JP2008261772A - Inertia force sensor - Google Patents

Inertia force sensor Download PDF

Info

Publication number
JP2008261772A
JP2008261772A JP2007105612A JP2007105612A JP2008261772A JP 2008261772 A JP2008261772 A JP 2008261772A JP 2007105612 A JP2007105612 A JP 2007105612A JP 2007105612 A JP2007105612 A JP 2007105612A JP 2008261772 A JP2008261772 A JP 2008261772A
Authority
JP
Japan
Prior art keywords
axis
weight
counter electrode
opposing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007105612A
Other languages
Japanese (ja)
Inventor
Jiro Terada
二郎 寺田
Ichiro Sato
佐藤  一郎
Takami Ishida
貴巳 石田
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2007105612A priority Critical patent/JP2008261772A/en
Priority claimed from US12/593,752 external-priority patent/US20100126270A1/en
Publication of JP2008261772A publication Critical patent/JP2008261772A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inertia force sensor having enhanced detection sensitivity. <P>SOLUTION: This sensor is equipped with a detection element 1 having an acceleration detection part and an angular velocity detection part. The detection element 1 is constituted as follows: two orthogonal arms formed by connecting the first arms 8 to the second arm 10 approximately in the orthogonal direction are provided; each one end of the two first arms 8 is supported by a support part 12; each other end of the two first arms 8 is connected to the first fixing part 4; a weight part is connected to the tip part of the second arm 10; the first fixing part 4 is connected to the second fixing part 6 by a fixing arm 7; the first arms 8 are arranged in the X-axis direction, and the first elastic part 9 which is elastically deformable only in the X-axis direction is provided on the first fixing part 4; and a fixing arm which is the second connection part is arranged in the Y-axis direction, and the second elastic part 11 which is elastically deformable only in the Y-axis direction is provided on the second fixing part 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、航空機、自動車、ロボット、船舶、車両等の移動体の姿勢制御やナビゲーション等、各種電子機器に用いるセンサに関するものである。   The present invention relates to sensors used in various electronic devices such as attitude control and navigation of moving bodies such as aircraft, automobiles, robots, ships, and vehicles.
以下、従来の慣性力センサの一つである加速度センサについて説明する。   Hereinafter, an acceleration sensor which is one of conventional inertial force sensors will be described.
図9は従来の加速度センサの検出素子の平面図、図10は同検出素子のA−A断面図、図11は同検出素子のB−B断面図である。   FIG. 9 is a plan view of a detection element of a conventional acceleration sensor, FIG. 10 is an AA sectional view of the detection element, and FIG. 11 is a BB sectional view of the detection element.
図9〜図11において、従来の加速度センサは、加速度を検出する検出素子51と、この検出素子51から出力される加速度信号を演算処理して加速度を検出する処理回路(図示せず)を備えている。この検出素子51は、錘部52を支持した支持部54と、可撓部56を介して支持部54と連結された固定部59(58は歪抵抗で使用のため)とを有しており、この固定部59によって検出素子51が実装基板に実装されている。   9 to 11, the conventional acceleration sensor includes a detection element 51 that detects acceleration, and a processing circuit (not shown) that detects an acceleration by performing an arithmetic process on an acceleration signal output from the detection element 51. ing. This detection element 51 has a support portion 54 that supports the weight portion 52 and a fixing portion 59 (58 is used for strain resistance) connected to the support portion 54 via a flexible portion 56. The detection element 51 is mounted on the mounting board by the fixing portion 59.
また、可撓部56はアーム形状であって、この可撓部56は支持部54を中心にして十字状に配置し、一対の可撓部56と支持部54とが同一直線上に配置されるようにしている。   The flexible portion 56 has an arm shape, and the flexible portion 56 is arranged in a cross shape with the support portion 54 as the center, and the pair of flexible portions 56 and the support portion 54 are arranged on the same straight line. I try to do it.
可撓部56には歪抵抗素子58を設けており、錘部52の可動に起因して撓む可撓部56の状態変化に基づき、歪抵抗素子58の抵抗値変化を加速度信号として出力している。   A strain resistance element 58 is provided in the flexible portion 56, and a change in resistance value of the strain resistance element 58 is output as an acceleration signal based on a change in the state of the flexible portion 56 that is bent due to the movement of the weight portion 52. ing.
次に、加速度の検出について説明する。   Next, detection of acceleration will be described.
互いに直交するX軸、Y軸、Z軸において、X軸方向とY軸方向に十字状のアームからなる可撓部56を配置した場合、図12に示すように、例えば、X軸方向に加速度が生じると、錘部52が加速度の生じた軸方向に移動しようとするために、X軸方向に配置された2つの可撓部56の内、一方の可撓部56にはZ軸の正の方向に撓みが発生し、他方の可撓部56にはZ軸の負の方向に撓みが発生する(支持部54を中心にして、錘部52がZ軸方向に回転しようとして撓みが発生する)。そうすると、2つの可撓部56に設けた2つの歪抵抗素子58も、可撓部56の撓みに応じてZ軸の正負の方向に撓むので、歪抵抗素子58の抵抗値が変化する。この抵抗値変化を加速度信号として出力して加速度を検出するものである。   When the flexible portion 56 composed of a cross-shaped arm is arranged in the X-axis direction and the Y-axis direction on the X-axis, Y-axis, and Z-axis that are orthogonal to each other, for example, as shown in FIG. Occurs, one of the two flexible portions 56 arranged in the X-axis direction has a positive Z-axis in order to move the weight portion 52 in the axial direction in which the acceleration occurs. In the negative direction of the Z axis in the other flexible portion 56 (the deflection occurs when the weight portion 52 tries to rotate in the Z axis direction around the support portion 54). To do). Then, the two strain resistance elements 58 provided in the two flexible portions 56 also bend in the positive and negative directions of the Z axis according to the flexure of the flexible portion 56, so that the resistance value of the strain resistance element 58 changes. This resistance value change is output as an acceleration signal to detect acceleration.
このような加速度センサを検出したい検出軸に対応させて、車両等の移動体の姿勢制御装置やナビゲーション装置等に用いている。   Such an acceleration sensor is used in a posture control device, a navigation device, or the like of a moving body such as a vehicle corresponding to a detection axis to be detected.
