-level radioactive waste vitrified products stored (encapsulated) in canisters generated from the spent fuel reprocessing plant should be stored in a natural air-cooled storage facility until final disposal. Is considered.

ところで、上記キャニスタに格納した使用済燃料の貯蔵方式の1つとしては、金属キャスク方式が従来知られている。これは、放射線遮蔽機能を備えた金属キャスクに、使用済燃料を格納したキャニスタを収納し、この金属キャスクのまま、たとえば、所要の貯蔵建屋内に設けた貯蔵エリアに置いておくようにしたものである(たとえば、特許文献1、特許文献2参照)。   Incidentally, a metal cask method is conventionally known as one of the storage methods for spent fuel stored in the canister. This is a metal cask with a radiation shielding function that houses a canister containing spent fuel and keeps the metal cask in a storage area provided in the required storage building, for example. (For example, refer to Patent Document 1 and Patent Document 2).

又、原子力発電所の使用済燃料を貯蔵(封入)するための金属製の貯蔵容器の冷却を促進するための手法の1つとしては、金属製の外筒と、該外筒内に外筒との間にガス循環を形成するよう挿入した金属製の内筒とからなり、上記内筒内に使用済核燃料集合体を収納するようにしてある使用済み核燃料の貯蔵用容器について、上記外筒の外周面に、該外筒の上端部より下端部まで上下方向に延びる放熱用フィンを、周方向等間隔で所要枚数設けてなる構成とすることが従来提案されている(たとえば、特許文献3参照)。   Further, as one of the methods for promoting the cooling of the metal storage container for storing (enclosing) the spent fuel of the nuclear power plant, there are a metal outer cylinder, and an outer cylinder in the outer cylinder. A used nuclear fuel storage container in which a spent nuclear fuel assembly is housed in the inner cylinder, the inner cylinder being inserted so as to form a gas circulation between the outer cylinder and the outer cylinder. It is conventionally proposed that a required number of heat dissipating fins extending in the vertical direction from the upper end portion to the lower end portion of the outer cylinder are provided on the outer peripheral surface of the outer cylinder at equal intervals in the circumferential direction (for example, Patent Document 3). reference).

又、原子力発電所の使用済燃料を貯蔵(封入)するための貯蔵容器の冷却を促進するための別の手法としては、使用済核燃料用貯蔵庫に設けて使用済核燃料を収納するようにしてある上下方向に延びる収納管に、上下方向所要間隔で水平方向の放熱フィンを取り付ける考えが従来提案されている(たとえば、特許文献4参照)。   As another method for promoting cooling of the storage container for storing (sealing) the spent fuel of the nuclear power plant, the spent nuclear fuel is stored in the spent nuclear fuel storage. The idea of attaching horizontal radiating fins to the storage tube extending in the vertical direction at a required interval in the vertical direction has been conventionally proposed (see, for example, Patent Document 4).

特開2002−267791号公報JP 2002-267991 A 特開2006−170795号公報JP 2006-170795 A 実開昭61−119798号公報Japanese Utility Model Publication No. 61-119798 特開平9−292488号公報Japanese Patent Laid-Open No. 9-292488

ところが、特許文献1や特許文献2に示されているように、原子力発電所の使用済燃料を金属キャスクを用いて中間貯蔵を行う手法では、金属キャスク自体に放射線の遮蔽機能を持たせる必要があるため、金属キャスク1本当りに、約100トンもの大量の鋼材が必要になってしまう。そのために、近年の原材料の高騰等によりコストが嵩むという問題が生じているのが実状である。   However, as shown in Patent Document 1 and Patent Document 2, in the method of performing intermediate storage of spent fuel of a nuclear power plant using a metal cask, the metal cask itself needs to have a radiation shielding function. Therefore, a large amount of steel material of about 100 tons is required per metal cask. For this reason, the actual situation is that the cost has increased due to the recent rise in raw materials.

又、上記特許文献3及び特許文献4には、原子力発電所の使用済燃料を貯蔵するための貯蔵容器の冷却を促進するために、該貯蔵容器の所要個所にそれぞれ所定の形状の放熱用フィンを設ける考えが示されているが、貯蔵建屋の構造によっては、該建屋内全体の空気の流動を阻害する可能性があるため、所望する冷却性能が必ずしも得られないという虞が生じてしまう。   In Patent Document 3 and Patent Document 4, in order to promote the cooling of the storage container for storing the spent fuel of the nuclear power plant, a heat-radiating fin having a predetermined shape is provided at a required portion of the storage container. However, depending on the structure of the storage building, there is a possibility that the air flow in the entire building may be hindered, so that the desired cooling performance may not necessarily be obtained.

そこで、本発明は、原子力発電所の使用済燃料を格納したキャニスタや、ガラス固化体を格納したキャニスタの如き放射性核種の崩壊熱を発する発熱体を、自然空冷しながら一時貯蔵でき、しかも、使用する鋼材量を低減させることが可能な発熱体貯蔵施設を提供しようとするものである。   Therefore, the present invention can store a heating element that generates decay heat of a radionuclide such as a canister storing spent fuel of a nuclear power plant or a canister storing a vitrified material while being naturally air-cooled and used. An object of the present invention is to provide a heating element storage facility capable of reducing the amount of steel material to be reduced.

本発明は、上記課題を解決するために、請求項1に対応して、放射線の遮蔽機能を有する厚いコンクリート遮蔽壁により構築した貯蔵建屋内に貯蔵室を設け、該貯蔵室の左右幅方向の一方の下部所要個所に空気入口を設けて、該空気入口を上記貯蔵建屋の側壁に設けた外気取入口に連通させると共に、上記貯蔵室の左右幅方向の他方の上部所要個所に空気出口を設けて、上端部に排気口を有する煙突状の空気出口シャフトの下端側を上記空気出口に接続し、更に、上記貯蔵室内に、発熱するキャニスタを密封収納した貯蔵容器を貯蔵するようにしてなる構成とする。   In order to solve the above-mentioned problems, the present invention provides a storage room in a storage building constructed by a thick concrete shielding wall having a radiation shielding function, corresponding to claim 1, and in the lateral direction of the storage room. An air inlet is provided at one lower required part, and the air inlet is communicated with an outside air inlet provided on the side wall of the storage building, and an air outlet is provided at the other upper required part in the lateral width direction of the storage room. The lower end of a chimney-like air outlet shaft having an exhaust port at the upper end is connected to the air outlet, and a storage container in which a canister that generates heat is hermetically stored is stored in the storage chamber. And

又、上記構成における貯蔵容器を、貯蔵室内にて空気入口より空気出口に向かう空気流れ方向となる左右方向に列を形成するように配置し、且つ該各貯蔵容器の外周面における上記貯蔵室にて空気入口より貯蔵室の内底部に沿う低温の空気流れが形成される高さ位置よりも上側となる位置に、鉛直フィンを周方向所要間隔で取り付けるようにした構成とする。   Further, the storage containers in the above configuration are arranged so as to form a row in the left-right direction, which is the air flow direction from the air inlet toward the air outlet, in the storage chamber, and in the storage chamber on the outer peripheral surface of each storage container. Thus, the vertical fins are attached at a required interval in the circumferential direction at a position above a height position where a low-temperature air flow along the inner bottom of the storage chamber is formed from the air inlet.

更に、上記各構成において、貯蔵容器の外周面における鉛直フィン取付個所よりも下方位置に、水平フィンを設けるようにした構成とする。   Furthermore, in each said structure, it is set as the structure which provided the horizontal fin in the position below the vertical fin attachment location in the outer peripheral surface of a storage container.

