JP2008232703A - Inertia force sensor - Google Patents

Inertia force sensor Download PDF

Info

Publication number
JP2008232703A
JP2008232703A JP2007070159A JP2007070159A JP2008232703A JP 2008232703 A JP2008232703 A JP 2008232703A JP 2007070159 A JP2007070159 A JP 2007070159A JP 2007070159 A JP2007070159 A JP 2007070159A JP 2008232703 A JP2008232703 A JP 2008232703A
Authority
JP
Japan
Prior art keywords
arm
orthogonal
acceleration
detection element
force sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070159A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aizawa
宏幸 相澤
Satoshi Ouchi
智 大内
Toshiyuki Nozoe
利幸 野添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007070159A priority Critical patent/JP2008232703A/en
Publication of JP2008232703A publication Critical patent/JP2008232703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inertia force sensor having heightened detection sensitivity. <P>SOLUTION: This sensor is equipped with a detection element 1 having an acceleration detection part and an angular velocity detection part. The detection element 1 has two orthogonal arms wherein the first arm 8 is connected to the second arm 10 approximately in the orthogonal direction, and has a constitution described as follows: the first arm 8 is a T-shaped orthogonal arm wherein the first connection arm 11 is arranged orthogonally to the second connection arm 13; one end of the first connection arm 11 is supported by a support part 12 and connected to a weight part 2 through the second arm 10; the other end of the first connection arm 11 is connected to the orthogonal second connection arm 13; both ends of the second connection arm 13 is connected to a frame body part 4; each thickness of the first arm 8 and the second connection arm 13 is formed extremely more thinly than the thickness of the second arm 10 or the weight part 2; and the first arm 8 and the second arm 10 are arranged mutually in the orthogonal direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、航空機、自動車、ロボット、船舶、車両等の移動体の姿勢制御やナビゲーション等、各種電子機器に用いるセンサに関するものである。   The present invention relates to sensors used in various electronic devices such as attitude control and navigation of moving bodies such as aircraft, automobiles, robots, ships, and vehicles.

以下、従来の慣性力センサの一つである加速度センサについて説明する。   Hereinafter, an acceleration sensor which is one of conventional inertial force sensors will be described.

図12は従来の加速度センサの検出素子の平面図、図13は同検出素子のA−A断面図、図14は同検出素子のB−B断面図である。   FIG. 12 is a plan view of a detection element of a conventional acceleration sensor, FIG. 13 is an AA sectional view of the detection element, and FIG. 14 is a BB sectional view of the detection element.

図12〜図14において、従来の加速度センサは、加速度を検出する検出素子51と、この検出素子51から出力される加速度信号を演算処理して加速度を検出する処理回路(図示せず)を備えている。この検出素子51は、錘部52を支持した支持部54と、可撓部56を介して支持部54と連結された固定部58とを有しており、この固定部58によって検出素子51が実装基板に実装されている。   12 to 14, the conventional acceleration sensor includes a detection element 51 that detects acceleration, and a processing circuit (not shown) that detects acceleration by performing arithmetic processing on an acceleration signal output from the detection element 51. ing. The detection element 51 includes a support portion 54 that supports the weight portion 52 and a fixing portion 58 that is connected to the support portion 54 via a flexible portion 56. It is mounted on the mounting board.

また、可撓部56はアーム形状であって、この可撓部56は支持部54を中心にして十字状に配置し、一対の可撓部56と支持部54とが同一直線上に配置されるようにしている。   The flexible portion 56 has an arm shape, and the flexible portion 56 is arranged in a cross shape with the support portion 54 as the center, and the pair of flexible portions 56 and the support portion 54 are arranged on the same straight line. I try to do it.

可撓部56には歪抵抗素子58を設けており、錘部52の可動に起因して撓む可撓部56の状態変化に基づき、歪抵抗素子58の抵抗値変化を加速度信号として出力している。   A strain resistance element 58 is provided in the flexible portion 56, and a change in resistance value of the strain resistance element 58 is output as an acceleration signal based on a change in the state of the flexible portion 56 that is bent due to the movement of the weight portion 52. ing.

次に、加速度の検出について説明する。   Next, detection of acceleration will be described.

互いに直交するX軸、Y軸、Z軸において、X軸方向とY軸方向に十字状のアームからなる可撓部56を配置した場合、例えば、X軸方向に加速度が生じると、錘部52が加速度の生じた軸方向に移動しようとするために、X軸方向に配置された2つの可撓部56の内、一方の可撓部56にはZ軸の正の方向に撓みが発生し、他方の可撓部56にはZ軸の負の方向に撓みが発生する(支持部54を中心にして、錘部52がZ軸方向に回転しようとして撓みが発生する)。そうすると、2つの可撓部56に設けた2つの歪抵抗素子58も、可撓部56の撓みに応じてZ軸の正負の方向に撓むので、歪抵抗素子58の抵抗値が変化する。この抵抗値変化を加速度信号として出力して加速度を検出するものである。   When the flexible portion 56 formed of a cross-shaped arm is arranged in the X axis direction and the Y axis direction on the X axis, the Y axis, and the Z axis orthogonal to each other, for example, when acceleration occurs in the X axis direction, the weight portion 52 Of the two flexible portions 56 arranged in the X-axis direction, one of the flexible portions 56 bends in the positive direction of the Z-axis. The other flexible portion 56 bends in the negative direction of the Z-axis (the bend portion 52 is bent as the weight 52 tries to rotate in the Z-axis direction around the support portion 54). Then, the two strain resistance elements 58 provided in the two flexible portions 56 also bend in the positive and negative directions of the Z axis according to the flexure of the flexible portion 56, so that the resistance value of the strain resistance element 58 changes. This resistance value change is output as an acceleration signal to detect acceleration.