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平10−48243号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
Japanese Patent Laid-Open No. 10-48243
上記構成では、アーム形状の可撓部56が、支持部54を中心にして、十字状に配置されているので、加速度が生じた軸方向に配置されている可撓部56によって、錘部52の移動が規制される。X軸方向に配置された2つの可撓部56の内、一方の可撓部56にはZ軸の正の方向に撓みが発生し、他方の可撓部56にはZ軸の負の方向に撓みが発生する。   In the above configuration, since the arm-shaped flexible portion 56 is arranged in a cross shape with the support portion 54 as the center, the weight portion 52 is formed by the flexible portion 56 arranged in the axial direction in which acceleration occurs. Movement is restricted. Of the two flexible portions 56 arranged in the X-axis direction, one of the flexible portions 56 bends in the positive direction of the Z-axis, and the other flexible portion 56 has a negative direction of the Z-axis. Deflection occurs.
このとき、図12において、X軸方向へ加速度が生じた場合、錘部52がX軸方向に移動しようとするが、X軸方向に配置された可撓部56によって、錘部52の移動が規制される。この規制によって、錘部52は支持部54を中心にしてZ軸方向に回転しようとするので、可撓部56に撓みが生じるが、この撓み量は小さい。これは、錘部52にかかる直線方向への力が、回転方向への力に変換されることに起因すると考えられる。   At this time, in FIG. 12, when acceleration occurs in the X-axis direction, the weight part 52 tries to move in the X-axis direction, but the movement of the weight part 52 is caused by the flexible part 56 arranged in the X-axis direction. Be regulated. Due to this restriction, the weight portion 52 tries to rotate in the Z-axis direction around the support portion 54, so that the flexible portion 56 bends, but the amount of this bend is small. This is considered due to the fact that the force in the linear direction applied to the weight portion 52 is converted into the force in the rotational direction.
したがって、可撓部56に配置された歪抵抗素子58の抵抗値変化も小さくなり、検出感度が小さいという問題点を有していた。   Therefore, the change in resistance value of the strain resistance element 58 arranged in the flexible portion 56 is also reduced, and there is a problem that the detection sensitivity is low.
本発明は上記問題点を解決するもので、検出感度を大きくした慣性力センサを提供することを目的としている。   The present invention solves the above-described problems, and an object thereof is to provide an inertial force sensor with increased detection sensitivity.
上記目的を達成するために本発明は、
特に、検出素子は、第1連結部を介して錘部を連結した第1固定部と、第2連結部を介して前記第1固定部を連結した第2固定部と、前記錘部の表面側と対向させた第1対向基板と、前記錘部の裏面側と対向させた第2対向基板と、前記錘部と前記第1対向基板の各々の対向面に配置した第1対向電極と、前記錘部と前記第2対向基板の各々の対向面に配置した第2対向電極とを有し、前記加速度検出部では、前記第1対向電極部の静電容量変化量および前記第2対向電極部の静電容量変化量を検出して加速度を検出しており、互いに直交するX軸、Y軸、Z軸において、前記第1連結部をX軸方向に配置するとともに前記第1連結部または前記第1固定部にX軸方向のみに弾性変形する第1弾性部を設け、前記第2連結部をY軸方向に配置するとともに前記第2連結部または前記第2固定部にY軸方向のみに弾性変形する第2弾性部を設け、前記第2固定部にて実装基板に実装した構成である。
In order to achieve the above object, the present invention provides:
In particular, the detection element includes a first fixing portion in which the weight portion is connected through the first connecting portion, a second fixing portion in which the first fixing portion is connected through the second connecting portion, and a surface of the weight portion. A first counter substrate facing the side, a second counter substrate facing the back side of the weight portion, a first counter electrode disposed on the facing surfaces of the weight portion and the first counter substrate, The weight portion and a second counter electrode disposed on each of the opposing surfaces of the second counter substrate, and the acceleration detection unit includes a capacitance change amount of the first counter electrode portion and the second counter electrode. Acceleration is detected by detecting the amount of change in capacitance of the part, and the first connection part or the first connection part or The first fixing portion is provided with a first elastic portion that is elastically deformed only in the X-axis direction, and the second connecting portion is arranged in the Y-axis direction. The Rutotomoni the second connecting portion or the second fixing portion only Y-axis direction of the second elastic portion to elastically deform provided a structure mounted on the mounting substrate by the second fixing unit.
上記構成により、互いに直交するX軸、Y軸、Z軸において、X軸方向に加速度が生じると第1弾性部がX軸方向に変位し、Y軸方向に加速度が生じると第2弾性部がY軸方向に変位する。すなわち、加速度の生じた直線方向への力が回転方向への力に変換されることもなく、第1弾性部または第2弾性部は、加速度の生じた方向と同方向にのみ変位するので変位しやすく、第1対向電極部、第2対向電極部の静電容量の変化量を容易に大きくでき、検出感度を向上できる。   With the above configuration, in the X axis, Y axis, and Z axis orthogonal to each other, when acceleration occurs in the X axis direction, the first elastic portion is displaced in the X axis direction, and when acceleration occurs in the Y axis direction, the second elastic portion is Displacement in the Y-axis direction. That is, the force in the linear direction in which the acceleration is generated is not converted into the force in the rotation direction, and the first elastic portion or the second elastic portion is displaced only in the same direction as the direction in which the acceleration is generated. The amount of change in capacitance of the first counter electrode part and the second counter electrode part can be easily increased, and the detection sensitivity can be improved.
特に、X軸方向とY軸方向の加速度を検出するにあたって、X軸方向の加速度は第1弾性部がX軸方向にのみ変位することにより検出され、Y軸方向の加速度は第2弾性部がY軸方向にのみ変位することにより検出され、各々、一方の加速度の影響を受けることなく独立して加速度を検出することができ、検出感度を向上できる。   In particular, when detecting the acceleration in the X-axis direction and the Y-axis direction, the acceleration in the X-axis direction is detected when the first elastic portion is displaced only in the X-axis direction, and the acceleration in the Y-axis direction is detected by the second elastic portion. It is detected by displacing only in the Y-axis direction, and the acceleration can be detected independently without being affected by one of the accelerations, and the detection sensitivity can be improved.
