JP2009222476A - Compound sensor - Google Patents

Compound sensor Download PDF

Info

Publication number
JP2009222476A
JP2009222476A JP2008065384A JP2008065384A JP2009222476A JP 2009222476 A JP2009222476 A JP 2009222476A JP 2008065384 A JP2008065384 A JP 2008065384A JP 2008065384 A JP2008065384 A JP 2008065384A JP 2009222476 A JP2009222476 A JP 2009222476A
Authority
JP
Japan
Prior art keywords
arm
acceleration
angular velocity
counter
opposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008065384A
Other languages
Japanese (ja)
Inventor
Takami Ishida
貴巳 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008065384A priority Critical patent/JP2009222476A/en
Publication of JP2009222476A publication Critical patent/JP2009222476A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inertia force sensor attaining reduction in its mounting area and its size in detecting angular velocity and acceleration. <P>SOLUTION: In mutually orthogonal X, Y, Z axes, a firs arm 4 is disposed in the X axis direction and a second arm 6 is disposed in the Y axis direction, and an angular velocity detection part detects an angular velocity, based on the change in the state of a detection device 2 caused by the angular velocity, by vibrating the second arm 6 to the direction of the x axis and the acceleration detection part detects an acceleration based on the change in the state of the detection device 2 caused by the acceleration. An opposite part 21 is can freely move in any of the axis direction caused by an acceleration to any of the X, Y, Z-axis directions. The compound sensor is configured to detect the acceleration based on an electrostatic capacitance between the opposing electrodes 22 changing by the movement of the opposite part 21 caused be the acceleration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、航空機、自動車、ロボット、船舶、車両等の移動体の姿勢制御やナビゲーシ
ョン等、各種電子機器に用いる角速度や加速度を検出する複合センサに関する。
The present invention relates to a composite sensor that detects angular velocity and acceleration used in various electronic devices such as attitude control and navigation of a moving body such as an aircraft, an automobile, a robot, a ship, and a vehicle.

以下、従来の複合センサについて説明する。   Hereinafter, a conventional composite sensor will be described.

従来、角速度と加速度を検出する場合は、角速度を検出するには専用の角速度センサを用い、加速度を検出するには専用の加速度センサを用いていた。   Conventionally, when detecting angular velocity and acceleration, a dedicated angular velocity sensor is used to detect the angular velocity, and a dedicated acceleration sensor is used to detect the acceleration.

したがって、各種電子機器において、角速度と加速度とを複合して検出する場合は、複
数の角速度センサと加速度センサを各種電子機器の実装基板に各々実装していた。
Therefore, when various angular velocity and acceleration are detected in various electronic devices, a plurality of angular velocity sensors and acceleration sensors are mounted on the mounting boards of the various electronic devices.

一般に、角速度センサは、音さ形状やH形状やT形状等、各種の形状の検出素子を振動
させて、コリオリ力の発生に伴う検出素子の状態変化を電気的に検知して角速度を検出するものであり、加速度センサは、加速度に伴う検出素子の状態変化を検知して加速度を検出するものである。
In general, an angular velocity sensor vibrates detection elements of various shapes such as a sound shape, an H shape, a T shape, and the like, and detects an angular velocity by electrically detecting a change in the state of the detection element accompanying the generation of Coriolis force. The acceleration sensor detects the acceleration by detecting the change in the state of the detection element associated with the acceleration.

このような角速度センサや加速度センサを検出したい検出軸に対応させて、車両等の移
動体の姿勢制御装置やナビゲーション装置等に用いている。
Such an angular velocity sensor or an acceleration sensor is used for a posture control device, a navigation device, or the like of a moving body such as a vehicle corresponding to a detection axis to be detected.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1および特許文献2が知られている。
特開2001−208546号公報 特開2001−74767号公報
For example, Patent Document 1 and Patent Document 2 are known as prior art document information related to the invention of this application.
JP 2001-208546 A JP 2001-74767 A

上記構成では、検出したい角速度や加速度の検出軸に対応させて、角速度センサおよび
加速度センサを実装基板に各々実装するので実装面積を確保する必要があり、小型化を図
れないという問題点を有していた。
In the above configuration, since the angular velocity sensor and the acceleration sensor are mounted on the mounting substrate in correspondence with the detection axis of the angular velocity and acceleration to be detected, it is necessary to secure a mounting area, and there is a problem that the size cannot be reduced. It was.

本発明は上記問題点を解決し、角速度や加速度を検出するにあたり、実装面積を低減し
て小型化を図った複合センサを提供することを目的としている。
An object of the present invention is to solve the above-mentioned problems and to provide a composite sensor that is reduced in size by reducing the mounting area when detecting angular velocity and acceleration.