このような加速度センサを検出したい検出軸に対応させて、車両等の移動体の姿勢制御装置やナビゲーション装置等に用いている。   Such an acceleration sensor is used in a posture control device, a navigation device, or the like of a moving body such as a vehicle corresponding to a detection axis to be detected.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開平10−48243号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
Japanese Patent Laid-Open No. 10-48243

上記構成では、アーム形状の可撓部56が、支持部54を中心にして、十字状に配置されているので、加速度が生じた軸方向に配置されている可撓部56によって、錘部52の移動が規制される。X軸方向に配置された2つの可撓部56の内、一方の可撓部56にはZ軸の正の方向に撓みが発生し、他方の可撓部56にはZ軸の負の方向に撓みが発生する。   In the above configuration, since the arm-shaped flexible portion 56 is arranged in a cross shape with the support portion 54 as the center, the weight portion 52 is formed by the flexible portion 56 arranged in the axial direction in which acceleration occurs. Movement is restricted. Of the two flexible portions 56 arranged in the X-axis direction, one of the flexible portions 56 bends in the positive direction of the Z-axis, and the other flexible portion 56 has a negative direction of the Z-axis. Deflection occurs.

このとき、図12において、X軸方向へ加速度が生じた場合、錘部52がX軸方向に移動しようとするが、X軸方向に配置された可撓部56によって、錘部52の移動が規制される。この規制によって、錘部52は支持部54を中心にしてZ軸方向に回転しようとするため、可撓部56に撓みが生じるが、この撓み量は小さく歪抵抗素子58の抵抗値変化も小さいものであり、検出感度が小さいという問題点を有していた。   At this time, in FIG. 12, when acceleration occurs in the X-axis direction, the weight part 52 tries to move in the X-axis direction, but the movement of the weight part 52 is caused by the flexible part 56 arranged in the X-axis direction. Be regulated. Due to this restriction, the weight portion 52 tends to rotate in the Z-axis direction around the support portion 54, so that the flexible portion 56 bends, but the amount of the bend is small and the resistance value change of the strain resistance element 58 is also small. However, the detection sensitivity is low.

本発明は上記問題点を解決するもので、検出感度を大きくした慣性力センサを提供することを目的としている。   The present invention solves the above-described problems, and an object thereof is to provide an inertial force sensor with increased detection sensitivity.

上記目的を達成するために本発明は、特に、検出素子は、連結部を介して錘部を連結し、前記錘部を内方に配置した枠体部と、前記錘部と対向させた対向基板と、前記錘部と前記対向基板の各々の対向面に配置した対向電極とを有し、前記加速度検出部では、前記錘部と前記対向基板の各々の対向面に配置した対向電極間の静電容量変化を検出して加速度を検出しており、前記連結部は、第1連結アームを第2連結アームに直交させた直交アームであって、前記第1連結アームの一端を前記錘部に連結するとともに前記第2アームの両端部を前記枠体部に連結し、かつ、前記第1連結アームの厚みおよび前記第2連結アームの厚みを前記錘部の厚みよりも薄くした構成である。   In order to achieve the above object, in particular, the present invention provides a detecting element having a weight portion connected via a connecting portion, and a frame body portion in which the weight portion is disposed inward, and a facing portion facing the weight portion. A substrate, and a counter electrode disposed on each counter surface of the weight portion and the counter substrate. In the acceleration detection unit, between the counter electrodes disposed on the counter surfaces of the weight portion and the counter substrate An acceleration is detected by detecting a change in capacitance, and the connecting part is an orthogonal arm in which the first connecting arm is orthogonal to the second connecting arm, and one end of the first connecting arm is connected to the weight part. And both end portions of the second arm are connected to the frame body portion, and the thickness of the first connection arm and the thickness of the second connection arm are made thinner than the thickness of the weight portion. .