さらに、第1対向電極部は、錘部の表面側と対向させた第1対向基板と錘部の各々の対向面に配置し、第2対向電極部は、錘部の裏面側と対向させた第2対向基板と錘部の各々の対向面に配置しているので、例えば、Z軸方向へ錘部が変位したとしても、第1対向電極部の対向距離が広がれば、第2対向電極部の対向距離が縮まり、第1対向電極部の対向距離が縮めば、第2対向電極部の対向距離が広がる。   Further, the first counter electrode portion is disposed on each of the opposing surfaces of the first counter substrate and the weight portion facing the surface side of the weight portion, and the second counter electrode portion is opposed to the back surface side of the weight portion. Since the second counter substrate and the weight portion are arranged on the respective facing surfaces, for example, even if the weight portion is displaced in the Z-axis direction, the second counter electrode portion is increased if the counter distance of the first counter electrode portion is increased. If the facing distance of the first counter electrode portion decreases and the facing distance of the first counter electrode portion decreases, the facing distance of the second counter electrode portion increases.
すなわち、第1対向電極部の対向距離および第2対向電極部の対向距離の総対向距離が変わらないので、振動等によって、Z軸方向へ錘部が変位したとしても、第1、第2対向電極部の全体の静電容量の変化量が大きく変化することがなく、X軸またはY軸の加速度の検出精度を劣化させずに検出精度を向上できる。   That is, since the total opposing distance of the opposing distance of the first opposing electrode part and the opposing distance of the second opposing electrode part does not change, even if the weight part is displaced in the Z-axis direction due to vibration or the like, the first opposing second opposing part It is possible to improve the detection accuracy without deteriorating the detection accuracy of the X-axis or Y-axis acceleration without greatly changing the amount of change in the capacitance of the entire electrode unit.
(実施の形態1)
図1は本発明の第1の実施の形態における複合センサの検出素子の分解斜視図、図2は図1のA−A断面図、図3は図1のB−B断面図である。
(Embodiment 1)
1 is an exploded perspective view of a detection element of a composite sensor according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG.
図1において、本発明の第1の実施の形態における複合センサは、加速度検出部と角速度検出部を有する検出素子1を備えている。   In FIG. 1, the composite sensor according to the first embodiment of the present invention includes a detection element 1 having an acceleration detection unit and an angular velocity detection unit.
この検出素子1は、第1連結部を介して錘部3を連結した第1固定部4と、錘部3と対向させた対向基板5と、第2連結部を介して前記第1固定部4を連結した第2固定部6とを有する。   The detection element 1 includes a first fixing portion 4 that connects the weight portion 3 via a first connecting portion, an opposing substrate 5 that faces the weight portion 3, and the first fixing portion via a second connecting portion. 4 and a second fixing portion 6 connected to each other.
具体的には、この検出素子1は、第1アーム8を第2アーム10に略直交方向に連結した2つの直交アームを有し、2つの第1アーム8の一端を支持部12にて支持し、2つの第1アーム8の他端を枠体形状の第1固定部4に連結し、錘部3を枠体形状の第1固定部4の内方に配置している。第2アーム10は、第2アーム10自身と対向するまでU字状に折曲し、折曲した第2アーム10の先端部に錘部3を連結している。第1固定部4は固定アーム7にて第2固定部6と連結し、第1固定部4を第2固定部6の内方に配置している。第1アーム8と支持部12とを略同一直線上に配置し、第1アーム8および第2アーム10を検出素子1の中心に対して対称配置している。第1アーム8が錘部3を連結する第1連結部に相当し、固定アーム7が第2連結部に相当する。   Specifically, the detection element 1 has two orthogonal arms in which the first arm 8 is connected to the second arm 10 in a substantially orthogonal direction, and one end of the two first arms 8 is supported by the support portion 12. The other ends of the two first arms 8 are connected to the frame-shaped first fixing portion 4, and the weight portion 3 is arranged inside the frame-shaped first fixing portion 4. The second arm 10 is bent in a U shape until it faces the second arm 10 itself, and the weight 3 is connected to the tip of the bent second arm 10. The first fixing portion 4 is connected to the second fixing portion 6 by a fixing arm 7, and the first fixing portion 4 is disposed inside the second fixing portion 6. The first arm 8 and the support portion 12 are arranged on substantially the same straight line, and the first arm 8 and the second arm 10 are arranged symmetrically with respect to the center of the detection element 1. The first arm 8 corresponds to a first connecting part that connects the weight part 3, and the fixed arm 7 corresponds to a second connecting part.
互いに直交するX軸、Y軸、Z軸において、第1連結部である第1アーム8をX軸方向に配置するとともに第1固定部4にはX軸方向のみに弾性変形する第1弾性部9を設け、第2連結部である固定アームをY軸方向に配置するとともに第2固定部6にはY軸方向のみに弾性変形する第2弾性部11を設け、第2固定部6にて実装基板に実装している。   A first elastic portion in which the first arm 8 as the first connecting portion is arranged in the X-axis direction and the first fixed portion 4 is elastically deformed only in the X-axis direction in the X axis, the Y axis, and the Z axis orthogonal to each other. 9, a fixed arm that is a second connecting portion is arranged in the Y-axis direction, and the second fixed portion 6 is provided with a second elastic portion 11 that is elastically deformed only in the Y-axis direction. It is mounted on the mounting board.
この第1弾性部9は、第1アーム8と直交する第1固定部4の一部に、Y軸方向にスリット13を形成して設けており、第2弾性部11は、第2アーム10と直交する第2固定部6の一部に、X軸方向にスリット13を形成して設けている。   The first elastic portion 9 is formed by forming a slit 13 in a part of the first fixing portion 4 orthogonal to the first arm 8 in the Y-axis direction, and the second elastic portion 11 includes the second arm 10. A slit 13 is formed in a part of the second fixing portion 6 orthogonal to the X axis direction.
また、錘部3の表面側に第1対向基板5を対向させるとともに、錘部3と第1対向基板5の各々の対向面に、第1対向電極部として、第1対向電極〜第4対向電極14、16、18、20を配置しており、錘部3の裏面側に第2対向基板15を対向させるとともに、錘部3と第2対向基板15の各々の対向面に、第2対向電極部として、第5対向電極〜第8対向電極17、19、21、23を配置している。   In addition, the first counter substrate 5 is opposed to the surface side of the weight portion 3, and the first counter electrode to the fourth counter electrode are provided as first counter electrode portions on the respective facing surfaces of the weight portion 3 and the first counter substrate 5. The electrodes 14, 16, 18, and 20 are disposed, the second counter substrate 15 is opposed to the back surface side of the weight portion 3, and the second counter substrate 15 is opposed to each of the counter surfaces of the weight portion 3 and the second counter substrate 15. As the electrode portion, the fifth counter electrode to the eighth counter electrode 17, 19, 21, 23 are arranged.