上記目的を達成するために本発明は、特に、検出素子は、第1アームと第2アームとを直交方向に連結して形成した直交アームと、前記第1アームの一端を支持する第1支持部と、前記第2アームに対向する対向部と、前記第2アームと前記対向部の各々の対向面に配置した対向電極とを有し、互いに直交するX、Y、Z軸において、前記第1アームをX軸方向に配置し、前記第2アームをY軸方向に配置し、前記角速度検出部は、前記第2アームをX軸方向に振動させ、角速度に起因した前記検出素子の状態変化に基づき角速度を検出しており、前記加速度検出部は、加速度に起因した前記第2アームと前記対向部の対向電極間の静電容量変化に基づき加速度を検出しており、前記対向部はX、Y、Z軸方向のいずれかの軸方向の加速度に起因していずれかの軸方向に可動自在であって、加速度に起因した前記対向部の可動によって変化する前記対向電極間の静電容量に基づき加速度を検出する構成である。   In order to achieve the above object, in particular, the present invention provides a detection element comprising a first arm and a second arm that are formed by connecting a first arm and a second arm in a perpendicular direction, and a first support that supports one end of the first arm. An X-axis, a Y-axis, and a Z-axis perpendicular to each other, and a counter electrode disposed on a counter surface of each of the second arm and the counter section. One arm is arranged in the X-axis direction, the second arm is arranged in the Y-axis direction, and the angular velocity detector vibrates the second arm in the X-axis direction, and the state change of the detection element due to the angular velocity The acceleration detection unit detects an acceleration based on a change in capacitance between the second arm and the counter electrode of the counter unit due to the acceleration, and the counter unit is X Acceleration in the axial direction of any of the Y, Z, and Z axes A freely movable in either axial direction In to a configuration for detecting acceleration based on electrostatic capacitance between the counter electrode varies by the movable of the facing portion caused by the acceleration.

上記構成により、角速度を検出するための角速度検出部と加速度を検出するための加速度検出部とを1つの検出素子に形成しているので、実装面積を低減でき小型化を図れる。   With the above configuration, since the angular velocity detection unit for detecting the angular velocity and the acceleration detection unit for detecting the acceleration are formed in one detection element, the mounting area can be reduced and the size can be reduced.

また、第2アームと対向部の各々の対向面に配置した対向電極とを有し、対向部はX、Y、Z軸方向のいずれかの軸方向の加速度に起因していずれかの軸方向に可動自在であって、加速度に起因した対向部の可動によって変化する対向電極間の静電容量に基づき加速度を検出するので、加速度の検出感度を向上できる。   In addition, the second arm and a counter electrode disposed on each of the opposing surfaces of the counter part, the counter part is in any axial direction due to acceleration in any of the X, Y, and Z axis directions Since the acceleration is detected based on the capacitance between the opposed electrodes that changes due to the movement of the opposed portion caused by the acceleration, the acceleration detection sensitivity can be improved.

すなわち、第2アームと対向する対向部は、角速度の検出に対しては機能せず、加速度の検出に対してのみ機能するので、対向部の可動の際に、角速度の検出を考慮した構成にする必要がなく、特に第1連結部や第2連結部の設計自由度を確保できる。例えば、対向部が非常に可動しやすい構成にできるので、加速度に起因してX、Y、Z軸方向のいずれかの軸方向に対向部が可動する際、静電容量変化が大きくなって加速度の検出感度を向上できる。   That is, the opposing portion that faces the second arm does not function for detecting the angular velocity, but only functions for detecting the acceleration. Therefore, when the opposing portion is movable, the configuration in consideration of the detection of the angular velocity is adopted. In particular, it is possible to ensure the degree of freedom of design of the first connecting part and the second connecting part. For example, since the opposing portion can be configured to be very movable, when the opposing portion moves in any of the X, Y, and Z axis directions due to acceleration, the capacitance change increases and the acceleration Detection sensitivity can be improved.

さらに、第1アームと直交方向に連結された第2アームをX軸方向に振動させ、角速度に起因した検出素子の状態変化に基づき角速度を検出する際、加速度の検出を考慮した構成にする必要がなく、設計自由度を確保できる。例えば、第1アームと第2アームの厚みを同等にして、Z軸方向への撓みを抑制する構成にできるので、角速度に起因して第1アームや第2アームの状態が変化する際、Z軸方向への状態の変化が抑制されて角速度検出精度の劣化を抑制することができる。   Furthermore, the second arm connected in a direction orthogonal to the first arm is vibrated in the X-axis direction, and it is necessary to adopt a configuration that considers the detection of acceleration when detecting the angular velocity based on the state change of the detection element caused by the angular velocity. And there is no design freedom. For example, since the thickness of the first arm and the second arm can be made equal to suppress the bending in the Z-axis direction, when the state of the first arm or the second arm changes due to the angular velocity, the Z A change in the state in the axial direction is suppressed, and deterioration of the angular velocity detection accuracy can be suppressed.

図1は本発明の一実施の形態における複合センサの検出素子の分解斜視図、図2は図1のA−A断面図、図3は図1の2A部の拡大斜視図である。   1 is an exploded perspective view of a detection element of a composite sensor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is an enlarged perspective view of a portion 2A in FIG.

本発明の一実施の形態における複合センサは、角速度検出部と加速度検出部を有する検出素子2を備えている。   The composite sensor in one embodiment of the present invention includes a detection element 2 having an angular velocity detection unit and an acceleration detection unit.