上記構成により、互いに直交するX軸、Y軸、Z軸において、例えば、X軸方向に第1連結アームを配置しY軸方向に第2連結アームを配置した場合、Y軸方向に加速度が生じると、第1連結アームを軸にして錘部はX軸周りに回転しようとするため、錘部と対向基板の対向電極間の静電容量が変化する。錘部がZ軸方向に回転するのは、第1連結アームの厚みが錘部の厚みよりも薄いので、Z軸方向における錘部の重心位置と第1連結アームの重心位置がずれ、錘部の重心が第1連結アームの周りを回転しようとして、第1連結アームがねじれることに起因する。この第1連結アームのねじれは、加速度が生じれば容易に発生するので、対向電極間の静電容量の変化も生じやすく、検出感度を向上できるものである。   With the above configuration, for example, when the first connecting arm is arranged in the X-axis direction and the second connecting arm is arranged in the Y-axis direction on the X-axis, Y-axis, and Z-axis that are orthogonal to each other, acceleration occurs in the Y-axis direction. Since the weight portion tends to rotate around the X axis with the first connecting arm as an axis, the capacitance between the weight portion and the counter electrode of the counter substrate changes. The weight portion rotates in the Z-axis direction because the thickness of the first connecting arm is thinner than the thickness of the weight portion, so that the center of gravity position of the weight portion in the Z-axis direction is shifted from the center of gravity position of the first connecting arm. This is because the center of gravity of the first connection arm tries to rotate around the first connection arm and the first connection arm twists. Since the twist of the first connecting arm is easily generated when acceleration occurs, the capacitance between the counter electrodes is easily changed, and the detection sensitivity can be improved.

また、X軸方向に加速度が生じると、第1連結アームと直交方向に配置した第2連結アームを軸にして、錘部はZ軸方向に回転しようとするため、錘部と対向基板の対向電極間の静電容量が変化する。上記と同様に、錘部がZ軸方向に回転するのは、第2連結アームの厚みが錘部の厚みよりも薄いので、Z軸方向における錘部の重心位置と第2連結アームの重心位置がずれ、錘部の重心が第2連結アームの周りを回転しようとして、第2連結アームがねじれることに起因する。この第2連結アームのねじれは、加速度が生じれば容易に発生するので、対向電極間の静電容量の変化も生じやすく、検出感度を向上できるものである。   Further, when acceleration occurs in the X-axis direction, the weight portion tends to rotate in the Z-axis direction around the second connection arm arranged in a direction orthogonal to the first connection arm, so that the weight portion and the counter substrate face each other. The capacitance between the electrodes changes. Similarly to the above, the weight part rotates in the Z-axis direction because the thickness of the second connecting arm is thinner than the weight part, so that the center of gravity position of the weight part and the center of gravity of the second connecting arm in the Z-axis direction. This is due to the fact that the center of gravity of the weight portion tries to rotate around the second connecting arm and the second connecting arm twists. Since the twist of the second connecting arm is easily generated when acceleration occurs, the capacitance between the counter electrodes is easily changed, and the detection sensitivity can be improved.

特に、X軸方向とY軸方向の加速度を検出するにあたって、Y軸方向の加速度は第1連結アームを軸にして錘部がZ軸方向に回転することにより検出され、X軸方向の加速度は第2連結アームを軸にして錘部がZ軸方向に回転することにより検出され、各々、独立して検出することができ、検出低下を抑制できる。   In particular, when detecting the acceleration in the X-axis direction and the Y-axis direction, the acceleration in the Y-axis direction is detected by the weight portion rotating in the Z-axis direction around the first connecting arm, and the acceleration in the X-axis direction is It is detected by rotating the weight portion in the Z-axis direction with the second connecting arm as an axis, and each can be detected independently, and a reduction in detection can be suppressed.

(実施の形態1)
図1は本発明の第1の実施の形態における複合センサの検出素子の分解斜視図、図2は図1のA−A断面図、図3は図1のB−B断面図である。
(Embodiment 1)
1 is an exploded perspective view of a detection element of a composite sensor according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG.

図1において、本発明の第1の実施の形態における複合センサは、加速度検出部と角速度検出部を有する検出素子1と、この検出素子1から出力される加速度信号および角速度信号を演算処理して加速度および角速度を検出する処理回路(図示せず)を備えている。   In FIG. 1, the composite sensor according to the first embodiment of the present invention includes a detection element 1 having an acceleration detection unit and an angular velocity detection unit, and an acceleration signal and an angular velocity signal output from the detection element 1 by arithmetic processing. A processing circuit (not shown) for detecting acceleration and angular velocity is provided.

この検出素子1は、連結部を介して錘部2を連結し、この錘部2を内方に配置した枠体状の枠体部4と、錘部2と対向させた対向基板6とを有し、枠体部4にて実装基板に固定している。   The detection element 1 connects a weight part 2 via a connection part, and includes a frame-like frame body part 4 in which the weight part 2 is disposed inward, and a counter substrate 6 facing the weight part 2. And is fixed to the mounting substrate by the frame portion 4.

具体的には、第1アーム8を第2アーム10に略直交方向に連結した2つの直交アームを有し、2つの第1アーム8の一端が支持部12にて支持され、2つの第1アーム8の他端が枠体部4に連結されている。第2アーム10は第2アーム10自身と対向するまでU字状に折曲され、折曲された第2アーム10の先端部に錘部2が連結されている。   Specifically, it has two orthogonal arms in which the first arm 8 is connected to the second arm 10 in a substantially orthogonal direction, and one end of each of the two first arms 8 is supported by the support portion 12. The other end of the arm 8 is connected to the frame body portion 4. The second arm 10 is bent in a U shape until it faces the second arm 10 itself, and the weight portion 2 is connected to the tip of the bent second arm 10.