本発明の発熱体貯蔵施設によれば、以下のような優れた効果を発揮する。
(1)放射線の遮蔽機能を有する厚いコンクリート遮蔽壁により構築した貯蔵建屋内に貯蔵室を設け、該貯蔵室の左右幅方向の一方の下部所要個所に空気入口を設けて、該空気入口を上記貯蔵建屋の側壁に設けた外気取入口に連通させると共に、上記貯蔵室の左右幅方向の他方の上部所要個所に空気出口を設けて、上端部に排気口を有する煙突状の空気出口シャフトの下端側を上記空気出口に接続し、更に、上記貯蔵室内に、発熱するキャニスタを密封収納した貯蔵容器を貯蔵するようにしてなる構成としてあるので、貯蔵室にキャニスタを収納した貯蔵容器を貯蔵すると、発熱するキャニスタの熱が、貯蔵容器を介して貯蔵室内の空気に伝熱されることで、該貯蔵室内の空気が昇温されて密度低下して浮力を生じるため、この昇温した空気を空気出口より出口シャフト内を上昇させて排気口より大気中に放出することができ、この排気口より放出される昇温した空気と、上記貯蔵室の空気入口が連通させてある貯蔵建屋の側壁に設けてある外気取入口より取り入れられる低温の空気との圧力差に起因するドラフト力により、上記外気取入口より空気入口を経て貯蔵室へ空気を順次流入させることができることから、貯蔵室内に貯蔵されたキャニスタを収納した貯蔵容器を、自然換気される貯蔵室内の空気によって連続的に冷却することができる。
(2)更に、上記キャニスタに格納されている放射性物質より発せられる放射線の遮蔽能力は、上記貯蔵建屋を構築している鉄筋コンクリートにより確保することができるようにしてあるため、上記貯蔵容器を、放射線の遮蔽能力が要求されない薄肉の容器とすることができる。よって、該貯蔵容器を製造するために必要な鋼材量を抑えることができることから、従来、金属キャスクによりキャニスタの貯蔵を行うようにしていた場合に比して、使用する鋼材量を大幅に低減させることができる。
(3)貯蔵容器を、貯蔵室内にて空気入口より空気出口に向かう空気流れ方向となる左右方向に列を形成するように配置し、且つ該各貯蔵容器の外周面における上記貯蔵室にて空気入口より貯蔵室の内底部に沿う低温の空気流れが形成される高さ位置よりも上側となる位置に、鉛直フィンを周方向所要間隔で取り付けるようにした構成とすることにより、貯蔵容器の放熱面積を放熱フィンによって拡大することができるため、貯蔵容器に収納されたキャニスタの冷却をより効率よく行うことができる。又、貯蔵室内に空気入口側より空気出口側へ向けて左右方向に配列された各貯蔵容器では、貯蔵室の内底部付近に形成された低温の空気の流れが各貯蔵容器の位置に達すると、その一部が該各貯蔵容器の上部に設けてある鉛直フィンに導かれて各貯蔵容器の冷却に供され、この各貯蔵容器の冷却に供されることで昇温する空気は、該各貯蔵容器の鉛直フィンに沿って貯蔵室の天井部付近まで上昇させられるようになるため、或る貯蔵容器の冷却に供された後の昇温した空気が、該貯蔵容器の空気出口側に隣接する貯蔵容器の冷却に供されることを抑制できる。しかも、各貯蔵容器の鉛直フィンは、貯蔵室の内底部付近を通って各貯蔵容器付近に達する低温の空気の左右方向の流れを阻害しない高さ位置に設けてあるため、上記各貯蔵室の内底部付近に形成される低温の空気の流れを各貯蔵容器へ確実に導くことができて、該各貯蔵容器の冷却に供される空気の温度をより低下させることができる。よって、各貯蔵容器に収納されたキャニスタの冷却効率をより高めることができる。
(4)更に、上記各貯蔵容器の周囲に乱流が生じる虞を低減できるため、貯蔵室内における空気流れをスムーズなものとすることができて、該貯蔵室における空気の換気効率の向上化を図ることができる。
(5)貯蔵容器の外周面における鉛直フィン取付個所よりも下方位置に、水平フィンを設けるようにした構成とすることにより、上記水平フィンにより貯蔵室の内底部付近にて空気入口より流入して左右方向に流れる低温の空気流れを阻害することなく該各貯蔵容器の放熱面積を拡大することができるため、各貯蔵容器に収納されたキャニスタの冷却効率を更に向上させることができる。
According to the heating element storage facility of the present invention, the following excellent effects are exhibited.
(1) A storage room is provided in a storage building constructed with a thick concrete shielding wall having a radiation shielding function, an air inlet is provided at one lower required position in the left-right width direction of the storage room, and the air inlet is A lower end of a chimney-shaped air outlet shaft that communicates with an outside air inlet provided on the side wall of the storage building, has an air outlet at the other upper required portion in the left-right width direction of the storage chamber, and has an exhaust port at the upper end The side is connected to the air outlet, and further, the storage chamber is configured to store a storage container in which a canister for heat generation is hermetically stored, and thus storing the storage container in which the canister is stored in the storage chamber, Since the heat of the canister that generates heat is transferred to the air in the storage chamber through the storage container, the temperature of the air in the storage chamber is raised to reduce the density and generate buoyancy. A side wall of a storage building in which the inside of the outlet shaft can be raised from the air outlet and discharged into the atmosphere from the exhaust port, and the heated air discharged from the exhaust port communicates with the air inlet of the storage chamber. Since the draft force caused by the pressure difference with the low-temperature air taken in from the outside air intake installed in the air allows air to flow sequentially from the outside air inlet through the air inlet to the storage room, it is stored in the storage room. The storage container in which the canister is stored can be continuously cooled by the air in the storage room that is naturally ventilated.
(2) Furthermore, since the shielding ability of the radiation emitted from the radioactive substance stored in the canister can be secured by the reinforced concrete constructing the storage building, It is possible to make the container thin. Therefore, since the amount of steel material necessary for manufacturing the storage container can be suppressed, the amount of steel material to be used is greatly reduced as compared with the case where the canister is conventionally stored with a metal cask. be able to.
(3) The storage containers are arranged in the storage chamber so as to form a row in the left-right direction, which is the air flow direction from the air inlet toward the air outlet, and air is stored in the storage chamber on the outer peripheral surface of each storage container. By adopting a configuration in which vertical fins are attached at a required interval in the circumferential direction at a position above the height position where a low-temperature air flow is formed along the inner bottom of the storage chamber from the entrance, heat dissipation of the storage container is achieved. Since the area can be expanded by the radiation fins, the canister housed in the storage container can be cooled more efficiently. In each storage container arranged in the left-right direction from the air inlet side to the air outlet side in the storage chamber, when the low-temperature air flow formed near the inner bottom of the storage chamber reaches the position of each storage container , A part of the air is led to the vertical fins provided at the upper part of each storage container and used for cooling each storage container. Since the air is raised to the vicinity of the ceiling of the storage room along the vertical fin of the storage container, the heated air after being used for cooling a certain storage container is adjacent to the air outlet side of the storage container. It is possible to prevent the storage container from being used for cooling. Moreover, since the vertical fins of each storage container are provided at a height that does not obstruct the flow of the low-temperature air that reaches the vicinity of each storage container through the vicinity of the inner bottom of the storage chamber, The flow of low-temperature air formed in the vicinity of the inner bottom can be reliably guided to each storage container, and the temperature of the air used for cooling each storage container can be further reduced. Therefore, the cooling efficiency of the canister accommodated in each storage container can be further increased.
(4) Furthermore, since the possibility of turbulent flow around each of the storage containers can be reduced, the air flow in the storage chamber can be made smooth, and the ventilation efficiency of air in the storage chamber can be improved. Can be planned.
(5) By adopting a configuration in which a horizontal fin is provided at a position below the vertical fin attachment point on the outer peripheral surface of the storage container, the horizontal fin causes the air to flow from the air inlet near the inner bottom of the storage chamber. Since the heat radiation area of each storage container can be expanded without hindering the low-temperature air flow flowing in the left-right direction, the cooling efficiency of the canisters housed in each storage container can be further improved.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1乃至図5(イ)(ロ)(ハ)は本発明の発熱体貯蔵施設の実施の一形態を示すもので、以下のような構成としてある。   FIG. 1 thru | or FIG. 5 (a) (b) (c) shows one Embodiment of the heat generating body storage facility of this invention, and it is set as the following structures.

すなわち、本発明の発熱体貯蔵施設は、放射線の遮蔽機能を備えた厚い、たとえば、厚さ1m程度の鉄筋コンクリート製の遮蔽壁で構成された貯蔵建屋1内に貯蔵室2を設け、該貯蔵室2の下部所要個所に空気入口3を設けて、該空気入口3を、貯蔵建屋1の側壁1aに開口させた外気取入口4に連通接続すると共に、上記貯蔵室2の上部所要個所に空気出口5を設けて、該空気出口5に、上端部に排気口7を備えた煙突状の出口シャフト6の下端部を連通接続する。更に、原子力発電所の使用済燃料を格納したキャニスタや、ガラス固化体を格納したキャニスタの如き発熱体となるキャニスタ8を、円筒状の炭素鋼製の貯蔵容器9に密封収納し、該キャニスタ8を密封収納してなる貯蔵容器9を、上記貯蔵建屋1の貯蔵室2内に貯蔵するようにした構成とする。   That is, the heating element storage facility of the present invention is provided with a storage chamber 2 in a storage building 1 having a thick shielding wall made of reinforced concrete having a radiation shielding function, for example, a thickness of about 1 m. 2 is provided with an air inlet 3 at a lower required portion, and the air inlet 3 is connected to an outside air intake 4 opened in the side wall 1a of the storage building 1 and is connected to an air outlet at an upper required portion of the storage chamber 2. 5 is provided, and a lower end portion of a chimney-shaped outlet shaft 6 having an exhaust port 7 at an upper end portion thereof is connected to the air outlet 5 in communication. Further, a canister 8 serving as a heating element such as a canister storing spent fuel of a nuclear power plant or a canister storing a vitrified body is hermetically stored in a cylindrical carbon steel storage container 9. The storage container 9 is stored in the storage room 2 of the storage building 1 in a sealed manner.

詳述すると、上記貯蔵建屋1は、平面形状を矩形状としてあり、該貯蔵建屋1の前側壁1cの左右幅方向の中央部に、開閉自在な遮蔽扉10aを備えた建屋入口10を設ける。更に、該貯蔵建屋1内の左右幅方向の中央部に、上記建屋入口10から建屋内の前後方向の全長に亘って延びる搬送路11を設け、該搬送路11の左右両側に、左右1対の貯蔵室2が区画形成してある。上記貯蔵建屋1の左右の側壁1aの内側には、天井付近のみを残して内底部から上部所要高さ位置までを閉塞させる放射線遮蔽機能を備えた下部迷路板12と、内底部付近のみを残して天井部から下部所要位置までを閉塞させる放射線遮蔽機能を備えた上部迷路板13とを外側から順に設ける。これにより、各貯蔵室2の左右の外側壁となる上記上部迷路板13の下方に、建屋前後方向の全長に亘る空気入口3が形成してあると共に、該各貯蔵室2の空気入口3を、上記上部と下部の各迷路板12と13によって上下方向に蛇行させられた流路を介して、上記貯蔵建屋1の左右の側壁1aに建屋前後方向の全長に亘り設けてある外気取入口4に連通させた構成としてある。   More specifically, the storage building 1 has a rectangular planar shape, and a building entrance 10 having an openable / closable shielding door 10a is provided at the center in the left-right width direction of the front side wall 1c of the storage building 1. Further, a transport path 11 extending from the building entrance 10 over the entire length in the front-rear direction of the building is provided in the central portion of the storage building 1 in the left-right width direction. The storage chamber 2 is partitioned. On the inner side of the left and right side walls 1a of the storage building 1, only the lower maze plate 12 having a radiation shielding function for closing from the inner bottom to the upper required height position, leaving only the vicinity of the ceiling, and the vicinity of the inner bottom are left. Then, an upper maze plate 13 having a radiation shielding function for closing from the ceiling portion to the lower required position is provided in order from the outside. As a result, an air inlet 3 is formed under the upper maze plate 13 which is the left and right outer walls of each storage chamber 2 over the entire length in the front-rear direction of the building, and the air inlet 3 of each storage chamber 2 is The outside air intake 4 is provided on the left and right side walls 1a of the storage building 1 over the entire length in the front-rear direction of the building via the flow paths meandering in the vertical direction by the upper and lower labyrinth plates 12 and 13. It is the structure made to communicate with.

更に、上記貯蔵建屋1の天井壁1bにおける左右幅方向の中央部には、上記左右の各貯蔵室2で共用するための空気出口5を、建屋前後方向の全長に亘り設け、該空気出口5の上側に、上下方向に所要の高さ寸法を有し且つ放射線遮蔽機能を備えた迷路板14を内蔵することで左右方向に蛇行させた流路を具備してなる出口シャフト6の下端部が取り付けてある。   Furthermore, an air outlet 5 is provided in the central portion of the ceiling wall 1b of the storage building 1 in the left-right width direction over the entire length in the front-rear direction of the building. The lower end portion of the outlet shaft 6 is provided with a flow path meandering in the left-right direction by incorporating a maze plate 14 having a required height dimension in the vertical direction and having a radiation shielding function. It is attached.