図1、図3において、検出素子2は、第1アーム4を第2アーム6に直交方向に連結して形成した2つの直交アームを有し、2つの第1アーム4の一端を支持部8にて支持し、2つの第1アーム4の他端を方形状の枠体部12に連結している。第1アーム4と第2アーム6と支持部8は共に厚みを同等にした形状にするとともに、第2アーム6は第2アーム6自身と対向するまでU字状に折曲して、折曲した先端部に錘部14を連結した形状としている。そして、第1アーム4と支持部8とは略同一直線上に配置し、第1アーム4、第2アーム6を検出素子2の中心に対して対称配置している。   In FIG. 1 and FIG. 3, the detection element 2 has two orthogonal arms formed by connecting the first arm 4 to the second arm 6 in the orthogonal direction, and one end of the two first arms 4 is supported by the support portion 8. The other ends of the two first arms 4 are connected to the rectangular frame body portion 12. The first arm 4, the second arm 6, and the support portion 8 are all shaped to have the same thickness, and the second arm 6 bends in a U shape until it faces the second arm 6 itself. The weight portion 14 is connected to the tip portion. The first arm 4 and the support portion 8 are arranged on substantially the same straight line, and the first arm 4 and the second arm 6 are arranged symmetrically with respect to the center of the detection element 2.

互いに直交するX軸とY軸とZ軸において、第1アーム4をX軸方向に配置するとともに第2アーム6をY軸方向に配置した場合、Y軸の正側における互いに対向する第2アーム6には、Y軸の正側における2つの錘部14を互いに逆方向に駆動振動させる第1駆動電極16と第2駆動電極18を配置し、Y軸の負側における互いに対向する第2アーム6には、第2アーム6の歪を感知する感知電極20を配置している。またこれら第1駆動電極16,第2駆動電極18と感知電極20とは対称に配置されていてもよい。   When the first arm 4 is arranged in the X-axis direction and the second arm 6 is arranged in the Y-axis direction on the X-axis, Y-axis, and Z-axis orthogonal to each other, the second arms facing each other on the positive side of the Y-axis 6 includes a first drive electrode 16 and a second drive electrode 18 that drive and vibrate the two weight portions 14 on the positive side of the Y axis in opposite directions, and a second arm facing each other on the negative side of the Y axis. 6 includes a sensing electrode 20 that senses the strain of the second arm 6. The first drive electrode 16, the second drive electrode 18, and the sensing electrode 20 may be arranged symmetrically.

これら第1、第2駆動電極16、18、感知電極20は、圧電層を介在させた上部電極と下部電極とから形成している。   The first and second drive electrodes 16 and 18 and the sensing electrode 20 are formed of an upper electrode and a lower electrode with a piezoelectric layer interposed therebetween.

また、図1、図2において、第1、第2アーム4、6、錘部14と対向するように、Z軸の正側に配置した2つの対向部21を設けている。この対向部21は錘部であって、第1連結部23を介してこれら2つの対向部21を第2支持部25にて支持し、第2連結部27を介してこの第2支持部25を固定部29にて固定している。固定部29は枠体形状とし、第1連結部23と第2連結部27はアーム形状とし、第1連結部23と第2連結部27とは互いに直交配置するとともに、第2連結部27の厚みを第1連結部23の厚みよりも薄くしている。固定部29は、図2に示すように、バンプ部31を介して枠体部12上に形成しており、このバンプ部31の厚みによって、対向部21と第1、第2アーム4、6、錘部14とが互いに接触しないように第2連結部27にて第2支持部25を中空保持している。また本発明ではバンプ部31により第1、第2アーム4、6、錘部14と対向部21とがお互いに接触しないように中空保持されているが、バンプ部31においては、めっきなどにより、枠体12に形成された凸形状の保持部でも同様の効果を得ることが可能である。対向部21と錘部14の各々の対向面には対向電極22を配置し、第2アーム6の錘部14と対向部21との間隔(H)は、対向電極22により静電容量変化を検出するために、近接させるようにしている。   In FIG. 1 and FIG. 2, two opposing portions 21 arranged on the positive side of the Z axis are provided so as to face the first and second arms 4 and 6 and the weight portion 14. The facing portion 21 is a weight portion, and the two facing portions 21 are supported by the second support portion 25 via the first connecting portion 23, and the second supporting portion 25 is supported via the second connecting portion 27. Is fixed by a fixing portion 29. The fixing portion 29 has a frame shape, the first connecting portion 23 and the second connecting portion 27 have an arm shape, and the first connecting portion 23 and the second connecting portion 27 are arranged orthogonal to each other, and the second connecting portion 27 The thickness is made thinner than the thickness of the first connecting portion 23. As shown in FIG. 2, the fixing portion 29 is formed on the frame body portion 12 via the bump portion 31, and the opposing portion 21 and the first and second arms 4, 6 depend on the thickness of the bump portion 31. The second support portion 25 is held hollow by the second connecting portion 27 so that the weight portion 14 does not contact each other. Further, in the present invention, the first and second arms 4 and 6, the weight portion 14 and the facing portion 21 are held hollow so as not to contact each other by the bump portion 31, but in the bump portion 31, by plating or the like, The same effect can be obtained with a convex holding portion formed on the frame body 12. A counter electrode 22 is disposed on each of the facing surfaces of the counter portion 21 and the weight portion 14, and the capacitance (H) between the weight portion 14 and the counter portion 21 of the second arm 6 is changed by the counter electrode 22. In order to detect, it is made to approach.