第1アーム8は、第1連結アーム11を第2連結アーム13に直交させたT字状の直交アームであって、この第1連結アーム11の一端が、支持部12にて支持されるとともに第2アーム10を介して錘部2に連結されており、第1連結アーム11の他端が直交する第2連結アーム13に連結されており、第2連結アーム13の両端部が枠体部4に連結されている。このとき、第2連結アーム13の両端部は、第1連結アーム11と直交方向に延長されて枠体部4に連結されている。   The first arm 8 is a T-shaped orthogonal arm in which the first connection arm 11 is orthogonal to the second connection arm 13, and one end of the first connection arm 11 is supported by the support portion 12. It is connected to the weight part 2 via the second arm 10, the other end of the first connection arm 11 is connected to a second connection arm 13 that is orthogonal, and both ends of the second connection arm 13 are frame parts. 4 is connected. At this time, both end portions of the second connection arm 13 are extended in the direction orthogonal to the first connection arm 11 and connected to the frame body portion 4.

第1連結アーム11と支持部12とは略同一直線上に配置するとともに、第1アーム8および第2アーム10は検出素子1の中心に対して対称配置し、第1連結アーム11の厚みおよび第2連結アーム13の厚みを錘部2の厚みよりも非常に薄く形成している。   The first connecting arm 11 and the support portion 12 are arranged on substantially the same straight line, and the first arm 8 and the second arm 10 are arranged symmetrically with respect to the center of the detection element 1, and the thickness of the first connecting arm 11 and The thickness of the second connecting arm 13 is made much thinner than the thickness of the weight portion 2.

さらに、錘部2に対向させて対向基板6を配置し、錘部2と対向基板6の各々の対向面には、第1対向電極〜第4対向電極14、16、18、20を配置している。さらに、互いに対向する一方の2つの第2アーム10には錘部2を駆動振動させる駆動電極22およびその駆動を検知する検知電極24を配置するとともに、互いに対向する他方の2つの第2アーム10には、第2アーム10の歪を感知する第1感知電極26、第2感知電極28を配置している。これらの電極の内、少なくとも、駆動電極22、検知電極24、第1感知電極26、第2感知電極28は、圧電層を介在させた上部電極と下部電極とからなる。   Further, the counter substrate 6 is disposed so as to face the weight portion 2, and the first to fourth counter electrodes 14, 16, 18, and 20 are disposed on the respective facing surfaces of the weight portion 2 and the counter substrate 6. ing. Furthermore, a drive electrode 22 that drives and vibrates the weight portion 2 and a detection electrode 24 that detects the drive of the weight portion 2 are arranged on one of the two second arms 10 that face each other, and the other two second arms 10 that face each other. The first sensing electrode 26 and the second sensing electrode 28 for sensing the distortion of the second arm 10 are arranged. Among these electrodes, at least the drive electrode 22, the detection electrode 24, the first sensing electrode 26, and the second sensing electrode 28 are composed of an upper electrode and a lower electrode with a piezoelectric layer interposed therebetween.

そして、これら第1対向電極〜第4対向電極14、16、18、20、駆動電極22、検知電極24、第1、第2感知電極26、28からは信号線(図示せず)が枠体部4まで引き出され、この信号線の端部にてワイヤーボンディング等を介して実装基板の配線パターンに電気的に接続される。   Signal lines (not shown) are framed from the first to fourth counter electrodes 14, 16, 18, 20, the drive electrode 22, the detection electrode 24, and the first and second detection electrodes 26, 28. It is pulled out to the portion 4 and is electrically connected to the wiring pattern of the mounting substrate through wire bonding or the like at the end of the signal line.

次に、角速度検出部および加速度検出部について説明する。   Next, the angular velocity detection unit and the acceleration detection unit will be described.

まず、角速度検出部について説明する。図4に示すように、互いに直交したX軸、Y軸、Z軸において、検出素子1の第1アーム8をX軸方向に配置して、第2アーム10をY軸方向に配置した場合、駆動電極22に共振周波数の交流電圧を印加すると、駆動電極22が配置された第2アーム10を起点に第2アーム10が駆動振動し、それに伴って錘部2も第2アーム10の対向方向(実線の矢印と点線の矢印で記した駆動振動方向)に駆動振動する。また、4つの第2アーム10および4つの錘部2の全てが同調して第2アーム10の対向方向(駆動信号方向)に駆動振動する。この検出素子1における駆動振動方向はX軸方向となる。   First, the angular velocity detection unit will be described. As shown in FIG. 4, when the first arm 8 of the detection element 1 is arranged in the X-axis direction and the second arm 10 is arranged in the Y-axis direction on the X axis, the Y axis, and the Z axis orthogonal to each other, When an AC voltage having a resonance frequency is applied to the drive electrode 22, the second arm 10 is driven to vibrate starting from the second arm 10 on which the drive electrode 22 is disposed, and accordingly, the weight portion 2 is also opposed to the second arm 10. Drive vibration occurs in the drive vibration direction indicated by the solid arrow and the dotted arrow. Further, all of the four second arms 10 and the four weight portions 2 are synchronously driven and vibrated in a direction opposite to the second arm 10 (drive signal direction). The driving vibration direction in the detection element 1 is the X-axis direction.