上記左右の各貯蔵室2は、空気入口3と空気出口5とを結ぶ方向である左右方向に、所要間隔で複数個、たとえば、6個の貯蔵容器9を配列すると共に、この左右方向に配列された6個の貯蔵容器9からなる列を、前後方向に所要間隔で複数列、たとえば、8列並べて格納できるようにしてある。これにより、上記各貯蔵室2にキャニスタ8を収納した貯蔵容器9を貯蔵すると、放射性物質の崩壊熱によって加熱されるキャニスタ8が、各貯蔵室2内の空気により各貯蔵容器9を介して間接的に冷却される。一方、該各貯蔵容器9に収納されたキャニスタ8の冷却に供されることで昇温した空気は、密度低下して浮力が生じるため、各貯蔵室2内にて上昇して空気出口5へ導かれた後、出口シャフト6内を更に上昇して排気口7より大気中へ放出されるようにしてある。この際、上記各貯蔵室2の空気入口3が連通させてある貯蔵建屋1の左右の側壁1aの外気取入口4は、上記出口シャフト6の頂部の排気口7よりも低くなっていることから、該外気取入口4より取り入れられる低温(常温)の空気と、上記したように各貯蔵室2にてキャニスタ8の冷却に供されることで昇温した後に出口シャフト6の頂部の排気口7より放出される空気との圧力差に起因するドラフト力を利用して、図1に矢印aで空気流れを示すように、上記各外気取入口4より取り入れる空気を、各空気入口3、各貯蔵室2、空気出口5、出口シャフト6を経て排気口7に至る経路で流通させて、上記各貯蔵室2内の自然換気を行うことができるようにしてある。よって、上記各貯蔵室2では、左右の外側端部の下部位置に建屋前後方向の全長に亘って設けた各空気入口3より、貯蔵建屋1の左右幅方向中央部に建屋前後方向の全長に亘って設けた空気出口5へ向けて空気を流通させることで、該各貯蔵室2内に、貯蔵容器9を左右方向に6個配列してある該貯蔵容器9の各列に沿う方向の空気流れを形成できるようにしてある。   The left and right storage chambers 2 have a plurality of, for example, six storage containers 9 arranged at a required interval in the left-right direction, which is a direction connecting the air inlet 3 and the air outlet 5, and arranged in the left-right direction. The row of the six storage containers 9 is stored in a plurality of rows, for example, 8 rows at a required interval in the front-rear direction. As a result, when the storage container 9 containing the canister 8 is stored in each of the storage chambers 2, the canister 8 heated by the decay heat of the radioactive substance is indirectly passed through each storage container 9 by the air in each of the storage chambers 2. Cooled. On the other hand, the air heated by being used for cooling the canisters 8 accommodated in the respective storage containers 9 decreases in density and generates buoyancy, and therefore rises in each storage chamber 2 to the air outlet 5. After being guided, the inside of the outlet shaft 6 is further raised and discharged from the exhaust port 7 into the atmosphere. At this time, the outside air intake ports 4 on the left and right side walls 1a of the storage building 1 to which the air inlets 3 of the respective storage chambers 2 are communicated are lower than the exhaust port 7 at the top of the outlet shaft 6. The low-temperature (normal temperature) air taken in from the outside air intake 4 and the exhaust port 7 at the top of the outlet shaft 6 after being heated by being used for cooling the canister 8 in each storage chamber 2 as described above. Using the draft force resulting from the pressure difference from the air released from the air, the air taken in from each of the outside air intakes 4 as shown by the arrow a in FIG. It is made to distribute | circulate by the path | route which leads to the exhaust port 7 through the chamber 2, the air outlet 5, and the exit shaft 6, and can perform the natural ventilation in each said storage chamber 2. FIG. Therefore, in each said storage chamber 2, from the air inlet 3 provided in the lower position of the right-and-left outer edge part over the full length of the building front-back direction, it is made into the full length of the building front-back direction in the center part of the left-right width direction of the storage building 1. The air in the direction along each row of the storage containers 9 in which six storage containers 9 are arranged in the left-right direction in each storage chamber 2 by circulating air toward the air outlet 5 provided over the air outlet 5 A flow can be formed.

上記貯蔵建屋1の前側には、輸送キャスク15に格納した状態のキャニスタ8を受け入れるための受入れ建屋16が設けてあり、且つ該受入れ建屋16内における上記貯蔵建屋1の建屋入口10の外側となる位置には、厚い鉄筋コンクリート製の遮蔽壁で囲まれたキャニスタ8の詰め替えエリア17が、上記建屋入口10と連通させて設けてある。更に、上記詰め替えエリア17の天井部には、キャニスタ詰め替え機器18が内外方向に貫通させて設けてある。   A receiving building 16 for receiving the canister 8 stored in the transport cask 15 is provided on the front side of the storage building 1, and is outside the building entrance 10 of the storage building 1 in the receiving building 16. In the position, a refill area 17 of the canister 8 surrounded by a thick reinforced concrete shielding wall is provided in communication with the building entrance 10. Further, a canister refill device 18 is provided in the ceiling portion of the refill area 17 so as to penetrate in the inner and outer directions.

上記詰め替えエリア17内と上記貯蔵建屋1の搬送路11には、建屋入口10を通して上記詰め替えエリア17内から建屋前後方向の全長に亘って設置したレール19に沿って遠隔操作により走行可能な台車20が設けてある。更に、上記貯蔵建屋1の天井部には、貯蔵容器9を左右方向に配列させて貯蔵する貯蔵容器9の各列ごとの上方となる位置に、遠隔操作により左右方向へ移動可能な天井クレーン21が設けてある。   In the refill area 17 and the transport path 11 of the storage building 1, a carriage 20 that can travel by remote control along a rail 19 installed over the entire length in the front-rear direction of the building from the refill area 17 through the building entrance 10. Is provided. Furthermore, on the ceiling part of the storage building 1, an overhead crane 21 that can be moved in the left-right direction by remote operation to the upper position of each row of the storage containers 9 that store the storage containers 9 arranged in the left-right direction. Is provided.

上記貯蔵容器9は、図4(イ)(ロ)に示す如く、収納すべきキャニスタ8の外径よりもやや大きな内径寸法を有する下端部が閉塞した円筒形状の炭素鋼製の容器本体22と、該容器本体22の上端開口部22aを閉塞するための炭素鋼製の蓋23とからなる構成としてある。更に、上記蓋23は、上記容器本体22の上端開口部22aへ挿入するための円筒状の挿入部23aと、該挿入部23aの上端側にて外周側へ所要寸法張り出す鍔状部23bとからなる構成としてある。これにより、上記容器本体22の内側へキャニスタ8を挿入した後、該容器本体22の上端開口部22aの内側に上記蓋23の挿入部23aを挿入した状態で、該蓋23の鍔状部23bを、上記容器本体22の上端開口部22aの周縁部に金属ガスケット24を介して載置し、この状態で、該蓋23の鍔状部23bを上記容器本体22の上端開口部22aの周縁部にボルト止めすることで、上記キャニスタ8を密封できるようにしてある。更に、この際、上記蓋23の挿入部23aを容器本体22の上端開口部22aの内側に挿入することで、容器本体22と蓋23との間に、直線状に連続した隙間が形成されないようにしてある。   As shown in FIGS. 4 (a) and 4 (b), the storage container 9 includes a cylindrical carbon steel container body 22 with a closed lower end having an inner diameter dimension slightly larger than the outer diameter of the canister 8 to be stored; The container body 22 includes a lid 23 made of carbon steel for closing the upper end opening 22a. Further, the lid 23 includes a cylindrical insertion portion 23a for insertion into the upper end opening 22a of the container body 22, and a hook-like portion 23b projecting a required dimension to the outer peripheral side at the upper end side of the insertion portion 23a. It consists as follows. Thus, after the canister 8 is inserted inside the container body 22, the hook-like portion 23 b of the lid 23 is inserted with the insertion portion 23 a of the lid 23 inserted inside the upper end opening 22 a of the container body 22. Is placed on the peripheral edge of the upper end opening 22a of the container main body 22 via a metal gasket 24. In this state, the flange 23b of the lid 23 is placed on the peripheral edge of the upper end opening 22a of the container main body 22. The canister 8 can be hermetically sealed by bolting. Further, at this time, the insertion portion 23 a of the lid 23 is inserted inside the upper end opening 22 a of the container body 22, so that no linearly continuous gap is formed between the container body 22 and the lid 23. It is.

更に、上記蓋23の上面側には吊具25を設けて、上記貯蔵室2の天井部に設けた天井クレーン21により上記キャニスタ8を密閉収納した状態の貯蔵容器9を上記吊具25を介し吊り上げて左右方向へ移動させることができるようにしてある。   Further, a hanger 25 is provided on the upper surface side of the lid 23, and the storage container 9 in a state where the canister 8 is hermetically stored by the overhead crane 21 provided on the ceiling portion of the storage chamber 2 is interposed via the hanger 25. It can be lifted and moved in the left-right direction.

上記貯蔵容器9は、その下端部に、方形の台座26を一体に取り付けた構成としてある。   The said storage container 9 is set as the structure which attached the square base 26 to the lower end part integrally.

一方、上記貯蔵建屋1の各貯蔵室2の内底部には、上記方形の台座26と一体化された貯蔵容器9が所定位置に搬入されると、この台座26ごと上記貯蔵容器9を該位置に固定するための固定機構が設けてある。具体的には、図5(イ)(ロ)(ハ)に示す如く、上記固定機構27は、たとえば、上記各貯蔵室2の内底部における各貯蔵容器9の貯蔵予定個所の前後両側位置に、上記貯蔵容器9の台座26の左右幅寸法と同様の長さ寸法で左右方向に延び、且つ左右の両端部を下端側が所要寸法突出する傾斜面としてなる固定部材28をそれぞれ設置し、更に、前後方向に上記貯蔵容器9の台座26の前後長寸法よりも所要寸法長い寸法で延びて、上記各固定部材28の左右方向に隣接するもの同士の間に形成される隙間に上方より挿入するための略楔状断面の仕切部材29を備えた構成としてある。なお、該仕切部材29の長手方向の所要個所には、天井クレーン21で吊るための吊具30が設けてある。又、図示してないが、各貯蔵室2内における左端の貯蔵容器貯蔵個所の前後位置に設ける固定部材28の左側と、各貯蔵室2内における右端の貯蔵容器貯蔵個所の前後位置に設ける固定部材28の右側には、短い固定部材をそれぞれ設けることで、この短い固定部材との間に、上記仕切部材29を挿入できるようにしてあるものとする。これにより、上記仕切部材29を取り外した状態で、上記台座26と一体化された貯蔵容器9を、各貯蔵室2の天井クレーン21により所定位置に搬入して載置した後、上記所定位置に載置された貯蔵容器9の台座26の前後に位置する固定部材28と、その左右方向に隣接する固定部材28との間の隙間に、上記仕切部材29を天井クレーン21を用いて上方より挿入することで、上記貯蔵容器9の台座26の前後方向への変位を、上記前後の固定部材28で、又、台座26の左右方向への変位を、その両側に配される各仕切部材29でそれぞれ拘束することにより、上記貯蔵容器9に地震等の揺れが作用する場合であっても、該貯蔵容器9が貯蔵室2内で変位したり倒れたりする虞を未然に防止できるようにしてある。   On the other hand, when the storage container 9 integrated with the rectangular pedestal 26 is carried into a predetermined position at the inner bottom of each storage chamber 2 of the storage building 1, the storage container 9 together with the pedestal 26 is placed in the position. A fixing mechanism is provided for fixing to. Specifically, as shown in FIGS. 5 (A), 5 (B), and 5 (C), the fixing mechanism 27 is, for example, at both front and rear positions of the storage planned location of each storage container 9 at the inner bottom of each storage chamber 2. A fixing member 28 is provided, each of which has a length dimension similar to the left-right width dimension of the pedestal 26 of the storage container 9 and extends in the left-right direction. To extend in the front-rear direction with a length longer than the front-rear length of the base 26 of the storage container 9 and to be inserted from above into the gap formed between the fixing members 28 adjacent to each other in the left-right direction. The partition member 29 having a substantially wedge-shaped cross section is provided. A hanging tool 30 for hanging with the overhead crane 21 is provided at a required portion in the longitudinal direction of the partition member 29. Although not shown, the fixing member 28 provided at the front and rear positions of the leftmost storage container storage location in each storage chamber 2 and the fixing provided at the front and rear positions of the rightmost storage container storage location in each storage chamber 2. It is assumed that a short fixing member is provided on the right side of the member 28 so that the partition member 29 can be inserted between the short fixing member. Thus, after the partition member 29 is removed, the storage container 9 integrated with the pedestal 26 is carried into and placed at a predetermined position by the overhead crane 21 of each storage chamber 2 and then placed at the predetermined position. The partition member 29 is inserted from above using a ceiling crane 21 into a gap between the fixed member 28 positioned in front of and behind the base 26 of the storage container 9 placed and the fixed member 28 adjacent in the left-right direction. Thus, the displacement of the storage container 9 in the front-rear direction of the pedestal 26 is changed by the front and rear fixing members 28, and the displacement of the pedestal 26 in the left-right direction is changed by the partition members 29 arranged on both sides thereof. By restraining each, the storage container 9 can be prevented from displacing or falling in the storage chamber 2 even when a shake such as an earthquake acts on the storage container 9. .

