JP2008258616A - 不揮発性記憶装置のストレージ及びその形成方法 - Google Patents

不揮発性記憶装置のストレージ及びその形成方法 Download PDF

Info

Publication number
JP2008258616A
JP2008258616A JP2008085604A JP2008085604A JP2008258616A JP 2008258616 A JP2008258616 A JP 2008258616A JP 2008085604 A JP2008085604 A JP 2008085604A JP 2008085604 A JP2008085604 A JP 2008085604A JP 2008258616 A JP2008258616 A JP 2008258616A
Authority
JP
Japan
Prior art keywords
insulating film
film
upper electrode
tunneling insulating
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008085604A
Other languages
English (en)
Inventor
Jang-Eun Lee
將銀 李
世忠 ▲呉▼
Se-Chung Oh
Kyung-Tae Nam
▲同▼兌 南
峻昊 ▲鄭▼
Jun-Ho Jeong
Dae-Kyom Kim
大▲謙▼ 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2008258616A publication Critical patent/JP2008258616A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/22Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the metal-insulator-metal type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/028Formation of switching materials, e.g. deposition of layers by conversion of electrode material, e.g. oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

【課題】不揮発性記憶装置のストレージ及びその形成方法を提供する。
【解決手段】下部電極200、下部電極上の第1トンネリング絶縁膜210、第1トンネリング絶縁膜210上の中間電極250、中間電極250上の第2トンネリング絶縁膜260及び第2トンネリング絶縁膜260上の上部電極280を備える不揮発性記憶装置のストレージである。第1トンネリング絶縁膜210及び第2トンネリング絶縁膜260は、5Åないし20Åの厚さを有する金属酸化膜から形成され、数十ナノサイズのストレージと数Åないし数十Åの厚さを有する絶縁膜を使用することによって、マルチビットの保存及び高集積が容易であり、高速動作速度及び低消費電力を実現することができる。
【選択図】図1