さらに、互いに対向する一方の2つの第2アーム10には錘部3を駆動振動させる駆動電極22およびその駆動を検知する検知電極24を配置するとともに、互いに対向する他方の2つの第2アーム10には、第2アーム10の歪を感知する第1感知電極26、第2感知電極28を配置している。これらの電極の内、少なくとも、駆動電極22、検知電極24、第1感知電極26、第2感知電極28は、圧電層を介在させた上部電極と下部電極とからなる。   Further, a drive electrode 22 for driving and vibrating the weight portion 3 and a detection electrode 24 for detecting the drive are arranged on one of the two second arms 10 facing each other, and the other two second arms 10 facing each other. The first sensing electrode 26 and the second sensing electrode 28 for sensing the distortion of the second arm 10 are arranged. Among these electrodes, at least the drive electrode 22, the detection electrode 24, the first sensing electrode 26, and the second sensing electrode 28 are composed of an upper electrode and a lower electrode with a piezoelectric layer interposed therebetween.
そして、これら第1対向電極〜第4対向電極14、16、18、20、第5対向電極〜第8対向電極17、19、21、23、駆動電極22、検知電極24、第1、第2感知電極26、28からは信号線(図示せず)が固定部7まで引き出され、この信号線の端部にてワイヤーボンディング等を介して実装基板の配線パターンに電気的に接続される。   And these 1st counter electrode-4th counter electrode 14, 16, 18, 20, 5th counter electrode-8th counter electrode 17, 19, 21, 23, drive electrode 22, detection electrode 24, 1st, 2nd A signal line (not shown) is drawn from the sensing electrodes 26 and 28 to the fixed portion 7 and is electrically connected to the wiring pattern of the mounting substrate through wire bonding or the like at the end of the signal line.
次に、角速度検出部および加速度検出部について説明する。   Next, the angular velocity detection unit and the acceleration detection unit will be described.
まず、角速度検出部について説明する。図4に示すように、互いに直交したX軸、Y軸、Z軸において、検出素子1の第1アーム8をX軸方向に配置して、第2アーム10をY軸方向に配置した場合、駆動電極22に共振周波数の交流電圧を印加すると、駆動電極22が配置された第2アーム10を起点に第2アーム10が駆動振動し、それに伴って錘部3も第2アーム10の対向方向(実線の矢印と点線の矢印で記した駆動振動方向)に駆動振動する。また、4つの第2アーム10および4つの錘部3の全てが同調して第2アーム10の対向方向(駆動信号方向)に駆動振動する。この検出素子1における駆動振動方向はX軸方向となる。   First, the angular velocity detection unit will be described. As shown in FIG. 4, when the first arm 8 of the detection element 1 is arranged in the X-axis direction and the second arm 10 is arranged in the Y-axis direction on the X axis, the Y axis, and the Z axis orthogonal to each other, When an AC voltage having a resonance frequency is applied to the drive electrode 22, the second arm 10 is driven to vibrate starting from the second arm 10 on which the drive electrode 22 is disposed, and accordingly, the weight 3 is also opposed to the second arm 10. Drive vibration occurs in the drive vibration direction indicated by the solid arrow and the dotted arrow. Further, all of the four second arms 10 and the four weight portions 3 are synchronously driven and vibrated in a direction opposite to the second arm 10 (drive signal direction). The driving vibration direction in the detection element 1 is the X-axis direction.
このとき、例えば、Z軸の左回りに角速度が生じた場合は、錘部3の駆動振動と同調して、錘部3に対して駆動振動方向と直交した方向(実線の矢印と点線の矢印で記したコリオリ方向(Y軸方向))にコリオリ力が発生するので、第2アーム10にZ軸の左回りの角速度に起因した歪を発生させることができる。すなわち、コリオリ力に起因して撓むこの第2アーム10の状態変化(第2アーム10に発生した歪)によって、第1、第2感知電極26、28から電圧が出力され、この出力電圧に基づき角速度が検出される。   At this time, for example, when an angular velocity is generated in the counterclockwise direction of the Z axis, a direction (solid line arrow and dotted line arrow) perpendicular to the drive vibration direction with respect to the weight part 3 is synchronized with the drive vibration of the weight part 3. Since the Coriolis force is generated in the Coriolis direction (Y-axis direction) described above, distortion caused by the counterclockwise angular velocity of the Z-axis can be generated in the second arm 10. That is, a voltage is output from the first and second sensing electrodes 26 and 28 due to a change in the state of the second arm 10 that is bent due to the Coriolis force (a strain generated in the second arm 10). Based on this, the angular velocity is detected.
次に、加速度検出部について説明する。   Next, the acceleration detection unit will be described.
まず、X軸方向の加速度について説明する。図1、図5に示すように、互いに直交するX軸、Y軸、Z軸において、第1対向基板5、第2対向基板15をXY平面に配置した場合、加速度が発生していなければ、第1対向基板5と錘部3の対向面の第1対向電極14の対向端部(X1)と、第1対向基板5と錘部3との対向面の第2対向電極16の対向端部(X2)は互いに少しずれた位置にあり、第2対向基板15と錘部3の対向面の第5対向電極17の対向端部(X1)と、第1対向基板5と錘部3との対向面の第6対向電極19の対向端部(X2)も互いに少しずれた位置にある。図示していないが、第3対向電極18の対向端部と第4対向電極20の対向端部も互いに少しずれた位置にあり、第7対向電極21の対向端部と第8対向電極23の対向端部も少しずれた位置にある。   First, acceleration in the X-axis direction will be described. As shown in FIGS. 1 and 5, when the first counter substrate 5 and the second counter substrate 15 are arranged on the XY plane in the X axis, the Y axis, and the Z axis orthogonal to each other, if no acceleration is generated, The opposing end (X1) of the first opposing electrode 14 on the opposing surface of the first opposing substrate 5 and the weight 3 and the opposing end of the second opposing electrode 16 on the opposing surface of the first opposing substrate 5 and the weight 3 (X2) is at a position slightly deviated from each other, and the second counter substrate 15 and the counter end portion (X1) of the fifth counter electrode 17 on the counter surface of the weight portion 3, and the first counter substrate 5 and the weight portion 3 The opposed end portions (X2) of the sixth opposed electrode 19 on the opposed surface are also slightly shifted from each other. Although not shown, the opposing end of the third opposing electrode 18 and the opposing end of the fourth opposing electrode 20 are also slightly shifted from each other, and the opposing end of the seventh opposing electrode 21 and the eighth opposing electrode 23 The opposite end is also slightly displaced.