上記受入れ建屋16内には、図3に示す如く、輸送キャスク15を移送するためのキャスク移送用天井クレーン31、及び、輸送キャスク移動台車32に横向きに載置された状態で搬入されるキャニスタ8を格納した輸送キャスク15を立て起こすための図示しない起伏装置と、起立させた輸送キャスク15の蓋を開けるための図示しない蓋開閉装置を備えた構成としてあるものとする。33は受入れ建屋16の入口である。   As shown in FIG. 3, a cask transfer overhead crane 31 for transferring the transport cask 15 and a canister 8 that is loaded sideways on the transport cask moving carriage 32 in the receiving building 16. It is assumed that there is a structure including a hoisting device (not shown) for raising the transport cask 15 in which is stored, and a lid opening / closing device (not shown) for opening the lid of the transported cask 15 that has stood up. Reference numeral 33 denotes an entrance of the receiving building 16.

又、図示してないが、上記受入れ建屋16には、空の貯蔵容器9を保管するための空容器保管建屋が付設してあるものとする。   Although not shown, it is assumed that the receiving building 16 is provided with an empty container storage building for storing the empty storage container 9.

以上の構成としてある発熱体貯蔵施設を使用してキャニスタ8の貯蔵を行う場合は、先ず、空容器保管建屋より空の貯蔵容器9を受入れ建屋16に搬入した後、該空の貯蔵容器9を、キャスク移送用天井クレーン31や、キャニスタ詰め替え機器18を用いて、詰め替えエリア17に予め待機させた台車20上に載置しておく。   When the canister 8 is stored using the heating element storage facility having the above-described configuration, first, the empty storage container 9 is carried into the receiving building 16 from the empty container storage building, and then the empty storage container 9 is removed. Using the overhead crane 31 for transferring cask and the canister refilling device 18, the cask is placed on the cart 20 that has been waiting in the refill area 17 in advance.

次に、受入れ建屋16にて、輸送キャスク移動台車32に横向きに載置された状態で搬入されキャニスタ8を格納した輸送キャスク15を、図示しない起伏装置により立て起こした後、図示しない蓋開閉装置により該輸送キャスク15の蓋を開ける。次いで、キャスク移送用天井クレーン31を用いて上記蓋を開けた輸送キャスク15を、上記詰め替えエリア17の上側に移送した後、上記キャニスタ詰め替え機器18により、上記輸送キャスク15内のキャニスタ8を、上記詰め替えエリア17に待機させた台車20上の貯蔵容器9内へ詰め替え、次いで、該貯蔵容器9の蓋23を閉じて貯蔵容器9内にキャニスタ8を密封状態で収納する。   Next, in the receiving building 16, the transport cask 15 that is loaded sideways on the transport cask moving carriage 32 and stores the canister 8 is raised by a hoisting device (not shown), and then a lid opening / closing device (not shown). To open the lid of the transport cask 15. Next, the transport cask 15 with the lid opened using the overhead crane 31 for transporting the cask is transferred to the upper side of the refill area 17, and then the canister 8 in the transport cask 15 is moved by the canister refill device 18. The refill area 17 is refilled into the storage container 9 on the cart 20, and then the lid 23 of the storage container 9 is closed to store the canister 8 in the sealed state in the storage container 9.

その後、上記台車20をレール19に沿って走行させることで、上記キャニスタ8を収納してなる貯蔵容器9を、目的とする貯蔵個所と左右方向に対応する位置まで移動させた後、該個所の上方に設置してある天井クレーン21を用いて、目的とする貯蔵個所まで、上記キャニスタ8を収納した貯蔵容器9を搬送する。なお、この際、上記各貯蔵室2では、上記キャニスタ8を収納した貯蔵容器9を、左右方向の外側から順次並べて置くようにする。   After that, by moving the carriage 20 along the rail 19, the storage container 9 containing the canister 8 is moved to a position corresponding to the target storage location in the left-right direction, and then the location Using the overhead crane 21 installed above, the storage container 9 containing the canister 8 is transported to the intended storage location. At this time, in each of the storage chambers 2, the storage containers 9 containing the canisters 8 are sequentially arranged from the outside in the left-right direction.

上記のようにしてキャニスタ8を収納した貯蔵容器9が所定の貯蔵位置に載置された後は、上記図5(イ)(ロ)(ハ)に示した固定機構27により、上記キャニスタ8を収納した貯蔵容器9の台座26を固定するようにする。   After the storage container 9 containing the canister 8 is placed in a predetermined storage position as described above, the canister 8 is moved by the fixing mechanism 27 shown in FIGS. The base 26 of the stored storage container 9 is fixed.

上記のようにして各貯蔵室2にキャニスタ8を収納した貯蔵容器9が貯蔵されると、放射性物質の崩壊熱によって加熱されるキャニスタ8の熱が、貯蔵容器9を介して各貯蔵室2内の空気に伝熱されることで、該各貯蔵室2内の空気が昇温され、この昇温により密度低下して浮力を生じた空気が、各貯蔵室2内で上昇し、空気出口5より出口シャフト6内を上昇して該出口シャフト6の頂部の排気口7より大気中に放出され、この出口シャフト6の頂部の排気口7より放出される空気と、上記各貯蔵室2の空気入口3が連通させてある貯蔵建屋1の左右の側壁1aの外気取入口4より取り入れられる低温(常温)の空気との圧力差に起因するドラフト力により、上記各外気取入口4より取り入れる空気(大気)が、各空気入口3より各貯蔵室2へ順次流入させられるようになることで、上記各貯蔵室2内に貯蔵されたキャニスタ8を収納した貯蔵容器9が、自然換気される上記各貯蔵室2内の空気によって冷却されるようになる。   When the storage containers 9 containing the canisters 8 are stored in the respective storage chambers 2 as described above, the heat of the canisters 8 heated by the decay heat of the radioactive substance is passed through the storage containers 9 in the respective storage chambers 2. The air in each of the storage chambers 2 is heated by being transferred to the air, and the air whose density is reduced due to this temperature increase and buoyancy is generated rises in each of the storage chambers 2, from the air outlet 5. The inside of the outlet shaft 6 rises and is discharged into the atmosphere from the exhaust port 7 at the top of the outlet shaft 6, and the air discharged from the exhaust port 7 at the top of the outlet shaft 6 and the air inlet of each storage chamber 2. Air taken in from each of the outside air intakes 4 due to a draft force resulting from a pressure difference from low-temperature (normal temperature) air taken in from the outside air intakes 4 of the left and right side walls 1a of the storage building 1 to which 3 is communicated (atmosphere ) From each air inlet 3 to each storage room The storage container 9 containing the canister 8 stored in each storage chamber 2 is cooled by the air in each storage chamber 2 that is naturally ventilated. .

なお、この際、上記キャニスタ8は、放射性物質を密封したものであるため、放射性物質の外部への漏洩が防止されており、更に、上記キャニスタ8は、炭素鋼製の貯蔵容器9に密封収納することで、大気と直接触れないようにしてあるため、該キャニスタ8に、塩分の付着等に伴う応力腐食割れによる漏洩孔が生じる虞を未然に防止できるようにしてある。したがって、上記キャニスタ8を密封収納した貯蔵容器9の貯蔵中に、放射性物質が漏出する虞はない。   At this time, since the canister 8 is sealed with a radioactive substance, leakage of the radioactive substance to the outside is prevented, and the canister 8 is sealed and stored in a storage container 9 made of carbon steel. Thus, the canister 8 can be prevented from leaking due to stress corrosion cracking due to adhesion of salt or the like because it is not in direct contact with the atmosphere. Therefore, there is no possibility of radioactive material leaking out during storage of the storage container 9 in which the canister 8 is hermetically stored.

又、貯蔵容器9の外面には、冷却空気として大気が接触するため、この際、空気中に含まれる微量のアルゴンや海塩粒子が、上記キャニスタ8より貯蔵容器9を介して放射される放射線(中性子)により放射化し、各貯蔵室2の自然換気の流れに乗ってそのまま排気口7へ向かうことになるが、その放射化量は微量であり、又、半減期が短いため、法令で定める放出基準(1mSv/年)を大きく下回るようになる。同様の放射線レベルを扱う施設として、日本原燃株式会社の再処理工場における高レベル廃棄物ガラス固化体の貯蔵が実用化されており、該施設では、大気の放射化量が十分に低いことが確認されている。   In addition, since the atmosphere contacts the outer surface of the storage container 9 as cooling air, a small amount of argon or sea salt particles contained in the air is emitted from the canister 8 through the storage container 9. It is activated by (neutrons) and goes directly to the exhaust port 7 on the natural ventilation flow of each storage room 2, but the amount of activation is very small and the half-life is short, so it is defined by laws and regulations. It will be far below the emission standard (1 mSv / year). As a facility that handles the same radiation level, storage of high-level waste vitrified materials at a reprocessing plant of Japan Nuclear Fuel Co., Ltd. has been put into practical use, and in this facility, the amount of activation of the atmosphere is sufficiently low. It has been confirmed.