Description

本発明は、半導体装置及び製造方法に関し、さらに詳細には、不揮発性記憶装置及びその形成方法に関する。
最近、多様な適用分野に適した半導体装置への要求が高まっており、大容量、小型化、高速の低電力動作及び高い集積度などの要求を満たす記憶装置についての研究が活発に行われている。
その一例として、FeRAM(ferroelectric RAM)、MRAM(magnetic RAM)、及びOUM(Ovonic Unified RAM)のような構造が次世代不揮発性記憶装置として提案されている。FeRAMは、強誘電体の自発分極現象を利用して低消費電力、高速動作という利点があるが、高コスト及びデータリテンションのような問題点がある。MRAMは、巨大磁気抵抗効果(Giant Mageneto Resistive Effect:GMR)を利用する強磁性トンネリング素子であって、磁化反転のための消費電力が高く、高集積化に限界がある。OUMのようなPRAM(phase−change RAM)は、スイッチング電流のための消費電力が高いという短所がある。
それに対する向上した技術として、電気パルス誘導抵抗効果(Electric Pulse Induced Resistive Effect:EPIR)を利用するRRAM(resistive RAM)が紹介された。RRAMは、低消費電力、高集積化及び広範な抵抗変化によるマルチビットを実現することができるという長所を有する。
EPIR素子は、その中心で3d遷移金属元素を有する酸素8面体のネットワークを基本とするペロブスカイト(perovskite)構造を有するPr1-xCaxMnO3(PCMO)、La1-xCaxMnO3、La1-xSrxMnO3、Gd0.7Ca0.3Co25.5のようなものが可変抵抗体として利用され、xが0.3近くの組成を有するPCMOが抵抗値における最も広範な変化を有するものと知られている。しかしながら、均一なペロブスカイト構造のPCMO膜を形成するには困難さがあり、製造工程において可変抵抗体の変質などの問題によって、後続工程として400℃以上の高温工程を行うことができない。また、抵抗がスイッチングされるにあたって、抵抗を低減させるためには1μsないし100μsのパルスと0.5Vないし10Vの電圧とが必要であり、抵抗を上昇させるためには、10nsないし1000nsのパルスと抵抗の低減に必要な電圧の1.5ないし2.5倍の電圧とが必要であると知らされている。
本発明は、上述の問題点に鑑みてなされたもので、その目的は、製造工程時に熱的安定性を確保することができ、高速動作速度及び低消費電力を実現することができる不揮発性記憶装置のストレージ及びその形成方法を提供することにある。
本発明の他の目的は、マルチビットの保存及び高集積が容易であり、高速動作速度及び低消費電力を実現することができる不揮発性記憶装置のストレージ及びその形成方法を提供することにある。
前記技術的課題を解決するために、本発明は、二重構造の絶縁膜を有する不揮発性記憶装置のストレージを提供する。本発明のストレージは、下部電極、前記下部電極上の第1トンネリング絶縁膜、前記第1トンネリング絶縁膜上の中間電極、前記中間電極上の第2トンネリング絶縁膜及び前記第2トンネリング絶縁膜上の上部電極を備える。
本発明の一実施の形態において、前記下部電極、前記中間電極及び前記上部電極は、白金族元素及び/または磁性物質を含むことができる。前記ストレージに使用される第2トンネリング絶縁膜及び前記第1トンネリング絶縁膜の幅は、100nmより狭いことができる。前記第1トンネリング絶縁膜及び前記第2トンネリング絶縁膜の厚さは、5Åないし20Åでありうる。前記第1トンネリング絶縁膜と前記第2トンネリング絶縁膜のトンネル抵抗は、同じレベルでありうる。例えば、前記第1トンネリング絶縁膜は、マグネシウム酸化膜、アルミニウム酸化膜またはチタン酸化膜から形成され、前記第2トンネリング絶縁膜は、チタン酸化膜から形成されることができる。前記第1トンネリング絶縁膜は、磁性物質の間に介在されて、磁化トンネリング・ジャンクションを形成することができる。
前記中間電極は、前記第1トンネリング絶縁膜上の磁性物質と、前記磁性物質上のチタンまたはチタン窒化膜とを含み、前記第2トンネリング絶縁膜は、前記チタンまたはチタン窒化膜の酸化されたチタン酸化膜でありうる。
前記上部電極は、白金族金属膜を含み、前記白金族金属膜と前記第2トンネリング絶縁膜との間にタンタル膜がさらに介在されうる。
前記技術的課題を解決するために、本発明は、二重構造の絶縁膜を有する不揮発性記憶装置のストレージを形成する方法を提供する。この方法は、下部電極上に第1トンネリング絶縁膜を形成するステップと、前記第1トンネリング絶縁膜上に中間電極を形成するステップと、前記中間電極上に第2トンネリング絶縁膜を形成するステップと、前記第2トンネリング絶縁膜上に上部電極を形成するステップと、を含むことができる。
前記下部電極、前記中間電極及び前記上部電極は、それぞれ白金族金属膜及び/または磁性物質を含むことができる。前記第1トンネリング絶縁膜及び前記第2トンネリング絶縁膜は、5Åないし20Åの厚さに形成されることができる。
本発明の一実施の形態において、前記上部電極は、溝を有する中間電極膜上に形成された前記第2トンネリング絶縁膜を形成し、前記第2トンネリング絶縁膜上に形成されることができる。前記上部電極は、前記溝内に制限的に充填されるように形成し、前記上部電極をエッチングマスクとして使用して、前記第2トンネリング絶縁膜及び前記中間電極膜をパターニングして前記中間電極を形成することができる。
前記中間電極は、チタンまたはチタン窒化膜を含み、前記チタンまたはチタン窒化膜を所定の厚さにエッチングして前記溝を形成することができる。前記上部電極は、上部電極膜に蒸着及び傾斜イオンビームエッチングを繰り返し的に実施して、溝内に制限的に形成するか、または上部電極膜を形成した後に、それを平坦化して前記溝内に制限的に形成することができる。
前記上部電極は、第1上部電極及び第2上部電極を備え、前記第1上部電極を前記溝の下部に形成した後、前記溝内の前記第1上部電極上に第2上部電極膜を蒸着及び傾斜イオンビームエッチングして前記第2上部電極を形成することができる。その一方で、前記溝の底部及び側壁を所定の厚さに覆う第1上部電極膜と、前記第1上部電極膜上に前記溝を充填する第2上部電極膜を形成し、その後、前記第2上部電極膜及び前記第1上部電極膜を化学機械的研磨、エッチバックまたは傾斜イオンビームエッチングを利用して平坦化して第1上部電極及び第2上部電極を形成することもできる。
本発明において、前記溝内に形成される上部電極に自己整合的に下部の構造物が形成されうるので、前記溝の幅によって前記可変抵抗絶縁膜及び前記第1トンネリング絶縁膜のサイズが決定されることができる。したがって、前記溝の幅を数十ナノサイズ以下に形成することによって、前記可変抵抗絶縁膜及び前記第1トンネリング絶縁膜の幅も数十ナノサイズに形成することができる。
(発明の効果)
本発明によれば、金属酸化膜を第1トンネリング絶縁膜及び第2トンネリング絶縁膜として使用することによって、製造工程時に熱的安定性を確保することができ、高速動作速度及び低消費電力を実現することができる不揮発性記憶装置のストレージ及びその形成方法を提供することができる。