すなわち、錘部3のX軸方向の移動時に、第1対向電極14の静電容量変化量と、第2対向電極16の静電容量変化量とを異なるようにするとともに、第3対向電極18の静電容量変化量と、第4対向電極20の静電容量変化量とを異なるようにし、第5対向電極17の静電容量変化量と、第6対向電極19の静電容量変化量とを異なるようにするとともに、第7対向電極21の静電容量変化量と、第8対向電極23の静電容量変化量とを異なるようにしている。   That is, when the weight portion 3 moves in the X-axis direction, the capacitance change amount of the first counter electrode 14 and the capacitance change amount of the second counter electrode 16 are made different from each other, and the third counter electrode 18 is changed. The capacitance change amount of the fourth counter electrode 20 is different from the capacitance change amount of the fourth counter electrode 20, and the capacitance change amount of the fifth counter electrode 17 and the capacitance change amount of the sixth counter electrode 19 are And the capacitance change amount of the seventh counter electrode 21 and the capacitance change amount of the eighth counter electrode 23 are made different.
このとき、例えば、X軸方向に加速度が生じた場合、図1、図6に示すように、第1弾性部9がX軸方向に変位し、加速度の生じた直線方向への力が回転方向への力に変換されることもなく、第1弾性部9は、加速度の生じたX軸方向と同方向にのみ変位する。この結果、第1対向基板5と錘部3の対向面の第1対向電極14の対向端部(X1)と、第1対向基板5と錘部3との対向面の第2対向電極16の対向端部(X2)は互いに(W)だけ位置がずれ、第2対向基板15と錘部3の対向面の第5対向電極17の対向端部(X1)と、第2対向基板15と錘部3との対向面の第6対向電極19の対向端部(X2)も互いに(W)だけ位置がずれる。図示していないが、第3対向電極18の対向端部と第4対向電極20の対向端部、第7対向電極21の対向端部と第8対向電極23の対向端部も互いに(W)だけ位置がずれる。   At this time, for example, when acceleration occurs in the X-axis direction, as shown in FIGS. 1 and 6, the first elastic portion 9 is displaced in the X-axis direction, and the force in the linear direction in which the acceleration occurs is the rotational direction. The first elastic part 9 is displaced only in the same direction as the X-axis direction in which the acceleration occurs without being converted into a force. As a result, the opposing end (X1) of the first opposing electrode 14 on the opposing surface of the first opposing substrate 5 and the weight portion 3 and the second opposing electrode 16 on the opposing surface of the first opposing substrate 5 and the weight portion 3 The opposing end portions (X2) are displaced from each other by (W), the opposing end portion (X1) of the fifth opposing electrode 17 on the opposing surface of the second opposing substrate 15 and the weight portion 3, the second opposing substrate 15 and the weight. The opposite end portions (X2) of the sixth counter electrode 19 on the surface facing the portion 3 are also displaced from each other by (W). Although not shown, the opposing end of the third opposing electrode 18 and the opposing end of the fourth opposing electrode 20, the opposing end of the seventh opposing electrode 21, and the opposing end of the eighth opposing electrode 23 are also mutually (W). Only the position shifts.
次に、Y軸方向の加速度について説明する。図1、図7に示すように、互いに直交するX軸、Y軸、Z軸において、第1対向基板5をXY平面に配置した場合、加速度が発生していなければ、第1対向基板5と錘部3の対向面の第1対向電極14の対向端部(X1)と、第1対向基板5と錘部3との対向面の第3対向電極18の対向端部(X2)は互いに少しずれた位置にあり、第2対向基板15と錘部3の対向面の第5対向電極17の対向端部(X1)と、第2対向基板15と錘部3との対向面の第7対向電極21の対向端部(X2)も互いに少しずれた位置にある。図示していないが、第2対向電極16の対向端部と第4対向電極20の対向端部も互いに少しずれた位置にあり、第6対向電極19の対向端部と第8対向電極23の対向端部も互いに少しずれた位置にある。   Next, the acceleration in the Y-axis direction will be described. As shown in FIGS. 1 and 7, when the first counter substrate 5 is arranged on the XY plane in the X axis, the Y axis, and the Z axis orthogonal to each other, if no acceleration is generated, The opposing end (X1) of the first opposing electrode 14 on the opposing surface of the weight 3 and the opposing end (X2) of the third opposing electrode 18 on the opposing surface of the first opposing substrate 5 and the weight 3 are slightly different from each other. It is in a shifted position, and the opposing end (X1) of the fifth opposing electrode 17 on the opposing surface of the second opposing substrate 15 and the weight 3 and the seventh opposing of the opposing surface of the second opposing substrate 15 and the weight 3 The opposed end portions (X2) of the electrodes 21 are also slightly shifted from each other. Although not shown, the opposing end of the second opposing electrode 16 and the opposing end of the fourth opposing electrode 20 are also slightly displaced from each other, and the opposing end of the sixth opposing electrode 19 and the eighth opposing electrode 23 Opposing ends are also slightly displaced from each other.
すなわち、錘部3のY軸方向の移動時に、第1対向電極14の静電容量変化量と、第3対向電極18の静電容量変化量とを異なるようにするとともに、第2対向電極16の静電容量変化量と、第4対向電極20の静電容量変化量とを異なるようにし、第5対向電極17の静電容量変化量と、第7対向電極21の静電容量変化量とを異なるようにするとともに、第6対向電極19の静電容量変化量と、第8対向電極23の静電容量変化量とを異なるようにしている。   That is, when the weight portion 3 moves in the Y-axis direction, the capacitance change amount of the first counter electrode 14 and the capacitance change amount of the third counter electrode 18 are made different from each other, and the second counter electrode 16 is changed. The capacitance change amount of the fourth counter electrode 20 is different from the capacitance change amount of the fourth counter electrode 20, and the capacitance change amount of the fifth counter electrode 17 and the capacitance change amount of the seventh counter electrode 21 are The capacitance change amount of the sixth counter electrode 19 and the capacitance change amount of the eighth counter electrode 23 are made different.