このように、本発明の発熱体貯蔵施設によれば、放射性核種の崩壊熱により発熱体となるキャニスタ8を密封収納した貯蔵容器9を、各貯蔵室2に格納した状態にて、該各貯蔵室2内を自然換気しながら、貯蔵建屋1の左右の側壁1aに設けた外気取入口4より該各貯蔵室2の空気入口3へ取り入れられる低温(常温)の空気(外気)により、上記キャニスタ8を密封収納した貯蔵容器9を連続的に冷却することができる。   As described above, according to the heating element storage facility of the present invention, the storage containers 9 in which the canisters 8 serving as heating elements are hermetically stored by the decay heat of the radionuclide are stored in the respective storage chambers 2 in the respective storage chambers 2. While the inside of the chamber 2 is naturally ventilated, the above canister is used by low-temperature (normal temperature) air (outside air) taken into the air inlet 3 of each storage chamber 2 from the outside air inlet 4 provided on the left and right side walls 1a of the storage building 1. The storage container 9 in which 8 is hermetically stored can be continuously cooled.

更に、上記キャニスタ8に格納された放射性物質より発せられる放射線の遮蔽能力は、上記貯蔵建屋1を構築している鉄筋コンクリートにより確保するようにしてあるため、上記貯蔵容器9には上記キャニスタ8に格納された放射性物質より発せられる放射線の遮蔽能力が要求されることはない。よって、該貯蔵容器9は、前述したようなキャニスタ8の密封収納を行うことができると共に、キャニスタ8を収納した状態で貯蔵建屋1内で上記台車20や天井クレーン21で移動させることが可能な強度を確保できる程度の薄肉の容器でよいため、該貯蔵容器9を製造するために必要な鋼材量を抑えることができる。したがって、本発明の発熱体貯蔵施設によれば、従来の金属キャスクによるキャニスタ8の貯蔵方式に比して、使用する鋼材量を大幅に低減させることができる。   Furthermore, since the shielding ability of the radiation emitted from the radioactive substance stored in the canister 8 is secured by the reinforced concrete constructing the storage building 1, the storage container 9 stores the canister 8 in the canister 8. There is no requirement for the ability to shield radiation emitted from the radioactive material. Therefore, the storage container 9 can seal and store the canister 8 as described above, and can be moved by the carriage 20 and the overhead crane 21 in the storage building 1 with the canister 8 stored. Since the container may be thin enough to ensure the strength, the amount of steel necessary for manufacturing the storage container 9 can be suppressed. Therefore, according to the heating element storage facility of the present invention, the amount of steel used can be greatly reduced as compared with the conventional storage method of the canister 8 using a metal cask.

次に、図6及び図7(イ)(ロ)は本発明の実施の他の形態として、図1乃至図5(イ)(ロ)(ハ)の実施の形態の応用例を示すもので、図1乃至図5(イ)(ロ)(ハ)に示したものと同様の構成において、各貯蔵容器を、外周面における上部所要位置に放熱用の鉛直フィン34を取り付けてなる構成の貯蔵容器9aとしたものである。   Next, FIGS. 6 and 7 (a) (b) show application examples of the embodiment of FIGS. 1 to 5 (a), (b), and (c) as other embodiments of the present invention. 1 to 5 (a), (b), and (c), each storage container has a structure in which a vertical fin 34 for heat dissipation is attached to a required position on the outer peripheral surface. This is a container 9a.

ここで、上記図1乃至図2に示したと同様の構成としてある貯蔵建屋1の各貯蔵室2における空気流れについて考察する。上記各貯蔵室2は、左右の外側端部の下部位置に建屋前後方向の全長に亘る空気入口3を備えると共に、貯蔵建屋1の天井壁1bの左右幅方向中央部に建屋前後方向の全長に亘る空気出口5が設けてあるため、図4(イ)(ロ)に示したと同様の鉛直フィンを具備しない型式の貯蔵容器9にキャニスタ8を密封収納して、該貯蔵容器9を上記貯蔵室2に貯蔵した状態では、図8に矢印bで示すように、マクロな空気流れは、貯蔵室2内を上記空気入口3より空気出口5へ向けて斜めに上昇する流れとなり易い。そのために、各貯蔵室2内にて左右方向に配列された各貯蔵容器9のうち、空気入口3寄り位置する貯蔵容器9の冷却に供された後の昇温した空気が、その空気出口5寄りに隣接する貯蔵容器9に向けて流れるようになり易いため、空気入口3寄りの貯蔵容器9に比して、空気出口5に近付くにしたがって各貯蔵容器9の冷却効率が低下し易い。   Here, the air flow in each storage chamber 2 of the storage building 1 having the same configuration as shown in FIGS. 1 to 2 will be considered. Each of the storage chambers 2 is provided with an air inlet 3 extending over the entire length in the front-rear direction of the building at the lower position of the left and right outer ends, and at the center in the left-right width direction of the ceiling wall 1b of the storage building 1 Since the air outlet 5 is provided, the canister 8 is hermetically housed in a storage container 9 of the type that does not have the vertical fins similar to those shown in FIGS. In the state stored in 2, the macro air flow tends to rise obliquely from the air inlet 3 toward the air outlet 5 in the storage chamber 2 as indicated by an arrow b in FIG. For this purpose, of the storage containers 9 arranged in the left-right direction in each storage chamber 2, the heated air after being used for cooling the storage containers 9 located closer to the air inlet 3 becomes the air outlet 5. Since it tends to flow toward the storage container 9 adjacent to the side, the cooling efficiency of each storage container 9 is likely to decrease as it approaches the air outlet 5 as compared to the storage container 9 close to the air inlet 3.

又、上記のようにして各貯蔵室2内を上記空気入口3より空気出口5へ向けて斜めに上昇する空気流れは、各貯蔵容器9の上部に当り易く、このようにして、各貯蔵容器9の上部に空気流れが当たると、該各貯蔵容器9の空気出口5側(空気流れに対する背面側)に、乱流が生じ易くなることから、該各貯蔵室2内の換気効率を向上させ難い。   Further, the air flow that rises obliquely in the respective storage chambers 2 from the air inlet 3 toward the air outlet 5 as described above easily hits the upper portion of each storage container 9, and in this way, each storage container When an air flow hits the upper part of 9, the turbulent flow is likely to occur on the air outlet 5 side (back side with respect to the air flow) of each storage container 9, so that the ventilation efficiency in each storage chamber 2 is improved. hard.

なお、上記したように、各貯蔵室2内では、マクロな空気流れは上記空気入口3より空気出口5へ向けて斜めに上昇する流れとなり易いが、その一方、該各貯蔵室2の内底部付近には、上記空気入口3より流入する低温の空気による左右方向の外側から内側へ向かう空気流れが形成されている。   As described above, in each storage chamber 2, the macro air flow is likely to rise obliquely from the air inlet 3 toward the air outlet 5, but on the other hand, the inner bottom portion of each storage chamber 2. In the vicinity, an air flow from the outside in the left-right direction to the inside is formed by the low-temperature air flowing in from the air inlet 3.

以上のことに鑑みて、本実施の形態では、上記貯蔵容器9aを、容器本体22の外周面にて、各貯蔵室2内での内底部付近に空気入口3より流入する低温の空気による左右方向の外側から内側へ向かう流れが形成される高さよりも上方となる該容器本体22の上部位置(図では容器本体22の高さ寸法のほぼ1/2よりも上方位置)に、鉛直方向に延びる鉛直フィン34を、周方向所要間隔で多数取り付けた構成としてある。なお、図6及び図7(イ)(ロ)では、図示する便宜上、鉛直フィン34の枚数を省略して記載してある。   In view of the above, in the present embodiment, the storage container 9a is placed on the outer peripheral surface of the container body 22 by the low-temperature air flowing from the air inlet 3 near the inner bottom in each storage chamber 2. In the vertical direction at the upper position of the container body 22 above the height at which the flow from the outside to the inside of the direction is formed (the position above approximately half of the height of the container body 22 in the figure). A number of extending vertical fins 34 are attached at a required interval in the circumferential direction. 6 and 7A and 7B, the number of the vertical fins 34 is omitted for convenience of illustration.

その他の構成は図1乃至図5(イ)(ロ)(ハ)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 1 to 5 (A), (B), and (C), and the same components are denoted by the same reference numerals.

本実施の形態によれば、上記実施の形態と同様の手順により、キャニスタ8を上記貯蔵容器9aに密封収納し、このキャニスタ8を収納してなる貯蔵容器9aを、各貯蔵室2における所定位置に載置して貯蔵することができる。   According to the present embodiment, the canister 8 is hermetically stored in the storage container 9a by the same procedure as in the above embodiment, and the storage container 9a containing the canister 8 is placed in a predetermined position in each storage chamber 2. It can be placed and stored.

上記のようにしてキャニスタ8を収納してなる貯蔵容器9aが、各貯蔵室2における所定位置に載置して貯蔵された状態では、各貯蔵容器9aの放熱面積が鉛直フィン34によって拡大されていることに伴い、該各貯蔵容器9aに密封収納されたキャニスタ8の冷却がより効率よく行われるようになる。   In the state where the storage container 9a containing the canister 8 as described above is placed and stored at a predetermined position in each storage chamber 2, the heat radiation area of each storage container 9a is expanded by the vertical fins 34. As a result, the canisters 8 hermetically housed in the storage containers 9a are cooled more efficiently.

又、上記貯蔵室2内へ空気入口3より流入する空気の流れは、或る貯蔵容器9aの上部に設けてある鉛直フィン34に当たると、該鉛直フィン34に沿って上昇させられるようになる。又、上記各貯蔵容器9aの鉛直フィン34は、各貯蔵室2の内底部付近にて、空気入口3より流入する低温の空気による左右方向の外側から内側へ向かう空気流れの形成される高さ位置よりも上方に設けてあるため、上記各貯蔵室2内にて、空気入口3側より空気出口5側へ向けて左右方向に配列された各貯蔵容器9aでは、該各貯蔵室2の内底部付近に形成された低温の空気の流れが各貯蔵容器9aの位置に達すると、その一部が該各貯蔵容器9aの上部に設けてある鉛直フィン34に導かれて各貯蔵容器9aの冷却に供され、この各貯蔵容器9aの冷却に供されることで昇温する空気は、各貯蔵容器9aの上部に設けてある鉛直フィン34に沿って各貯蔵室2の天井部付近まで上昇させられるようになる。その後、上記各貯蔵容器9aの冷却に供された後に貯蔵室2の天井部付近に上昇した昇温した空気が、まとめて空気出口5より出口シャフト6側へ上昇して排出されるようになる。   Further, when the flow of air flowing into the storage chamber 2 from the air inlet 3 hits the vertical fin 34 provided at the upper part of a certain storage container 9a, the air flows upward along the vertical fin 34. Further, the vertical fins 34 of the respective storage containers 9a are formed in the vicinity of the inner bottom portion of the respective storage chambers 2 at a height at which an air flow from the outside in the lateral direction to the inside is formed by the low-temperature air flowing in from the air inlet 3. Since each storage container 9a arranged in the left-right direction from the air inlet 3 side toward the air outlet 5 side in each storage chamber 2 is provided above the position, the inside of each storage chamber 2 When the flow of low-temperature air formed near the bottom reaches the position of each storage container 9a, a part of the flow is led to the vertical fin 34 provided on the upper part of each storage container 9a to cool each storage container 9a. The air that is heated by being used for cooling each storage container 9a is raised to the vicinity of the ceiling of each storage chamber 2 along the vertical fins 34 provided at the upper part of each storage container 9a. Be able to. Thereafter, the heated air that has risen in the vicinity of the ceiling of the storage chamber 2 after being used for cooling the storage containers 9a is collectively discharged from the air outlet 5 toward the outlet shaft 6 and discharged. .