また、数十ナノサイズのストレージ及び数Åないし数十Åの厚さを有する絶縁膜を使用することによって、マルチビットの保存及び高集積が容易であり、高速動作速度及び低消費電力を実現することができる不揮発性記憶装置のストレージ及びその形成方法を提供することができる。
また、本発明によれば、第2トンネリング絶縁膜及び第1トンネリング絶縁膜の二重トンネリング絶縁膜の構造を使用することによって、絶縁膜の絶縁破壊を制御することができ、低い電流でも動作が可能であるという利点がある。
以下、添付図面を参照して本発明の好ましい実施の形態を詳細に説明する。しかし、本発明は、ここで説明される実施の形態に限定されず、他の形態に具体化されることもできる。ここで紹介される実施の形態は、その開示される内容が徹底し、かつ完全になるように、そして、当業者に本発明の思想を十分に伝えるために提供される。図面において、層及び領域の厚さは、明確性のために誇張されている。また、層が他の層または基板「上」にあると言及される場合に、それは、他の層または基板上に直接に形成されるか、またはそれらの間に第3層を介在することもありえる。明細書全体にわたって同じ参照番号で表示された部分は、実質的に同じ構成要素を示す。
図1は、本発明による不揮発性記憶装置のストレージの第1実施の形態を示す図面である。
図1に示すように、ストレージは、下部電極200、下部電極200上の第1トンネリング絶縁膜210、第1トンネリング絶縁膜210上の中間電極250、中間電極250上の第2トンネリング絶縁膜260、及び第2トンネリング絶縁膜260上の上部電極280を備える。第1トンネリング絶縁膜210及び第2トンネリング絶縁膜260は、強い電界で破壊されず、バンド間のトンネリングによって電荷が移動できるように、数Åないし数十Åの厚さ及び数十ナノサイズ以下の幅を有することができる。好ましくは、5Åないし20Åの厚さを有し、100nm以下の幅を有する。
絶縁膜の幅が広い場合に、電流量が増加して、絶縁膜の脆弱部分で絶縁膜の破壊による過電流が流れうる。このような絶縁膜の破壊は、臨界サイズ以下で抑制され、100nm以下の幅を有するパターンで絶縁膜の破壊による過電流現象がなくなるということが分かる。また、絶縁膜が厚い場合、バンド間のトンネリングが制限されるので、絶縁膜の厚さは、数十Å以下であることが好ましい。
本発明では、下部電極200と上部電極280との間に第1トンネリング絶縁膜210及び第2トンネリング絶縁膜260を形成することによって、絶縁膜の物理的な破壊を防止することができる。電極の間に一つのトンネリング絶縁膜を形成した場合に、所定レベル以下の電圧ではバンド間のトンネリングによる電流が検出されるが、電圧レベルが臨界値以上に上昇した場合、絶縁膜の破壊による過電流が検出されうる。しかし、本発明のように、二重構造に絶縁膜を形成した場合、絶縁膜の破壊電圧が著しく上昇し、これは、絶縁膜が互いにバッファの役割を行うと理解されることができる。このような効果は、第1トンネリング絶縁膜210と第2トンネリング絶縁膜260が同じであるか、または類似したレベルのトンネリング抵抗を有するときに得られることができる。
本発明において、第2トンネリング絶縁膜260は、電圧が印加されるときにスイッチング特性を表し、第1トンネリング絶縁膜210は、第2トンネリング絶縁膜260の絶縁破壊(breakdown)を制御するための絶縁膜でありうる。したがって、第1トンネリング絶縁膜210及び第2トンネリング絶縁膜260が、電流密度1×104A/cm2以上でも絶縁破壊されないように、両方とも数十ナノサイズであることが好ましい。
また、絶縁膜の破壊を防止し、所定レベル以上の電圧で抵抗をスイッチングするために、第1トンネリング絶縁膜210及び第2トンネリング絶縁膜260を適切に選択することが好ましい。例えば、第1トンネリング絶縁膜210は、マグネシウム酸化膜、アルミニウム酸化膜またはチタン酸化膜であり、第2トンネリング絶縁膜260も、酸化膜でありうる。特に、第2トンネリング絶縁膜260は、チタン酸化膜であることが好ましい。
中間電極250は、第1中間電極220及び第2中間電極240を備えうる。第1中間電極220は、第1トンネリング絶縁膜210と接し、第1トンネリング絶縁膜210の安定した結晶構造を得るために、白金族金属膜または磁性物質から形成されることが好ましい。白金族元素は、周期率表でVIII族に属する貴金属であり、例えば、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)がある。本発明において、第1中間電極220は、例えば、Ru、Ir、ニッケル(Ni)、コバルト−鉄−ホウ素(Co−Fe−B)合金またはNi−Fe合金から形成されることができる。
また、第2中間電極240は、第2トンネリング絶縁膜260に正孔のトラップサイトを提供し、第2トンネリング絶縁膜260でバンド間のトンネリングを行い得る金属から形成することが好ましい。例えば、第2中間電極240をチタンまたはチタン窒化膜から形成することによって、チタン酸化膜のような第2トンネリング絶縁膜260を容易に形成することができる。
下部電極200も、白金族金属膜及び/または磁性物質から形成することができる。例えば、下部電極200は、Ru、Ir、Ni、Co−Fe−B合金またはNi−Fe合金から形成することができ、白金族金属膜上に第1トンネリング絶縁膜210と接する磁性物質を含んでもよい。
上部電極280は、第2トンネリング絶縁膜260の界面特性を向上させるために、白金族金属から形成することができ、工程中にストレージ・パターニングを容易に形成するために、下部の物質に対するエッチング選択性を有する物質から形成することが好ましい。白金族金属の場合、チタン、チタン窒化膜、金属酸化膜、及び磁性物質に対するエッチング選択性を有することができる。
第2トンネリング絶縁膜260は、正孔のトラップサイトを有することによって、部分的にエネルギー・バンド・ローイングを有し、正孔のトラップサイトに電子が捕獲されて、バンドが上昇し、また、それによるトンネリングの抵抗が増加しうる。それは、シモンス・ヴェルデルバー(Simmons−verderver)モデルをもって説明されることができる。また、第1トンネリング絶縁膜210は、自体的にトンネリング抵抗を有するので、第2トンネリング絶縁膜260に流れるトンネリング電流を制限することによって、所定レベル以上の電圧で第2トンネリング絶縁膜260の破壊を抑制する役割を行うことができる。
図2は、本発明による不揮発性記憶装置のストレージの第2実施の形態を示す図面である。
図2に示すように、第1実施の形態と同様に、ストレージは、下部電極200、第1トンネリング絶縁膜210、中間電極250、第2トンネリング絶縁膜260及び上部電極290を備えうる。中間電極250は、第1実施の形態と同様に、第1中間電極220及び第2中間電極240を備え、上部電極290は、第1上部電極270及び第2上部電極280を備えうる。第2上部電極280は、第1実施の形態と同様に、白金族金属膜から形成し、第1上部電極270は、第2トンネリング絶縁膜260と接するタンタル膜から形成することができる。