このとき、例えば、Y軸方向に加速度が生じた場合、図1、図8に示すように、第2弾性部11がY軸方向に変位し、加速度の生じた直線方向への力が回転方向への力に変換されることもなく、第2弾性部11は、加速度の生じたY軸方向と同方向にのみ変位する。この結果、第1対向基板5と錘部3の対向面の第1対向電極14の対向端部(X1)と、第1対向基板5と錘部3との対向面の第3対向電極18の対向端部(X2)は互いに(W)だけ位置がずれ、第2対向基板15と錘部3の対向面の第5対向電極17の対向端部(X1)と、第2対向基板15と錘部3との対向面の第7対向電極21の対向端部(X2)も互いに(W)だけ位置がずれる。図示していないが、第2対向電極16の対向端部と第4対向電極20の対向端部、第6対向電極19の対向端部と第8対向電極23の対向端部も互いに(W)だけ位置がずれる。   At this time, for example, when acceleration occurs in the Y-axis direction, as shown in FIGS. 1 and 8, the second elastic portion 11 is displaced in the Y-axis direction, and the force in the linear direction in which the acceleration occurs is the rotational direction. The second elastic part 11 is displaced only in the same direction as the Y-axis direction in which the acceleration occurs without being converted into a force. As a result, the opposing end (X1) of the first opposing electrode 14 on the opposing surface of the first opposing substrate 5 and the weight 3 and the third opposing electrode 18 on the opposing surface of the first opposing substrate 5 and the weight 3 are shown. The opposing end portions (X2) are displaced from each other by (W), the opposing end portion (X1) of the fifth opposing electrode 17 on the opposing surface of the second opposing substrate 15 and the weight portion 3, the second opposing substrate 15 and the weight. The opposite end portions (X2) of the seventh counter electrode 21 on the surface facing the portion 3 are also displaced from each other by (W). Although not shown, the opposing end of the second opposing electrode 16 and the opposing end of the fourth opposing electrode 20, the opposing end of the sixth opposing electrode 19, and the opposing end of the eighth opposing electrode 23 are also (W). Only the position shifts.
すなわち、各々の電極間の静電容量が変化するので、この静電容量の変化に基づいてX軸方向またはY軸方向の加速度を検出するものである。   That is, since the capacitance between the electrodes changes, acceleration in the X-axis direction or Y-axis direction is detected based on the change in capacitance.
上記構成により、加速度検出部によって、錘部3と第1対向基板5の各々の対向面に配置した第1対向電極〜第4対向電極14、16、18、20、錘部3と第2対向基板15の各々の対向面に配置した第5対向電極〜第8対向電極17、19、21、23の静電容量変化を検出して加速度を検出し、角速度検出部によって、コリオリ力に起因して撓む可撓部の状態変化を第1、第2感知電極26、28で検出し、一つの検出素子1で加速度と角速度を検出できるので、実装面積を低減して小型化を図れる。   With the above configuration, the acceleration detection unit causes the first counter electrode to the fourth counter electrodes 14, 16, 18, 20, the weight unit 3 and the second counter electrode disposed on the opposing surfaces of the weight unit 3 and the first counter substrate 5. The acceleration is detected by detecting the capacitance change of the fifth counter electrode to the eighth counter electrode 17, 19, 21, and 23 arranged on the respective opposing surfaces of the substrate 15, and the angular velocity detector causes the Coriolis force. Since the first and second sensing electrodes 26 and 28 can detect the change in the state of the flexible part that bends and can detect the acceleration and the angular velocity with one detection element 1, the mounting area can be reduced and the size can be reduced.
特に、X軸方向とY軸方向の加速度を検出するにあたって、X軸方向の加速度は第1弾性部9がX軸方向にのみ変位することにより検出され、Y軸方向の加速度は第2弾性部11がY軸方向にのみ変位することにより検出され、各々、一方の加速度の影響を受けることなく独立して加速度を検出することができ、検出感度を向上できる。   In particular, when detecting the acceleration in the X-axis direction and the Y-axis direction, the acceleration in the X-axis direction is detected when the first elastic portion 9 is displaced only in the X-axis direction, and the acceleration in the Y-axis direction is detected as the second elastic portion. 11 is detected by displacement only in the Y-axis direction, and the acceleration can be detected independently without being influenced by one of the accelerations, and the detection sensitivity can be improved.
また、第1対向電極〜第4対向電極14、16、18、20は、Z軸方向からみると、各々、錘部3に配置した電極と第1対向基板5に配置した電極は、X軸方向またはY軸方向に位置ずれし、かつ、いずれか一方の電極によって覆われていないので、X軸方向またはY軸方向に錘部3が可動した際、可動範囲においては、各々の静電容量が連続的に異なるように変化し、かつ、各々の静電容量が異なるので、錘部3がX軸方向の正の方向へ移動したのか、負の方向へ移動したのかを区別できる。例えば、図6によれば、第1対向電極14は加速度に応じて静電容量が連続的に減少し、第2対向電極16は加速度に応じて静電容量が連続的に増大するので、X軸方向の負の方向へ移動したことがわかる。第5対向電極〜第8対向電極17、19、21、23、およびY軸方向についても同様に移動方向を区別できる。   Further, when viewed from the Z-axis direction, the first counter electrode to the fourth counter electrodes 14, 16, 18, and 20 are respectively configured such that the electrode disposed on the weight portion 3 and the electrode disposed on the first counter substrate 5 are the X-axis. Since the position of the weight portion 3 is moved in the X-axis direction or the Y-axis direction, the respective capacitances in the movable range are shifted. Since the capacitance changes continuously and the respective capacitances are different, it can be distinguished whether the weight portion 3 has moved in the positive direction or the negative direction in the X-axis direction. For example, according to FIG. 6, the capacitance of the first counter electrode 14 continuously decreases according to the acceleration, and the capacitance of the second counter electrode 16 increases continuously according to the acceleration. It can be seen that the axis has moved in the negative direction. Similarly, the moving direction can be distinguished for the fifth counter electrode to the eighth counter electrode 17, 19, 21, 23 and the Y-axis direction.