このとき、例えば、Z軸の左周りに角速度が生じた場合は、錘部2の駆動振動と同調して、錘部2に対して駆動振動方向と直交した方向(実線の矢印と点線の矢印で記したコリオリ方向(Y軸方向))にコリオリ力が発生するので、第2アーム10にZ軸の左周りの角速度に起因した歪を発生させることができる。すなわち、コリオリ力に起因して撓むこの第2アーム10の状態変化(第2アーム10に発生した歪)によって、第1、第2感知電極26、28から電圧が出力され、この出力電圧に基づき角速度が検出される。   At this time, for example, when an angular velocity is generated around the left of the Z-axis, in synchronization with the drive vibration of the weight portion 2, a direction perpendicular to the drive vibration direction with respect to the weight portion 2 (solid arrow and dotted arrow) Since the Coriolis force is generated in the Coriolis direction (Y-axis direction) described above, distortion caused by the angular velocity around the left of the Z-axis can be generated in the second arm 10. That is, a voltage is output from the first and second sensing electrodes 26 and 28 due to a change in the state of the second arm 10 that is bent due to the Coriolis force (a strain generated in the second arm 10). Based on this, the angular velocity is detected.

次に、加速度検出部について説明する。   Next, the acceleration detection unit will be described.

まず、X軸方向の加速度について説明する。図1、図5に示すように、互いに直交するX軸、Y軸、Z軸において、対向基板6をXY平面に配置した場合、加速度が発生していなければ、基板6と錘部2の対向面の第1対向電極14の対向距離(H1)と、基板6と錘部2との対向面の第2対向電極16の対向距離(H2)は等しい、図示していないが、第3対向電極18の対向距離と第4対向電極20の対向距離も等しくなる。   First, acceleration in the X-axis direction will be described. As shown in FIGS. 1 and 5, when the counter substrate 6 is arranged on the XY plane in the X axis, the Y axis, and the Z axis orthogonal to each other, if the acceleration is not generated, the substrate 6 and the weight portion 2 are opposed to each other. The opposing distance (H1) of the first opposing electrode 14 on the surface and the opposing distance (H2) of the second opposing electrode 16 on the opposing surface of the substrate 6 and the weight part 2 are equal, although not shown, the third opposing electrode The opposing distance of 18 and the opposing distance of the fourth counter electrode 20 are also equal.

このとき、例えば、X軸方向に加速度が生じた場合、図1、図6に示すように、錘部2はY軸方向に配置された第2連結アーム13を軸にしてY軸周りに回転しようとする。この結果、基板6と錘部2の対向面の第1対向電極14の対向距離(H1)が小さくなり、基板6と錘部2との対向面の第2対向電極16の対向距離(H2)が大きくなる。第3対向電極18の対向距離と第4対向電極20の対向距離も同様である。   At this time, for example, when acceleration occurs in the X-axis direction, as shown in FIGS. 1 and 6, the weight portion 2 rotates around the Y-axis around the second connecting arm 13 arranged in the Y-axis direction. try to. As a result, the facing distance (H1) of the first counter electrode 14 on the facing surface of the substrate 6 and the weight portion 2 is reduced, and the facing distance (H2) of the second facing electrode 16 on the facing surface of the substrate 6 and the weight portion 2 is reduced. Becomes larger. The same applies to the facing distance of the third counter electrode 18 and the facing distance of the fourth counter electrode 20.

次に、Y軸方向の加速度について説明する。図1、図7に示すように、互いに直交するX軸、Y軸、Z軸において、対向基板6をXY平面に配置した場合、加速度が発生していなければ、基板6と錘部2の対向面の第1対向電極14の対向距離(H1)と、基板6と錘部2との対向面の第3対向電極18の対向距離(H2)は等しい。図示していないが、第2対向電極16の対向距離と第4対向電極20の対向距離も等しくなる。   Next, the acceleration in the Y-axis direction will be described. As shown in FIGS. 1 and 7, when the counter substrate 6 is arranged on the XY plane in the X axis, the Y axis, and the Z axis orthogonal to each other, if the acceleration is not generated, the substrate 6 and the weight portion 2 are opposed to each other. The opposing distance (H1) of the first opposing electrode 14 on the surface and the opposing distance (H2) of the third opposing electrode 18 on the opposing surface of the substrate 6 and the weight portion 2 are equal. Although not shown, the facing distance of the second counter electrode 16 and the facing distance of the fourth counter electrode 20 are also equal.

このとき、Y軸方向に加速度が生じた場合、図1、図8に示すように、錘部2はX軸方向に配置された第1連結アーム11を軸にしてX軸周りに回転しようとするため、例えば、第3、第4対向電極18、20の対向距離が大きくなり、第1、第2対向電極14、16の対向距離が小さくなる。   At this time, when acceleration occurs in the Y-axis direction, as shown in FIGS. 1 and 8, the weight portion 2 tries to rotate around the X-axis around the first connecting arm 11 arranged in the X-axis direction. Therefore, for example, the facing distance between the third and fourth counter electrodes 18 and 20 is increased, and the facing distance between the first and second counter electrodes 14 and 16 is decreased.