図3ないし図5は、本発明による不揮発性記憶装置のストレージの形成方法の第1実施の形態を説明するための工程断面図である。この実施の形態によれば、前記ストレージの第1実施の形態のような構造が得られる。
図3に示すように、下部電極膜10、第1トンネリング絶縁膜12、第1中間電極膜14及び第2中間電極膜16を形成し、第2中間電極膜16の一部を所定の深さにエッチングして溝(groove)18を形成する。下部電極膜10は、白金族金属膜または磁性物質から形成し、白金族金属膜上に磁性物質を積層して形成することができる。前記白金族元素としては、Ru、Rh、Pd、Os、Ir及びPtが挙げられ、前記磁性物質としては、Ni、Co−Fe−B合金またはNi−Fe合金が挙げられる。本発明において、下部電極膜10は、Ru、Ir、Ni、Co−Fe−B合金及びNi−Fe合金からなる群から選択された一つまたは二つ以上の積層膜から形成することが好ましい。
下部電極膜10上に第1トンネリング絶縁膜12を形成する。第1トンネリング絶縁膜12は、5Åないし20Åの厚さを有する金属酸化膜から形成することができ、例えば、マグネシウム酸化膜、アルミニウム酸化膜またはチタン酸化膜から形成することができる。第1トンネリング絶縁膜12上に第1中間電極膜14を形成し、第1中間電極膜14上に第2中間電極膜16を形成する。第1中間電極膜14は、白金族金属または磁性物質から形成し、第2中間電極膜16は、チタンまたはチタン窒化膜から形成することができる。
溝18は、最大の広さが数十ナノサイズ以下である正孔状に形成することができる。例えば、溝18は、100nm以下のサイズに形成することが好ましい。溝18は、第2中間電極膜16を所定の深さにエッチングして形成する。その結果、溝18の側壁及び底部は、第2中間電極膜16からなる。
少なくとも溝18の底部に第2トンネリング絶縁膜20を形成する。溝18を形成した後、洗浄工程で酸素含有の洗浄液を使用して第2中間電極膜16の表面を酸化させて、第2トンネリング絶縁膜20を形成することができる。すなわち、チタンまたはチタン窒化膜が洗浄液によって酸化されて、チタン酸化膜である第2トンネリング絶縁膜20が形成されることができる。このとき、前記チタン酸化膜の厚さも、数Åないし数十Åに形成することが好ましく、そのために適切な酸化速度を維持しつつ洗浄することが好ましい。チタンよりチタン窒化膜の方が、酸化速度が遅いため、第2中間電極膜16としてチタン窒化膜を使用することがさらに好ましい。第2トンネリング絶縁膜20の厚さが5Åないし20Åである場合、絶縁膜の破壊防止及びバンド間のトンネリングの効果が高い。
図4に示すように、溝18内に上部電極280を充填し、溝18の周りの第2中間電極膜16上の第2トンネリング絶縁膜20を除去する。図5に示すように、上部電極膜22に蒸着及び傾斜イオンビームエッチングを交互に繰り返し的に実施することによって、溝18の内部にのみ制限的に上部電極280を形成することができる。このとき、イオンビームエッチングにより第2中間電極膜16上の第2トンネリング絶縁膜20及び溝18の側壁の第2トンネリング絶縁膜20が除去されて、上部電極280の下部にのみ第2トンネリング絶縁膜20aが残存しうる。
図5に示すように、蒸着された上部電極膜22に傾斜イオンビームエッチングを実施すると、イオンビームに露出される第2中間電極膜16上の上部電極膜22がエッチングされ、第2中間電極膜16によりイオンビーム24の進行が遮断されて、溝18の側壁の上部電極膜22も除去される。このとき、溝18の内部には、上部電極膜22が積もり続けて溝18が充填されることができる。溝18の内部だけでなく、第2中間電極膜16上にも上部電極膜22が積もりうるが、それは、溝18の内部が充填された後に上部電極膜22を平坦化して除去することもできる。
上部電極膜22は、白金族金属膜から形成することができる。上部電極280をエッチングマスクとして使用して第2中間電極膜16をエッチングすることによって、図1に示すような第2中間電極240を形成することができる。第1中間電極膜14が磁性物質から形成される場合、第1中間電極膜14及び上部電極280のエッチング選択性を利用して第1中間電極膜14をエッチングすることによって第1中間電極220を形成することができる。次いで、第1トンネリング絶縁膜12及び下部電極膜10をパターニングして、第1中間電極220の下部に第1トンネリング絶縁膜210を残して下部電極200を形成することができる。
本発明において、第2トンネリング絶縁膜260は、所定レベル以上の電圧でトンネリング抵抗がスイッチングされる機能を有し、第1トンネリング絶縁膜210は、第2トンネリング絶縁膜260が物理的に破壊されることを抑制する機能を有する。第2トンネリング絶縁膜260は、上部電極280をマスクとして使用して数十ナノサイズ以下に形成することができ、第1トンネリング絶縁膜210は、第2トンネリング絶縁膜260と類似したレベルのトンネリング抵抗を有するために、第2トンネリング絶縁膜260と同様に、数Åないし数十Åの厚さを有する。したがって、前記下部電極は、上部電極280をエッチングマスクとして使用して、必ずしも自己整合的にパターニングされなくてもよい。したがって、下部電極膜10を上部電極280と同様に、白金族金属から形成してもよい。
図6は、本発明による不揮発性記憶装置のストレージの形成方法の第2実施の形態を説明するための図面である。
図6に示すように、第1実施の形態とは異なり、上部電極290は、第1上部電極270及び第2上部電極280を備えうる。第1上部電極270は、タンタルから形成し、第2上部電極280は、白金族金属から形成することができる。第1実施の形態と同様に、上部電極290は、上部電極膜に蒸着及び傾斜イオンビームエッチングを実施することによって形成することができる。このとき、第1上部電極膜に蒸着及びエッチングを交互に繰り返し的に実施して第1上部電極270を形成し、第1上部電極270上に、第2上部電極膜に蒸着及びエッチングを交互に繰り返し的に実施して第2上部電極270を形成することができる。以後の工程は、第1実施の形態によって実施し、図2に示すように、第1上部電極270及び第2上部電極280を有する不揮発性記憶装置のストレージを形成することができる。
図7ないし図9は、本発明による不揮発性記憶装置のストレージの形成方法の第3実施の形態を説明するための図面である。
図7に示すように、下部電極膜10、第1トンネリング絶縁膜12、第1中間電極膜14、第2中間電極膜16、第2トンネリング絶縁膜20及び上部電極膜62を形成する。
下部電極膜10は、白金族金属膜及び/または磁性物質から形成し、前記白金族金属膜上に磁性物質を積層して形成することができる。第1トンネリング絶縁膜12は、マグネシウム酸化膜、アルミニウム酸化膜及びチタン酸化膜のような金属酸化膜から形成することができる。第1中間電極膜14は、下部電極膜10と同様に、白金族金属膜及び/または磁性物質から形成することができる。
第2中間電極膜16は、金属酸化膜を形成することができる物質、特に、チタンまたはチタン窒化膜から形成することができ、第2トンネリング絶縁膜20は、第2中間電極膜16が酸化された絶縁膜でありうる。例えば、第2トンネリング絶縁膜20は、チタン酸化膜から形成することができる。前記チタン酸化膜は、第2中間電極膜16を形成するチタンまたはチタン窒化膜を酸化して形成することができ、第2中間電極膜16を形成した後に湿式洗浄で前記チタン酸化膜を形成することができる。第2トンネリング絶縁膜20上に上部電極膜62を形成する。上部電極膜62は、白金族金属膜から形成することができる。