さらに、第1対向電極部として、第1対向電極〜第4対向電極14、16、18、20は、錘部3の表面側と対向させた第1対向基板5と錘部3の各々の対向面に配置し、第2対向電極部として、第5対向電極〜第8対向電極17、19、21、23は、錘部3の裏面側と対向させた第2対向基板15と錘部3の各々の対向面に配置しているので、例えば、Z軸方向へ錘部3が変位したとしても、第1対向電極部の対向距離が広がれば、第2対向電極部の対向距離が縮まり、第1対向電極部の対向距離が縮めば、第2対向電極部の対向距離が広がる。   Further, as the first counter electrode portion, the first counter electrode to the fourth counter electrodes 14, 16, 18, and 20 are respectively opposed to the first counter substrate 5 and the weight portion 3 facing the surface side of the weight portion 3. The fifth counter electrode to the eighth counter electrodes 17, 19, 21, and 23 are arranged on the surface, and the second counter substrate 15 and the weight portion 3 are opposed to the back surface side of the weight portion 3. For example, even if the weight portion 3 is displaced in the Z-axis direction, the opposing distance of the second opposing electrode portion is reduced if the opposing distance of the first opposing electrode portion is increased, even if the weight portion 3 is displaced in the Z-axis direction. When the facing distance of the one counter electrode portion is reduced, the facing distance of the second counter electrode portion is increased.
すなわち、第1対向電極部の対向距離および第2対向電極部の対向距離の総対向距離が変わらないので、振動等によって、Z軸方向へ錘部3が変位したとしても、第1、第2対向電極部の全体の静電容量の変化量が大きく変化することがなく、X軸またはY軸の加速度の検出精度を劣化させずに検出精度を向上できる。   That is, since the total opposing distance of the opposing distance of the first counter electrode part and the opposing distance of the second counter electrode part does not change, even if the weight part 3 is displaced in the Z-axis direction due to vibration or the like, the first and second It is possible to improve the detection accuracy without deteriorating the detection accuracy of the X-axis or Y-axis acceleration without greatly changing the amount of change in the capacitance of the entire counter electrode portion.
なお、第1固定部に第1弾性部9を設ける替わりに、第1連結部にX軸方向のみに弾性変形する第1弾性部9を設けたり、第2固定部に第2弾性部11を設ける替わりに、第2連結部にY軸方向のみに弾性変形する第2弾性部11を設けたりしてもよい。また、駆動電極、検知電極、感知電極については、上記実施の形態以外にも任意に設定可能である。   Instead of providing the first elastic portion 9 in the first fixing portion, the first elastic portion 9 that is elastically deformed only in the X-axis direction is provided in the first connecting portion, or the second elastic portion 11 is provided in the second fixing portion. Instead of providing, the second connecting portion may be provided with the second elastic portion 11 that is elastically deformed only in the Y-axis direction. Further, the drive electrode, the detection electrode, and the detection electrode can be arbitrarily set in addition to the above embodiment.
本発明に係る慣性力センサは、検出感度を向上できるので、各種電子機器に適用できるものである。   Since the inertial force sensor according to the present invention can improve the detection sensitivity, it can be applied to various electronic devices.
本発明の第1の実施の形態における複合センサの検出素子の分解斜視図The disassembled perspective view of the detection element of the composite sensor in the 1st Embodiment of this invention 図1のA−A断面図AA sectional view of FIG. 図1のB−B断面図BB sectional view of FIG. 角速度検出時における同検出素子の動作状態図Operation state diagram of the detection element during angular velocity detection 対向基板配置時のA−A断面図AA cross-sectional view when the counter substrate is placed X軸方向の加速度検出時における同検出素子の動作状態図Operation state diagram of the detection element when detecting acceleration in the X-axis direction 対向基板配置時のB−B断面図BB cross section when counter substrate is placed Y軸方向の加速度検出時における同検出素子の動作状態図Operation state diagram of the detection element when detecting acceleration in the Y-axis direction 従来の検出素子の平面図Plan view of conventional detector 図9のA−A断面図AA sectional view of FIG. 図9のB−B断面図BB sectional view of FIG. 同検出素子の動作状態図Operation state diagram of the detector
符号の説明Explanation of symbols
1 検出素子
3 錘部
4 第1固定部
5 対向基板
6 第2固定部
7 固定アーム
8 第1アーム
9 第1弾性部
10 第2アーム
11 第2弾性部
12 支持部
13 スリット
14 第1対向電極
15 第2対向基板
16 第2対向電極
17 第5対向電極
18 第3対向電極
19 第6対向電極
20 第4対向電極
21 第7対向電極
22 駆動電極
23 第8対向電極
24 検知電極
26 第1感知電極
28 第2感知電極
DESCRIPTION OF SYMBOLS 1 Detection element 3 Weight part 4 1st fixing | fixed part 5 Opposite substrate 6 2nd fixing | fixed part 7 Fixed arm 8 1st arm 9 1st elastic part 10 2nd arm 11 2nd elastic part 12 Supporting part 13 Slit 14 1st counter electrode DESCRIPTION OF SYMBOLS 15 2nd counter substrate 16 2nd counter electrode 17 5th counter electrode 18 3rd counter electrode 19 6th counter electrode 20 4th counter electrode 21 7th counter electrode 22 Drive electrode 23 8th counter electrode 24 Detection electrode 26 1st sensing Electrode 28 Second sensing electrode

Claims (5)

  1. 加速度検出部を有する検出素子を備え、
    前記検出素子は、第1連結部を介して錘部を連結した第1固定部と、第2連結部を介して前記第1固定部を連結した第2固定部と、前記錘部の表面側と対向させた第1対向基板と、前記錘部の裏面側と対向させた第2対向基板と、前記錘部と前記第1対向基板の各々の対向面に配置した第1対向電極部と、前記錘部と前記第2対向基板の各々の対向面に配置した第2対向電極部とを有し、前記加速度検出部では、前記第1対向電極部の静電容量の変化量および前記第2対向電極部の静電容量の変化量を検出して加速度を検出しており、
    互いに直交するX軸、Y軸、Z軸において、
    前記第1連結部をX軸方向に配置するとともに前記第1連結部または前記第1固定部にX軸方向のみに弾性変形する第1弾性部を設け、
    前記第2連結部をY軸方向に配置するとともに前記第2連結部または前記第2固定部にY軸方向のみに弾性変形する第2弾性部を設け、前記第2固定部にて実装基板に実装した慣性力センサ。
    A detection element having an acceleration detection unit;
    The detection element includes a first fixing portion that connects a weight portion via a first connecting portion, a second fixing portion that connects the first fixing portion via a second connecting portion, and a surface side of the weight portion A first counter substrate opposed to the second counter substrate, a second counter substrate opposed to the back side of the weight portion, a first counter electrode portion disposed on each of the counter surfaces of the weight portion and the first counter substrate, The weight portion and a second counter electrode portion disposed on each of the opposing surfaces of the second counter substrate, wherein the acceleration detector includes a capacitance change amount of the first counter electrode portion and the second counter electrode portion. Acceleration is detected by detecting the amount of change in capacitance of the counter electrode,
    In the X axis, Y axis, and Z axis orthogonal to each other,
    A first elastic portion that is arranged in the X-axis direction and is elastically deformed only in the X-axis direction in the first connection portion or the first fixing portion;
    The second connecting portion is disposed in the Y-axis direction, and a second elastic portion that is elastically deformed only in the Y-axis direction is provided in the second connecting portion or the second fixing portion, and the mounting substrate is formed by the second fixing portion. Mounted inertial force sensor.