すなわち、各々の電極間の静電容量が変化するので、この静電容量の変化に基づいてX軸方向またはY軸方向の加速度を検出するものである。   That is, since the capacitance between the electrodes changes, acceleration in the X-axis direction or Y-axis direction is detected based on the change in capacitance.

上記構成により、加速度検出部によって、錘部2と基板6の各々の対向面に配置した第1対向電極〜第4対向電極14、16、18、20の静電容量を検出して加速度を検出し、角速度検出部によって、コリオリ力に起因して撓む可撓部の状態変化を第1、第2感知電極26、28で検出し、一つの検出素子1で加速度と角速度を検出できるので、実装面積を低減して小型化を図れる。   With the above configuration, the acceleration is detected by detecting the capacitance of the first to fourth counter electrodes 14, 16, 18, and 20 disposed on the opposing surfaces of the weight portion 2 and the substrate 6 by the acceleration detection unit. Then, the angular velocity detection unit can detect the change in the state of the flexible portion caused by the Coriolis force by the first and second sensing electrodes 26 and 28, and the acceleration and angular velocity can be detected by the single detection element 1. The mounting area can be reduced and the size can be reduced.

また、互いに直交するX軸、Y軸、Z軸において、例えば、X軸方向に第1連結アーム11を配置しY軸方向に第2連結アーム13を配置した場合、Y軸方向に加速度が生じると、第1連結アーム11を軸にして錘部2はX軸周りに回転しようとするため、錘部2と対向基板6の対向電極間の静電容量が変化する。錘部2がX軸周りに回転するのは、第1連結アーム11の厚みが錘部2の厚みよりも薄いので、Z軸方向における錘部の重心位置と第1連結アーム11の重心位置がずれ、錘部2の重心が第1連結アーム11の周りを回転しようとして、第1連結アーム11がねじれることに起因する。この第1連結アーム11のねじれは、加速度が生じれば容易に発生するので、対向電極間の静電容量の変化も生じやすく、検出感度を向上できるものである。   For example, when the first connecting arm 11 is arranged in the X-axis direction and the second connecting arm 13 is arranged in the Y-axis direction on the X-axis, Y-axis, and Z-axis orthogonal to each other, acceleration occurs in the Y-axis direction. Then, since the weight portion 2 tends to rotate around the X axis with the first connecting arm 11 as an axis, the capacitance between the weight portion 2 and the counter electrode of the counter substrate 6 changes. The weight 2 rotates around the X axis because the thickness of the first connecting arm 11 is thinner than the thickness of the weight 2, so that the center of gravity position of the weight and the center of gravity of the first connecting arm 11 in the Z-axis direction are This is because the center of gravity of the weight portion 2 tries to rotate around the first connecting arm 11 and the first connecting arm 11 is twisted. Since the twist of the first connecting arm 11 is easily generated when acceleration occurs, the capacitance between the counter electrodes is easily changed, and the detection sensitivity can be improved.

さらに、X軸方向に加速度が生じると、第1連結アーム11と直交方向に配置した第2連結アーム13を軸にして、錘部2はY軸周りに回転しようとするため、錘部2と対向基板6の対向電極間の静電容量が変化する。上記と同様に、錘部2がY軸周りに回転するのは、第1連結アーム11の厚みが錘部2の厚みよりも薄いので、Z軸方向における錘部2の重心位置と第1連結アーム11の重心位置がずれ、錘部2の重心が第2連結アーム13の周りを回転しようとして、第2連結アーム13がねじれることに起因する。この第2連結アーム13のねじれは、加速度が生じれば容易に発生するので、対向電極間の静電容量の変化も生じやすく、検出感度を向上できるものである。このとき、第2連結アーム13は対向して2つ配置されているので、例えば、第1連結アーム11に引張圧縮力が加わりながら、一方の第2連結アーム13は上方にねじれようとし、他方の第2連結アーム13は下方にねじれようとして、全体として、回転しようとする。   Further, when acceleration occurs in the X-axis direction, the weight part 2 tends to rotate around the Y-axis with the second connection arm 13 arranged in a direction orthogonal to the first connection arm 11 as an axis. The capacitance between the counter electrodes of the counter substrate 6 changes. Similarly to the above, the weight portion 2 rotates around the Y axis because the thickness of the first connecting arm 11 is thinner than the weight portion 2, and the position of the center of gravity of the weight portion 2 in the Z-axis direction and the first connection This is because the position of the center of gravity of the arm 11 is shifted, and the center of gravity of the weight portion 2 tries to rotate around the second connection arm 13 and the second connection arm 13 is twisted. Since the twist of the second connecting arm 13 is easily generated when acceleration occurs, the capacitance between the counter electrodes is easily changed, and the detection sensitivity can be improved. At this time, since the two second connecting arms 13 are arranged opposite to each other, for example, one of the second connecting arms 13 tries to twist upward while a tensile and compressive force is applied to the first connecting arm 11, and the other The second connecting arm 13 tends to twist downward and tries to rotate as a whole.