さらに、対向部21、第2支持部25、第1、第2連結部23、27と対向するように、Z軸の正側に第1対向基板24を配置し、第1、第2アーム4、6、錘部14と対向するように、Z軸の負側に第2対向基板26を配置している。第1対向基板24は対向部21と接触しないように対向部21との対向面に第1凹部33を設け、第2対向基板26は錘部14と接触しないように錘部14との対向面に第2凹部35を設けている。この第1対向基板24を固定部29に積層配置し、第2対向基板26に枠体12を積層配置している。   Furthermore, the first counter substrate 24 is disposed on the positive side of the Z axis so as to face the counter portion 21, the second support portion 25, the first and second connecting portions 23 and 27, and the first and second arms 4. 6, the second counter substrate 26 is disposed on the negative side of the Z axis so as to face the weight portion 14. The first counter substrate 24 is provided with a first recess 33 on a surface facing the counter portion 21 so as not to contact the counter portion 21, and the second counter substrate 26 is opposed to the weight portion 14 so as not to contact the weight portion 14. A second recess 35 is provided in The first counter substrate 24 is stacked on the fixed portion 29, and the frame body 12 is stacked on the second counter substrate 26.

なお第一凹部33および第2凹部35は、測定範囲外の大きな加速度が素子部2に加わったとき、その加速度による慣性力により、第2連結部27が破壊しないように、ストッパーとなる程度の深さを有している。   The first concave portion 33 and the second concave portion 35 are used as stoppers so that the second connecting portion 27 is not broken by the inertial force due to the acceleration when a large acceleration outside the measurement range is applied to the element portion 2. Has depth.

次に、角速度の検出について説明する。   Next, detection of angular velocity will be described.

図4は図1の2A部の駆動振動状態を示す拡大斜視図である。   FIG. 4 is an enlarged perspective view showing a driving vibration state of the portion 2A in FIG.

互いに直交するX軸とY軸とZ軸において、図4に示すように、第1アーム4をX軸方向に配置するとともに第2アーム6をY軸方向に配置した場合、第1、第2駆動電極16、18に共振周波数の交流電圧を印加して、第1、第2駆動電極16、18が配置された第2アーム6を起点に第2アーム6を駆動振動させ、それに伴って錘部14も第2アーム6の対向方向(実線の矢印と点線の矢印で記した駆動振動方向)に駆動振動させている。第1駆動電極16に印加する交流電圧と、第2駆動電極18に印加する交流電圧とは互いに逆位相に印加しており、Y軸の正側の各々の第2アーム6の幅が広がったり狭まったりするように互いに逆方向に振動させている。これに同調して、Y軸の負側に配置された2つの第2アーム6も互いに逆方向に振動し、Y軸を中心に対称に振動することになる。すなわち、4つの第2アーム6および4つの錘部14の全てが同調して第2アーム6の対向方向(駆動振動方向)に駆動振動し、この検出素子2における駆動振動方向はX軸方向となっている。   When the first arm 4 is arranged in the X-axis direction and the second arm 6 is arranged in the Y-axis direction as shown in FIG. 4 in the X-axis, Y-axis, and Z-axis orthogonal to each other, the first and second An AC voltage having a resonance frequency is applied to the drive electrodes 16 and 18 to drive and vibrate the second arm 6 starting from the second arm 6 on which the first and second drive electrodes 16 and 18 are arranged. The part 14 is also driven to vibrate in the direction facing the second arm 6 (the direction of the driving vibration indicated by the solid arrow and the dotted arrow). The AC voltage applied to the first drive electrode 16 and the AC voltage applied to the second drive electrode 18 are applied in opposite phases, and the width of each second arm 6 on the positive side of the Y axis increases. They are vibrated in opposite directions so as to narrow. In synchronization with this, the two second arms 6 arranged on the negative side of the Y axis also vibrate in opposite directions, and vibrate symmetrically around the Y axis. That is, all of the four second arms 6 and the four weight portions 14 are synchronously driven and vibrated in the opposing direction (drive vibration direction) of the second arm 6, and the drive vibration direction in the detection element 2 is the X-axis direction. It has become.

具体的な角速度の検出について説明する。   A specific angular velocity detection will be described.