  2. 前記第1弾性部はY軸方向にスリットを設けて形成し、前記第2弾性部はX軸方向にスリットを設けて形成した請求項1記載の慣性力センサ。 2. The inertial force sensor according to claim 1, wherein the first elastic part is formed with a slit in the Y-axis direction, and the second elastic part is formed with a slit in the X-axis direction.
  3. 前記第1固定部を枠体部とし、2つの第1連結部を介して前記錘部を連結するとともに前記錘部を前記第1固定部の内方に配置した請求項1記載の慣性力センサ。 2. The inertial force sensor according to claim 1, wherein the first fixing portion is a frame body portion, the weight portion is connected via two first connecting portions, and the weight portion is disposed inward of the first fixing portion. .
  4. 前記第1対向電極部および前記第2対向電極部は複数の対向電極を有し、前記錘部のX軸方向またはY軸方向の移動時に、前記第1対向電極部の一方の対向電極の静電容量の変化量と、他方の対向電極の静電容量の変化量を異ならせ、前記第2対向電極部の一方の対向電極の静電容量の変化量と、他方の対向電極の静電容量の変化量を異ならせた請求項1記載の慣性力センサ。 The first counter electrode portion and the second counter electrode portion have a plurality of counter electrodes. When the weight portion moves in the X-axis direction or the Y-axis direction, the static electrode of one counter electrode of the first counter electrode portion is static. The amount of change in capacitance and the amount of change in capacitance of the other counter electrode are made different so that the amount of change in capacitance of one counter electrode of the second counter electrode portion and the capacitance of the other counter electrode The inertial force sensor according to claim 1, wherein the amount of change is different.
  5. 前記検出素子に角速度検出部を設け、
    前記検出素子は、第1アームを第2アームに直交方向に連結して形成した2つの直交アームと、2つの前記第1アームを支持した支持部とを有し、前記第1アームを前記第1連結部とするとともに前記第2アームの先端部に前記錘部を連結しており、前記角速度検出部では、前記錘部を駆動振動させ、コリオリ力に起因した前記検出素子の状態変化を検出して角速度を検出する請求項1記載の慣性力センサ。
    An angular velocity detection unit is provided in the detection element,
    The detection element includes two orthogonal arms formed by connecting the first arm to the second arm in the orthogonal direction, and a support portion supporting the two first arms, and the first arm is the first arm. The connecting portion is connected to the tip of the second arm, and the weight portion is connected to the tip portion of the second arm. In the angular velocity detecting portion, the weight portion is driven to vibrate to detect a change in the state of the detecting element due to the Coriolis force. The inertial force sensor according to claim 1, wherein the angular velocity is detected.
JP2007105612A 2007-04-13 2007-04-13 Inertia force sensor Pending JP2008261772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105612A JP2008261772A (en) 2007-04-13 2007-04-13 Inertia force sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007105612A JP2008261772A (en) 2007-04-13 2007-04-13 Inertia force sensor
US12/593,752 US20100126270A1 (en) 2007-04-13 2008-04-09 Inertia force sensor
PCT/JP2008/000911 WO2008129865A1 (en) 2007-04-13 2008-04-09 Inertia force sensor

Publications (1)

Publication Number Publication Date
JP2008261772A true JP2008261772A (en) 2008-10-30

Family

ID=39984351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105612A Pending JP2008261772A (en) 2007-04-13 2007-04-13 Inertia force sensor

Country Status (1)

Country Link
JP (1) JP2008261772A (en)

Similar Documents

Publication Publication Date Title
JP5205970B2 (en) Inertial force sensor
JP5205725B2 (en) Angular velocity sensor
JP5293187B2 (en) Sensor
JP4687577B2 (en) Inertial sensor
JP2006215016A (en) Sensor having both functions of gyroscope and accelerometer
US20100126270A1 (en) Inertia force sensor
US8117914B2 (en) Inertia force sensor and composite sensor for detecting inertia force
JP2007256235A (en) Inertia force sensor
JP2008076265A (en) Inertial force sensor
JP2009222475A (en) Compound sensor
JP2007256234A (en) Inertia force sensor
JP5125138B2 (en) Compound sensor
JP2008261771A (en) Inertia force sensor
JP2008122263A (en) Angular velocity sensor
JP2008261772A (en) Inertia force sensor
JP2008232704A (en) Inertia force sensor
JP4858215B2 (en) Compound sensor
JP2009156603A (en) Combined sensor
JP2008232703A (en) Inertia force sensor
JP2009063392A (en) Inertial force sensor
JP2009250955A (en) Inertial force sensor
JP2007198778A (en) Inertial force sensor
JP2009222476A (en) Compound sensor
JP2008190887A (en) Sensor
JP2010197061A (en) Inertia force detecting element