特に、X軸方向とY軸方向の加速度を検出するにあたって、Y軸方向の加速度は第1連結アーム11を軸にして錘部2がX軸周りに回転することにより検出され、X軸方向の加速度は第2連結アーム13を軸にして錘部2がY軸周りに回転することにより検出され、各々、独立して検出することができるので、検出低下を抑制できる。   In particular, when detecting the acceleration in the X-axis direction and the Y-axis direction, the acceleration in the Y-axis direction is detected by rotating the weight portion 2 around the X axis around the first connecting arm 11, The acceleration is detected when the weight portion 2 rotates around the Y axis with the second connecting arm 13 as an axis, and can be detected independently, so that a decrease in detection can be suppressed.

(実施の形態2)
図9は本発明の第2の実施の形態における複合センサの検出素子の分解斜視図、図10は図9のA−A断面図、図11は図9のB−B断面図である。
(Embodiment 2)
9 is an exploded perspective view of the detection element of the composite sensor according to the second embodiment of the present invention, FIG. 10 is a cross-sectional view taken along line AA in FIG. 9, and FIG. 11 is a cross-sectional view taken along line BB in FIG.

本発明の第2の実施の形態における複合センサの検出素子は、第1の実施の形態における複合センサの検出素子において、第2連結アーム13を改良したものである。   The detection element of the composite sensor according to the second embodiment of the present invention is obtained by improving the second connection arm 13 in the detection element of the composite sensor according to the first embodiment.

図9〜図11において、第1アーム8は、第1連結アーム11を第2連結アーム13に直交させたT字状の直交アームであって、この第1連結アーム11の一端が、支持部12にて支持されるとともに第2アーム10を介して錘部2に連結されており、第1連結アーム11の他端が直交する第2連結アーム13に連結されており、第2連結アーム13の両端部が枠体部4に連結されている。このとき、第2連結アーム13の両端部は、第1連結アーム11と同方向に延長して、枠体部4に連結されている。角速度の検出および加速度の検出については、実施の形態1と同様である。上記構成により、第2の実施の形態においても、第1の実施の形態における複合センサと同様の効果を得ることができる。   9-11, the 1st arm 8 is a T-shaped orthogonal arm which made the 1st connection arm 11 orthogonal to the 2nd connection arm 13, Comprising: One end of this 1st connection arm 11 is a support part. 12, and is connected to the weight portion 2 via the second arm 10, and the other end of the first connection arm 11 is connected to a second connection arm 13 that is orthogonal to the second connection arm 13. Are connected to the frame body portion 4. At this time, both end portions of the second connection arm 13 extend in the same direction as the first connection arm 11 and are connected to the frame body portion 4. The detection of angular velocity and the detection of acceleration are the same as in the first embodiment. With the above configuration, the same effect as that of the composite sensor in the first embodiment can be obtained in the second embodiment.

本発明に係る慣性力センサは、検出感度を向上できるので、各種電子機器に適用できるものである。   Since the inertial force sensor according to the present invention can improve the detection sensitivity, it can be applied to various electronic devices.

本発明の第1の実施の形態における複合センサの検出素子の分解斜視図The disassembled perspective view of the detection element of the composite sensor in the 1st Embodiment of this invention 図1のA−A断面図AA sectional view of FIG. 図1のB−B断面図BB sectional view of FIG. 角速度検出時における同検出素子の動作状態図Operation state diagram of the detection element during angular velocity detection 対向基板配置時のA−A断面図AA cross-sectional view when the counter substrate is placed X軸方向の加速度検出時における同検出素子の動作状態図Operation state diagram of the detection element when detecting acceleration in the X-axis direction 対向基板配置時のB−B断面図BB cross section when counter substrate is placed Y軸方向の加速度検出時における同検出素子の動作状態図Operation state diagram of the detection element when detecting acceleration in the Y-axis direction 本発明の第2の実施の形態における複合センサの検出素子の分解斜視図The disassembled perspective view of the detection element of the composite sensor in the 2nd Embodiment of this invention 図9のA−A断面図AA sectional view of FIG. 図9のB−B断面図BB sectional view of FIG. 従来の検出素子の平面図Plan view of conventional detector 図9のA−A断面図AA sectional view of FIG. 図9のB−B断面図BB sectional view of FIG.

符号の説明Explanation of symbols

1 検出素子
2 錘部
4 枠体部
6 対向基板
8 第1アーム
10 第2アーム
11 第1連結アーム
12 支持部
13 第2連結アーム
14 第1対向電極
16 第2対向電極
18 第3対向電極
20 第4対向電極
22 駆動電極
24 検知電極
26 第1感知電極
28 第2感知電極
DESCRIPTION OF SYMBOLS 1 Detection element 2 Weight part 4 Frame body part 6 Opposite substrate 8 1st arm 10 2nd arm 11 1st connection arm 12 Support part 13 2nd connection arm 14 1st counter electrode 16 2nd counter electrode 18 3rd counter electrode 20 Fourth counter electrode 22 Drive electrode 24 Sense electrode 26 First sense electrode 28 Second sense electrode

Claims (6)