したがって、本実施の形態によれば、鉛直フィン34による各貯蔵容器9aの放熱面積を拡大することができる。更に、或る貯蔵容器9aの冷却に供された後の昇温した空気が、該貯蔵容器9aの空気出口5側に隣接する貯蔵容器9aの冷却に供されることを抑制できる。しかも、各貯蔵容器9aの鉛直フィンは、各貯蔵室2の内底部付近を通って各貯蔵容器9a付近に達する低温の空気の左右方向の流れを阻害しないように、該各貯蔵容器9aの上部にのみ設けるようにしてあるため、上記各貯蔵室2の内底部付近に形成される低温の空気の流れを各貯蔵容器9aへ導くことができるため、該各貯蔵容器9aの冷却に供される空気の温度をより低下させることができる。よって、各貯蔵容器9aに密封収納されたキャニスタ8の冷却効率をより高めることができる。   Therefore, according to this Embodiment, the thermal radiation area of each storage container 9a by the vertical fin 34 can be expanded. Furthermore, it can suppress that the heated air after being used for cooling a certain storage container 9a is used for cooling the storage container 9a adjacent to the air outlet 5 side of the storage container 9a. In addition, the vertical fins of each storage container 9a pass through the vicinity of the inner bottom of each storage chamber 2 so as not to obstruct the left-right flow of low-temperature air reaching the vicinity of each storage container 9a. Since the low-temperature air flow formed in the vicinity of the inner bottom of each storage chamber 2 can be guided to each storage container 9a, it is used for cooling each storage container 9a. The temperature of the air can be further reduced. Therefore, the cooling efficiency of the canister 8 hermetically sealed in each storage container 9a can be further increased.

更に、上記各貯蔵容器9aの周りでは、鉛直フィン34に沿って上昇する昇温した空気の流れを形成させることで、該各貯蔵容器9aの周囲に乱流が生じる虞を低減できるため、各貯蔵室2内における空気流れをスムーズなものとすることができて、該各貯蔵室2における空気の換気効率の向上化を図ることができる。   Furthermore, by forming a heated air flow rising along the vertical fins 34 around each of the storage containers 9a, it is possible to reduce the possibility of turbulent flow around each of the storage containers 9a. The air flow in the storage chamber 2 can be made smooth, and the air ventilation efficiency in each storage chamber 2 can be improved.

なお、本発明者等の行った数値解析の結果によれば、図4(イ)(ロ)に示した如き鉛直フィンのない形式の貯蔵容器9を用いた場合における貯蔵室2の空気出口5寄り端部の貯蔵容器9の雰囲気温度が40〜45℃であるのに比して、本実施の形態における鉛直フィン34を具備してなる貯蔵容器9aを用いる場合は、貯蔵室2の空気出口5寄り端部の貯蔵容器9aの雰囲気温度を38〜40℃に低下させることができ、更には、図4(イ)(ロ)に示した如き鉛直フィンのない形式の貯蔵容器9を用いた場合に比して、本実施の形態における鉛直フィン34を具備してなる貯蔵容器9aを用いる場合は、貯蔵室2の空気出口5寄り端部の貯蔵容器9a自体の最高温度を、10℃以上低下させる効果を得ることができることが明らかとなっている。   According to the results of numerical analysis conducted by the present inventors, the air outlet 5 of the storage chamber 2 when the storage container 9 having no vertical fins as shown in FIGS. When the storage container 9a having the vertical fins 34 according to the present embodiment is used as compared with the atmospheric temperature of the storage container 9 at the close end of 40 to 45 ° C., the air outlet of the storage chamber 2 is used. The atmospheric temperature of the storage container 9a at the end close to 5 can be lowered to 38 to 40 ° C. Further, the storage container 9 of the type having no vertical fins as shown in FIGS. In comparison with the case, when using the storage container 9a including the vertical fins 34 in the present embodiment, the maximum temperature of the storage container 9a itself at the end near the air outlet 5 of the storage chamber 2 is 10 ° C. or more. It becomes clear that the effect of reducing can be obtained There.

次いで、図9及び図10は本発明の実施の更に他の形態として、図6及び図7(イ)(ロ)の実施の形態の応用例を示すもので、図6及び図7(イ)(ロ)に示したと同様の構成において、各貯蔵容器を、外周面における上部所要位置に放熱用の鉛直フィン34を取り付け、更に、上記鉛直フィン34の取付位置よりも下方となる外周面の下部位置に、水平フィン35を、上下方向に単数又は複数段(図では4段)に設けてなる構成の貯蔵容器9bとしたものである。   Next, FIG. 9 and FIG. 10 show application examples of the embodiment of FIG. 6 and FIG. 7 (a) (b) as still another embodiment of the present invention. In the same configuration as shown in (b), each storage container is attached with a vertical fin 34 for heat dissipation at an upper required position on the outer peripheral surface, and further below the outer peripheral surface below the mounting position of the vertical fin 34. The storage fin 9b has a configuration in which the horizontal fins 35 are provided in a single or a plurality of stages (four stages in the figure) in the vertical direction.

なお、上記水平フィン35は、各貯蔵容器9bの放熱面積を拡大すると云う観点からすると、図示したように周方向の全周に亘り設けることが好ましいが、各貯蔵室2の内底部付近にて空気入口3より流入して左右方向に流れる低温の空気流れの中に張り出すように、各貯蔵容器9bの前後両側位置のみに設ける等、周方向に断続して、あるいは周方向の一部に設けるようにしてもよい。   From the viewpoint of expanding the heat radiation area of each storage container 9b, the horizontal fin 35 is preferably provided over the entire circumference in the circumferential direction as shown in the figure, but in the vicinity of the inner bottom of each storage chamber 2. It is intermittently provided in the circumferential direction, such as being provided only at the front and rear side positions of each storage container 9b so as to protrude into the low-temperature air flow flowing in from the air inlet 3 and flowing in the left-right direction. You may make it provide.

その他の構成は図6及び図7(イ)(ロ)に示したものと同様であり、同一のものには同一の符号が付してある。   Other configurations are the same as those shown in FIGS. 6 and 7A and 7B, and the same components are denoted by the same reference numerals.

本実施の形態によっても、図6及び図7(イ)(ロ)の実施の形態と同様の効果を得ることができ、更に、各貯蔵容器9bの外周面の下部位置に設けた水平フィン35により、上記各貯蔵室2の内底部付近にて空気入口3より流入して左右方向に流れる低温の空気流れを阻害することなく該各貯蔵容器9bの放熱面積を拡大することができるため、各貯蔵容器9bに密封収納されたキャニスタ8の冷却効率を更に向上させることができる。   According to the present embodiment, the same effects as those of the embodiment of FIGS. 6 and 7 (a) and (b) can be obtained, and further, the horizontal fin 35 provided at the lower position of the outer peripheral surface of each storage container 9b. Thus, the heat radiation area of each storage container 9b can be expanded without obstructing the low-temperature air flow flowing from the air inlet 3 near the inner bottom of each storage chamber 2 and flowing in the left-right direction. The cooling efficiency of the canister 8 hermetically sealed in the storage container 9b can be further improved.

なお、本発明者等の行った数値解析の結果によれば、図7(イ)(ロ)に示した如き鉛直フィン34のみを設けた形式の貯蔵容器9aを用いた場合に比して、本実施の形態における鉛直フィン34と水平フィン35を具備してなる貯蔵容器9bを用いる場合は、貯蔵室2の空気出口5寄り端部の貯蔵容器9bの雰囲気温度はほぼ同等であるが、貯蔵室2の空気出口5寄り端部の貯蔵容器9b自体の最高温度を、約20℃低下させる効果を得ることができることが明らかとなっている。   In addition, according to the result of the numerical analysis performed by the present inventors, as compared with the case where the storage container 9a of the type provided with only the vertical fins 34 as shown in FIGS. In the case of using the storage container 9b having the vertical fins 34 and the horizontal fins 35 in the present embodiment, the ambient temperature of the storage container 9b at the end near the air outlet 5 of the storage chamber 2 is substantially the same. It has become clear that the effect of lowering the maximum temperature of the storage container 9b itself at the end near the air outlet 5 of the chamber 2 by about 20 ° C. can be obtained.

なお、上記図1乃至図5(イ)(ロ)(ハ)の実施の形態と、図6及び図7(イ)(ロ)の実施の形態では、貯蔵容器9,9aを台座26と一体化してなる構成として示したが、貯蔵容器9,9aを台座26と別体型式としてもよい。この場合は、たとえば、図11(イ)(ロ)に示す如く、各貯蔵容器9,9a(図では鉛直フィンを具備しない型式の貯蔵容器9の場合が示してある)の下部外周面における周方向所要間隔の複数個所、たとえば、周方向の4個所に、外周方向に張り出す転倒防止用のトラニオン36を設ける一方、台座を、台座中央部に上記貯蔵容器9,9aの下部と、各転倒防止用トラニオン36に対応する形状の窪み37を設けてなる構成の台座26aとすると共に、該台座26aを、予め各貯蔵室2内における貯蔵容器貯蔵予定位置に設置しておくようにする。かかる構成とすれば、前述したと同様に、詰め替えエリア17にてキャニスタ8の密封収納が行われた貯蔵容器9,9aを、台車20と天井クレーン21を用いて貯蔵室2内にて貯蔵容器貯蔵予定位置まで搬送して、該貯蔵容器9,9aの下部と転倒防止用トラニオン36とを、該貯蔵容器貯蔵予定位置に予め設置されている上記台座26aの窪み37に嵌合させることで、貯蔵室2内における該貯蔵容器9,9aの位置固定を行うことができるようになる。なお、キャニスタ8の高さ方向の温度分布は一定ではなく、相対的に下部よりも上部の方が温度が高くなるため、上記のように、貯蔵容器9,9aの下部の周りに上記台座26aが存在していても、該貯蔵容器9,9aに収納したキャニスタ8を、上記貯蔵容器9,9aの上部を介して冷却することが可能になる。   In the embodiment shown in FIGS. 1 to 5 (a), (b), and (c) and the embodiment shown in FIGS. 6 and 7 (a) and (b), the storage containers 9, 9a are integrated with the base 26. However, the storage container 9, 9a may be a separate type from the base 26. In this case, for example, as shown in FIGS. 11 (a) and 11 (b), each of the storage containers 9 and 9a (in the figure, the case of a type of storage container 9 not having a vertical fin is shown) on the lower outer peripheral surface. A trunnion 36 for preventing overturning that protrudes in the outer peripheral direction is provided at a plurality of required intervals in the circumferential direction, for example, at four places in the circumferential direction, while the pedestal is provided at the center of the pedestal and the lower portions of the storage containers 9 and 9a. A pedestal 26 a having a configuration corresponding to the depression trunnion 36 is provided, and the pedestal 26 a is previously installed at a storage container storage scheduled position in each storage chamber 2. With this configuration, as described above, the storage containers 9 and 9a in which the canister 8 is sealed and stored in the refill area 17 are stored in the storage chamber 2 using the carriage 20 and the overhead crane 21. By transporting to the planned storage position and fitting the lower portion of the storage container 9, 9a and the fall-prevention trunnion 36 into the recess 37 of the pedestal 26a previously set in the planned storage container storage position, The position of the storage containers 9 and 9a in the storage chamber 2 can be fixed. The temperature distribution in the height direction of the canister 8 is not constant, and the temperature is relatively higher in the upper part than in the lower part. Therefore, as described above, the pedestal 26a is placed around the lower parts of the storage containers 9, 9a. Can exist, the canister 8 accommodated in the storage container 9, 9a can be cooled via the upper part of the storage container 9, 9a.