第1トンネリング絶縁膜12及び第2トンネリング絶縁膜20は、数Åないし数十Åの厚さを有するように形成することができる。好ましくは、第1トンネリング絶縁膜12及び第2トンネリング絶縁膜20を5Åないし20Åの厚さを有するように形成することが好ましい。
図8に示すように、上部電極膜62上にマスクパターン64を形成する。マスクパターン64は、数十ナノサイズ以下に第2トンネリング絶縁膜20を形成するためのものであって、フォトレジストパターンで形成することができる。マスクパターン64をエッチングマスクとして使用して上部電極膜62をエッチングする。
図9に示すように、上部電極膜62のエッチングされた上部電極280を形成し、マスクパターン64は除去されることができる。しかし、マスクパターン64を除去せず、マスクパターン64を後続工程のエッチングマスクとして使用することができる。
図示されてはいないが、上部電極280をエッチングマスクとして使用して第2トンネリング絶縁膜20及び第2中間電極膜16をパターニングして、図1に示すように、上部電極280の下部に第2トンネリング絶縁膜260を残して第2中間電極240を形成する。このとき、第2トンネリング絶縁膜20及び第2中間電極膜16に対するエッチング選択性の高いエッチング条件で異方性エッチングを行う。例えば、前記異方性エッチングは、白金族元素との反応性の低い塩素基剤(chlorine−base)の化合物を使用することが好ましい。次いで、第1中間電極膜14、第1トンネリング絶縁膜12及び下部電極膜10をエッチングして第1中間電極220を形成し、第1中間電極220の間に第1トンネリング絶縁膜210が介在された下部電極200を形成することができる。
本発明において、第1中間電極220及び下部電極200は、第2中間電極240と異なる形態にパターニングされることができる。上部電極280上にマスクパターン64がある場合、マスクパターン64をエッチングマスクとして使用して第2中間電極240の下部のパターンを形成することができ、マスクパターン64が除去された場合、第2中間電極240を形成した後に他のマスクパターンを使用して第2中間電極240の下部のパターンを形成することができる。
図10及び図11は、本発明による不揮発性記憶装置のストレージの形成方法の第4実施の形態を説明するための断面図である。
図10に示すように、不揮発性記憶装置のストレージの形成方法の第3実施の形態と同様に、下部電極膜10、第1トンネリング絶縁膜12、第1中間電極膜14及び第2中間電極膜16を形成し、第2中間電極膜16の一部をエッチングして数十ナノサイズの溝18を形成し、第2中間電極膜16上に第2トンネリング絶縁膜20を形成する。第2トンネリング絶縁膜20は、可変抵抗物質から形成することができる。第2トンネリング絶縁膜20上に、溝18を充填する上部電極膜122を形成する。
下部電極膜10は、白金族金属膜または磁性物質から形成し、白金族金属膜上に磁性物質を積層して形成することができる。前記白金族元素としては、Ru、Rh、Pd、Os、Ir及びPtが挙げられ、前記磁性物質としては、Ni、Co−Fe−B合金またはNi−Fe合金が挙げられる。本発明において、前記下部電極膜10は、Ru、Ir、Ni、Co−Fe−B合金及びNi−Fe合金からなる群から選択された一つまたは二つ以上の積層膜から形成することが好ましい。
第1トンネリング絶縁膜12は、5Åないし20Åの厚さを有する金属酸化膜から形成することができ、例えば、マグネシウム酸化膜、アルミニウム酸化膜またはチタン酸化膜から形成することができる。
第1中間電極膜14は、下部電極膜10と同様に、白金族金属膜または磁性物質から形成することができる。第2中間電極膜16は、第2トンネリング絶縁膜20に正孔のトラップサイトを提供し、第2トンネリング絶縁膜20でバンド間のトンネリングを行いうる金属から形成することが好ましい。例えば、第2中間電極膜16をチタンまたはチタン窒化膜から形成することによって、チタン酸化膜のような第2トンネリング絶縁膜20を容易に形成することができる。
上部電極膜122は、第2トンネリング絶縁膜20の界面特性を向上させるために白金族金属から形成し、工程中にストレージパターニングを容易に形成するために、下部の物質に対するエッチング選択性を有する物質から形成することが好ましい。白金族金属の場合、チタン、チタン窒化膜、金属酸化膜、及び磁性物質に対するエッチング選択性を有することができる。
図11に示すように、上部電極膜122を平坦化して溝18内に制限的に充填された上部電極280を形成する。上部電極膜122の平坦化は、化学機械的研磨工程または異方性エッチバック工程を利用して行うことができる。第1実施の形態とは異なり、上部電極280は、溝18の下面及び側壁に残存した第2トンネリング絶縁膜20a上に形成される。
第1実施の形態と同様に、上部電極280をエッチングマスクとして使用して下部物質層をパターニングし、上部電極280の下部に第2トンネリング絶縁膜260を残して第2中間電極240を形成する。次いで、第1中間電極膜14、第1トンネリング絶縁膜12及び下部電極膜10をパターニングすることができる。
図12及び図13は、本発明による不揮発性記憶装置のストレージの形成方法の第5実施の形態を説明するための断面図である。
図12に示すように、第4実施の形態と同様に上部電極膜122を形成した後、上部電極膜122をエッチバックする。このとき、上部電極膜122は、傾斜イオンビームエッチングを利用してエッチバックされることができる。傾斜イオンビーム24により第2中間電極膜16上の第2トンネリング絶縁膜20及び上部電極膜122をエッチングして、溝18内に制限的に上部電極280を形成する。第4実施の形態と同様に、上部電極280は、溝18の下面及び側壁に残存した可変抵抗物質から形成された第1トンネリング絶縁膜20b上に形成されるが、傾斜イオンビーム24により溝18の上部側壁の一部が露出されることができる。
次いで、第4実施の形態と同様に、上部電極280をエッチングマスクとして使用してパターニング工程を実施し、図1に示すようなストレージを形成することができる。
図14及び図15は、本発明による不揮発性記憶装置のストレージの形成方法の第6実施の形態を説明するための断面図である。
図14に示すように、第2トンネリング絶縁膜20を形成した後、第1上部電極膜121及び第2上部電極膜122を形成することができる。第1上部電極膜121は、例えば、タンタル膜から形成し、第2上部電極膜122は、白金族金属膜から形成することができる。
図15に示すように、第2上部電極膜122及び第1上部電極膜121を順次に平坦化エッチングして、溝18内に制限的に第2トンネリング絶縁膜20a及び第1上部電極膜121aを残し、第1上部電極膜121a上に溝18を充填する第2上部電極280を形成する。このとき、平坦化は、化学機械的研磨工程または異方性エッチバック工程を利用して行うことができる。