加速度検出部を有する検出素子を備え、
前記検出素子は、連結部を介して錘部を連結し、前記錘部を内方に配置した枠体部と、前記錘部と対向させた対向基板と、前記錘部と前記対向基板の各々の対向面に配置した対向電極とを有し、前記加速度検出部では、前記錘部と前記対向基板の各々の対向面に配置した対向電極間の静電容量変化を検出して加速度を検出しており、
前記連結部は、第1連結アームを第2連結アームに直交させた直交アームであって、前記第1連結アームの一端を前記錘部に連結するとともに前記第2アームの両端部を前記枠体部に連結し、かつ、前記第1連結アームの厚みおよび前記第2連結アームの厚みを前記錘部の厚みよりも薄くした慣性力センサ。
A detection element having an acceleration detection unit;
The detecting element connects a weight part via a connecting part, a frame body part in which the weight part is disposed inward, a counter substrate opposed to the weight part, and each of the weight part and the counter substrate And the acceleration detecting unit detects an acceleration by detecting a change in capacitance between the counter electrode arranged on each opposing surface of the weight part and the opposing substrate. And
The connecting portion is an orthogonal arm in which a first connecting arm is orthogonal to a second connecting arm, and connects one end of the first connecting arm to the weight portion and both ends of the second arm to the frame body. An inertial force sensor coupled to a portion, wherein the thickness of the first coupling arm and the thickness of the second coupling arm are smaller than the thickness of the weight portion.
前記第2連結アームの両端部は、前記第1連結アームと同方向に延長して、前記枠体部に連結した請求項1記載の慣性力センサ。 2. The inertial force sensor according to claim 1, wherein both end portions of the second connection arm extend in the same direction as the first connection arm and are connected to the frame body portion. 前記第2連結アームの両端部は、前記第1連結アームと直交方向に延長して、前記枠体部に連結した請求項1記載の慣性力センサ。 2. The inertial force sensor according to claim 1, wherein both end portions of the second connecting arm extend in a direction orthogonal to the first connecting arm and are connected to the frame body portion. 前記検出素子は、対称形状とした請求項1記載の慣性力センサ。 The inertial force sensor according to claim 1, wherein the detection element has a symmetrical shape. 前記検出素子に角速度検出部を設け、
前記検出素子は、第1アームを第2アームに直交方向に連結して形成した2つの直交アームと、2つの前記第1アームを支持した支持部とを有し、前記第1アームを前記第1連結アームとするとともに前記第2アームの先端部に前記錘部を連結しており、前記角速度検出部では、前記錘部を駆動振動させ、コリオリ力に起因した前記検出素子の状態変化を検出して角速度を検出する請求項1記載の慣性力センサ。
An angular velocity detection unit is provided in the detection element,
The detection element includes two orthogonal arms formed by connecting the first arm to the second arm in the orthogonal direction, and a support portion supporting the two first arms, and the first arm is the first arm. The weight portion is connected to the distal end portion of the second arm, and the angular velocity detection portion drives and vibrates the weight portion to detect a change in the state of the detection element due to the Coriolis force. The inertial force sensor according to claim 1, wherein the angular velocity is detected.
前記第2アームを対向するまで折曲し、前記第2アームの状態変化を検出して角速度を検出する請求項5記載の慣性力センサ。 6. The inertial force sensor according to claim 5, wherein the angular velocity is detected by bending the second arm until it opposes and detecting a state change of the second arm.
JP2007070159A 2007-03-19 2007-03-19 Inertia force sensor Pending JP2008232703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070159A JP2008232703A (en) 2007-03-19 2007-03-19 Inertia force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070159A JP2008232703A (en) 2007-03-19 2007-03-19 Inertia force sensor

Publications (1)

Publication Number Publication Date
JP2008232703A true JP2008232703A (en) 2008-10-02

Family

ID=39905692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070159A Pending JP2008232703A (en) 2007-03-19 2007-03-19 Inertia force sensor

Country Status (1)

Country Link
JP (1) JP2008232703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857258B2 (en) 2009-02-18 2014-10-14 Panasonic Corporation Inertial force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8857258B2 (en) 2009-02-18 2014-10-14 Panasonic Corporation Inertial force sensor

Similar Documents

Publication Publication Date Title
JP5293187B2 (en) Sensor
JP5205725B2 (en) Angular velocity sensor
JP2007256235A (en) Inertia force sensor
JPWO2007086337A1 (en) Inertial force sensor
JP2008076265A (en) Inertial force sensor
WO2018003692A1 (en) Physical quantity sensor
JP2009222475A (en) Compound sensor
JP2008232704A (en) Inertia force sensor
JP5125138B2 (en) Compound sensor
JP4858215B2 (en) Compound sensor
JP2008232703A (en) Inertia force sensor
JP2008122263A (en) Angular velocity sensor
JP2012112819A (en) Vibration gyro
JP2007256234A (en) Inertia force sensor
JP2008190887A (en) Sensor
JP2008122262A (en) Angular velocity sensor
JP2008261771A (en) Inertia force sensor
JP3783697B2 (en) Two-axis detection type twin tone vibration gyro sensor
JP2009156603A (en) Combined sensor
JP2009250955A (en) Inertial force sensor
JP2009222476A (en) Compound sensor
JP2007198778A (en) Inertial force sensor
JP2008261772A (en) Inertia force sensor
JP2009063392A (en) Inertial force sensor
JP2010197061A (en) Inertia force detecting element