又、上記各実施の形態では、詰め替えエリア17にてキャニスタ8の密封収納が行われた貯蔵容器9,9a,9bを、台車20と天井クレーン21を用いて貯蔵室2内の貯蔵容器貯蔵予定位置まで搬送するものとして示したが、上記台車20と、その上側に搭載して遠隔操作によって該台車20上より各貯蔵室2にて左右方向に配列してある貯蔵容器9,9a,9bの前後に隣接する列同士の間を通して左右方向に往復移動可能なフォークリフトとを用いて上記貯蔵室2内でのキャニスタ8を収納した貯蔵容器9,9a,9bの搬送を行うようにしてもよい。なお、このような搬送手法を採用するには、たとえば、図12(イ)(ロ)に示すように、貯蔵容器9の場合は、上部外周面の左右2個所に、外周方向に所要寸法突出する保持用のトラニオン38を設け、又、図示してないが、貯蔵容器9a,9bの場合は、鉛直フィン34より外周方向に所要寸法突出する保持用のトラニオン38を設けて、このトラニオン38を、左右近接、離隔方向に可動する左右1対のフォーク39aを昇降可能に備えたフォークリフト39で支持して貯蔵室2内にて左右方向へ搬送させるようにすればよい。   In each of the above embodiments, the storage containers 9, 9 a, 9 b in which the canister 8 is sealed and stored in the refill area 17 are stored in the storage chamber 2 using the cart 20 and the overhead crane 21. Although shown as conveying to a position, the above-described carriage 20 and storage containers 9, 9a, 9b mounted on the upper side thereof and arranged in the left-right direction in each storage chamber 2 from the carriage 20 by remote control are shown. The storage containers 9, 9a, 9b in which the canisters 8 are stored in the storage chamber 2 may be transported using a forklift that can reciprocate in the left-right direction through the rows adjacent to each other in the front-rear direction. In order to employ such a transport method, for example, as shown in FIGS. 12 (a) and 12 (b), in the case of the storage container 9, the required dimensions protrude in the outer peripheral direction at two locations on the left and right of the upper outer peripheral surface. In the case of the storage containers 9a and 9b, a holding trunnion 38 that protrudes in the outer circumferential direction from the vertical fin 34 is provided, and the trunnion 38 is provided. The pair of left and right forks 39a movable in the left and right proximity and separation directions may be supported by a forklift 39 provided so as to be movable up and down and conveyed in the left and right directions in the storage chamber 2.

更に、上記のようにして天井クレーン21に替えてフォークリフト39で貯蔵容器9,9a,9bを左右方向へ搬送する場合は、該各貯蔵容器9,9a,9bの蓋23を、容器本体22の上端開口部22aの外周縁部にボルト止めして固定する型式に代えて、図13に示す如く、容器本体22の上端開口部22aの内側に設けた段差部22bに、金属ガスケット24を介して外周縁部を載置することで上記容器本体22の上端開口部22aを閉塞させる型式の蓋40としてもよい。   Further, when the storage containers 9, 9 a, 9 b are transported in the left-right direction by the forklift 39 instead of the overhead crane 21 as described above, the lids 23 of the respective storage containers 9, 9 a, 9 b are attached to the container body 22. Instead of a type that is bolted and fixed to the outer peripheral edge of the upper end opening 22a, as shown in FIG. 13, a stepped portion 22b provided inside the upper end opening 22a of the container body 22 is provided with a metal gasket 24. It is good also as a type | mold lid | cover 40 which obstruct | occludes the upper end opening part 22a of the said container main body 22 by mounting an outer peripheral part.

なお、本発明は、上記実施の形態にのみ限定されるものではなく、貯蔵建屋1は、左右幅方向の中央部に設けた搬送路11を挟んで左右1対の貯蔵室2を備えてなる構成として示したが、左右方向のいずれか一方の側壁の下端部に建屋前後方向に延びる空気入口を有し、且つ左右方向のいずれか他方の上端部に建屋前後方向に延びる空気出口を有してなる貯蔵室2が形成できるようにしてあれば、1つの貯蔵建屋1内に貯蔵室2を1つ又は3つ以上形成するようにしてもよい。   In addition, this invention is not limited only to the said embodiment, The storage building 1 is equipped with the left-right paired storage chamber 2 on both sides of the conveyance path 11 provided in the center part of the left-right width direction. Although shown as a configuration, it has an air inlet extending in the front-rear direction of the building at the lower end of either side wall in the left-right direction, and an air outlet extending in the front-rear direction of the building at either upper end of the left-right direction If one of the storage rooms 2 can be formed, one or more storage rooms 2 may be formed in one storage building 1.

貯蔵室2内に左右方向に配列して貯蔵する貯蔵容器9,9a,9bの数、及び、左右方向の貯蔵容器9,9a,9bの列を前後方向に並べる列数は、貯蔵室2のサイズ、貯蔵室2に流通させることが可能な空気の流量、貯蔵容器9,9a,9bに収納するキャニスタ8の所望する冷却効率等に応じて適宜変更してもよい。   The number of storage containers 9, 9 a, 9 b stored in the storage chamber 2 in the left-right direction and the number of columns in which the storage containers 9, 9 a, 9 b in the left-right direction are arranged in the front-rear direction are as follows: You may change suitably according to the size, the flow volume of the air which can be distribute | circulated to the storage chamber 2, the desired cooling efficiency of the canister 8 accommodated in the storage containers 9, 9a, 9b, etc.

詰め替えエリア17でキャニスタ8を収納してなる貯蔵容器9を貯蔵室2の所定の貯蔵位置へ搬送することができるようにしてあれば、台車20と天井クレーン21や、台車20とフォークリフト39以外のいかなる搬送手段を採用するようにしてもよい。   As long as the storage container 9 storing the canister 8 in the refill area 17 can be transported to a predetermined storage position in the storage chamber 2, a vehicle other than the carriage 20 and the overhead crane 21 or the carriage 20 and the forklift 39 can be used. Any conveying means may be adopted.

その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   Of course, various modifications can be made without departing from the scope of the present invention.

本発明の発熱体貯蔵施設の実施の一形態を示す概略切断正面図である。It is a general | schematic cutting front view which shows one Embodiment of the heat generating body storage facility of this invention. 図1の発熱体貯蔵施設の概略切断平面図である。FIG. 2 is a schematic plan view of the heating element storage facility in FIG. 1. 図1の発熱体貯蔵施設における受入れ建屋を拡大して示す切断側面図である。It is a cutaway side view which expands and shows the acceptance building in the heat generating body storage facility of FIG. 図1の発熱体貯蔵施設で用いる貯蔵容器を示すもので、(イ)は一部切断概略側面図、(ロ)は概略平面図である。The storage container used in the heat generating body storage facility of FIG. 1 is shown, (A) is a partially cut schematic side view, and (B) is a schematic plan view. 図1の発熱体貯蔵施設における貯蔵室にて貯蔵容器を固定するための固定機構を示すもので、(イ)は貯蔵容器を固定していない状態の概略斜視図、(ロ)は貯蔵容器を固定した状態の概略斜視図、(ハ)は仕切部材と固定部材との嵌合部を示す正面図である。FIG. 2 shows a fixing mechanism for fixing a storage container in a storage room in the heating element storage facility of FIG. 1, (A) is a schematic perspective view of a state where the storage container is not fixed, and (B) shows a storage container. The schematic perspective view of the state fixed, (c) is a front view which shows the fitting part of a partition member and a fixing member. 本発明の発熱体貯蔵施設の実施の他の形態を示す概略切断正面図である。It is a general | schematic cutting front view which shows the other form of implementation of the heat generating body storage facility of this invention. 図6の発熱体貯蔵施設で用いる貯蔵容器を示すもので、(イ)は概略側面図、(ロ)は概略平面図である。The storage container used in the heat generating body storage facility of FIG. 6 is shown, (A) is a schematic side view, and (B) is a schematic plan view. 鉛直フィンを具備しない貯蔵容器を用いた場合における貯蔵室内の空気流れの概要を示す図である。It is a figure which shows the outline | summary of the air flow in a storage chamber at the time of using the storage container which does not comprise a vertical fin. 本発明の発熱体貯蔵施設の実施の更に他の形態を示す概略切断正面図である。It is a general | schematic cutting front view which shows the further another form of implementation of the heat generating body storage facility of this invention. 図9の発熱体貯蔵施設で用いる貯蔵容器を示す概略側面図である。It is a schematic side view which shows the storage container used with the heat generating body storage facility of FIG. 本発明の発熱体貯蔵施設の実施の更に他の形態として、発熱体貯蔵施設で用いる貯蔵容器の別の例を示すもので、(イ)は概略平面図、(ロ)は(イ)のA−A方向矢視図である。As still another embodiment of the heating element storage facility of the present invention, another example of the storage container used in the heating element storage facility is shown. (A) is a schematic plan view, (B) is A of (A). FIG. 本発明の発熱体貯蔵施設の実施の更に他の形態として、発熱体貯蔵施設にて貯蔵容器の搬送に用いるフォークリフトを示すもので、(イ)はフォーク部分の概略側面図、(ロ)はフォーク部分の概略平面図である。As still another embodiment of the heating element storage facility of the present invention, a forklift used for transporting a storage container in the heating element storage facility is shown. (A) is a schematic side view of a fork part, (b) is a fork. It is a schematic plan view of a part. 本発明の発熱体貯蔵施設の実施の更に他の形態として、発熱体貯蔵施設で用いる貯蔵容器の更に別の例を示す一部切断概略側面図である。It is a partially cut away schematic side view which shows another example of the storage container used with a heat generating body storage facility as another form of implementation of the heat generating body storage facility of this invention.