このような検出素子2において、例えば、Z軸の右回りに角速度が生じた場合は、錘部14の駆動振動と同調して、図4に示すように、錘部14に対して駆動振動方向と直交した方向(実線の矢印と点線の矢印で記したコリオリ方向)にコリオリ力が発生するので、第2アーム6にはZ軸の右回りの角速度に起因した歪が発生する。このとき、検出素子2のコリオリ方向はY軸方向となる。コリオリ力が発生した場合、第2アーム6に配置した各々の感知電極20により第2アーム6の歪を感知し、この感知電極20の極性によってコリオリ力の発生方向を見極められる。例えば、第2アーム6の内側と外側に感知電極20をそれぞれ2つずつ配置し、第2アーム6の内側の歪と外側の歪の違いを感知させて、コリオリ力の発生方向を見極めてもよい。第2アーム6の内側における歪の伸び率と外側における歪の伸び率とは異なるので、歪の違いを感知できる。Z軸の左回りの角速度が生じた場合も同様に第2アーム6の歪を感知すればよい。このように、角速度に起因した第2アーム6の歪を感知することにより角速度を検出することができる。   In such a detection element 2, for example, when an angular velocity is generated clockwise around the Z axis, the driving vibration direction with respect to the weight portion 14 is synchronized with the driving vibration of the weight portion 14 as shown in FIG. Since the Coriolis force is generated in the direction orthogonal to the direction (Coriolis direction indicated by the solid line arrow and the dotted line arrow), the second arm 6 is distorted due to the clockwise angular velocity of the Z axis. At this time, the Coriolis direction of the detection element 2 is the Y-axis direction. When the Coriolis force is generated, each sensing electrode 20 disposed on the second arm 6 senses the distortion of the second arm 6, and the direction in which the Coriolis force is generated can be determined by the polarity of the sensing electrode 20. For example, two sensing electrodes 20 are arranged on the inside and the outside of the second arm 6, respectively, and the difference between the strain on the inside and the outside of the second arm 6 is sensed to determine the direction of Coriolis force generation. Good. Since the strain elongation rate inside the second arm 6 is different from the strain elongation rate outside, the difference in strain can be sensed. Similarly, when the counterclockwise angular velocity of the Z axis is generated, the distortion of the second arm 6 may be sensed. As described above, the angular velocity can be detected by sensing the distortion of the second arm 6 caused by the angular velocity.

次に、加速度の検出について説明する。   Next, detection of acceleration will be described.

互いに直交するX軸とY軸とZ軸において、第1アーム4をX軸方向に配置するとともに第2アーム6をY軸方向に配置し、Z軸方向に加速度が生じた場合は、図5に示すように、2つの対向部21がZ軸方向に変位しようとする。このとき、対向部21と錘部14との対向距離(H)が大きくなり、すべての対向電極22間の静電容量が小さくなるように変化する。   When the first arm 4 is arranged in the X-axis direction and the second arm 6 is arranged in the Y-axis direction on the X-axis, Y-axis, and Z-axis that are orthogonal to each other, acceleration occurs in the Z-axis direction. As shown in FIG. 2, the two opposing portions 21 are about to be displaced in the Z-axis direction. At this time, the facing distance (H) between the facing portion 21 and the weight portion 14 is increased, and the capacitance between all the facing electrodes 22 is decreased.

X軸方向に加速度が生じた場合は、図6に示すように、第2連結部27に歪が生じつつ、対向部21とX軸の正側の錘部14との対向距離(H1)と、対向部21とX軸の負側の錘部14との対向距離(H2)において、一方の対向距離(H1)が小さくなれば他方の対向距離(H2)が大きくなる。すなわち、一方の対向電極22間の静電容量が大きくなり、他方の対向電極22間の静電容量が小さくなるように変化する。   When acceleration occurs in the X-axis direction, as shown in FIG. 6, the opposing distance (H1) between the opposing portion 21 and the weight portion 14 on the positive side of the X-axis is generated while the second connecting portion 27 is distorted. In the opposing distance (H2) between the opposing part 21 and the weight part 14 on the negative side of the X axis, if the opposing distance (H1) decreases, the opposing distance (H2) increases. That is, the capacitance between one counter electrode 22 increases and the capacitance between the other counter electrode 22 decreases.

Y軸方向に加速度が生じた場合は、図示していないが、2つの対向部21の内、対向部21とY軸の正側の錘部14との対向距離と対向部21とY軸の負側の錘部14との対向距離において、一方の対向距離が大きくなれば他方の対向距離が小さくなる。すなわち、対向電極22間の静電容量も一方が大きくなれば他方の静電容量変化が小さくなるように変化する。   When acceleration occurs in the Y-axis direction, although not shown, the facing distance between the facing portion 21 and the weight portion 14 on the positive side of the Y-axis, the facing portion 21 and the Y-axis are not shown. In the facing distance from the negative weight portion 14, if one facing distance increases, the other facing distance decreases. In other words, the capacitance between the counter electrodes 22 also changes so that the change in the capacitance of the other electrode becomes smaller if one of them becomes larger.

このように、加速度に起因した対向電極22間の静電容量の変化を感知することにより加速度を検出することができる。特に、加速度の生じる向きによって、2つの対向部21と4つの錘部14との対向距離(H)が各々変化するので、これを感知することにより加速度の方向も同時に検出することができる。   Thus, the acceleration can be detected by sensing the change in the capacitance between the counter electrodes 22 caused by the acceleration. In particular, since the facing distance (H) between the two facing portions 21 and the four weight portions 14 changes depending on the direction in which the acceleration occurs, the direction of acceleration can be detected simultaneously by sensing this.

上記構成により、角速度を検出するための角速度検出部と加速度を検出するための加速度検出部を1つの検出素子2に形成しているので、実装面積を低減でき小型化を図れる。   With the above configuration, the angular velocity detection unit for detecting the angular velocity and the acceleration detection unit for detecting the acceleration are formed in one detection element 2, so that the mounting area can be reduced and the size can be reduced.

また、第2アーム6と対向部21の各々の対向面に配置した対向電極22とを有し、対向部21はX、Y、Z軸方向のいずれかの軸方向の加速度に起因していずれかの軸方向に可動自在であって、加速度に起因した対向部21の可動によって変化する対向電極22間の静電容量に基づき加速度を検出するので、加速度の検出感度を向上できる。   Moreover, it has the 2nd arm 6 and the counter electrode 22 arrange | positioned on each opposing surface of the opposing part 21, and the opposing part 21 originates in the acceleration of any axial direction of a X, Y, Z-axis direction, and any Since the acceleration is detected based on the capacitance between the opposing electrodes 22 that is movable in the axial direction and changes due to the movement of the opposing portion 21 caused by the acceleration, the acceleration detection sensitivity can be improved.

すなわち、第2アーム6と対向する対向部21は、角速度の検出に対しては機能せず、加速度の検出に対してのみ機能するので、対向部21の可動の際に、角速度の検出を考慮した構成にする必要がなく、特に第1連結部23や第2連結部27の設計自由度を確保できる。例えば、本発明の実施の形態のように、対向部21を錘部とし、第1連結部23を介して2つの対向部21を第2支持部25にて支持し、第2連結部27を介してこの第2支持部25を固定部29にて固定し、固定部29を枠体形状とし、第1連結部23と第2連結部27はアーム形状とし、第1連結部23と第2連結部27とは互いに直交配置するとともに、第2連結部27の厚みを第1連結部23の厚みよりも薄くした場合、対向部21は、X軸方向、Y軸方向、Z軸方向に可動しやすくなる。   That is, the facing portion 21 facing the second arm 6 does not function for detecting the angular velocity, but functions only for detecting the acceleration, so that the detection of the angular velocity is considered when the facing portion 21 is movable. In particular, the degree of freedom in designing the first connecting portion 23 and the second connecting portion 27 can be ensured. For example, as in the embodiment of the present invention, the opposing portion 21 is a weight portion, the two opposing portions 21 are supported by the second supporting portion 25 via the first connecting portion 23, and the second connecting portion 27 is The second support portion 25 is fixed by the fixing portion 29, the fixing portion 29 is formed into a frame shape, the first connecting portion 23 and the second connecting portion 27 are formed in an arm shape, and the first connecting portion 23 and the second connecting portion When the second connecting portion 27 is arranged so as to be orthogonal to the connecting portion 27 and the thickness of the second connecting portion 27 is smaller than the thickness of the first connecting portion 23, the facing portion 21 is movable in the X axis direction, the Y axis direction, and the Z axis direction. It becomes easy to do.

図1において、対向部21がX軸方に可動する際は、一方の第2連結部27が下方に容易に歪むとともに他方の第2連結部27が上方に容易に歪んで、X軸方向において対向部21が傾斜して対向電極22間の静電容量が容易に変化する。対向部21がY軸方向に可動する際は、第2連結部27が容易にねじれて、Y軸方向において対向部21が傾斜して対向電極22間の静電容量が容易に変化する。対向部21がZ軸方向に可動する際は、第2連結部27がZ軸方向に引っ張られて、Z軸方向において対向部21の位置が変動して対向電極22間の静電容量が容易に変化する。特に、第2連結部27の厚みを第1連結部23の厚みよりも薄くしているので、第2連結部27が容易に歪んだりねじれたり引っ張られたりしやすい。   In FIG. 1, when the facing portion 21 moves in the X-axis direction, one second connecting portion 27 is easily distorted downward and the other second connecting portion 27 is easily distorted upward. The opposing portion 21 is inclined and the capacitance between the opposing electrodes 22 easily changes. When the facing portion 21 is movable in the Y-axis direction, the second connecting portion 27 is easily twisted, and the facing portion 21 is inclined in the Y-axis direction, so that the capacitance between the facing electrodes 22 easily changes. When the facing portion 21 moves in the Z-axis direction, the second connecting portion 27 is pulled in the Z-axis direction, and the position of the facing portion 21 fluctuates in the Z-axis direction so that the capacitance between the facing electrodes 22 is easy. To change. In particular, since the thickness of the second connecting portion 27 is smaller than the thickness of the first connecting portion 23, the second connecting portion 27 is easily distorted, twisted or pulled easily.

このように、対向部21が非常に可動しやすい構成にできるので、加速度に起因してX、Y、Z軸方向のいずれかの軸方向に対向部21が可動する際、静電容量変化が大きくなって加速度の検出感度を向上できる。   In this way, since the facing portion 21 can be configured to be very movable, when the facing portion 21 moves in any of the X, Y, and Z axis directions due to acceleration, a change in capacitance occurs. It becomes large and the detection sensitivity of acceleration can be improved.

さらに、第1アーム4と直交方向に連結された第2アーム6をX軸方向に振動させ、角速度に起因した検出素子2の状態変化に基づき角速度を検出する際、加速度の検出を考慮した構成にする必要がなく、設計自由度を確保できる。例えば、本発明の実施の形態のように、第1アーム4と第2アーム6の厚みを同等にした場合、第2アーム6の錘部14が駆動振動する際に、第1アーム4および第2アーム6はZ軸方向へ撓みにくくなる。   In addition, the second arm 6 connected to the first arm 4 in the orthogonal direction is vibrated in the X-axis direction, and the detection of acceleration is taken into account when detecting the angular velocity based on the state change of the detection element 2 caused by the angular velocity. The degree of freedom in design can be secured. For example, when the thicknesses of the first arm 4 and the second arm 6 are made equal as in the embodiment of the present invention, the first arm 4 and the second arm 6 are driven when the weight portion 14 of the second arm 6 vibrates. The two arms 6 are difficult to bend in the Z-axis direction.

図4において、第2アーム6の錘部14がX軸方向に駆動振動する際は、角速度に起因して錘部14はY軸方向にコリオリの力を受けてアーム6が歪むが、第2アーム6の厚みが第1アーム4と同等の厚みなので、駆動振動する際やコリオリの力を受ける際に、Z軸方向に撓みにくく、Z軸方向の撓みの分だけ感度の損失を抑制できる。   In FIG. 4, when the weight portion 14 of the second arm 6 is driven and vibrated in the X-axis direction, the weight portion 14 is subjected to Coriolis force in the Y-axis direction due to the angular velocity, but the arm 6 is distorted. Since the thickness of the arm 6 is the same as that of the first arm 4, it is difficult to bend in the Z-axis direction when driving vibration or receiving Coriolis force, and the loss of sensitivity can be suppressed by the amount of bending in the Z-axis direction.

このように、Z軸方向への撓みを抑制する構成にできるので、角速度に起因して第1アーム4や第2アーム6の状態が変化する際、Z軸方向への状態の変化が抑制されて検出感度を向上できる。   Thus, since it can be set as the structure which suppresses the bending to a Z-axis direction, when the state of the 1st arm 4 or the 2nd arm 6 changes according to an angular velocity, the change of the state to a Z-axis direction is suppressed. Detection sensitivity can be improved.

なお、本発明の実施の形態の他にも、例えば、対向部21と対向する第1対向基板24の各々の対向面にも対向電極22を配置し、加速度検出部は、加速度に起因した対向部21の可動によって変化する対向部21と錘部14との対向面に配置された対向電極22間の静電容量変化と、対向部21と第1対向基板24の各々の対向面に配置された対向電極22間の静電容量変化に基づき加速度を検出するようにしてもよい。   In addition to the embodiment of the present invention, for example, the counter electrode 22 is arranged on each counter surface of the first counter substrate 24 that opposes the counter unit 21, and the acceleration detection unit counters the acceleration due to the acceleration. The capacitance change between the counter electrodes 22 disposed on the facing surfaces of the facing portion 21 and the weight portion 14 that change as the portion 21 moves, and the facing portions 21 and the first facing substrate 24 are disposed on the facing surfaces. The acceleration may be detected based on the capacitance change between the counter electrodes 22.

また、検出素子2の構成も、本発明の実施の形態に限らず、他の構成でもよい。   Further, the configuration of the detection element 2 is not limited to the embodiment of the present invention, and may be other configurations.

本発明に係る慣性力センサは、角速度や加速度を検出するにあたり、実装面積を低減して小型化を図れるので、各種電子機器に適用できるものである。   The inertial force sensor according to the present invention can be applied to various electronic devices because the mounting area can be reduced and the size can be reduced when detecting angular velocity and acceleration.

本発明の一実施の形態における複合センサの検出素子の分解斜視図The disassembled perspective view of the detection element of the composite sensor in one embodiment of this invention 図1のA−A断面図AA sectional view of FIG. 図1の2A部の拡大斜視図Enlarged perspective view of part 2A in FIG. 図1の2A部の駆動振動状態を示す拡大斜視図FIG. 2 is an enlarged perspective view showing a driving vibration state of the portion 2A in FIG. Z軸方向への加速度が発生した際の図1のA−A断面図AA sectional view of FIG. 1 when acceleration in the Z-axis direction occurs X軸方向への加速度が発生した際の図1のA−A断面図AA cross-sectional view of FIG. 1 when acceleration in the X-axis direction occurs

符号の説明Explanation of symbols

2 検出素子
4 第1アーム
6 第2アーム
8 支持部
12 枠体部
14 錘部
16 第1駆動電極
18 第2駆動電極
20 感知電極
21 対向部
22 対向電極
23 第1連結部
24 第1対向基板
25 第2支持部
26 第2対向基板
27 第2連結部
29 固定部
31 バンプ部
33 第1凹部
35 第2凹部
DESCRIPTION OF SYMBOLS 2 Detection element 4 1st arm 6 2nd arm 8 Support part 12 Frame part 14 Weight part 16 1st drive electrode 18 2nd drive electrode 20 Sensing electrode 21 Opposing part 22 Opposing electrode 23 1st connection part 24 1st opposing board | substrate 25 second support portion 26 second counter substrate 27 second connecting portion 29 fixing portion 31 bump portion 33 first recess 35 second recess

Claims (6)

加速度検出部と角速度検出部を有する検出素子を備え、
前記検出素子は、第1アームと第2アームとを直交方向に連結して形成した直交アームと、前記第1アームの一端を支持する第1支持部と、前記第2アームに対向する対向部と、前記第2アームと前記対向部の各々の対向面に配置した対向電極とを有し、
互いに直交するX、Y、Z軸において、前記第1アームをX軸方向に配置し、前記第2アームをY軸方向に配置し、
前記角速度検出部は、前記第2アームをX軸方向に振動させ、角速度に起因した前記検出素子の状態変化に基づき角速度を検出しており、
前記加速度検出部は、加速度に起因した前記第2アームと前記対向部の対向電極間の静電容量変化に基づき加速度を検出しており、
前記対向部はX、Y、Z軸方向のいずれかの軸方向の加速度に起因していずれかの軸方向に可動自在であって、加速度に起因した前記対向部の可動によって変化する前記対向電極間の静電容量に基づき加速度を検出する複合センサ。
A detection element having an acceleration detection unit and an angular velocity detection unit;
The detection element includes an orthogonal arm formed by connecting a first arm and a second arm in an orthogonal direction, a first support portion that supports one end of the first arm, and a facing portion that faces the second arm. And a counter electrode disposed on each of the opposing surfaces of the second arm and the opposing portion,
In the X, Y, and Z axes orthogonal to each other, the first arm is disposed in the X-axis direction, the second arm is disposed in the Y-axis direction,
The angular velocity detection unit vibrates the second arm in the X-axis direction and detects an angular velocity based on a state change of the detection element caused by the angular velocity,
The acceleration detection unit detects acceleration based on a capacitance change between the second arm and the counter electrode of the counter unit due to the acceleration,
The opposing portion is movable in any axial direction due to acceleration in any axial direction of the X, Y, and Z axes, and the opposing electrode changes depending on the movement of the opposing portion due to acceleration A composite sensor that detects acceleration based on the capacitance between the two.
前記第1、第2アームの厚みを同等にした請求項1記載の複合センサ。 The composite sensor according to claim 1, wherein the first and second arms have the same thickness. 複数の直交アームを設け、前記検出素子は対称形状とした請求項1記載の複合センサ。 The composite sensor according to claim 1, wherein a plurality of orthogonal arms are provided, and the detection element is symmetrical. 前記第2アームの先端部および前記対向部は錘部とした請求項1記載の複合センサ。 The composite sensor according to claim 1, wherein a tip portion of the second arm and the facing portion are weight portions. 前記対向部は複数設け、第1連結部を介して複数の前記対向部を支持する前記第2支持部と、第2連結部を介して前記第2支持部を中空保持する固定部とを有し、前記第1連結部と前記第2連結部は互いに直交配置するとともに、前記第2連結部の厚みを前記第1連結部の厚みよりも薄くした請求項1記載の複合センサ。 A plurality of the facing portions are provided, and the second supporting portion that supports the plurality of facing portions via the first connecting portion and the fixing portion that holds the second supporting portion hollow via the second connecting portion are provided. The composite sensor according to claim 1, wherein the first connection portion and the second connection portion are arranged orthogonal to each other, and the thickness of the second connection portion is smaller than the thickness of the first connection portion. 前記対向部と対向する対向基板を配置し、前記対向部と前記対向基板の各々の対向面に第2対向電極を配置し、前記加速度検出部は、加速度に起因した前記対向部の可動によって変化する前記対向電極間の静電容量および前記第2対向電極間の静電容量変化に基づき加速度を検出する請求項1記載の複合センサ。 A counter substrate facing the counter portion is disposed, a second counter electrode is disposed on each of the counter surfaces of the counter portion and the counter substrate, and the acceleration detection unit changes depending on the movement of the counter unit due to acceleration. The composite sensor according to claim 1, wherein acceleration is detected based on a capacitance between the opposing electrodes and a capacitance change between the second opposing electrodes.
JP2008065384A 2008-03-14 2008-03-14 Compound sensor Pending JP2009222476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065384A JP2009222476A (en) 2008-03-14 2008-03-14 Compound sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065384A JP2009222476A (en) 2008-03-14 2008-03-14 Compound sensor

Publications (1)

Publication Number Publication Date
JP2009222476A true JP2009222476A (en) 2009-10-01

Family

ID=41239430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065384A Pending JP2009222476A (en) 2008-03-14 2008-03-14 Compound sensor

Country Status (1)

Country Link
JP (1) JP2009222476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266163A1 (en) * 2006-11-14 2009-10-29 Panasonic Corporation Sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090266163A1 (en) * 2006-11-14 2009-10-29 Panasonic Corporation Sensor
US8201449B2 (en) * 2006-11-14 2012-06-19 Panasonic Corporation Sensor

Similar Documents

Publication Publication Date Title
JP5293187B2 (en) Sensor
JP5205970B2 (en) Inertial force sensor
JP5649972B2 (en) Yaw rate sensor
JP4929918B2 (en) Compound sensor
JP5205725B2 (en) Angular velocity sensor
EP2000769B1 (en) Inertia force sensor
WO2010095412A1 (en) Inertial force sensor
JP2008076265A (en) Inertial force sensor
JP2009222475A (en) Compound sensor
JP4858215B2 (en) Compound sensor
JP5125138B2 (en) Compound sensor
JP2009222476A (en) Compound sensor
JP4687085B2 (en) Compound sensor
JP2007256234A (en) Inertia force sensor
JP2009156603A (en) Combined sensor
JP2008232704A (en) Inertia force sensor
JP2008122263A (en) Angular velocity sensor
JP2010197061A (en) Inertia force detecting element
JP3783697B2 (en) Two-axis detection type twin tone vibration gyro sensor
JP2008261771A (en) Inertia force sensor
JP2008232703A (en) Inertia force sensor
JP2008190887A (en) Sensor
JP2007198778A (en) Inertial force sensor
JP2009063392A (en) Inertial force sensor
JP2007198779A (en) Inertial force sensor