図示されてはいないが、第2上部電極280をエッチングマスクとして使用して第1上部電極膜121a及び第2トンネリング絶縁膜20aをエッチングすることによって第1上部電極270を形成し、第1上部電極270の下部に第2トンネリング絶縁膜260を残す。次いで、第2上部電極280をエッチングマスクとして使用して第2中間電極膜16をパターニングし、図1に示すように第2中間電極240を形成する。
第6実施の形態によれば、溝18の下面及び側壁を覆う第1上部電極膜121a内に第2上部電極280を形成することによって、溝18に比べて相対的に小さい上部電極290を形成することができるという利点がある。また、第1上部電極膜121a及び第2中間電極膜16は、塩素化合物を利用してエッチングすることによって、第2上部電極280をエッチングマスクとして使用することができる。
図16及び図17は、本発明による不揮発性記憶装置のストレージの形成方法の第7実施の形態を説明するための断面図である。
図16に示すように、第6実施の形態と同様に、第2トンネリング絶縁膜20上に第1上部電極膜121及び第2上部電極膜122を形成し、第2上部電極膜122及び第1上部電極膜121を平坦化する。このとき、第6実施の形態とは異なり、斜めに入射するイオンビーム24を使用する傾斜イオンビームエッチングを利用して第2上部電極膜122及び第1上部電極膜121を平坦化することができる。
図17に示すように、溝18内に制限的に第1上部電極膜121bを残し、第1上部電極膜121b上に溝18を充填する第2上部電極280を形成する。このとき、平坦化は、化学機械的研磨工程または異方性エッチバック工程を利用して行うことができる。溝18の下面及び側壁に第2トンネリング絶縁膜20bが残存するが、傾斜イオンビームエッチングにより溝18の上部側壁の一部が露出されることができる。したがって、第1上部電極膜121b及び第2上部電極280は、溝18の上部を充填できないことがある。
図示されてはいないが、第2上部電極280をエッチングマスクとして使用して第1上部電極膜121b及び第2トンネリング絶縁膜20bをエッチングすることによって第1上部電極270を形成し、第1上部電極270の下部に第2トンネリング絶縁膜260を残す。次いで、第2上部電極280をエッチングマスクとして使用して第2中間電極膜16をパターニングし、図1に示すように第2中間電極240を形成する。
本発明の実施の形態において、前記第1トンネリング絶縁膜及び第2トンネリング絶縁膜の幅は、数十ナノサイズであることが好ましい。このとき、前記絶縁膜のサイズは、有効サイズを意味し、絶縁膜の有効サイズは、上部電極及び下部電極によって決定されることができる。したがって、前記第2トンネリング絶縁膜は、上部電極と中間電極との間に介在されるので、前記上部電極及び前記中間電極の幅を数十ナノに形成することによって、前記第2トンネリング絶縁膜の有効幅が数十ナノサイズになりうる。また、前記第1トンネリング絶縁膜は、前記中間電極と前記下部電極との間に介在されるので、前記中間電極のを数十ナノサイズに形成することによって、前記第1トンネリング絶縁膜の有効幅が数十ナノサイズになりうる。
図18は、本発明の好ましい実施の形態による不揮発性記憶装置の動作特性を示すグラフである。
デュアルトンネリング絶縁膜を有する不揮発性記憶装置は、所定レベル以上の電圧でスイッチング抵抗特性を有する。トンネリング絶縁膜が第2トンネリング絶縁膜と第1トンネリング絶縁膜のデュアル構造を有するので、絶縁膜の絶縁破壊のない、トンネリング抵抗による電圧−電流特性を有することができる。
図18のグラフに示すように、横軸は、下部電極と上部電極との間に印加される電圧を示し、左側の縦軸は、抵抗を示し、右側の縦軸は、電流を示す。グラフにおいて抵抗は、線形値(linearscale)で示し、電流は、ログ値(logscale)で示した。線(1)ないし(5)は、電圧−抵抗曲線であり、線(a)ないし(e)は、電圧−電流曲線である。
図18に示すように、初期臨界電圧Vs以上の複数のスイッチング電圧S1ないしS3を設定して、それぞれのスイッチング電圧まで電圧が上昇した後に下降するとき、電圧下降区間で電圧−抵抗曲線は、電圧上昇区間での電圧−抵抗曲線と異なる経路を表す。
初期抵抗R0から出発して第1経路(1)によって第1スイッチング電圧S1まで上昇した後に下降した場合、前記可変抵抗体の抵抗値は、第2経路(2)によって回帰した第1スイッチングされた抵抗R1であり、第2スイッチング電圧S2まで上昇した後に下降した場合は、第3経路(3)によって回帰した第2スイッチングされた抵抗R2であり、第3スイッチング電圧S3まで上昇した後に下降した場合の抵抗値は、第4経路(4)によって回帰した第3スイッチングされた抵抗R3である。
初期抵抗R0を有するストレージで、前記臨界電圧Vsより低い電圧まで印加電圧が上昇した後に下降するときには、電圧上昇区間と同じ経路で抵抗値が回帰する。第nスイッチ電圧Snまで印加電圧が上昇した後には臨界電圧が上昇し、変更された臨界電圧より低い電圧まで上昇した後に下降するときには、第n+1経路によって回帰する。
前記電圧−抵抗特性によりスイッチング電圧による電圧−電流曲線を表す。初期臨界電圧Vs以上の複数のスイッチング電圧Snを設定すると、各スイッチング電圧Snまで印加電圧が上昇した後に下降するとき、電流値は相異なる経路によって回帰し、臨界電圧も上昇する。
初期電圧上昇区間で第1経路(a)によって増加した電流は、初期臨界電圧Vs以上の電圧が上昇した後に下降するとき、電流−電圧曲線がスイッチングされて、それぞれ第2経路(b)、第3経路(c)及び第4経路(d)によって回帰する。それぞれのスイッチング電圧によって臨界電圧が上昇して電流−電圧曲線がスイッチングされた後には、変換された臨界電圧より低い電圧が印加されるときには、電圧上昇区間によって電流値が回帰する。これを利用することによって、可変抵抗体として、マルチビットを保存できるストレージを使用することができる。
すなわち、初期臨界電圧Vsより低い読み出し電圧Vrを設定し、前記可変抵抗体を通じて流れる電流値を測定することによって、初期可変抵抗体の電流値Data1、第1スイッチされる電流値Data2、第2スイッチされる電流値Data3及び第3スイッチされる電流値Data4にそれぞれデータ値を与えて、2ビットを保存することができる。
データを書き込むための印加電圧と逆極性である電圧を前記可変抵抗体に印加して、前記可変抵抗体を初期状態にリセットさせることができる。すなわち、前記可変抵抗体に書き込みと逆極性であるリセット電圧を印加すると、(5)経路のように抵抗が急減して、(e)経路によって電流の絶対値が初期化されることができる。
本発明の実施の形態による不揮発性記憶装置のストレージを示す断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージを示す断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置のストレージの形成方法を説明するための工程断面図である。 本発明の実施の形態による不揮発性記憶装置の動作特性を示すグラフである。
符号の説明
200:下部電極、210:第1トンネリング絶縁膜、250:中間電極、260:第2トンネリング絶縁膜、280:上部電極

Claims (36)

  1. 下部電極と、
    前記下部電極上の第1トンネリング絶縁膜と、
    前記第1トンネリング絶縁膜上の中間電極と、
    前記中間電極上の第2トンネリング絶縁膜と、
    前記第2トンネリング絶縁膜上の上部電極と、を備える不揮発性記憶装置のストレージ。
  2. 前記第1トンネリング絶縁膜の厚さは、5Åないし20Åであることを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  3. 前記第2トンネリング絶縁膜の厚さは、5Åないし20Åであることを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  4. 前記第2トンネリング絶縁膜の幅は、100nmより狭いことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  5. 前記下部電極と前記中間電極との間に介在される前記第1トンネリング絶縁膜の幅は、100nmより広くないことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  6. 前記第1トンネリング絶縁膜及び前記第2トンネリング絶縁膜は、金属酸化膜を備えることを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  7. 前記第1トンネリング絶縁膜は、マグネシウム酸化膜、アルミニウム酸化膜及びチタン酸化膜からなる群から選択された一つを含むことを特徴とする請求項6に記載の不揮発性記憶装置のストレージ。
  8. 前記第2トンネリング絶縁膜は、チタン酸化膜を含むことを特徴とする請求項6に記載の不揮発性記憶装置のストレージ。
  9. 前記第1トンネリング絶縁膜の上部に形成された前記中間電極は、白金族元素または磁性物質を含むことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  10. 前記第1トンネリング絶縁膜の上部に形成された前記中間電極は、Ru、Ir、Ni、Co−Fe−B合金及びNi−Fe合金からなる群から選択された一つを含むことを特徴とする請求項9に記載の不揮発性記憶装置のストレージ。
  11. 前記第2トンネリング絶縁膜の下部に形成された前記中間電極は、チタンまたはチタン窒化膜を含むことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  12. 前記第2トンネリング絶縁膜は、チタン酸化膜を含むことを特徴とする請求項11に記載の不揮発性記憶装置のストレージ。
  13. 前記上部電極は、白金族元素を含むことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  14. 前記上部電極は、前記白金族元素と前記第2トンネリング絶縁膜との間に介在されるタンタル膜をさらに含むことを特徴とする請求項13に記載の不揮発性記憶装置のストレージ。
  15. 前記下部電極は、白金族元素または磁性物質を含むことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  16. 前記第1トンネリング絶縁膜及び前記第2トンネリング絶縁膜は、同じレベルのトンネリング抵抗を有することを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  17. 前記第1トンネリング絶縁膜と接する前記下部電極及び前記上部電極は、磁性物質を含むことを特徴とする請求項1に記載の不揮発性記憶装置のストレージ。
  18. 前記第2トンネリング絶縁膜は、チタン酸化膜からなることを特徴とする請求項17に記載の不揮発性記憶装置のストレージ。
  19. 前記第2トンネリング絶縁膜の幅は、100nmより狭く、前記第2トンネリング絶縁膜は、前記上部電極に自己整合されることを特徴とする請求項18に記載の不揮発性記憶装置のストレージ。
  20. 下部電極上に第1トンネリング絶縁膜を形成するステップと、
    前記第1トンネリング絶縁膜上に中間電極を形成するステップと、
    前記中間電極上に第2トンネリング絶縁膜を形成するステップと、
    前記第2トンネリング絶縁膜上に上部電極を形成するステップと、を含む不揮発性記憶装置のストレージの形成方法。
  21. 前記上部電極を形成するステップは、
    中間電極膜を形成するステップと、
    前記中間電極膜を所定の深さにエッチングして溝を形成するステップと、
    前記溝内の中間電極膜の表面に第2トンネリング絶縁膜を形成するステップと、
    前記第2トンネリング絶縁膜が形成された前記溝に充填された上部電極を形成するステップと、を含むことを特徴とする請求項20に記載の不揮発性記憶装置のストレージの形成方法。
  22. 前記中間電極膜は、チタンまたはチタン窒化膜を含むことを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  23. 前記中間絶縁膜を形成するステップは、
    白金族元素または磁性物質を含む第1中間絶縁膜を形成するステップと、
    前記第1中間絶縁膜上にチタンまたはチタン窒化膜を含む第2中間絶縁膜を形成するステップと、を含むことを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  24. 前記第2トンネリング絶縁膜は、チタン酸化膜から形成されるが、前記チタン酸化膜は、前記チタンまたは前記チタン窒化膜を酸化して形成されることを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  25. 前記チタンまたは前記チタン窒化膜は、溝を形成した後に洗浄工程で酸化されることを特徴とする請求項24に記載の不揮発性記憶装置のストレージの形成方法。
  26. 上部電極膜に蒸着及び傾斜イオンビームエッチングを繰り返し的に実施して、前記溝の下部に形成された前記第2トンネリング絶縁膜上に前記上部電極を形成することを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  27. 前記イオンビームエッチングにより前記溝の側壁及び前記溝の周りの前記中間電極膜上に形成された前記第2トンネリング絶縁膜が除去されることを特徴とする請求項26に記載の不揮発性記憶装置のストレージの形成方法。
  28. 前記上部電極を形成するステップは、
    前記第2トンネリング絶縁膜の形成された前記中間電極膜上に上部電極膜を形成するステップと、
    前記上部電極膜及び前記第2トンネリング絶縁膜を順次平坦化して、前記溝内に充填された上部電極を形成するステップと、を含むことを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  29. 前記平坦化は、化学機械的研磨、エッチバックまたは傾斜イオンビームエッチングを利用して行われることを特徴とする請求項28に記載の不揮発性記憶装置のストレージの形成方法。
  30. 前記中間電極を形成するステップは、前記上部電極をエッチングマスクとして使用して、前記第2トンネリング絶縁膜及び前記中間電極膜をパターニングすることを含むことを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  31. 前記上部電極は、第1上部電極、及び前記第1上部電極上の第2上部電極を備え、
    前記第1上部電極は、タンタル膜から形成され、前記第2上部電極は、白金族元素または磁性物質から形成されることを特徴とする請求項21に記載の不揮発性記憶装置のストレージの形成方法。
  32. 前記第1上部電極は、前記溝の下部に形成された前記第2トンネリング絶縁膜上に形成され、前記第2上部電極は、前記第1上部電極上に前記溝の側壁と接するように形成されることを特徴とする請求項31に記載の不揮発性記憶装置のストレージの形成方法。
  33. 前記第1上部電極は、第1上部電極膜に蒸着及び傾斜イオンビームエッチングを繰り返し的に実施して、制限的に前記溝の下部に形成され、前記第2上部電極は、前記第1上部電極上に、第1上部電極膜に蒸着及び傾斜イオンビームエッチングを繰り返し的に実施して、制限的に前記溝内に形成されることを特徴とする請求項32に記載の不揮発性記憶装置のストレージの形成方法。
  34. 前記第1上部電極及び前記第2上部電極を形成するステップは、
    前記第2トンネリング絶縁膜上に前記溝の下部及び側壁を所定の厚さに覆う第1上部電極膜を形成するステップと、
    前記第1上部電極膜上に前記溝を充填する第2上部電極膜を形成するステップと、
    前記第2上部電極膜及び前記第1上部電極膜を平坦化して前記溝内に円筒形の第1上部電極、及び前記第1上部電極の空間を充填する第2上部電極を形成するステップと、を含むことを特徴とする請求項31に記載の不揮発性記憶装置のストレージの形成方法。
  35. 前記平坦化は、化学機械的研磨、エッチバックまたは傾斜イオンビームエッチングを利用して行われることを特徴とする請求項34に記載の不揮発性記憶装置のストレージの形成方法。
  36. 前記中間電極を形成するステップは、前記第2上部電極をエッチングマスクとして使用して、前記第1上部電極、前記第2トンネリング絶縁膜及び前記中間電極膜をパターニングすることを特徴とする請求項34に記載の不揮発性記憶装置のストレージの形成方法。
JP2008085604A 2007-03-30 2008-03-28 不揮発性記憶装置のストレージ及びその形成方法 Pending JP2008258616A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070031493A KR20080088776A (ko) 2007-03-30 2007-03-30 비휘발성 기억 장치의 스토리지 및 그 형성 방법

Publications (1)

Publication Number Publication Date
JP2008258616A true JP2008258616A (ja) 2008-10-23

Family

ID=39792717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085604A Pending JP2008258616A (ja) 2007-03-30 2008-03-28 不揮発性記憶装置のストレージ及びその形成方法

Country Status (4)

Country Link
US (1) US20080237693A1 (ja)
JP (1) JP2008258616A (ja)
KR (1) KR20080088776A (ja)
TW (1) TW200849566A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071304A (ja) * 2007-09-10 2009-04-02 Samsung Electronics Co Ltd 抵抗変化型メモリ素子及びその形成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127236B1 (ko) * 2008-12-29 2012-03-29 주식회사 하이닉스반도체 저항성 메모리 소자의 제조 방법
TWI412122B (zh) * 2009-10-29 2013-10-11 Univ Nat Chiao Tung Resistive random access memory and its manufacturing method
US9178134B2 (en) 2013-08-30 2015-11-03 Masahiko Nakayama Magnetoresistive element and method of manufacturing the same
US9583700B2 (en) 2015-01-23 2017-02-28 Macronix International Co., Ltd. RRAM process with roughness tuning technology
US9859336B1 (en) * 2017-01-09 2018-01-02 Macronix International Co., Ltd. Semiconductor device including a memory cell structure
FR3126254B1 (fr) * 2021-08-23 2024-05-03 Commissariat Energie Atomique Procédé de fabrication de cellules mémoires résistives

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523746B2 (ja) * 1996-03-14 2004-04-26 株式会社東芝 半導体記憶装置の製造方法
US6392264B2 (en) * 1997-07-08 2002-05-21 Hideki Takeuchi Semiconductor memory device and method of producing the same
US6826022B2 (en) * 2001-08-13 2004-11-30 Alps Electric Co., Ltd. CPP type magnetic sensor or magnetic sensor using tunnel effect, and manufacturing method therefor
US6809362B2 (en) * 2002-02-20 2004-10-26 Micron Technology, Inc. Multiple data state memory cell
DE10207980C1 (de) * 2002-02-25 2003-06-26 Infineon Technologies Ag Floating-Gate-Speicherzelle, Floating-Gate-Speicheranordnung, Schaltkreis-Anordnung und Verfahren zum Herstellen einer Floating-Gate-Speicherzelle
US7196882B2 (en) * 2002-07-23 2007-03-27 Micron Technology, Inc. Magnetic tunnel junction device and its method of fabrication
US6980468B1 (en) * 2002-10-28 2005-12-27 Silicon Magnetic Systems High density MRAM using thermal writing
US7002228B2 (en) * 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
KR100593645B1 (ko) * 2004-10-28 2006-06-28 삼성전자주식회사 반도체 장치의 제조 방법
US7378707B2 (en) * 2005-05-26 2008-05-27 Micron Technology, Inc. Scalable high density non-volatile memory cells in a contactless memory array
US7486550B2 (en) * 2006-06-06 2009-02-03 Micron Technology, Inc. Semiconductor magnetic memory integrating a magnetic tunneling junction above a floating-gate memory cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071304A (ja) * 2007-09-10 2009-04-02 Samsung Electronics Co Ltd 抵抗変化型メモリ素子及びその形成方法

Also Published As

Publication number Publication date
KR20080088776A (ko) 2008-10-06
US20080237693A1 (en) 2008-10-02
TW200849566A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
US8268667B2 (en) Memory device using ion implant isolated conductive metal oxide
US9754665B2 (en) Vacancy-modulated conductive oxide resistive RAM device including an interfacial oxygen source layer
KR100647333B1 (ko) 비휘발성 메모리 소자 및 그 제조 방법
KR100855855B1 (ko) 비휘발성 메모리 소자 및 그 제조방법
CN103262240B (zh) 非易失性存储元件及其制造方法
JP4805865B2 (ja) 可変抵抗素子
JP5047518B2 (ja) 抵抗メモリセル、及びこれを利用した抵抗メモリ配列
WO2011064967A1 (ja) 不揮発性記憶素子及びその製造方法、並びに不揮発性記憶装置
JP2008258616A (ja) 不揮発性記憶装置のストレージ及びその形成方法
TW201005936A (en) Fully self-aligned pore-type memory cell having diode access device
KR20070043444A (ko) 나노 도트를 포함하는 저항성 메모리 소자 및 그 제조 방법
JP2005317976A (ja) 段階的な抵抗値を有する多層構造を利用したメモリ素子
US20200373355A1 (en) Three-dimensional nand memory device containing two terminal selector and methods of using and making thereof
JP2007180474A (ja) 可変抵抗素子及びその製造方法
JP2006140489A (ja) 一つの抵抗体及び一つのダイオードを有する不揮発性メモリ素子及び不揮発性メモリ素子アレイ
JP2010074145A (ja) 抵抗性メモリ素子、抵抗性メモリ素子の製造方法、及び、抵抗性メモリ素子の電極形成方法
US20200303639A1 (en) Memory device and method of forming the same
JP2009033160A (ja) 転移金属酸化膜を有する半導体素子及びその製造方法
US10297312B1 (en) Resistive memory cell programmed by metal alloy formation and method of operating thereof
US20150162383A1 (en) Vertical resistive random access memory device, and method for manufacturing same
KR101009334B1 (ko) 저항성 메모리 소자 및 그 제조 방법
JP4238248B2 (ja) 可変抵抗素子を備えた不揮発性半導体記憶装置の製造方法
KR101133392B1 (ko) 3차원 입체 구조를 가지는 비휘발성 메모리
JP2006344876A (ja) 不揮発性記憶素子とその製造方法
JP2010040728A (ja) 半導体装置及びその製造方法