符号の説明Explanation of symbols

1 貯蔵建屋
2 貯蔵室
3 空気入口
4 外気取入口
5 空気出口
6 出口シャフト
7 排気口
8 キャニスタ
9 貯蔵容器
34 鉛直フィン
35 水平フィン
DESCRIPTION OF SYMBOLS 1 Storage building 2 Storage room 3 Air inlet 4 Outside air inlet 5 Air outlet 6 Outlet shaft 7 Exhaust port 8 Canister 9 Storage container 34 Vertical fin 35 Horizontal fin

Claims (3)

放射線の遮蔽機能を有する厚いコンクリート遮蔽壁により構築した貯蔵建屋内に貯蔵室を設け、該貯蔵室の左右幅方向の一方の下部所要個所に空気入口を設けて、該空気入口を上記貯蔵建屋の側壁に設けた外気取入口に連通させると共に、上記貯蔵室の左右幅方向の他方の上部所要個所に空気出口を設けて、上端部に排気口を有する煙突状の空気出口シャフトの下端側を上記空気出口に接続し、更に、上記貯蔵室内に、発熱するキャニスタを密封収納した貯蔵容器を貯蔵するようにしてなる構成を有することを特徴とする発熱体貯蔵施設。   A storage room is provided in a storage building constructed with a thick concrete shielding wall having a radiation shielding function, an air inlet is provided at one lower required position in the left-right width direction of the storage room, and the air inlet is connected to the storage building. In addition to communicating with the outside air inlet provided in the side wall, an air outlet is provided at the other upper required portion in the left-right width direction of the storage chamber, and the lower end side of the chimney-like air outlet shaft having an exhaust port at the upper end is provided above. A heating element storage facility, characterized in that a storage container connected to an air outlet and further storing a storage container in which a canister for heat generation is hermetically stored is stored in the storage chamber. 貯蔵容器を、貯蔵室内にて空気入口より空気出口に向かう空気流れ方向となる左右方向に列を形成するように配置し、且つ該各貯蔵容器の外周面における上記貯蔵室にて空気入口より貯蔵室の内底部に沿う低温の空気流れが形成される高さ位置よりも上側となる位置に、鉛直フィンを周方向所要間隔で取り付けるようにした請求項1記載の発熱体貯蔵施設。   Storage containers are arranged in the storage chamber so as to form rows in the left-right direction, which is the air flow direction from the air inlet toward the air outlet, and stored from the air inlet in the storage chamber on the outer peripheral surface of each storage container. The heating element storage facility according to claim 1, wherein vertical fins are attached at a required interval in a circumferential direction at a position above a height position where a low-temperature air flow along the inner bottom of the chamber is formed. 貯蔵容器の外周面における鉛直フィン取付個所よりも下方位置に、水平フィンを設けるようにした請求項2記載の発熱体貯蔵施設。   The heating element storage facility according to claim 2, wherein a horizontal fin is provided at a position below the vertical fin attachment portion on the outer peripheral surface of the storage container.
JP2008053611A 2008-03-04 2008-03-04 Heating element storage facility Expired - Fee Related JP5119982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053611A JP5119982B2 (en) 2008-03-04 2008-03-04 Heating element storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053611A JP5119982B2 (en) 2008-03-04 2008-03-04 Heating element storage facility

Publications (2)

Publication Number Publication Date
JP2009210412A true JP2009210412A (en) 2009-09-17
JP5119982B2 JP5119982B2 (en) 2013-01-16

Family

ID=41183725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053611A Expired - Fee Related JP5119982B2 (en) 2008-03-04 2008-03-04 Heating element storage facility

Country Status (1)

Country Link
JP (1) JP5119982B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281832A (en) * 2010-08-23 2010-12-16 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
CN102412000A (en) * 2011-10-18 2012-04-11 清华大学 Vertical shaft storage system for spent fuel of nuclear power station
JP2013148434A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Radioactive material storage facility
JP2019117149A (en) * 2017-12-27 2019-07-18 三菱重工業株式会社 Method for storing casks and radioactive material storage facility
KR102081004B1 (en) * 2018-10-30 2020-04-23 한국원자력환경공단 Long-term dry well storage facility to store spent nuclear fuel cask before final disposal
JP2020128902A (en) * 2019-02-07 2020-08-27 三菱重工業株式会社 Storage device for radioactive waste, monitoring device, and method for manufacturing radioactive waste
JP2021032679A (en) * 2019-08-23 2021-03-01 日立Geニュークリア・エナジー株式会社 Storage facility

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119798U (en) * 1985-01-14 1986-07-28
JPH0968594A (en) * 1995-08-31 1997-03-11 Ishikawajima Harima Heavy Ind Co Ltd Vessel for storing and disposing radioactive waste
JPH09292488A (en) * 1996-04-26 1997-11-11 Sumitomo Metal Mining Co Ltd Storage for spent nuclear fuel
JPH10297678A (en) * 1997-04-28 1998-11-10 Toshiba Corp Transport container of mixed oxide fuel, and method for transporting and temporarily storing the fuel
JP2001235597A (en) * 2000-02-23 2001-08-31 Ishikawajima Harima Heavy Ind Co Ltd Spent fuel storage device
JP2002090495A (en) * 2000-09-12 2002-03-27 Mitsubishi Heavy Ind Ltd Container vessel
JP2002267791A (en) * 2001-03-08 2002-09-18 Toshiba Corp Spent fuel storage cask
JP2003167095A (en) * 2001-11-30 2003-06-13 Hitachi Ltd Cask storage facility
JP2003294891A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Housing pipe for high-level radioactive waste
JP2004045230A (en) * 2002-07-12 2004-02-12 Hitachi Ltd Facility for storing radioactive substance
JP2004264162A (en) * 2003-03-03 2004-09-24 Hitachi Ltd Installation and method for monitoring sealing of radioactive substance storage cask
JP2006170795A (en) * 2004-12-15 2006-06-29 Mitsubishi Heavy Ind Ltd Radioactive material storage vessel, and radioactive material storage method
JP2007127500A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Cask storage facility
JP2007205938A (en) * 2006-02-02 2007-08-16 Hitachi Ltd Radioactive material storage facility

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119798U (en) * 1985-01-14 1986-07-28
JPH0968594A (en) * 1995-08-31 1997-03-11 Ishikawajima Harima Heavy Ind Co Ltd Vessel for storing and disposing radioactive waste
JPH09292488A (en) * 1996-04-26 1997-11-11 Sumitomo Metal Mining Co Ltd Storage for spent nuclear fuel
JPH10297678A (en) * 1997-04-28 1998-11-10 Toshiba Corp Transport container of mixed oxide fuel, and method for transporting and temporarily storing the fuel
JP2001235597A (en) * 2000-02-23 2001-08-31 Ishikawajima Harima Heavy Ind Co Ltd Spent fuel storage device
JP2002090495A (en) * 2000-09-12 2002-03-27 Mitsubishi Heavy Ind Ltd Container vessel
JP2002267791A (en) * 2001-03-08 2002-09-18 Toshiba Corp Spent fuel storage cask
JP2003167095A (en) * 2001-11-30 2003-06-13 Hitachi Ltd Cask storage facility
JP2003294891A (en) * 2002-04-05 2003-10-15 Mitsubishi Heavy Ind Ltd Housing pipe for high-level radioactive waste
JP2004045230A (en) * 2002-07-12 2004-02-12 Hitachi Ltd Facility for storing radioactive substance
JP2004264162A (en) * 2003-03-03 2004-09-24 Hitachi Ltd Installation and method for monitoring sealing of radioactive substance storage cask
JP2006170795A (en) * 2004-12-15 2006-06-29 Mitsubishi Heavy Ind Ltd Radioactive material storage vessel, and radioactive material storage method
JP2007127500A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Cask storage facility
JP2007205938A (en) * 2006-02-02 2007-08-16 Hitachi Ltd Radioactive material storage facility

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281832A (en) * 2010-08-23 2010-12-16 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage facility
CN102412000A (en) * 2011-10-18 2012-04-11 清华大学 Vertical shaft storage system for spent fuel of nuclear power station
CN102412000B (en) * 2011-10-18 2013-08-07 清华大学 Vertical shaft storage system for spent fuel of nuclear power station
JP2013148434A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Radioactive material storage facility
JP2019117149A (en) * 2017-12-27 2019-07-18 三菱重工業株式会社 Method for storing casks and radioactive material storage facility
KR102081004B1 (en) * 2018-10-30 2020-04-23 한국원자력환경공단 Long-term dry well storage facility to store spent nuclear fuel cask before final disposal
JP2020128902A (en) * 2019-02-07 2020-08-27 三菱重工業株式会社 Storage device for radioactive waste, monitoring device, and method for manufacturing radioactive waste
JP7221716B2 (en) 2019-02-07 2023-02-14 三菱重工業株式会社 RADIOACTIVE WASTE STORAGE DEVICE, MONITORING DEVICE, AND RADIOACTIVE WASTE MANAGEMENT METHOD
JP2021032679A (en) * 2019-08-23 2021-03-01 日立Geニュークリア・エナジー株式会社 Storage facility
JP7123019B2 (en) 2019-08-23 2022-08-22 日立Geニュークリア・エナジー株式会社 storage facility

Also Published As

Publication number Publication date
JP5119982B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5119982B2 (en) Heating element storage facility
US11694817B2 (en) System and method of storing and/or transferring high level radioactive waste
CN100505109C (en) Systems and methods for storing high level radioactive waste
JP4902877B2 (en) Manifold system for ventilated storage of high-level waste, a method of using the manifold system to store high-level waste in an underground environment
US9460821B2 (en) System and method for the ventilated storage of high level radioactive waste in a clustered arrangement
US9793021B2 (en) Transfer cask system having passive cooling
KR20210120094A (en) Passive cooling for casks containing nuclear fuel
KR20060044398A (en) Systems and methods for storing high level waste
KR101333066B1 (en) Transport or storage concrete cask for spent nuclear fuel
JP2003167095A (en) Cask storage facility
JP2001033590A (en) Heat-generating body storage facility
JP3817211B2 (en) Radioactive material storage method and radioactive material storage facility
JP6728971B2 (en) Radioactive waste storage facility
JPH0821899A (en) Highly radioactive waste solidified body storage facility
JP2010243298A (en) Liquid metal cooled nuclear reactor
KR102081004B1 (en) Long-term dry well storage facility to store spent nuclear fuel cask before final disposal
KR20100081865A (en) Equipments to reduce the temperatures in concrete structure for storing spent nuclear fuel
JP2000284094A (en) Radioactive material storage facility
JP6801427B2 (en) Radioactive waste storage device
JP4158799B2 (en) Radioactive waste storage facility
JP2001235596A (en) Spent fuel storage device
JP2007155510A (en) Heating element storage facility
JPH0444958B2 (en)
JPH07120589A (en) Method and body containing spent fuel
JPH0217500A (en) Intermediate storage of canister

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5119982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees